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Problem 1

Let [n] denote the set {1,...,n} for n € N. Consider
(i) a sequence of integers {m;} en

ii) families of nonempty compact subsets F;, .. ; where each index ¢; ranges from 1 to m,, and k is
pty p 1yeeeslk J J
arbitrary

(iii) a nonnegative real number s and a positive constant ¢
such that
a) d(k) := max{diam(E;, . ;. ): i; € [m;]} converges to 0 as k — oo

E;, ... CE; . i, forevery choice of i1,..., 1

(c) 252" diam(Ey, ... 3,.,5)° = diam(E;, .. 3,)°

(d) Y pne - diam(E;, . ;.)° < cdiam(B)® for every ball B with diam(B) > d(k)
i1

SN i

Let
E®) .= U E; . . and E:= ﬂ E®)
T keN
i €[my]
Show that
0<H(F) <o
Solution

Proof. We begin by observing some initial facts. By property (b), E®+1D) C E®) for all k; to see this,
note that every x € Ek+1) belongs to some Ej, ... i, ..., Which means x € E;, . ;, by property (b) and so
x € E® . Next, from property (c) we have that for all k& € N,

1 e 1 . L. s
E dlam(Eihm,ik) - E dlam(Eh,.--ﬂkﬂkH)
(ARTRRS U1yeeey bl th41
i €[my] ij€[my]

By induction, the quantity C' := Y ;, .4, diam(E;,, ;. )° > 0 is preserved as k is varied. We will show that
ij€[my]
wsC < We
O<%SH5(E)S¥C<OO

for all 6 > 0, from which the main result will follow. So, let § > 0 be arbitrary.

(< 27%w,C) Choose k large enough that d(k) < 6, which we know we can do by property (a). Then,
the collection {F;, s, : i; € [m;]} is a cover of E®) with diam(E;, ;) < d(k) < §, and so

, w, . s wsC
HS(E(k)) < 5 Z diam(E;, .. )" = 9
i Eimy]

Since E C E®) monotonicity of measure gives the desired result.

(> 27%w,C/c) Let € > 0 be arbitrary, and let {A,}nen be a cover of E such that diam(A,) < § for

all n and
2—28

Ws . s K]
5 Z diam(A,,)° < H3(E) +
neN

9
WsC

Problem 1 continued on next page. .. 2
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For each A,, select a ball B, of diameter diam(B,) = 2diam(A4,) around any point of A,,. Then, we
certainly have that A,, C B, and so {By, }nen covers E. Since E is compact (it is an intersection of finite
unions of compact sets), then there must be a finite subcover of balls {B,,}} | with E C Ule B,,. We
have that

Z diam(B,,)* < Z diam(B,,)* = 2° Z diam(4,,)

neN neN

2s 1

_UJS

Fix k large enough that d(k) < minge[z){diam(B,,)}, which we know we can do by property (a). For each
¢ € [L] define
Sy = {Ei17~»--,ik : ij S [mJ] and Eily“'vik N an 7é @}

Then, by property (d) we know that for each ¢,
. s 1 .

diam(B,,)® > EE Z diam(E;, . ;.)°

i1,

Letting

— U Se=RFEi i: Ei N U B,

Le[L]

and summing over ¢, we see that

2259{5( Z S diam(E,,. )" >

ZE[L] Eii,...i, €Se E;

ol

Z diam(E;, . i,.)°

1,ip €S

We claim that each possible E;, . ;, is actually in S. To do so, we will show that for any fixed F;, .,
with i; € [m;], the infinite collection C := {E;, 4, EM,E® ... E®) .} of compact sets has the finite
intersection property. Since EXN*tY C E(N) for each N, this amounts to showing that Fj;, ix N EWN) £ ()
for every N € N. However, this follows trivially since if N < k then E;, ;N EWN) = E; ... andif N >k,

then for any E;

B] yeensBhyeeeybN we knOW

0 # Ei..ipriin = Biyovipyin NEWN) C By i, NEW)

where C follows from property (b). So, C is a collection of compact subsets of E M) (which is itself a compact
set) with the finite intersection property, and therefore the infinite intersection

(C=Ei. 0N ( N E(N)> =FEi, 4NE

NeN

is nonempty. Since F C U£:1 B,,, by construction, we find that E;, ;. € S. We may therefore say that

.....

22s 1 1 .
Hé( )+ —€2 - Z dlam(Eil ,,,,, ik)S: 7

W c c . , c

with C =>4, ... i diam(E;, . ;. )° independent of k as described earlier. So,

i €[my]

Since none of the above quantities depend on € anymore, taking ¢ — 0 gives the desired result. m
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Problem 2

Give an example of a purely 2-unrectifiable set £ C R3 which is compact, connected, and such that 0 <
H2(E) < co. Show that E can be even made contractible.

Solution

Proof. We will construct E as a 3-dimensional analog to the purely l-unrectifiable set made via the i—
Cantor set that we did in lecture.

Let a = %. Start with the unit cube F(® := [0,1] x [0,1] x [0,1]. Now, let i; run from 1 to 8 and
denote which corner of a cube we are looking at, and let F;, be the cube of side length o placed in the 4"
corner of the unit cube. Define F(1) := Ui:l F;,. Then, FM ig a disjoint union of 8 cubes of side length
«. Repeat this construction where each F}, ;, is a cube of side length ? located at the 5" corner of the
cube Fj, and define F) .= Ufl,izzl Fi, i,- Then, F®) is a disjoint union of 64 cubes of side length 2.
Repeating indefinitely for k € N, we see that each F(*) is a disjoint union of 8 cubes, each of side length

oF. Define F := ﬂkeN F&),

1

To ensure contractibility (which implies connectedness), we will add 1-dimensional lines to our construc-
,,,,, i, at step k, let G;, ;. be aline segment
1. In other words, each G;, . ;. connects FINISH m

tion and connect everything. Specifically, for every new cube Fj,

.....

connecting the two cubes I}, ;. and Fj, ;..




Evan Dogariu MAT 526: Problem Set 2 Problem 3

Problem 3

Suppose that F is Borel with 0 < H*(E) < co. Define the convex density of a point « € E as

2% HYUNE) ) .
@ — -
D& (E,z) = o }m}) [sup{ Gam(D)" x € U, U is convex, and diam(U) < TH

Show that D¥(E,x) > 1 for H*-a.e. z € E.

Solution
Proof. For notation define v := 27%w, and

(U N E)

U(x,r) :=sup {’ydlam(U)O‘ : x €U, U is convex, and diam(U) < r}

Observe that ¥(z,r) is monotonically non-increasing in r for each fixed x since the set we are taking the
supremum over shrinks and D¢ (E, z) = lim,_,o U(z, 7). Define the sets

S:={xe€E: DY(E,xz) <1}

and

1 k

S={J S

keN

Lemma 1.

Proof of Lemma. For each k € N, note that S C S since for each x € S, we have

1 k
DY(E,z) = lim ¥ <wv - — <1
Y(E,x) lim (z,1) < <x,k> < 1 <1,
where the first inequality is by monotonicity of ¥(z,-), the second inequality follows by construction of Sk,
and the third follows since kL_H < 1 trivially. Now, let € S be arbitrary. Then, there is some N € N such

that D2 (E,z) < NLH Let € := NLH — D2 (E,z) > 0. Then, by definition of a limit there is some r > 0 such
that

N
N +1

If we take k > max{N,1} = } <r, monotonicity of ¥(z,-) grants that

U(zx,r) — DY(E,z) <e = Y(x,r) <

1 N k
)\ — | <v < —
(#3) < ¥en < 77 < T

where the last inequality follows since £ > N. So, x € Sy and therefore S C |J, oy Sk- ®

The above lemma shows that it suffices to show H*(Sy) = 0 for all k, as this will reveal that H*(S) = 0 and
therefore that DY (E,x) > 1 for H*-a.e. x € E. To this end, fix k € N.

Let € > 0 be arbitrary, and let {E;};cn be a cover of Si such that diam(E;) < % and E; NS, # 0 for
each i, and

v diam(E;)* < HS,(Sk) + €
1€N

Problem 3 continued on next page. .. 5
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For each i, set U; to be the convex hull of F;, and so E; C U; and diam(U;) = diam(F;). Since U; N Sy # 0,
U; is convex, and diam(U;) = diam(E;) < ¢, we have the estimate

k k
HYU;NE) < Vdiam(Ui)am = 'Ydiam(Ei)am

By monotonicity of measure,

H(Sk) <Y HY(SkNE) <Y HYENU),

1€N 1€N

where the first inequality is because {E;}; covers Sy and the second is because Sy C F and E; C U;. Plugging
in our estimate,

: a k o
HQ(Sk) < 7’yZd1am(Ez) S m (Hl/k(sk) +€)

where the last inequality follows by selection of the E;’s. Since none of the resulting quantities depend on ¢,
we may take e — 0 and get that

k k
HO(Sk) < o= 1 Tk(Sk) < P (Sk)

where we used that H$(Sy) is monotone non-decreasing in J. Since kiﬂ < 1, the only way for this to hold
is if H*(Sy) = 0. Therefore, H*(S) = 0, and we are done. m
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Problem 4

Identify O(m) with the space of orthogonal matrices on R™*™. Show that it is a smooth compact W-

dimensional submanifold and that the restriction of the H™(™~1/2 Hausdorff measure on it is a multiple of
the Haar measure 6,,.

Identify each n-dimensional plane of R™ with the linear map L € R™*™ which gives the orthogonal projec-
tion onto it. Show that the set of such maps is an n(m — n)-dimensional compact submanifold of R™*™.
Let u be the restriction of the measure H™(™~™) on the latter set and define the measure v as in Mattila’s
book:

AE) = 0, ({0: O(V) € EY)

for some fixed V. Prove that u and ~y differ by a multiplicative constant.

Solution

Proof. Let O(m) C R™*™ be the set of orthogonal matrices. We have
Om)={AcR™™: ATA=1,} ={AcR™™: A=|v,...,v,] and {v,}; forms an ONB for R™},

where we use A = [v1,...,Vy] to denote that v; € R™ is the 4t column of A. To see compactness, we will
show O(m) is closed and bounded. For closure, note that the map g : R™*™ — R™*™ gending A — AT A is
smooth, and we may write O(m) = g~ ({I;n}). So, O(m) is the preimage of a singleton under a continuous
function, which means that it is closed. For boundedness, we note that

m
A€O(m) = A=[vr,...,vp0] with [|vj] =1 = [AlRxn =) lloj|*=m
j=1

and so O(m) is bounded. Next, we note that O(m) is a level set of a smooth map from R™ — R™, and so
if we can show that this map has nonvanishing Jacobian over O(m) then it follows that O(m) is a smooth
submanifold. Letting A;; be the matrix elements, we have that for ¢ # j,

=1

m kj
_ e 99(A)ij _ _
9(A)i; = ;AMAM = oA, T Ak (=]
=1 0 else

So, the only way for the Jacobian to be equal to 0 is if A itself is 0, which is not an element of O(m).
Therefore, O(m) is a smooth submanifold of R™*™. To compute its dimensionality, note that we may
identify O(m) with the space of orthonormal bases of R™. The first vector in our ONB may be any
unit vector, the second may be any unit vector orthogonal to the first, and so on. So, we find that
O(m) = S x (S"1NR™ ) x (S"™1NR™2) x ... x (S"'NR'). Since topological dimension is
additive under taking product spaces and each S™~! NR* has topological dimension k — 1, we see that O(m)
has topological dimension (m —1)+ (m—2)+(m—-3)+...+1= m(";_l). This is the manifold dimension
of O(m) as well.

Lastly, we must show that s, := H™™~D/21_0O(m) is a multiple of the Haar measure 6,,. To do so,
it suffices to show that u,, is invariant under the group action of O(m) and p,,(O(m) < oo since the Haar
measure is defined as the unique invariant probability measure on O(m). To see this, consider any fixed
orthogonal matrix A € O(m). We note that the map from O(m) — O(m) of left multiplication by A can be
expressed as

O(m) 3 [v1,...,0m] — [Avy, ..., Avy] € O(m)

Problem 4 continued on next page. .. 7



Evan Dogariu MAT 526: Problem Set 2 Problem 4 (continued)

So, we may express this elementwise as a block diagonal m? x m? matrix

A

A

We note that this represents an orthogonal matrix in O(m?) since

A T4 ATA I,

A A ATA I,
So, since the H™("™~1)/2 measure on R™ is O(m?) invariant (Hausdorff measures are always invariant under

linear isometries), we see that p,, is invariant under the group action. Therefore, ﬁum is the Haar
m m
measure.

We identify the Grassmannian G(m,n) with the space of n-dimensional orthogonal projection matrices,
i.e. matrices P € R™*™ such that

P?=P" =P and dimim(P)=n

FINISH =
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Problem 5

This example, taken from a paper of Martin and Mattila, shows a closed set E C R? with 0 < H}(E) < oo
such that H'(pe(E)) = 0 for every 1-dimensional line ¢ C R?. The set E is reached as (), Ex. Eo is the
closed unit disk. E; consists of the two closed disks of radius 3 centered at the points (—%,0) and (%,0). We
apply the same operation to each disk of F; to produce four closed disks of radius % whose union gives Fjs:
however, these new disks are centered on parallel diameters of the old disks, which form an angle «; with
the horizontal line. At each iteration k, the set E} consists of 2¥ closed disks of radii 27 obtained from the
previous set Fi_1 by replacing each disk of Fj with the same operation leading from Ej to E;. However,
each pair of "new” disks lie on the diameter of the corresponding old disk, which forms an angle Zf;ll ;

with the horizontal line. The sequence «; > 0 is chosen to be infinitesimal and such that Zl a; = 0.

Solution

Proof. FE is certainly closed, as it is an intersection of finite unions of closed disks. We first show that
0 < H'(E) < oo by an application of Problem 1. Namely, each m; is 2, each E;, ;. denotes a closed disk of
radius 2% which is either the first or second (depending on the value of ij) disk generated from E;, . ;. _,.
Certainly, £ = (yen U ir,....in. Eiy,....i1., and so to apply Problem 1 we must verify the 4 properties.
ij€{172}
(a) We see that d(k) =27% and so d(k) — 0

(b) For any fixed disk indices 1, . ..,4ix—_1, the two next disks E;, ;.1 and E;, ;2 are both subsets

(c) We note that

2
diam(E;, ;) = 27" =227 *H)) = " diam(E;, i, ;)
j=1

and so property (c¢) holds.

(d) We will show this with ¢ = 8. For diam(B) > % the result holds trivially since the sum of disk diameters
over all the disks of a certain scale is 1. Otherwise, let m := [—log,(diam(B))] be the integer such
that d(m — 1) > diam(B) > d(m). Then, we know that B is only able to intersect two E;, i _,’s

since it is not large enough to span more disks in the construction. Then, the number of E;, ;s that
B can intersect is no more that 4 - 25=™. So, we have that

Y diam(E;,, ) <4-28d(k) =427 < 8diam(B)
BNE;, .., #0

Therefore, by Problem 1 we know that 0 < H!(E) < co. We now show that the projection onto every line
has 0 measure. Let £ C R? be an arbitrary 1-dimensional line, say with counterclockwise angle ag, and so
the horizontal lies at an angle of ay above £. So, we may suppose without loss of generality that ¢ is the
horizontal line if we say that each Ej is constructed from disks whose diameters form angles of Ei:ol ay;
that is, if we rotate the entire plane clockwise by ay. We proceed.

Denote by p(-) : R? — R the projection onto the horizontal line (i.e. p((z,y)) = ).

Lemma 2. There exists a subsequence {k, }nen (depending on the oy ’s) and a constant C < 1 such that for
every n € N,
H' (p(Ey,)) < C"

Problem 5 continued on next page. .. 9
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The result that H!(p(E)) = 0 follows clearly from this lemma. To see this, let § > 0 be arbitrary, and let
N € N be such that CV < § and so H!(p(Eky)) < CV < 4. Then, since E =, Ey C Ej,, by construction,
we see that p(E) C p(Ek, ), and so H'(p(E)) < H'(p(Eky)) < 6. Since this holds for all § > 0 it must be
that H!(p(E)) = 0 as desired. So, we conclude by proving the lemma.

Proof of Lemma. For notation, let £ := (Zf:_ol ai) ( mod 7) be the cumulative sums of the ay’s

and ry, := 27%. At each step k + 1, from the center of each disk in Ej, we form two disks: one a distance 7,
at angle (5, and the other a distance rj, in the opposite direction. As such, we can index each of the 2* disks
formed at step k with the sequence s = (sy,...,s;) € {—1,1}*, where s; denotes whether we moved in the
B; direction or against it at step j. Then, we have that the center of disk s is located at the point

j (15 cos(B5),j sin(5;))

HM»

As such, denoting the closed disk of radius r > 0 about x € R? by B,.(z) C R?, we see that

k

p(Ey) = U Z (rj cos(B;),r;sin(B;)) =: U A®),

se{7171}’C j=1 se{—1,1}*

where we let A®) := p (Bm (Z§:1 sj(rjcos(By),r; sin(@)))) C R for notation. Note that for any two

sequences s,t € {—1,1}*, the distance between the centers of A®) and A® is precisely

Z 2r; cos(B;), where J(s,t):={j€[k]:s; #t;}

JEJ(s,t)

Since ), a; = oo but «;’s are infinitesimal, we can select a subsequence {ky, },en such that each | cos(Sx, )| <
27k = ;. Fix an N € N and pay attention to step ky. For all s,t with J(s,t) C {k1,ko,...,kn}, it
holds that the distance between the centers is less than Zgzl 2 Tk, = 2227:1 272%kn. We may partition
{—1,1}*~ into equivalence classes, where s ~ t iff J(s,t) C {ki,ka,...,k,} (it is an equivalence relation
since J is symmetric and transitive). Then, we have that for each s,

Hl U A(t) < 2T’€N + 2 Z 2—2]67, < 4 Z 2—2k
te{—1,1}"~ n=1 =
s~t

—2k

since all such A® have centers lying at most 2 Zi:[:l 2= 2kn away from the center of A®®). There are 28N =N

such equivalence classes, since each equivalence class is uniquely determined by the shared values on the
indices in N\ {k1,...,kn}. As such, we see that

N N
Hl(p(Ek:N)) — Hl U A(S) S 4. 2k‘N7N Z 272]67,, — Z 22+kN72kn7N

se{—1,1}*N n=1

The main result follows. m

10



