


#2 - Schoen-Siven Compactnes
hypesurfe

Stable, minimal small single
Racell what we're trying to prove.

Kodi
It
set

Theorem: (Sheeting Theorem ↓
Let n22. Then, 7 (n)(0, 1) s

.
t

.
if M is stationary ,

stable
,

with 12 (sing (M)) = 0 and

sup | x * 1 = E · Em := Suc
,

92ca
this

happens
when

MnC -
cour,

to

vohold plane
a

the
-

↑ ~C = gyph(u) , notiR smooth wil

graphe ~ : 14 :+

Riverle : Recall from stratification that "flat" singular points suck.
-

The above there says that when M is L"-close to

beingthat In the filt senses
,
then these bed singleties don't

happen .

To accomplish this
,

we work towad the following result:

Theore : (i + 20)
-

Let M be as above. The,

Sunc
,

g" can => s g a

#of: Recall the week Cacciopoli inequality from last time:

we'll das the

Ke(o
, []

,
Yea, (n)

,

the hypothesis gives supersampt
↓ for

notation

Sign 10/2y' (1 - E) = S
Excus

(g-k) 1014/
2

We will apply "Be Giorgi iteration" to do this,

For REC
,
set Re : =

+ 21 + &

ke := (l-2-(-1)
,
delr

, 1) fixed paren

Using Ke in Cacciopoli,

= Segaelogi (1-4) = In Seganes 10gR (1-4) ESegores (g-ke) 1001
ke+ Ke Cacciopoli



9
level set

weKaw

leadisS
SyskerB

Note that integed of LHS of above !
-

18 (g - ke
+

+y)/ = 2(g -ke1)
+2104 + 2 1sgsmens logh 42

Integrating, S10[C-Kery]/ : It Saganes(g -ka)218412

For n23
,

from Michel-Since Soboler men
,

-

For n=2
,

thes
something (S((3-k)+e

lightly
different ) = Cus()S10((g-Kei+y]/

S
but
morally

to
do

=> (S1(3-ke)+/)* It Saganes(g -ka)218412

Nor take 4 to be a

wortI = 1841 nee = 0.2

ken Re &
Note that the is the redu dreath : mine it &symatic really

,
and (frudely to ensue cpt . spt] vertically

auto the cylinder

=> (S 163-he)* I (g-ke)+
2

MnCren mee

EgcKen] k23

By Holder,

&Sanche (SenckH(M1( vg(ke ,3)

On Egaken3
,

we
know (g-kelt-ken-he-uter . By Markows ma (See-(re),

C
# [M12se15gske) a Surce(g -ke)

+ 2C
S

M1C
Bett

(g-Kel - (Secre 19-ket
It

Eg(ke+3 (
Setting Ge := Smecrelg-kelt? ,

we have 322G
Eg)ke]

# If 6
,
23(

,
d)

,
the Ge + O

.
(g(d) = c() +di

+)

From this
,

it follows by thing d= (R ,
= 1

,

k
,

= 0 = 6, : Sec
,
5) that

if the 22 filt excess is sull,

Ge + 0 = Suc (5-E)
+

= 0 = get on M12
B
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&

Remark: It
wa wanted an explicit bound on

Sup S in terms of the filt
M12

excess
,

we'd track how sla
.
d) depends an d. This gives something the

L: -type ima
,

but with a pour

Proof of Sheeting Thu : We know gite on Med by above

M embedded => FxEM
,

= neighborhood Dyex sit. taght See
M1Dx is embedded disk

-
fab

M↓ 2We
my catmously choose a unit norel on M1Dx set. (0 . en) - 1 - (2)

Consider the natural projection It : REXIR - 1 -

-We wet the rays IRXSaY (in blues to intersect human
M transversely with i intereste (i . e .

M doesn't #↓(do I ·

So
,
each connected component of M is a geph (no multi-aches).

Since U:: Boll & + IR is a minine sush and /2) = 0
,

a singularity
removal those (see Lear Since in the 70s) gives that us extends across &.

B

The Sheeting Theore is the main thing needed to show a great
competes property for sufficiently regular hypersurferes .

&Learn : (Schoen-Simon Copectress and Regularity)

Suppose (Malkes is
a

seeofsteblenicehoufee
n Bl

with2-2 (sing (Mr) = 0

simple case as before

Then
,

7 subsequence (Mater and a varifold V s.
t.

& Mr +V in Bro (in the nowfold sense)

② spt(IVIInB
*

(0) = 1B"(o)
,

where M is a

stable minival hypersutue with dim (sing(m) = n-7.

In particular, taking constant reques,
all stable minmal hypesurfaces with-

72 ( 1 = 0 in fact has direct (sing) =n-7.

sing

&uf : By carpactress of stationary ityel venfolds, 7 subser . Mr and stationary inteel
Verifold V S.

7 . Ma-> V
as varifolds

-

↑Worfeld or multiplicity 1

associatedwr Mr-



We stratif ! Suppose +sing(r) is a flat singular point (x5n). Applying the

sheeting there to Mr
,

this can't hope.

Next
, suprase xe5n- . zearing in around + (target cores)

,

"smalless of
V looks like

& Aus ten a small ball,
-

signer atund
⑳S rads

- IRV Sheeting the appleg and we'reY=> vey Smsperukus & S flet .
So

, look in ball
.stability" & &

=

vin My

Size 12(sig (Mul) = 0
,

almost any place must not do this
.

So, for a. e . yell, [IR- Sy3) 1 sig (Mr .) = 0 Since this don't
-

curve too much (stability ima)
,
J0 = 0/C) > 0 sit.

Sup
Xi,te corrected (U(K) -UCt2)/ -C we my

ful differe not namels
,

by cure in ( other med be ta
a(

the slice

Howar
, by good geomety we howe

(v()-v/tc))-SDIntyeting over 3, M
m 1 Ba(1r-1)

Holder
n (i"= Eg3)

-o Smarbally IAIEcin (SATBaldot *
-

(h) by ~o . (n)

stability

The xeSe case is hadled by treating the tergent care C = Cox/R"
2

Looking at the link [ = Cons
,

which can't here
any E. dim i I

singularity by previous parts -> So flat -> C planar, *

Suppose +Ens E ...
=JCEVarTany(v) of the fom C = CoxIRV-3

(v) -By the above
, sing(v)cS1.3

= 12(sing 7 = 0 -> we can pass stability to

We apply : the din-reduced put of the come.

because sheeting there gives

Em /Sinos' Classificatio suphical comegue
n-dm cone

↓

If CEIRVH is a minmal
,

stable core and sing(c) [503
,

then
ne 33

,

4
,
5
, 63 => C is flat and equals a plane.-

Spine
-

So, =. ye Sing (C) 1303 => JJESing(c)(S(c) J

Take a target come to the target care JE Vartany(C)

hemme : S(c)2S(a)-

Fun the leve
,

we know that dim(S(ET)-dm(S()) + 1 since theyre subspaces.
-

Applying the Suz result on
E
,

we get * Clearl , the agment can be

itested until Jus ,
and so we are done one we proce the lenna.

C-1; x = c brin
-#atof lamma : Take xessa = -x =- c = C

=> xeS() Aj70-

Also
, jES(5) Sine -=C-5 : h cl,

; +8 -

(1+Aj)c =C Sj

-

- Go -5) =l=



&
mark : I signler ninual ~ IROEIR" x 12" via E(x1 = lyl : x

,yelh3
Two possible (but minte

fee

doesn't know because agex #"(B,

"(07) = 7 ?
neIs

:

S3 : Alland Regularity & Excess Decay

We
go book to the usual setting :

① V is stationary integral n-varifold in Butk(0

& We stratify single) = 5
.

W... W

5 was problemate sire there was no refl dimasion bound.

(Stability solves thes
,

see the sheeting theorem)
.

We know

Xe5_ => (i) J target come of (ii) Oz EX
,

2
, . . .3

,
and so Gr(x)eN

the for O . plane

It true out that it =1
,

the by Alland we know that

I *Espt/IV/I where a taget come& =>x #Sing (v)
is a plane we mult . 1

I fact
,

Alland gives an E-regulaty theom:
when V is E-close to a multiplicity I plane, then
V is locally a C'd graph with estimates.

#Leon: (Alland Regriarity

# Sc0 . The Ja(n,
K

, 5) S.
t

. the followingholds notigal if Fite

E

If V is a stationary intyel venfold in B*(0) with

· OesptIluII (V is nortrol)
~

(0)· lIVII CIR"*B,
C

: 2-8 (Vhas metal ta i
Wn

(xI
903x1RV) dI(VII(x) < E (close to planet
-

· E =Spri
#en

,
JueC"<

(BIC ,
IRY) st. UL (IR" - B*(o) = graph (a)

with

↑ Il ull
,c =

((n
,
k) En

can
upgede to

Smooth,ete. S



&

Remarks : O If V is graphical then Ev = lulli , and we recove

a classical PDE result 11 . 1161 EII : 1122

② Very little is know for multiplicity - 2
.

Consider the

catered (=( which is minhel : by resealing,

we my get XiC +... Jet -> plane of ult 2
,

which certainly isn't gephical because of thereek.

③ An open question is : J a minnel surface in 13 with

a isolated singularity ?
Now, some conollaies !

Lovollay:

=> <(v
,k]ECO,

i) s.
t

.
if V is stations integral renfold,

then
-

O(x(c1 + = = x Sing (v)

&of : First, suppose V is a core.

Lemma : J7(n
,
k)30 Site if C is a non-flat stationary intyre-

come
,
the Oc(d = 1 + c

.

&out of lenne : Suppose not
.

The
,

I (a)m with Ec 10 + 1

all non-flat.

En canical => constat mess retio = CulB]
=> Il (u (B

,
(07) /1 = w

= Oc(0) ·
stations

intege

Applying Schoen-Simen corpectress,

7 sobser Cr + C
+ come

Varifeld comegee implies convergence of mess,

1)Cll(Bico) = En lull(Bi(0)) = =mess
retro %

Since(integral and so integul
,

then GK)11 /ICI-a. e
.,

and

so Scc) =spt/CIl = C = multiplenty I place

Applying Alled to each Car and
using venfold * tocrunge

the flat C
,

we find sing(() = 0 => Ca flat => X.

~
fun leasa I

In general ,

if xEsptIUll and Fr()c1 + c
/

look of CeVorTany (v) .

We have
G

,
col = Ev(X) <1 + aC is flet with melt

. I

Applying Allend
,
Areg(u) ,

B



um*:

Suppose U-V for Va
,
V stationary integral nevanifolds in Brthg0).

Then,
F K & B

,

"+"

(o) compact
,

die (spt/IVnl/1k,
sptvlink) + 0

Hauseft

In particular, Ve + O · I planal gives I" height excess -> 0
.

From the height excess
,

we getInfilt excess -> 0.

: Unraveling definitions and forgetting subsequences she everything comages,

we must show
ekbcopectress

↓
& esptkrk = x == x spt/IV)1k .K

and xk = x

# Size Ov(xn)11, upper-semicontinuity of 0 = Gr(x)21

=> x sp+/VII

② If xe sptvl11k,
then ExnesptVallek with xa + X.

If E
-() /M Vaso

,
11 V11 (Be(x) - w- er > 0

Vorifold coregene => FK large, (IV(BA()-EMA"O

=> SptllVall1Ba()+ Wit XuespalIVall # Xn+X.

Zoollay:

reg (v) [sptull is open and dense.

#of : It's open by definition
.

Take xesptlull
,

fu $50.
Look at

O := min EjEN : Gr(y) =; for some yeBoC
The look at the varifold (VLBek

,
EE) and apply

the previous corollary.
D



#9 - Alland Proof for Lipschitz Miniel graphs

Let n : B
,

"

(o) + It be Lipschiz with LpCuich and solving
the functional minimal surface equation

Spice -Y = C,(B,
2)

Idea : We cn chrectorize C
**

regularity in terms of decy of-

- integral quantities. Precisely ,

regulat
El Sup inf

decay estimates" UEC (BY(0) + IR) #C to e Bilo PEPk -imaS In-PR-
S

Sz 20
,

1) ↑ * (x)1 B
,
"(o)

poly. of

dege natudonak

In the above
,

I is movelly the KE Taylor expansion of u.

& If K= l las in our case)
,

I'* reg. of a manifold has the

geortive interpretation
the above

by
↓

"Mis <" E intra/dest(x ,
Plaedct() - -

ES det,
place for some please

# In gred,
if u is "ahuest flat" the IDulzo

,

and so

the MSE looks like Laphee egration- >a hermenia

->- n snoot => day estinates

& Prove WY2 bord via a revese Poincare wer

Take Di in place of u to get

S=-

Note Sidete2SInside Sister +c fini
=> SIDaRp2 = <(2) SIuMIDUR

If 4 : ID4Fo,

the Spirali
hinorm by 2" mor on bigger ball

=> Nullwin (Bo(d) - <(2
, 0) Il all in(B

,
coll



#2: Lirenze the equation vie "blow-up"
Lischte week solute as

Y

Suppose Blos we have Ento
,

and un as above with

Liplnn)=) and llwall
(B

,
(01)

***

Set UK :

=
D

,
(a)

=> Ilvallm(Baco) = <(2
,
07 FozCo

,
1)

Vk

By Rellich compactness and
a diagonal agaet (to have OuD

,
the

7 subsequence

Vk -> veWi (B: /d) strongly in Lol,
weakly in Wes (B,

Step 3 Doesv satisfy any equation ?-

We know SbicaD = 0 Since Lip(val = &L to,

denominator doesn't matter.

We have

us

& IDk)2& Dr. DY = SDun · Du (1- = SD- . By .

1 + 1Dux12 MM (1 +
1 + 1Dunk

= supIDUl 9 (Dra)/Dual = sup1D41 Spaces IDual/wallcgi
spt(y) =Bold-

Bold

Sine
REC

- sup1D41 . L .

Huli) Il Dual-(a)IIDunlIL

SupID Ill
k + 0

->O

-

1 Ek

By Wi week coregene, SDru'DY + SDr . BY
. Together, un getlos

SDr . De = 0 Fee C (Bilo +

In) weekhheiaai

Marmara estrates ge this like
n Slr-eeSpcl↑

limerization
depends on

R & (x) = und + x
- Du(d)

,

Lisa Correghel gives that UK "large : suple) = ()

Bi

Sealva-el" = 2 cien Sa
,
cos
/vi

Jame I -=/



=>

etz-Sa wit = 1 . wall si

We have new prove an "excess deay" lenma.

↓una : (Excess decay for Upsclate minuel gets)

Fix Le (0
,
03 and OeCo

,
1 . The

,
75/n

,
2

,
0 (0

, 1) s .
t

.

if

· n : Bi Co - IR · a solution to MSE

· Lip(n) = L · Ilull(B) E

#her, = hyperplane I sit.

· r Su-e argu kd estnte)
· sup (111(2) llullyn(B

,
10)

B
,

< (0)

We still have the issue that the scale & and s are related.

#U: Iteeth excess deng to all sales

Choose O = E(v) (0, h) sit
. [x(n)E> #

. By excess dea lenna,
= <(n

,
1)e(0

,
1) s .

t-

llullies => SIn-el=a
It we reparameterize ulBo to wer it as

↓
I

a function on the plane l
/

it should still #satisf MSE
.

Since sup 191 Kallisi LE

Bi

whatFilte tronch.
Su

,state t

· Lp(n) = 22 · Slatlu-eItoa
Ifeating this agaet, we get : = s(n

,
2) (0, 1) s . t

. VKI)
,

- the
MSE - 7 lo

,
I
, ...,

ha sit.note
graphs

is
about

X
for

outen
perturbations

.

The

=O ,
the

we

rparametrize ,

need

orgnel planedesit↓
This

to
such

thatme
an "-l=-general
vonfold

stationary dend
still
matter

inHe

case ,

when
statement

ambethy Z

(ii) sup (Max-fal =CSIn-lBi



We need to find aphone for which this works.

By the twonghe mean ,
for K

, >kn
,

sup19K
.

- 1ml = (h) (2*
+... +2) Kullie (h) 2-~Mullice:

Bi

So
, (1) Carchy => 1 + &

* uniformly on B,
with no subseq nonsense !
-

=>vie target place !

Takin k
,
+ 0

, Suplln-exChIllulli All
↓ nz)In-la-Sl
SIn-e-Su Ee

Enterpolating between scales
,

FAECO,
1)

,

choose K st . E***** OK :

=> " = %

Speln-ea - - Soln-ex = - " . Sp
,

lat

-Since t =

=
Klogp(t) : (logo) = g-logo(t) wa

whe a
= =logo) e (0,

1),
W A

z Slu-lpleB
,

luit Yse(o, 1)

Thus Camperato decay allows us to use the Camperato theory to get

11 ullai = 2C) Il well, 2(B
. )

B



-(2)- Proof of Geneal Alland

Recell what we just did :

#1 : Establish revese Power inea. to get Wi control

*2 : Use step 1 to "limerize" the problem wa "blow-up"
(L2-rescaling)

Thi-
is

wher

-> Step3 : Understand properties of the blown-up - (last time
,

- herrovia
we

needed

you're
close

Theta

plane
with

mult .

I !
blown-up

If
mit .

2
,

the
ar

>

age
is

B

-

harmonie,

but
fill regulants #

4

:Use Isregulatetoget d thatfor aa b
queters

whose
ave

tough
to set

after.

*5 : Itwete excess dray lenma to get Camperato estimate for

nonlinear problem => profit $$

Wer now prome the full Alland for varifolds
, following ther des. We

will approximte by a nice graph and pass the error terms through

Note: For Stp1 ,
we have IlgadatsllIl valelli2

,

which in the genetic
setting can be considered 1) tiltIll height li. To get at this

,

we will again usefilt excess !

Tilt excess is En := SaxBicalPer-PrelldI()
when Ps : /R

*
-S is orthogonal proj auto subspace S,

is Frobening norm.Sad iSdotedE

Step 1 : Reversa Poiner

Senna: (Revese Poincare for stationary nanifolds)

Suppose V is a stations integel n-varifold in But (0).

Ther,

& Il P
+-Pirl" Y2dINI) = 32SdaF(x, It IDYIdIUIII)

for all test frctions Ye C ! (B** (0))
.



#of : Take variatio Yx : = 4
:

(x) (x !
...,
x 0, ...) to be the analog to

the upward test for Yes we used earle. The,

& v
(Y)= x)= (e)

=e .. Pr[(int)=(2

Note that endb pIP-led-St SinX

i
, j = i

, j =-

= In-Pri Pint is = + (P+ ) + (Pirt)
= tr (Pi

=
v) T

same thing

=-n=
here

5
dr (Y) : El Ptr-Pil +24 Die

Stationrity gives Sdviv(Y) dllv = 0 = PuSij-(Pic) ;; for isk since

these courds of Pir are 0.

=> S4211Ptr-Pirl dIlull = -4Su : (Pr): - (Pini) Dil

= YSID) /I Ptr-Prull/(x, ..., x0, ..., 01 ID4/

Habe + 45 - SU21/Per-Pull + Y1DYP/(x, ..., x40, ...,
di

=> SellPr-Pilk =32, 0, . . . , 01 IDGR

= dist2(x
,
IR] B

Step 2 : -Blow-up & Lipschitz Approx .

: Klipschitz approx

Ex S
,
0 10

,
1). Then Jan,

K
,

8
,
0) so sit.

If V is a station integel nevarifeld Vin Brt(0) obeying assumptions of Allend,
the J Lipschitz freturn : B(0) -> IRK

,
Lip(n) E

,
and measurable & Bolo

-bad set
Sit.

(i) lu () Ent (height ofa height)
excess

(ii) v2 (R*

+ (Bold(2)) = graph (ulpoloa) --vOmem

ii
-

(iii) 1"(d) + 11v1I (IR" &) = (In,k) En Do



Remark : & is explicit! It is the /projection of the points-

the filt excess (ad so the height excess by step 1) does Iwhere
at all scales.

& the ed
, once we have show excess dry at every point,

we can come back and
so 2= = v is El a Lipschitz

graph !

We will power this later but use it now. Now
,

we construct our blow-ups.

Consider a sequence (Value of station into n-reifolds in Bi
**

(O) S .
t.

· O spt Il Vall · We'llVall (IR"x B
Y

" (o)) = 2 - S · Even to

For
any &Co

,
1) UK sufficiently large we can apply Lipschitz approx

S

V
= on IRYx -Cob to get Lipschitz Un : Bald + IRY, Liplua) ,

st .
to Bo

·

Sup Inal Ent · Un LCIR"x(Ba([n)) = graph (nn/bol)
·H([n) + 11 Vall (IR"= [

.
) = C Ev

So
,

UK large,

Spalmal = Slat + Slun =C
BolEv
~ -

= dat,M . J deV [supIn .HE
are

formula S"(B)9) ↑ +Similarly, It
Du
-

th(2)Jacobian

SpIDuaR = SpDun + SIDuR
very Youfrctionou

ansa

K

On IR"x (Boldu)
,

↓ space

Uj = xi 01 sot1IValle (IR" + (Bold)]
Note that

2gi 1 - P
+
)piri) .Oi1VuiF = Di · Oni = Pr (pi) . pirt : =↓

= /Du: /" -

=>110 : / - IDul = /IP-PrllIDe: 12 = Pira Pietr Pirr for wi

= (Pir-Prv) Pr (Pr-Pr
= t

So
,

we my replace regula deratives by plas for absorbable ever.

SIDan =SpBax, . . .,x,
0, ...,
01 + Susa"Pir-PreIMBolEv

= (Ptu]. = Ell Per-Pinull"

= 2 SirBa llPtu-Pirell = CSirBo dist(X,
Y &IlVall

nu.

Poincare
All in all

, 11 Mullwinbal = (Eve .
We will blow-up with this

By reasoning lik before
,

ra

:= + V strogh in LeB,
meekly in Wi (B,



#26 Alland Continued

Step 3 : - Understand blow-up's properties Charmonic)

We will construct a
variation st . stationarily yids a similar

computation as before.
nee V

Take 3EC (BY10) and exted it to ECCIRxBica) yer Tur
-

via 5 (3,
x) : = 3(x). Let so be st . spt/3) - B.

↑
-O

B,

"(d) 7 x

Modif 5 to have compact support in ITXB
,

"

in a retical cutoff outside

Spt/IVII .

Take Z : = 5(x)ei
:edk] besis motors

n+K

=>d (Z)= . zx) = 0* 5 = ei . + = x .y
drop for notatio

= gTrYi . pTVmy

Stationrity of UK gives

TrS= 5 =S-

IR" (Bold) = gir: IR**(Bo1E)
-

[supID3) · ClIvIKIR"9)

By the some computation as last time
, = CsupID3) Ev

IDTV :· OT - Dui .D3)-Pull2
can controlfilt excess

by height exas !So
,

Dus = o SDD=
-> O

=> SDrn .D30 = SDv . Ds = 0 since rat weakly in WEB.

Since SDr . D3 = 0 FzzC(Bi)
,

we see that v is meekly harmonic
,

and So r is hermic ! By herrous estimates again, FOzCo
,

1)
,

Slu-
↑
l = v(d + x Du(0)

Throwing any the "bed region" at our hipschitz approx
, anEn2

↳ Spa-Everde
-

En
IR2

So
, letty Pr = geph (Eve) 11th be a place,

then dist(X,
Pn) < /Un-Evel by the

X = (u((), ..., u(x),
x) picture.



Thus
, Chandling a Jacobia featur 125: 1 + 21Dunk),

Sint,Pd&Stencoula
a

We handle the bed set Vie we
igore

bed set En

dest(X
,

Pn) dll Vall = 0 sup dist(x,Pl(i"(B15n)Spt/lValln(IR" (BonEn)SicBorda -

can
be made arbiting small [Er

vie Hausdorfe distance converge

Adding this book in, of Use to a plane . Say
12

n Sint(,d=C
Choose F: F(n

,
k) s.

t
. Coat and choose V St.

CO2 t
,

and so

29 dist2(x
,
Pu)dllVall = Er =* J dist(X, IRY) dll Vall

IR"Bo IRx B
,

and drot (Pr1B,,
IR" 1B

,
) = Eva

We have now show:

Lenna (Alland Excess Decry) :

# Seco, and Glo
,
1)

.
The

,
Jala,k

,
E
,
8) s .

t
.

If V is a stations integal n-venfold in B*CoS and

· OtsptIVII . EINVISIR Bil = 2 - 8 · Ea

Ther, I affire n-place P &
+h

S .
t

.

(i)

Sdetr(x, P) d = cof devil
Tim (B ,)

(ii) dist(P1B, IR1B, ) : (En

We would like P to be a subspace (ie
. go through of to make iteration easier.

General principle : "good density points" are inherited by the blow-up.
-

↑

if we place
of mult . a,

Thea good densits

if Er() 29 .

i .e .

I all the desity gets
im

sent to the plane.

This is proved using the Hardt-Sinen Frequelty.



Leure (Hardt-Simon) :
x
"blomps preserve"

( besially a blower (Q-points
of monotonicity formula

It v is the blow-up we constructed
,

since O is a goal desity point
-

the

&M [
Erld ? I because

integel varifold

Proof : By the monotonicity formula
,
for all Un /dropping subscript K),-

we But :Hl(B-E()(B-m
+ S ~

Wn() 21 since

sht. ver Wn()

But
, (1v/l (B(o) : (v/l (1** Bix(0)

= IIvll (IR" x (Br(q)) + 11v11(IR" x (Bix< 1(7)
-

Jacobian = CEn2 by Lip . approx-

: S
M

It ClDuP + CE
= wa()" + C Evu

Bold bonded by ~E2

via revese Poincre
So, SBird: # dIl = CE

IR
*
x (B= 10) (2)

Since we are graphical over thispet
, consider the mp

E : IR" -> Mk+ ~ ↳ (u(x)
, ...,

uY(x)
,
x)=:

Clearb
,
IE

*
= (Ink+ 1) FxEIR". Also, #(x) E graph (n) Freir

↓
=> [E(r))+= -) =-

X
= O since

↓

So, = -m(()+ (4)
+

=>
... /E = Err()X

projection matrices
, Lipschitz constant, - -

Thus
, So d Mentroducing the subsapt,

-&Samantle I-

+ 0 Bian/r()= D

Rele: If multiplety is Q and G(o -Q
,

sam argret works with Q

diffect us and always headling suns of them.

& The same thing oplus shifted by z.
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Let's recall where we are

.
We've got a sequence /Valu of

stationary integral varifolds with

Un -> place with mult . Q (Q = D
,

i . e. [03" - RY

We used Lip , approx
to get un : Blo + R"

. Doing a blow-up,

[2VK:= has va - v strongh in loc

TEva
the blow-up weakly in Wia

We should v is harmonic
, yielding decy estimates

Silver = cofl =... =
excess day of the

↑ varifoIds Uk
l(x) = v(d) + x . Du(0)

This basically completes the proof of Allard.

However
, the is a good place to demonstrate a common there : points

of good density are preserved by blow-ups ! We will see that in

our blow-up, if OsptVall ,
and QuSd2Q ,

then vid = 0 is

anchored in the limit.

Pp:

v(d) = 0 for our blow-up v.

Rof: By Hardt-Sino
,

if uld to the

S
By(d
M2(t-) =SRE-E)

=>Sprd d.
I

&mak : If vix = CRC for some C
,

we see that Hudt-Sino imples 2 = 11

So
,

blomps must day sublinery.

So
,

we know each place I is a subspace,

doing rotations ! Let's see how to remote the chsoa
Alland using this.



Now
,
Allard excess decy reds :

& rotation ↑ st . TS, ) dllU = Sudet lX

IIN-Idll (E (= ErotE)
Fteating in the sae way ,

we get a limiting rotation
*

S .t.

-12

sh Sudast(x,
Mit) allull Ev (Ve + (0

, k))
-

L
vique target

atfireor

spec at O
same

trick
as

This is shim to the Camperato esticate

( S In-eCruel &



Lemma& Proving LipschitzApprent
power hip - all

lenna
.

Lemme (Lipschitz Approx) :

F S
,
10

,
1

.

The
,
Jan

,
u

,
0
,
5) s.

t
.

If V is a stationary integel vanifold in B
* "(0) with

· Of spt IIVII · We" ll11 (IR** B
,

" (01) < 2 - S · Eve

the J Lipschitz v : BECO) + IRK and measurable &B s .
t.

↑

(i) Lipful t
, SPICEn

bad cet

O

(ii) VL(IR" + /Bold)) = graph (ulBold) --vmem

ii
-

(iii) H(1) + 1/VIKIR"x9) = CEr2 Do

We will wee a simple lenna :

Lemma :
-

Fix zt(0, 1)
.

The Jan
,

K
,

6
,

0
,
370 s .

t
.

if V dbys the Lipschitz

approximation leave except instand of Eras we require EvE
&

He:

*
I filt

(i) sptlvll1 Bu *g-neighborhood of IR"
excess

(ii)Be() It3 B Vet

&f: Suppose BWO2 that S/Vain st . OespENall, we'llvull(*xB
,
(d) 2 2-S

,

and Eva +O but the results don't hold for Va
.

By corpsetness
,

we can take a convergent subseque Un V
,

and so

Ern + o => En = 0 => V= Q places parallel to 12" . The mess upper boad
meas this

place has mult .
I

,
and since Osptall (ad so OsptII)

,
we know V= IR".

Thus, (is must hold for Un for k large enough.

If (ii) fils
, EXEB , Put(0, 2) sit.

#Bon(a)) - 1 + 3 tricBlIWa D,



Take xx + + B
+

10) and Ex rat
.

The EK laye, Be(xa) < Br(x).

By varifold convergence,

#B=
-

-
=

v
~

since
V=IIRY-x)[

Since V is the #place , tehiy oft leads to a contradation.
D

Proof of Lip. Approx: As we have seen before (upper sericant of density),
It a small then Orl a . e .

in IR"x BE.

a
21 graph ,

thes

Fix 10 to be chosn later
,

and set if V were that devinture
1

world just sy
&

6 : = Yesptln Bo :

S-PldINVII(x) vX

note thatwhe applying &
to Alland

,
we know by

excess day that G = sptulnBt

and | x - y) cn >min3 = (x - y) , 73.Rick Ga SpB small, e

-Since 1) PTzu-Pill" dIlvII(z) =I

Applying the above leave to the shifted and scaled (3x+
V
,

we get

sptll (3x
,

2)+ VII 1 B
+

(d) E3-neighborked = sptlvllmBr(x) &Zrs-neighborhed
of x+ 1R

-

Also
,
the leave give # + for 35 to (whehweaa

Since yesptIVIInBr(x) , 1) Pr() - Pity) /l = 23 - = 33(x-y) = z(x- 3)

By the tringle inequality , => Il Pu() - Pir(s)/11E (x-y) .

So
, Pira : Sptvll1Ba(x) + 12 is injective.

If 6 +0
,

the spallull1Bylo) = spallull1Bal for xE6
,
and so

Pir : 6 + RV is injective! ↓

Letting D:= PR(6) ,
then Fr :D-1" with graph (2) = G... e .

6 is graphical.

In feet, i is Lipschtz : if v
,
weD the

luct-(r)) = /Pir(cto) - Pillai, wil = 33//h
,
vi - Locat

,
wil

sizet= 63/Prv(/nit,v) - Pinkulu),will = 63 1r-w/&
auch same

for
w

Note that we can make Lipha) as small as we like
.
Also

,
suplile -Enter

using earlier arguments (check notes).



Take u : BY(0) + IR" a Lipschitz extension of
.

So
,

u has what we went,
*

and we simply must bod the size of the bad set.

bod set symucture
difference

↓Set
& = Pir (Bon(sptullaguph(u)) and F:= sptIlull 16

.

TtutPlFUB5: (xi).,

E
So,

(t(E) = w
-

52: =w? &SPT-PRdExce
control as

*
-

Since G= I
,

disjoint

11VII (B16) : EEr = IVIIIR+ 2) : Er

Lastly,
we need to boad the extra we got from the Lip . extension :

#(graph (a)(b) = (1+ (Pra/groh()(6)) = (12(BP(o)) = <( - H"(P
i (6)))

Jacobia
brund

I · - S
o
Jpd) : ( - <(6) + CEz)

= cE(1)(B) + B16) + (E)
10 by monotoriety ↳ Er

Er

whe we rad that IJp-11 : CllPer-Poll" +
-(2) + 11v11/12*

x3) : Er?
- Togethe,

Since we close 3 to make Lipfu) small, and we chose & to satisfy the lenna
with that choice of y

,
we are done.

D

Peak: Note that in our entire Allad proof, He following things work

even with being close to a mult .
Q place :

· Lip . approx
·reverse Poincare · constructing the blow-up

what fails is understanding the regulanty at the blowp.

Blan: What Allod has show is that if you've close to mi
,
the

you're a 2"" peturbation of the place.

Next
,

we techle the tuple junction : if you're "coom" to
~
2 the~

you're a Claperturbation of X
. Basically, reme the singular set0, app

Allod to each constituent place, and umther
.

The linking step will

require Eu
&I mess of

u. doesn't concentrate in o I ⑦rz
O

② the constitut place Is as related and together form E
a triple junction.
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SU-Leon's Cylindrical Tangent Cones

Reall the stratification Sing (v) : 5
,

W
... WJn

. 5 = singular points where a

target come has dim(S(a)) = j

· In Alland
,

we understood regularity around resptlV/1 where

one target come was a mult-l place - they are regular

Since 5 are the single points where at least one target come is

a plane, Allod => Els
.

&1

Cylindrical Taught Comes

We my
ask what can be said about more general target cores if mult

is still 1
.

Let xEsing (v) , take CeVarTany(v) and assume C is mult-1

(i . e . Oclreg( = 1)
.

We may split k = dmS(c)

C = Cox1Rk
+

T 3

Assume also that Sing(c) = SCC) (i . e .
all singularities live on the spire). This

is refered to asC being cylindrical.

So
, Sing (Co)

= 303 is isolated (called to being regular comel.
l

=> the link [ := Co1$ is smooth

Armed with a tergat come C = CoxIR" that is clinical with mult
1,

let's try to follow Alland.

L

Following Allad

-
I E-nbhel#so of si

Take (Valk statory integralwenfolds
with U-C

.
Fuso for K= k(E) large,

S

we may apply Alland to express In on the

the complement of E-neighborhood of SCC) (by cylindrical assruption) as smooth

minimal grephUn met control (4t norm of Un by Ilhallan via

elliptic business (this removes themed for revesen Poincare).



So
, by Anzela-Ascoli

,
I subseque st. blomp + v in Coc (B,1C1S(C).

In Alland
,

w was hormanc : here
,

it satisfies a limerized

USE over 2
,

i . e . the Jacobi equation over C : 2
,

v = 0

Since C = CoxIRY, percoa
n r = (x1 ,

the Co
could

=: Is
E

Z

↓2 = Dirk + 2c = Air+ Aco + 1Ac = A
in

+

r+(l ) +T+1)l

Note that 22 is S
.
A

.
and elliptic operators and & is smooth and compact.

So
, eigenvales of -22 oby 1,7 ... to with etes Yo

.

eife of

So
, we can withw in the eigenfrater expansion v = && ~

V=

I He Si part

l ↑

ssomepra
x and

3 parts

We'd like a day estmate for v;
mid need to

an
piece of this expansion with n-homogeneity 1) (sine the SubtractNo
# we

had Hardt-Smen for r (i . e .
If he has good density points),

we can rule out homogenities 1 in this expension.
So

,

we'd out need

to subtrent pices of homogeneity = 1
.

What we get is schematically

S Iv-Chomogeneity 1 picces)/2 = Cr2d9IR (
note the similarity

SBiz
1 ↑ Bi

to Allod day of

determined by blowup, whe Shor . 13

first >I homogeneity were plans

If the I-homogenous solutions to the Jacobi operator don't look like the

come we started with
,

we're fucked since we can't pass excess day back.

·

excent
theWe need to understud

&

generated by a paraeta family of cors to getPieceis! Itmed
o e

Def :
- radially

↓

Co is integrable if every l-homogenous solution to I cov=
is generated by a I-param family of cores.

1) if to is that

(place , budeof pl
,he

Wit more assumptions
,

we can hope for excess decy iteation. half-pl

then 120 = Sco
and

are
alsoflt

.

solutions
I-hono . Il

· mult . 1 E the care won't split into multiple So , O doesn't hat
a

· "no gaps" (i.e . good density points) = no love horogenities
->

...

= fixes the spire in place
To sun up,

the things that go wrong :

① thomogenous Jacobi solutions on Co ② iteration messes up the core

not greated by cares /Since core does this



The Triple Junction At
The triple junction will behove well under this argument.

· flat, so Jacobi operator is just Laplacia

O I-hono parts of blow-ups should be live
,

so some

structure is preserved

·
no gaps Live. good dusty points)

· integrability (i . e. no 12 accumulation at singularity).

Leave Ample junatum has no gaps) :

Suppose V is SIV in BrTh0). Then Ja(
, 4) s .

t:

If V is a close to a mult
.

I trupl-junction (i
.e .

the following hold)
(nonempty) (mul+ 1)

· OesptIVII ·Will (B)= +h · Ev, c S

# in coordinates (, 3) ETM*Xt , FyzB(o) we have

& Erz3n(1R** x yb) # O (allsliceshtPost E
Also

,
FusO

,

if E = Ev
,

K
,
) is small

,
then Ev = / outside Be(S(2))

.

: Suppose BWOC that JyzB(0) st. [0=31 (IR**
+ 3gh) = 0

.

Since &Er = E3 is closed by u .S .a .
of desity, 70 s.t-

50. :231(MY
*

+ Be"(y)) = &

Look at sing() in R*** Bets) :

siz( = Jor...de
density

=> sing(v) = Sin = dim (sing(v) zn-3 => JjB(y) s.
t. sign (R* 353) = 0

s 7500 st . sing (2) (R*** BE(57) = @

=> V is smooth submerifold in IR"** Be"/5]

IzzB) st . spl1(** 373) is smooth I-mail

#SpellvII1(IR*** 373) has 3 bardy components .
*, it should be even

B
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Last time

,
we saw that the triple unction. We have hope of

6

proving something here
,

since itisactidial and has no gaps.

We just must show that the thre places don't get separated separately.

Baki We have the following :

Therem /Sinon 3 me tojasienic inea.) :

If C is a target cer with Sing(c) = 503 and C has

multiplicity 1
. the C is wine

We aper thatVis closeto the tap juctio C = CoR,

↳

emme :

& & (n) (0
,

1) St .
if V is SIV in B"M(0) and we'llvll(B, 407) - E+ to,O

then FxEBsold) and all So,
1-11

, we have
-

#Be
In particular, the density=1 im a ball around the singularity.

Ref: By monotonicity, #e) lIVIIB
D

Remarks: 0 By trusktion and rescaling, if the original mess asruption holds

on BeMo, then we get the same density boud conclusion on,
k+1

say , to Book X B (O) Ott in this

region
!

↑ T along

directin perpreten direction "Exe
S(c)

to S(c)

② If V is a close to < we can spoly Alland outside

Bek(0) x Bo) to control all mess nations
-

After all
,

we were onlyworried about weirdes at

the spine.



&
For

a given V close to C
,
let M be

vanifold
in

topology
↓

M : = Smotations + homothetic rescalings of V3

This forms (by the above lemmas
a multiplicity - I class

,

i. . e.

notations
(i) if Ver VEM fr atSolth), + eBee(0,

2).

(ii) if (vi)j <M with SpIvill(k) o UKEB) compact

the I subser . V-VeM and Fr = 1 a .
e.

Fur a multiplety-one class
, we as prove a for of Alland without

as mess o scale assumption.

Lemme:
-

mess per
in

Ex 150 and let M be a mult-1 class
.

The 7B(1,M) >0 sti

if VEM
, 10,

BeN(x) Br(o) with

·spt /IVIIn Ba(n) + & ·

er
(IVII (Bs(xo) = 1

↓o some P· eirn Spenc,
dist (

,
P) dIlVII(x) < &

affie plane
S

# = n : P1Bark) + p
+

a 22 map with

v LBr(t) = graph (n). The usual n estimates apply.

&mark : This is deceptively similar to Alland
,

but note that
itworks at all scales with the same B and 1

.

Proof : Suppose that this fails
.

For some contradiating sequence, and
-

translate and rescale and rotate to assure WOLOG that

Dr = 1
, GonE0, and Pr = /V . This stays within the cless M

,
and so

we have KEM s.
t.

· spt/IVall nB = wall (B,) = 1 . Sparkdist(, it dllVall -> 0

Since M is a compact class
,

we have a convergent subser



weakl

Un VEM a so Fr = I a . e .. But V is a place,
and so VIR"

with mult. -1.
.

So
,

we may apply Alland.

D

To state our result for the trople junction, use the following notation :

Write 21 : CX RV to be the (basic) triple juction.

Wate Na((') for the set of Vell St.

· we" II VII (B) = E + t · Ev
,
2) E

a

Write 2
,
(2) for the set of comes a with clos

S(c) = S((() allowing each half-place in 29 to rotate

by some ai with 19:
-id/. CtNz((*)

as 92

With this language,

C
-

-mma: (Graphical Representation) ~

U

Fix T10
,
10)

·
Then

,
Ja(n

,
K
,
2) St:

&
ThA-----

.

-- clos...
if (eC((l), VeNa

.

((()
,

L J

then I open U & C1B
, satisfying

-

⑫
(i) H is rotationally Synatia about SCC) and

5) (x
, g) EIRk

*
- IR"

-1
! |xk + 3 u

(ii) In : + 2
+

that is C2 and st.

V BaldnSlxTh = graph (u/pn +3)
(iii) So IR dIVII + SIR/DuYdIlvIl - C(n

,
2) En

34) graph (n) unB3

inteyal over
the

places we're not

graphica-

O

i
S

---
A

Prof: For ( (0
, 5)

, Seco, 1)
,

and JES(C), ! ↳ &
·

t--
set

To (3) := 3(x, 3) : ((x1-e) + (y - 3) - ((x1)2] :
Let U : = (UT, z,

+ (3))19 where the vion is take one

all (33) -Ba St. over Tile(s), V is graphical (with estimate).

If (3) + C1BevCU ,
the by the lenna we must have

T1s1 ,,
(3)
dist(x

, c) dIlV11 = w=
1312

+

232S



1 20, 3)
/x* = (107131 - m

.
(10131)" = (()(71

**2

We know that SunB
,o

andS | /Dul" = ((n) 13/&"

- (hiS dist(x
,

c) dIlVII
- T(z),, (3)unB

,0131(0, 3) B by
Allend

We fish wa a Vitali-style covering argurant
.

B

- we wish to
por

Allard regularity for the triple junction.
So far

,
we've done the following :

built a graphical representation
(i) no gaps (ii) reduce to (iii) away from $100 with

"mult I class" error estimates

Spirurdl +SrDuE
un But

To do iteation and
pass Lestinates back

,
we red to investigat

behaven near the spire . Morally
,

we ca do this in regions whe we have

accuration of good desity points :

The oven : (Simoris 12 estimates)

Fox T 10
, tool

.

Then
, Jan,

k
, 2) st

have
save

Spine

S

B = ⑦(d)
↓#X

we have connecte

cloysireS(c)

① dyz (z
, S(d) = 13) - ((u .

1) Eve I goodduspatsn)
&Sithd ↳catuldeteaa spire(2

The spire

directors

⑤ S
Biz

dist(x
,
C) dIlvIl = <(2,4) Er, I

O ~ a nbld of z
, Sum(d) 1x -z/" sen

-s ↳ distence is small

=> [ nonconcentration

&
und (r)S (Hardt-Simon)

⑤
SanBank C



Renet: Note that ⑤ gives somethy like
-

s
-n -n +

SozE- Blow-up is %C up
to

Camperato the Bordy .

So
,
the blomp's boudy values are determined by the limiting

projections at the good dusity points. Sive these values land
their drivetes) are independent of V,
that we stitch together for Allend The rety lineso pine,
and so we

will be able to iterate.

#ofshatch : The man content will be controlling the error term in the

monotonicity formula. first
,

we do so new the
origh

by
origin.

X good dust

hamme Let V
,

C be -close to 22 and E-(0) 2* -

her
,-- -

m/() +S ↓ Clark) EnSunda
↑S dS

Proof of lenna : The manotonicity formula after differntiation gives

~"Sitdiv-dri) - end ...
IIVII (B) - w-b

- Or(d)

- (IIVII(B) -west) = (II(B) ()

-

2z
= 0<

(0)

(11) (Ba)
Take P(IX1) =' as a cutoff fo Multiply by 435)

I
and take So... do to get

~ S. 44) %S did-SYIl !
By construction ,

the LMS
upper bonds n (2)"(E-E) · So I

So,
(h)SedIN-Sd-SYidl

Taking Ph(1X1(x
,
0) in the 1 narration formula, .

B



Our first important corollary : use ⑤ to show that I norm doesn't concntate

at S(C) .

Clay : (Non-concentration around spire

Ex St(0
, 5) .

The JEoln
,
K

,
S) sot:

If 250
,
VeNe((")

,

CeC((')
,
# ESe[S,

h)
,

X = (x, 3) choose
z

↓

dith(x*C) dIIV11 = <(n,k)a ESpanies
pts

of

good & - 11&of: For St[S ,
1)

.
Take ZEB""(0)

.

If a is small
, dark,z S

# points at density are in s-neighborhood of 21
S(C) . So

,
choose ZEBM(H) with Fr(z) -3

.

S(c)
By B,

su
+ S dist(x

,
c) dIlV11 : (Eu

Bo(z)
n- 1+

(0) + B
=

(0) by NaChnel) balls &Be(zi)3 :Now
,

cover Bs
with ze B (o). Summing the estimates,

S dist" (x
,
c) dIlvIl =SdeF(x,lBa 13141293
L
~ [su E En eGetE =SE

v
,
k

D

&work

:Nowweknowthat thebloonsa b
will courage in 12



3127-

↓mea : (Initial 12 Estimates)

Fix 510
, tool. The

,
John ,

K, 30 sit.

then
-

d
# S di: -Sale

-

↑
Consider the vareten 42(xD . (x

, 0) with PCI) =7
The first variation formal gives ,

with C :Cox I

& (1+4 d(n)(((+]
- 2 S(xP/x/'4((x1)4(1) dIlvll

The non-graphical piece of theI term on RHS :

= (SBI E by the graphing lenma.

For the geplial part, if (x
, 3) Eyeph(a) the (x

, y) = (, y) + u(,s)
for some (E

, g) espt//CII .
So

, = u(f
,
d

(E , 2)
-

--------

-t
·

x
,y· ((x

,

d) +
= H((xd) = [Trc)(x,

a) + 11Tac(x, 0) M-&
11 : Il CIDul &↓ -

So/x,outuadso theglass part of the

CS luR+ rIDuR dIlvIl = CEr?
Un Bis

integrate along
body. of

Look at holf-place ,

the da

x
R=

r+1y1
↓ rays

S 4 D : SancuS YM)d
=

half - Plane IBP ↓

= Sainat(-2Sorter)4) and
=- So

,
nan So R

+ 4CR) 4 iM)and



=- S
,

R4(R) 4 R) dud

Y'0 ,
so we may

Wa remote the LHS with the above subtracted to set throw norgephial piece
-

& I

CEv + 2 Sp
,

raR" NCR4 in)drdy

- (n2(1)dllcl
- 29 rR"PR)TR)dll

I+CIDe/-
(x|+

(u(x,y)R ↑= I new
the righ , the

Bi since fu& itgel is any
-

the ash (R**E).

↑
2 where

os mongaphial ,
we

an

So
, 9 v2R" 41R4TR) dIIVI = SundeRuY(Ru) Y Ra) Ju dll 21/So, non-guphal Die an (Evru

bonded and so

&graphen) 1 B
,F To

& controlled by Solsuphcul
|xP+(y| + (n(x,j)1

So
,
the RMS is - CE + CSu-RDuC

We also get control of t Hardt-Simon as before. The last bit
me need is control of the Sstis term. This is another

15 variation argument, with the radial variation :

T horo.,
and

originSo the is
bod a

--

Let
①4 =: and take the variation &R** (a) x↑

E
&

cutoffyousa

ID3) = 16

② is hono deyee I
, smoothy of det (o

,
c) with

c dest(x
,
c) = &(x) = <dist(X,c) ad Lip(d) = C

.

With the variation
,
the 18 variation fomle gins

"then mass drop"

S
&did=

~ supported an

! [Ev ~ LHS . IR from B3

&(2) E dist(x
,
d

D

To get the last needed estimates for translations
, we proceed.



↓

enma : (Cove Shifting)

Esolnk) st . of 350
, VeN((K)

,
Ce2((")

,
the for

any zEBE
with Fr(z)<E

,
we have

dist(z
,
S(c) + [ d(x,

+z)dIll()CE

sitsc
&works : O We first observe that if z= (3

,
5)

,

the (d(x, c) - d(x
,
( +z)(2/3)

② Conside X= (x, g) and let Xt= (,3) · * ...--x
+

y
for Suitable O

,
the · 3------

fo
each

as If ( = 0((3) + do+(x
,
c) /switchT

not
↑ replus det (x, <+z) = Is)-3 + R

,
181+

= d(x, c)

=> dist(x, c+z) = /dist(x, c) - 3
+ ) + R

&of : Faer, De(O, h)
,
zEsptll 1BSk

,
we

have that

latla Slat on a set of measure <Sev in sptvll1Bolz).
For a feed a and s , integrating give

er/s = CS 13 I
By above

,

en 131 = CSdetx, +z dVll + Sdexcd+
Applic the previous leave to

jn
-" Sos(z)de+2(x, ( +z)dI(VI) =E = c[det(x, c +z)dl

necSp
,

det(, c) dIVI + C131

=> er/bc (E + Cer13 +13 IRCE
D
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Recap: We showed that at good dusin points z : (3
,
3) :

(i)9 letdlIV - CE Cit excess asol

(ii) di dis #z= o

- red
linee-z

thi

(iii) 131 : ·Ev
,

Idistance to spire

(iv) f dzE(v, C+ dIll : CE
,
s (shifted cores)

(v) /dist(x
,

(+ z) - dest(x
, c)) = 131 Striangle inea

We can now proce the rest of Smors' L"estimates.

Proof at removing estimates : Apply (ii) to V : = /za)x V, getting

Sala distr dIll = CECS
,

disc dl

under homothety
-- SedisdI d

=> Sedistd
SBTEd dI(VII = Spe dist"(x

,
(+ z) + 1312dllVII

Sias'
|x - z|n

- z

O- CE +C13CE estates

Lastly
,

we nee i
Swans

S EC① ~ estnets

CnB (13) 3

-
u(x,6) v

Ex (-0
. For a shift by z

, specifically for the triple
(x,3)-

junction, if gla,
k

, 5) is small, O
dist(xu(x) ,

(+z) = (n(x,y) - 3+ /
2 L

S (



Using the ealer estimate,

(u(x
,z) - 3

+ 12S
1(x

,3) + u(,z) -z(
+

= Cf DINICE
CnB (13) 3

B
,z(z)15(xk = 3 D

Real : By a similar agent doe to V := &xs)
*

V insted
,

we can
-

do the save provided a depends on s, getting

&destc

Ex Ot Co
,
%]

,

we get

a-2 def(x,
C + z) dll dett

Morally
,
the says

d--Eglu-ss-
which is besially a C estimate at the spire , when

is wher the bording regularity comes from

/

"gooddusinpointscom

a
a

To finish s-regularity of triple juction
,

we wall construct the

blow-up.

E - Regularity of Triple Junction
22k

Take Ento and Une Ngn((()

unt

2(a + Ca(2) Gand Yuko as slow as we want. Y

Sinceme are graphical on Bu
,

take

Un to be the graphical representation of Un

overIn in the region Ba(o)15IxT31C .

To remove doman dependence
on

K
,

in general we have to reparametete on to be relative to C
Since these are helf places ,

we can notele all helf-planes to a fixed H

and So In is a triple at functions on H15lxk*3.



Defe the blow-up Un : = U which here bod I norm

E
VK,Ck

andhave good regularly away from the spire . Pass to a subseaueare

to

Dv + ve C-(( n((xk03 - (+)
↑

converge in Clos
② Un + v in 22(* 1Bsa) by 22 nonconcentration

③ v is hareave an (151x1203 .

What about at the bordy ? Take 10
, y) +&(x1 = 03ES(((0)

- By no gaps,

we may take some zu = (5
, 3) + 10

, 3) with Evilza):.

For fixed &30
,

we know FG large (depending on ODA) :

Bo (10, x)) = Bo(z) and B(zu) = B
,
((0

, y)
↳ estimates

=> OEM-BCs Boy14a - 3
+ 1

Divide by Eveca , noting // = C lad so courses up
to steal,

getting din Spor 10
- k(e)

+

1 = C - )(v - k())"
(0

,j)1((%) S
Bis (0

,2)191
%

where In + k(y) and 001917 .

16

Er
,
2

This is precisel a Camperatorish estimate at the boudy (uifom in p,
0

for an Ned (0
, 3) + S((()

. Together with interior hamonic estimates,

veCo ((1Ba) each of the three isI co up to the spire

There is a basic fact about hermore functions
,

in which on a half-place
H

,

Bu=0
,
ne" (H) 1C

**(ii)
,

ulunec"
- (21)

=> n =C: (π)

So, me ned to show Ke (03) to get blow-up regulants
up

to the spire. S((()

Take a test on U = Y(x
,
3) = 4(11

, y) Smooth sit
.

· U = 0 outside B(o) ·L = 0 an a bl at Ex =0 3
such - [lx)c23

.



Ex a direction it 31,
. . .,

k+ 12 orthogonal to

e.The spi anadevintire direction jeEl, ..., n-13 and consider variation

forml to get :

gov . OVL) dIlvl O

Splitting this intogeptical and nongophical pieces.

- - .() (St Ennon-graphic : Suan-gepla (m)

gal: Sun
over possible is getting

S
/In Tn(Dun

· D(f) =E

We know deretre course weakly up to the spire by (*),
and so we blow-up and pass to the limit

SDr .D() = o

We can do a reflation agement to show that the Sun u

of the components is hermane on the whole place, and so

its borday values are smoath (i . e. It is smooth).

From the
,

we follow Alland : get excess day ,
find new

came which turns out to bei triple junction,

anditeate.

=>... = E-regularity at triple juction !

I

B
:Notethat theahease regulent, of the sur We

-

about the individual
pieces ,

but

since they all agree at the boudey. So
, i they we

can do this with abty # of places ,
as long as

(i)nogas for x)
(ii) all mult-1 planes

/Minter said so
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Let's rep the whole coure

, since now it will all come together

① targent cours & stratification : singl: j , dm (i) +;

② Schoen-Simon regularity & compacte : Stable
, stationary,

12 sing(u)) =

=>
· Sheeting theorem (close to plane)
· compactness thear ~- codim-7

singular set vice Sinoes' classification

③ Alland regularity : close to mult-l plane => C part of place

⑨ Smais & regularity : close to & - "pert Su of A

& 5 - Wickramasekara's Regularity Theory

Neshan's
of the Sahitythey signifent Copt stragta

We consider the class S
X

of integral mode varfelds in Ban
with OEspt/IVII and 1IVII (B! (07) at and obeing :

Y

CS) stationary (for area

(S2) vag(v) is stable (i.e .
if Br"(o) open with dry (sing (v) 1el) Ev - 7,

then Su IAMY2d1+ 2

= Srectne 101 dit"(u)11

(53) V has no alassical singularities

D (Classical Singularity) ↑
A point zesing(v) is a classical singularity -

S &
·
Z

if JacO st . sptIIVII1Bst(z) is the ~ TI"
Y Exunion of a finite number of 21 H

submarifolds -with-boundary in Be
* (z)

,
all

with a common Cdbourney containing Z
S

and they do not intersect other than at their common bounday.



Remark : Note that a classial singularly canot be isolated
,

and so

#" /Sing (v)) E no classical singularities
H

di (sing (v) In - 7

Neshan's result prowes the blue for stationry ,

stable sets.

In feet, the assuption can be meeted to 5
n 1

= 0.

If xeJu
,

the near + we are close to a Sir,
which is a classial singularity and cannot happen.

Theorem : (Regularity & Compactness

Let /Val
n So be sit. Cus IIall (B(a)-

The 7 subse K' of K ad Ve So with dire (sing(v) In-7
-

and ~ -> V
as varifolds in Ba

*
(0)

-

and smoothly in Bi" 10) /sing (2)

Er partialar, VeSo =diy /sing(v) In-7 and regirt is orintable.

The main parts of the prof are ruling out J
-,

and Sn
.

This is

1 which rules out In (basically gened-mult . Alland) :done via the following

Theorem (Sheeting Theoren) :

Fix 1 [1
,
3)

.
The

,

Jaln
,
1) >0 s .

t :

If VeSo
,

VII(B"(o : 1
,

and

&str(sptvlIn (RxBY(0))
,
503 x Bico) 3

, then

~ L (IBI(0)) = graph (i)

for some QEN
,

whe nje (
P

(B) minimal graphs with

u, uz <... 4Q anc Ilu; 11 c (B2) = E
~

Sinc
1

Note that if we know apar that singles is small
,
the this is

just Schoen-Simon



For S..., we have :

Theorem (Minimum distance themum) :

Let C be an nrdm (stationary) care with dim(s()) = n -

C = half-hyperplanes with same bornday). Then, Js(n
,
C) s .

t
.

if VeSo with Guid = Oc(o) and llv11 (B"(o) = Gold + E
,

then distr (spt/IV/InBY
*

(07
,
sptlcll1B,

) = 3.

So
,

it holds all the
may down to n-2

,
from which Schoen-Simon

kicks in

Overnier of strategy :

In Schoen-Since
, multiplicity wasimolerant .

Here
,
it matters.

We "stratify" by dusity as follows :

·

using stratification +

=98-21 = Yori) Schoen-Simon-type

1
inductio 2 H argunat

step
- X 50.

: 23 E30-127E3823x
#

↓
· I Leon's argument for

30- soEr Sor 133 ...

tiple junctions (need
->

to show we have no gaps,
but points of love desity

The last pieces are going
Man are already covered via

h -3 -3 induction)
=>

xZ

&* =

which is the heart at the peat with new ideas needed.
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Recell from last fire that we are going for an induction

argument ① ②
(2Q +1[s G Q (Q + 1) -

may place3

&--

"

=> Sa +1 ==> 50a + 13 = --

⑤-
impre+ it for

Q+ 1
plane

Q + 1

Implication O-Q are pretty much whatmeive done so for
in the course . We focus on 6.

Proceed to undested the stration when :

· close to a hypeplace of mult . Q

· sheeting there holds for plans
of mult. Q and

-

· minimal distance there holds

for classical comes of density
[Q

The
game plan is as always :

① Take Lipschitz approx.

with understanding of the "bad set"

getthings
-> O2 blow-up

,
and unested behave of blowps

, ideally showingtoughpare ↑
aC"d inteyul estimate

del,aus contrations
and

ne
case

prof
by

wa ad get

③ pass estimate back to warfold via an access day lenme
suppose ↑

wher
dar

to
the to

prit,
a

zoony

Her

① iterate to conclude



#hoem: (General Lipschitz Approx

Fix QEIN and OEC0
,
1) .

Then JSoln
,

Q
,
0300 s.

t .:

If V is a SIV In-de in Be
*

(o) s .
t.

can
be 1-S

(#) · VII(B(0) Q+ Q-VIRB) Q
Wa

· E = SirBico I xl2dv(x) So /22 height excess

the - &[Blo Sexplicity s i

t
.

(a) H*(2) + 11 vI(iRx2) = CE?

(b) & Lipschitz ul
/

...,
uQ : Bo(o) -IR with Lplus) = E

,

sup(vil (Eri, u'z ... u
&

,

and
-

Bo no higher codim
analogue

~ L (IR + (Bco)(2)) = graph (vi)

the
,

I depeds on n
,

Q
,

0.

f: omitted i.

D

Blow-ups
-

The above takes care of 0 .
So

,

let's constrat the blow-ups.

Let (V)
:

So be sit.
(1) holds for all k and

E -> 0. Ex Otlo
,

1) ; UK large we get from the there
Uk

that & Lep. functions :Bold + R with und ...u
,
Lipluit,T

for which

~ L (I + (Bald(a)) = geoh(i)(

an 11 VlI (IRx[n) + Th([m] = (En
·

As before
,

we seek "wir estimates :

IngrSlu-Bal Ev
-

2

1 cob Ix 'I dllVallSint(Balda&
2

Eva



a

SpalDun = SpaldIDua +Si
f uNote that when Un agrees with his and the target ~

Spaces coincide, ↑
B

Here
,
the not namel to graph (uri (xit(x

,
u(x)

11
,

0
, ...,

0
, D

,
u]

=>om x1 = P
+
(pity) = gi - PE(x) 10

,
1, . . .,

0
, Dzu)

-

2 ,

2

=> 10Vx = 1Dui + 1Duil=(1 +
1 Dux (2)2 tilt excess

↓

So, &Du = Sold #Dua 2 Ev

Revere Donat allows us to get thatllual/wirel - Eva

So
,

set v=
= /En By Rellich compactness and a

diagonal argunt to take OM1
,

J subser vatvew(B)1
*

(B
,
),

where the conversace is strongly in LealD) and weekly in WilB.
).

Asvere
, we call v = (vi), a blow-up .

Wate B
a

for the

class of all such blowups attainable in this
my given the assruptions.

What can be said about Ba ?

op:
(B1) B = We (B .) 122 (B

,

+ 129)Q

(B2) if reEQ ,
the V'E ... Q a . e.

(B3) if re Ba
,
the Avan = O

,
when var:= to i

J

closureproperties (Bs) if we Ba
,

the

· if ~ 0 a Bolzt for zeB
, Oe(0, /1-121))

,
then

ad resealing

z
,
0() : =

/, (9)

EBa treltingthe blua

· vOUEBa for all artogual rotations & of IR".

· if veIn in B
,

where l
- (x) : = Var(o) + <x

, Dva(o)) ,

then
=Baili

(compactness) (B6) if (Va) = Ba
,

then 3/4t[(4) subser · and rela s .t.

V-tor strongly in LocIB) and weekly in We
loc



Nove o the above depend on stability on the look of classical

singulanties. There are also :

[Bu)

(noclassic si) (B

#: As in Allend
, get SirBacaSDx ,

oves)dIVall = 0
,

wher

&
is extension at some 3C (B&(d) .

As before
,

ve get

(DuD)=En v weakly harmonie v hera

for (u), := (3102
,
0)

*
Ve blows up

to the desired #zo
Same with rotations.

The last part requires fiddling.

for (vi)
,
take I So with blowp Un .

Choose ha large

st1lEve'ua-va/l
>/B1)

* t .
The states that the two sequences
share a limit

.

more detailed proofs in the notes
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Last time
, we constructed blowps in a more general

setting and used stationarity to
powe

blow-up . Now, Wh use stability # global propertiesatea singulates
to device local properties :

-

(Hardt- Simon ( (BU) Let veBa .
The

,
FzCB

,
at last of of the

Dichotomy following holds :

>c
bearbed

we th Mvanz() : = Varie+

(BUI) The Hardt-Sinon inequality :

2 line
precn

& variz

I

(x -z
,

Du(z))

· = Seizenfu-Manile
holds Facto, (l-1z1]

,

C = C(r
,
Q)

.

(BUE) J0 = 0
, (7) e(0

, 1-121) sit. v is harnoic on Bo
,

(z).
T

Dri = 0 Vj

pandbblue an
&The heuristic is that having good density ports jehls (DUI)
,

where if the

are gaps,
then we can use the induction results about places of desity - Q

,

apply Schoen-Simen and sheeting,

and prove harmonicity. This uses stability.

The fiel property wees the notion at classical singularities (and also stability) :

classical singularities
in blau-ups inde (B7) If VERQ is sit. graph(u) is a classical come

,
then in

classical singulariting in V feet v = v= ... = va = L for some line L

Theorm :

-

If veBa ...,
vQ are harmonic. Moreover

,

if
S then v;

the(BUI) holds anywhere, in fact v =

...
= -Q coincide.

Remark : Using this and the density dichotomy, either (BUE) holds
-

sourches and the linear pieces coincide and so we can iteate

and stay close to planes, OR (BUT) holds everywhe, there
-

are no points of Q- density
S

and so we are M the

& Or Q3 regive, which we understand by induction.

This => excess dre => sheeting theorem
+ Bu + B7 dichotomy



Let's first look at proving BY.

hamma : (height at good density points

# QEN
.

The
,

Js
.
(1

,
Q) ECO

,
1) si

t:

if U is a SIV an Bitco obeying

· IIVII (Bi
*(a) Q + t

· Q-t= VIII Bic)cQ
· EE

,

#en Vz= (z'
,
El espt/IVII 1(1xB(d) with (1) Q

we have that Iz'lICEr .

Prof: Monotonicity formula gives :

Silv :M
Provided E

,
small,

11 vIl (B(z) /IVlI(RB(E)) = IIVII/IR (D(e) (2)) + 11v11 /IRx(Blin[l)
#Dujkd= + 11v1l (1Rx()

d+
So

,
as Qr(z)[Q

,

-
-

11 vll (B(z)) -E(z) -dun (3/2

S
B)

1DuRdx + CER = CEn

&old

↓
S dICE .

We was also ba

SBdus 1+ 1 dIlVII
n+

1
-"(z) = (x' - z)e ,

t

+
(i - z5) est

n+ 1

-
>nvr2Se-yEtz'-I' -

#excess 1 En

S
n+1

= 4"Bt Izletdrl-ur"9 IxYdIN-CEB=(z)



= ulz'R So let dll-CE

We can throw any the bed set E with error IE
,

and so

2
m1+t- - 2

= u
-

1zf #1 d - CE

B(z)IE
= [Iz2(B) - CE

=> Iz'2 Er
D
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i showed up
late

, go over how

to ve periors leave to show
the following :

Popi

Forar z = (z) esptlvlln(xBy() with Ez

(e = Ce (n
,
a)

1)
Using this

,
we can prove

:

Hardt- Simon (Bu)( Dichotomy( Let veBa .
The

,
FzEB

,
at last of of the

following holds :

>c
bearbed

we th Mvanz() : = Varie+

(BUI) The Hardt-Sinon inequality :

2 line
precn

& variz

I

(x -z
,

Du(z))

&· = Seizenfu-Manile
holds Facto, (l-1z1]

,

C = C(r
,
Q)

.

(BUE) J0 = 0
, (7) e(0

, 1-121) sit. v is harnoic on Bo
,

(z).
T

Dri = 0 Vj

Proof of (BY) : Let veDa anlet
We a

fails for v at E
-

7
.(if v = lar

, -
then done

Let (VaInSo be st
. i is the blowp of (Va)k

Im: Jo = 0
,
(2) >0 St

. UK suff . large,
· A not (B41) & z

S

zesptIvan(bacel) = Orzica (im -> open set (
of gaps

#out of claim: If not
,

then we have lup to subsect
=> zuE SptllVall(IRXBICE)) with Ovulza) =Q

.

Now Ex St (0,
E)1-1E1]

,
and consider Y : = (3

+,
)* V,~

still hung Un - Q1303XIRY
mult. n-plane



Nun, apply (4) to (In with z =0 and change
variables to get

Sport19(in (+)
=(12) Ix' - z'12 dIlVall

Be -(zu

Didiny both side byE Fk large, we know
I

(En <E so (up to /sea), z

Ev
Uk - -> y EIR

- /

depends an
Er

Taking k + - land beingareful about domne BCE) /[:),

SinceRe : Ge-gli-gi
By(z)

S=>

Be
Rel()"

= O by

Next
, Far smooth => I (E) =

y
did

= 0.
Cv

tSince this limit is independ of s
,

we have shown that

Fe + (0,
(1 - 1z1]

,

SinceRel = Coming ItB(E)

This is Hedt-Sinon
,
and so (BUI) holds at E

, *
The claim

, togethe with Schoen-Sinou
, gives that (BU)

holds at E we 0 = 0. /2 .
So

,
(Bu).

B

We have
prown (B1) -(B6)

.

We will now show that all the

properties (B1) - (B7) together show that vs harmonic Fj, after

which we will go over (BF). The main prop is

Note: One can pre two facts about blow-ups :

#I : vera = ve
Coilderat(o

,
1) with esticates as ate

Fact 2 : If vara is homogenous of degree 1 on an annulus
-

B (d) I Bro,
# v is horo

. of degee 1 on B
,
(0)

see Nesha's pf.

These facts cn be used15it needed) to show the following :



Roposition :
resid

Suppose veBa B1
.
T

v = v =... = va = L * linear !

Proof : Let ve Bo be hono, at degree 1 .

The
,

since var is
-

harmonic
,

it is harmonie + hono of linear => Van = Quar
,

o

des. I

It vi = fron,o Fi
,
doe.

Others
,

(B5I) gives

= U- Varup : all
Bi

TrvarllnB
,)

The
,

of suffices to prove the result when Var=O and Illis = 1.

So
, we look at

:= veBa :
Vario, Klullab = 1

, 3 if
the

↓ empty,S u horo deg. I ·ne dave
we

Let be a hono. dey . 1 exterion at re Bo to IV.

Recall from core stratification that homogenous structures are translation-

invariant under subspaces. Write S(i) for the set of zeit

for whichI is invenient under translation by z.

↑ homo => S(r) & =
o = Hi when Hi := Erect)

= n- 3deg. I a subspace

The goal is to show Bo = 0
,

sure the vi = lo Fj.

↓t · HOF Sine veEv= O
, * to Ill

S

exactly by (B7) = only place (B7)
,

i

.e . classical

singularities, appears at all.

We now claim Hj = Ej ; if we can proce this then
let de E2

,
3, ...,

n3 be minimal

udir.It note Hd .

For rotation
, set

closed -
↑ : = EzeB: (BUFholdsat

Bi
in

The man claim to get Crey , away
from SCE) is a

reverse Hadt-Simen inequality.

Cam: Fix K & B
,
(0) 1S(v) compact. The,

= s(v
,

k
,

n
,
Q) + (0

,
d(k

,
SCE)UGB

,) sit. the following holds :

compact
-

FzEK 1 % and every SECO, 3]
,

we have :

2

(never -Sine) SR = Spacelv1
j= 1 Bo(z) (By, (z)



Remark : Where Hedt-Siu holds too
,

we see that
-

SBerl -i Be(2)
a Camperato-type estimate ·

4-

Proof of claim : Suppose BWOC false
.

The Vist
,

Feixo and

points zitPr1k (w02bwth zitzeM1k) and radi:

sito with

(* ):S
by (B5l)

Set wi:= v (zi + 1: ( .) EBa ,
and so

recenteringad 11 v (zi +bi( :) (l
, (B)

rescaling

( *) = Spell" s (*)

B IB6) ef the aprior: 10,1 at not blow-ups,

me can find subsequence wa the compactness property Sit

wi + we Ba locally uniformly and

locally weekly in w"2 (B,
Unifor

coregue imples that (Wan = 0
.

So
,

he need to show

that We # O and is thomogenous to get that We Ba

Subclam: We O

Rof: Observe that if neC, then Frse[h ,
1] and wesht

~ have new - ul +Si (i)/dt be For

I
Triangle inea.

and Carchy-Schwarz gives

In ( rw)l2 = c()((u(sm) + St (*)at)
Integrating over the wit sphere,

S. In couldn = C(S, ,

/usu dw + Sosam()
To get intguls our balls

,
we multiply by mul

I

and tele Si ... dr
,

the multiply
31
...S do to get (after addie So

:
In htt

V

S lu1 - <9 in + <Sele (*) /Bi B3/y

This holds for UeC' : by approximation,
holds for Wh2



Apply this with n = (wil
, ..., w :9) and sun one

directions to get

S
.

I wil:-=1 Fi

by construction

So, 1 : (1) SalweR = We #O an Ban
i

#clai: we is horgeous of deee

-

Proof: (+) gis SBRI (*) = 0

=> Wa is hono. of day 1 an
B

, Br
.

=> We is hono, of deg 1 or B,

Factz D

So
, (up to normalizing we elis)) ,

we get v + Ba -

Each wi is translation-invariant along SCE) by construction,
and since wit We locallyuiturnly, the S(v) =S(n) .

But
, since zES(i) by construction and we is translation-

imment in direction z
,

din (S(v)) = n-d < din(S(we)).
Contreaty minnality at d

.

D

Note that of zeM
,

Hadt-Simon holds by construction.
So

,
Fzzk1t and all Alo,

33,

S R le)"=Be(z) /Barz(z)

By a techniace alledThole filling" (Neshan, i . e
.

+ Spertl ...),

S
Be
Re (barr

↑

7 itz 10 ,
1

This is a deag of the intered ! Now
,

we can iterate this + interpolate
-

between scales (just like Allod) to get V OCO =&K *
/

,

Z

S
&
Re ()) =S())

Ba
m()

where B=B(v,
k

,
n

,
Q) and

m = m(v, k
,

n ,Q) . Using Hadt-Simm
and revese Hadt-Sinen at z

,
we in feet get : FOLO- Pr !

*E
,

ang IVR = <(p-2 S(y11
Bo(z)



This looks like a Compacto &"M estimate at z ! Usually
,

we would
have dray ef v -Rv

,
z
Call Hadt-Sirona => linear approx in Alland)

so His also tells us that &
- z

= 0 for such z . This melus

sense
,

since by the (BU) dichotomy and choice of F
,

thesewe

the good density ports and glue everything together.
k

Using harmonic estinates any from In we find 8/

veC"-

(k) by Camperato theory . As K= B
,
1S(v) 8

arbiters
,

~ =
Ci m(B , )S(i))

S(u)

To fish our contrations
,

two more claims :

: = S(v)

& If not
,
take zetlS(t) and consider us : = vi-u5!

We know 25-0 and us is C'about z .

But us(z) = 0 => Dui(z) = 0 E ...
= * to Hopf bouday

-

point lemma
.

the sheets touch

B

Since ~ is translation invenient along M
,

v is determined by
some function f: Ira + IRQ (d =2) (avotet out the

Spine

where
· + + C'(B ,

1503) (as vec'Ibiscit)]
· f - C: </B

.
) (by Fact 17

· f is hono of deg. I
· f is hermore on B

, 1303

line
an

Removable singularity of hormone frctions =f harmain on Bi I Bi

So
,

As is line Fj /sleeting ther uples f = ...
= fq = L)

Furtherne
,

of aug .
-free => F=O = v =0

,
which contradicts

that Ilv/lcB) = 1
.

D

Finally
,

we're show that homogenous blomps are liner
.

Wa now am to show that all blowups are harmonic.
-

It suffices to prove BaE C'(B
.
) (then we can make the save

Hopt boundly point agmet to get M-
= 0 => locally harvane => harmonia

To prove this
,
it suffices to prove that -B : B(, Q) and

n =M(c,
Q)

Sit . FreBa
,
zeTr1B, we have the Camperato estimate

a
~

SBol'v-evanz Bef Bs(z)
IV-luz (vocoeto)

Last fire
,

we did this by proving a revese Hadt-Simen and strating.
More precisely ,

we can show in a similar may
to last fire that



Sp: / E)/" < no
B . Bi D

So
,

we've show that

(31) - (BA) =>
all blow-ups are

harmonic !

Next class (the final are i)
,

we will investigate (BA).

M2-

a
Recall #): ItveBQhe gl = 2

is linear
.

have a

that
if we Loudt-

There
are a couple cases that could happen :

note
a port ,

by
the

desit A will Kpin"

Sier and

agen

so
it

not

blamp

&7:It all helf-ples on at let #Fa
side wincide.

In this case
,

unique continuation => Var is lea - WOLOG
,

v= O
X

and courd
,

on the half-space x2 *** with points (x'.Ent).10

Bi (0)

Take the test function in 1st variation formula forer↑ basis nee

test fu

(v) [So with blow-up v .
The, * IDv; K is constant across

Q

the interfere. It v = a

,
th on the other side

,
i've would need &, lajk = O

S

=> ai = 0 = v = 0
.

Q- 1

2

&2 : It v spits on both Y Do
sides

.

2 .s. ,
In this case

,

Hadt-Simon give in feet thatth large,

IRx (BE(0))E143) [SOU Q3 (otherwise it wouldn't splt)

Now we are in a situation where we can use inductive information to

apply Schoen-Simon in this region.

/
/ ~ --We know that Var Ever and Ca := gaph(Evao) is a -

classical core .
One can show that Va is much closer to E-

-
Uk

tIn the it is to the plane ,
in the sense the



& dist(x, (a) dIlVall + & dist(x
, sptal) dIlCall - o (EvE]
~mo

RX(BinYSArcto3)

two-sided height excess Q
, Ca

"hypothesis (H) in Neshen "

i meteor a soht,
-

EvMnQ) · inf Er po
Hypothesis (1)" in Nesher

explicit! (2
k

,

~
-~ X V

X should parameterize
should parnnetrize over

flatea

as graphs over half-place

Qu
,
2 Qua

,
C

Qua
,
~ Que,

To paranteze Vover
Se, need something to know thata

B a "good parameterize over.

the only
-

hypothesis we

-

"don't get for Hypothesis (**)
"

:

Are"

Either

(i) In consists at exactly 4 distinct

half-hyperplanes Sno collapsingcn occut
or

(ii) Ekhyperplanespas
Cdistnet halfin

Q
ve

,
Ca B(n,

Q) if Qu,
C
- classical cares

with P

usperplanes

Under these hypothesesone can show that Un iS

↓
al over he and the

~

gigo graphs Un Over Ca obe good
L 2 estimates for the l
~

estimates analogous to Leois
Z

trip
junction .

Now
, we blow

up the reparatized in vie v : = Ec : the is

called a fine blow-up.

These in are all minnal functions over helf-hypeplaces : so
, they

blow-up to harmonic functions. The fire blow-up is He :

· Q harmose functions · Q harmose functions

an Exc03 an Ex > 03



It we can show a boundary regularity statement at =0 (such as

C, up
to bounday), the we could run excess decey. This is

more complicated the
,

but similar to, the tuple junction case in which

me should the sum was heroic up to bouday and the split it

into vs harnoic.

Given all the Hypotheses (H ,

R
,

**) we can connect the harnoic
/

1
, d

parts in a C
way

and we are done
. (H) and (*) come freely ,

and so we must just work with Hypothesis (**)
To accomplish this

,
we just iterate arguments for when Hypothing (**)

doesn't holdt what?&

So
,

(B7) is prom fish)
B

stable minimalThis concludesthepoof atNesh'sPera esome corollarshy persunfeces. In

of Neshais work.

Corollaries

① Unique Continuation Principle for Singular Minimal Hypesurfaces

Theorem: (Neshar)

Let V
,
In bestatea interel n-varifolds an

a smooth Riemania (Mr+, g) sit. Spt II Vill
connected and Fir-

sing (Vi)) = 0 . Then,

spaIV.
Il + sptllVell = dm+ (spt/IV,

111 sptlVall) =n- 1

metand
This is "optimal

,
seen by considering

V = &

Note:
Minter

come
to

- target
a

Vz =
Y

a statmey
varilda

directions
must O

summing
to

② Strong Maximum Principle for Singular Minimal typersurfaces

I haven: (Nesher)

Suppose V
,
V2 are stationing integral n-vanifolds an

Smooth (Mi+,g) with spt/IVill connected. If

(i) SpellVell lies locally on one side of neg (v,
(ii) 7t""(sing(V, )) = 0 no conditions or U !

then either sptlIV. ll = spt1/Vall om Spt /IV
,
II

, spt/l Vall

disjoint



③ Min-Max Theory via Allen-Cahr (codin 1)

Defore the functional
Ez(u) := gar 10ul + w(n)/a

M

User PDE min-nex theory for each E
,

the the limit to.

Can use the Morse under to show stability of level
sets of the limit . There isn't enough exten structure to

use Schoen-Since
,

but it I enough for Meshan's work.

This is because you can use a slicing and stability argument
to rule out classical singularities .


