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Evan Dogariu MAT 526: Problem Set 2 Problem 1

Problem 1

Let [n] denote the set {1, . . . , n} for n ∈ N. Consider

(i) a sequence of integers {mj}j∈N

(ii) families of nonempty compact subsets Ei1,...,ik where each index ij ranges from 1 to mj , and k is

arbitrary

(iii) a nonnegative real number s and a positive constant c

such that

(a) d(k) := max{diam(Ei1,...,ik) : ij ∈ [mj ]} converges to 0 as k → ∞

(b) Ei1,...,ik ⊆ Ei1,...,ik−1
for every choice of i1, . . . , ik

(c)
∑mk+1

j=1 diam(Ei1,...,ik,j)
s = diam(Ei1,...,ik)

s

(d)
∑

B∩Ei1,...,ik
̸=∅ diam(Ei1,...,ik)

s ≤ cdiam(B)s for every ball B with diam(B) ≥ d(k)

Let

E(k) :=
⋃

i1,...,ik
ij∈[mj ]

Ei1,...,ik and E :=
⋂
k∈N

E(k)

Show that

0 < Hs (E) < ∞

Solution

Proof. We begin by observing some initial facts. By property (b), E(k+1) ⊆ E(k) for all k; to see this,

note that every x ∈ E(k+1) belongs to some Ei1,...,ik,ik+1
, which means x ∈ Ei1,...,ik by property (b) and so

x ∈ E(k). Next, from property (c) we have that for all k ∈ N,∑
i1,...,ik
ij∈[mj ]

diam(Ei1,...,ik)
s =

∑
i1,...,ik,ik+1

ij∈[mj ]

diam(Ei1,...,ik,ik+1
)s

By induction, the quantity C :=
∑

i1,...,ik
ij∈[mj ]

diam(Ei1,...,ik)
s > 0 is preserved as k is varied. We will show that

0 <
ωsC

22sc
≤ Hs

δ(E) ≤ ωs

2s
C < ∞

for all δ > 0, from which the main result will follow. So, let δ > 0 be arbitrary.

(≤ 2−sωsC) Choose k large enough that d(k) < δ, which we know we can do by property (a). Then,

the collection {Ei1,...,ik : ij ∈ [mj ]} is a cover of E(k) with diam(Ei1,...,ik) ≤ d(k) < δ, and so

Hs
δ(E

(k)) ≤ ωs

2s

∑
i1,...,ik
ij∈[mj ]

diam(Ei1,...,ik)
s =

ωsC

2s

Since E ⊆ E(k), monotonicity of measure gives the desired result.

(≥ 2−2sωsC/c) Let ε > 0 be arbitrary, and let {An}n∈N be a cover of E such that diam(An) ≤ δ for

all n and
ωs

2s

∑
n∈N

diam(An)
s ≤ Hs

δ(E) +
2−2s

ωsc
ε

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 526: Problem Set 2 Problem 1 (continued)

For each An, select a ball Bn of diameter diam(Bn) = 2 diam(An) around any point of An. Then, we

certainly have that An ⊆ Bn and so {Bn}n∈N covers E. Since E is compact (it is an intersection of finite

unions of compact sets), then there must be a finite subcover of balls {Bnℓ
}Lℓ=1 with E ⊆

⋃L
ℓ=1 Bnℓ

. We

have that

L∑
ℓ=1

diam(Bnℓ
)s ≤

∑
n∈N

diam(Bn)
s = 2s

∑
n∈N

diam(An)
s

≤ 22s

ωs
Hs

δ(E) +
1

c
ε

Fix k large enough that d(k) ≤ minℓ∈[L]{diam(Bnℓ
)}, which we know we can do by property (a). For each

ℓ ∈ [L] define

Sℓ := {Ei1,...,ik : ij ∈ [mj ] and Ei1,...,ik ∩Bnℓ
̸= ∅}

Then, by property (d) we know that for each ℓ,

diam(Bnℓ
)s ≥ 1

c

∑
Ei1,...,ik

∈Sℓ

diam(Ei1,...,ik)
s

Letting

S :=
⋃

ℓ∈[L]

Sℓ =

Ei1,...,ik : Ei1,...,ik ∩

 ⋃
ℓ∈[L]

Bnℓ

 ̸= ∅


and summing over ℓ, we see that

22s

ωs
Hs

δ(E) +
1

c
ε ≥ 1

c

∑
ℓ∈[L]

∑
Ei1,...,ik

∈Sℓ

diam(Ei1,...,ik)
s ≥ 1

c

∑
Ei1,...,ik

∈S

diam(Ei1,...,ik)
s

We claim that each possible Ei1,...,ik is actually in S. To do so, we will show that for any fixed Ei1,...,ik

with ij ∈ [mj ], the infinite collection C := {Ei1,...,ik , E
(1), E(2), . . . , E(k), . . .} of compact sets has the finite

intersection property. Since E(N+1) ⊆ E(N) for each N , this amounts to showing that Ei1,...,ik ∩ E(N) ̸= ∅
for every N ∈ N. However, this follows trivially since if N ≤ k then Ei1,...,ik ∩E(N) = Ei1,...,ik and if N > k,

then for any Ei1,...,ik,...,iN we know

∅ ≠ Ei1,...,ik,...,iN = Ei1,...,ik,...,iN ∩ E(N) ⊆ Ei1,...,ik ∩ E(N)

where ⊆ follows from property (b). So, C is a collection of compact subsets of E(1) (which is itself a compact

set) with the finite intersection property, and therefore the infinite intersection

⋂
C = Ei1,...,ik ∩

( ⋂
N∈N

E(N)

)
= Ei1,...,ik ∩ E

is nonempty. Since E ⊆
⋃L

ℓ=1 Bnℓ
by construction, we find that Ei1,...,ik ∈ S. We may therefore say that

22s

ωs
Hs

δ(E) +
1

c
ε ≥ 1

c

∑
i1,...,ik
ij∈[mj ]

diam(Ei1,...,ik)
s =

C

c

with C =
∑

i1,...,ik
ij∈[mj ]

diam(Ei1,...,ik)
s independent of k as described earlier. So,

c22s

ωs
Hs

δ(E) + ε ≥ C

Since none of the above quantities depend on ε anymore, taking ε → 0 gives the desired result.
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Problem 2

Give an example of a purely 2-unrectifiable set E ⊆ R3 which is compact, connected, and such that 0 <

H2(E) < ∞. Show that E can be even made contractible.

Solution

Proof. We will construct E as a 3-dimensional analog to the purely 1-unrectifiable set made via the 1
4 -

Cantor set that we did in lecture.

Let α := 1√
8
. Start with the unit cube F (0) := [0, 1] × [0, 1] × [0, 1]. Now, let ij run from 1 to 8 and

denote which corner of a cube we are looking at, and let Fi1 be the cube of side length α placed in the ith1
corner of the unit cube. Define F (1) :=

⋃8
i1=1 Fi1 . Then, F (1) is a disjoint union of 8 cubes of side length

α. Repeat this construction where each Fi1,i2 is a cube of side length α2 located at the ith2 corner of the

cube Fi1 , and define F (2) :=
⋃8

i1,i2=1 Fi1,i2 . Then, F (2) is a disjoint union of 64 cubes of side length α2.

Repeating indefinitely for k ∈ N, we see that each F (k) is a disjoint union of 8k cubes, each of side length

αk. Define F :=
⋂

k∈N F (k).

To ensure contractibility (which implies connectedness), we will add 1-dimensional lines to our construc-

tion and connect everything. Specifically, for every new cube Fi1,...,ik at step k, let Gi1,...,ik be a line segment

connecting the two cubes Fi1,...,ik and Fi1,...,ik−1,1. In other words, each Gi1,...,ik connects FINISH
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Evan Dogariu MAT 526: Problem Set 2 Problem 3

Problem 3

Suppose that E is Borel with 0 < Hα(E) < ∞. Define the convex density of a point x ∈ E as

Dα
c (E, x) :=

2α

ωα
lim
r→0

[
sup

{
Hα(U ∩ E)

diam(U)α
: x ∈ U, U is convex, and diam(U) < r

}]
Show that Dα

c (E, x) ≥ 1 for Hα-a.e. x ∈ E.

Solution

Proof. For notation define γ := 2−αωα and

Ψ(x, r) := sup

{
Hα(U ∩ E)

γ diam(U)α
: x ∈ U, U is convex, and diam(U) < r

}
Observe that Ψ(x, r) is monotonically non-increasing in r for each fixed x since the set we are taking the

supremum over shrinks and Dα
c (E, x) = limr→0 Ψ(x, r). Define the sets

S := {x ∈ E : Dα
c (E, x) < 1}

and

Sk :=

{
x ∈ E : Ψ

(
x,

1

k

)
<

k

k + 1

}
(k ∈ N)

Lemma 1.

S =
⋃
k∈N

Sk

Proof of Lemma. For each k ∈ N, note that Sk ⊆ S since for each x ∈ Sk we have

Dα
c (E, x) = lim

r→0
Ψ(x, r) ≤ Ψ

(
x,

1

k

)
<

k

k + 1
< 1,

where the first inequality is by monotonicity of Ψ(x, ·), the second inequality follows by construction of Sk,

and the third follows since k
k+1 < 1 trivially. Now, let x ∈ S be arbitrary. Then, there is some N ∈ N such

that Dα
c (E, x) < N

N+1 . Let ε :=
N

N+1 −Dα
c (E, x) > 0. Then, by definition of a limit there is some r > 0 such

that

Ψ(x, r)−Dα
c (E, x) < ε =⇒ Ψ(x, r) <

N

N + 1

If we take k ≥ max{N, 1
r} =⇒ 1

k < r, monotonicity of Ψ(x, ·) grants that

Ψ

(
x,

1

k

)
≤ Ψ(x, r) <

N

N + 1
≤ k

k + 1
,

where the last inequality follows since k ≥ N . So, x ∈ Sk and therefore S ⊆
⋃

k∈N Sk.

The above lemma shows that it suffices to show Hα(Sk) = 0 for all k, as this will reveal that Hα(S) = 0 and

therefore that Dα
c (E, x) ≥ 1 for Hα-a.e. x ∈ E. To this end, fix k ∈ N.

Let ε > 0 be arbitrary, and let {Ei}i∈N be a cover of Sk such that diam(Ei) ≤ 1
k and Ei ∩ Sk ̸= ∅ for

each i, and

γ
∑
i∈N

diam(Ei)
α ≤ Hα

1/k(Sk) + ε

Problem 3 continued on next page. . . 5



Evan Dogariu MAT 526: Problem Set 2 Problem 3 (continued)

For each i, set Ui to be the convex hull of Ei, and so Ei ⊆ Ui and diam(Ui) = diam(Ei). Since Ui ∩ Sk ̸= ∅,
Ui is convex, and diam(Ui) = diam(Ei) ≤ 1

k , we have the estimate

Hα(Ui ∩ E) < γ diam(Ui)
α k

k + 1
= γ diam(Ei)

α k

k + 1

By monotonicity of measure,

Hα(Sk) ≤
∑
i∈N

Hα(Sk ∩ Ei) ≤
∑
i∈N

Hα(E ∩ Ui),

where the first inequality is because {Ei}i covers Sk and the second is because Sk ⊆ E and Ei ⊆ Ui. Plugging

in our estimate,

Hα(Sk) ≤
k

k + 1
γ
∑
i∈N

diam(Ei)
α ≤ k

k + 1

(
Hα

1/k(Sk) + ε
)

where the last inequality follows by selection of the Ei’s. Since none of the resulting quantities depend on ε,

we may take ε → 0 and get that

Hα(Sk) ≤
k

k + 1
Hα

1/k(Sk) ≤
k

k + 1
Hα(Sk)

where we used that Hα
δ (Sk) is monotone non-decreasing in δ. Since k

k+1 < 1, the only way for this to hold

is if Hα(Sk) = 0. Therefore, Hα(S) = 0, and we are done.
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Problem 4

Identify O(m) with the space of orthogonal matrices on Rm×m. Show that it is a smooth compact m(m−1)
2 -

dimensional submanifold and that the restriction of the Hm(m−1)/2 Hausdorff measure on it is a multiple of

the Haar measure θm.

Identify each n-dimensional plane of Rm with the linear map L ∈ Rm×m which gives the orthogonal projec-

tion onto it. Show that the set of such maps is an n(m − n)-dimensional compact submanifold of Rm×m.

Let µ be the restriction of the measure Hm(n−m) on the latter set and define the measure γ as in Mattila’s

book:

γ(E) = θm ({O : O(V ) ∈ E})

for some fixed V . Prove that µ and γ differ by a multiplicative constant.

Solution

Proof. Let O(m) ⊆ Rm×m be the set of orthogonal matrices. We have

O(m) = {A ∈ Rm×m : ATA = Im} = {A ∈ Rm×m : A = [v1, . . . , vm] and {vj}j forms an ONB for Rm},

where we use A = [v1, . . . , vm] to denote that vj ∈ Rm is the jth column of A. To see compactness, we will

show O(m) is closed and bounded. For closure, note that the map g : Rm×m → Rm×m sending A 7→ ATA is

smooth, and we may write O(m) = g−1({Im}). So, O(m) is the preimage of a singleton under a continuous

function, which means that it is closed. For boundedness, we note that

A ∈ O(m) =⇒ A = [v1, . . . , vm] with ∥vj∥ = 1 =⇒ ∥A∥2Rm×m =

m∑
j=1

∥vj∥2 = m

and so O(m) is bounded. Next, we note that O(m) is a level set of a smooth map from Rm2 → Rm2

, and so

if we can show that this map has nonvanishing Jacobian over O(m) then it follows that O(m) is a smooth

submanifold. Letting Aij be the matrix elements, we have that for i ̸= j,

g(A)ij =

m∑
k=1

AkiAkj =⇒ ∂g(A)ij
∂Akℓ

=


Akj ℓ = i

Aki ℓ = j

0 else

So, the only way for the Jacobian to be equal to 0 is if A itself is 0, which is not an element of O(m).

Therefore, O(m) is a smooth submanifold of Rm×m. To compute its dimensionality, note that we may

identify O(m) with the space of orthonormal bases of Rm. The first vector in our ONB may be any

unit vector, the second may be any unit vector orthogonal to the first, and so on. So, we find that

O(m) ∼= Sm−1 ×
(
Sm−1 ∩ Rm−1

)
×
(
Sm−1 ∩ Rm−2

)
× . . . ×

(
Sm−1 ∩ R1

)
. Since topological dimension is

additive under taking product spaces and each Sm−1∩Rk has topological dimension k−1, we see that O(m)

has topological dimension (m− 1) + (m− 2) + (m− 3) + . . .+ 1 = m(m−1)
2 . This is the manifold dimension

of O(m) as well.

Lastly, we must show that µm := Hm(m−1)/2 O(m) is a multiple of the Haar measure θm. To do so,

it suffices to show that µm is invariant under the group action of O(m) and µm(O(m) < ∞ since the Haar

measure is defined as the unique invariant probability measure on O(m). To see this, consider any fixed

orthogonal matrix A ∈ O(m). We note that the map from O(m) → O(m) of left multiplication by A can be

expressed as

O(m) ∋ [v1, . . . , vm] 7→ [Av1, . . . , Avm] ∈ O(m)

Problem 4 continued on next page. . . 7



Evan Dogariu MAT 526: Problem Set 2 Problem 4 (continued)

So, we may express this elementwise as a block diagonal m2 ×m2 matrixA . . .

A


We note that this represents an orthogonal matrix in O(m2) sinceA . . .

A


⊤ A . . .

A

 =

A
⊤A

. . .

A⊤A

 =

Im . . .

Im

 = Im2

So, since the Hm(m−1)/2 measure on Rm2

is O(m2) invariant (Hausdorff measures are always invariant under

linear isometries), we see that µm is invariant under the group action. Therefore, 1
µm(Om)µm is the Haar

measure.

We identify the Grassmannian G(m,n) with the space of n-dimensional orthogonal projection matrices,

i.e. matrices P ∈ Rm×m such that

P 2 = P⊤ = P and dim im(P ) = n

FINISH
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Problem 5

This example, taken from a paper of Martin and Mattila, shows a closed set E ⊆ R2 with 0 < H1(E) < ∞
such that H1(pℓ(E)) = 0 for every 1-dimensional line ℓ ⊆ R2. The set E is reached as

⋂
k Ek. E0 is the

closed unit disk. E1 consists of the two closed disks of radius 1
2 centered at the points (− 1

2 , 0) and ( 12 , 0). We

apply the same operation to each disk of E1 to produce four closed disks of radius 1
4 whose union gives E2:

however, these new disks are centered on parallel diameters of the old disks, which form an angle α1 with

the horizontal line. At each iteration k, the set Ek consists of 2k closed disks of radii 2−k obtained from the

previous set Ek−1 by replacing each disk of Ek with the same operation leading from E0 to E1. However,

each pair of ”new” disks lie on the diameter of the corresponding old disk, which forms an angle
∑k−1

i=1 αi

with the horizontal line. The sequence αi > 0 is chosen to be infinitesimal and such that
∑

i αi = ∞.

Solution

Proof. E is certainly closed, as it is an intersection of finite unions of closed disks. We first show that

0 < H1(E) < ∞ by an application of Problem 1. Namely, each mj is 2, each Ei1,...,ik denotes a closed disk of

radius 2−k which is either the first or second (depending on the value of ik) disk generated from Ei1,...,ik−1
.

Certainly, E =
⋂

k∈N
⋃

i1,...,ik
ij∈{1,2}

Ei1,...,ik , and so to apply Problem 1 we must verify the 4 properties.

(a) We see that d(k) = 2−k, and so d(k) → 0

(b) For any fixed disk indices i1, . . . , ik−1, the two next disks Ei1,...,ik−1,1 and Ei1,...,ik−1,2 are both subsets

of Ei1,...,ik−1
.

(c) We note that

diam(Ei1,...,ik) = 2−k = 2(2−(k+1)) =

2∑
j=1

diam(Ei1,...,ik,j)

and so property (c) holds.

(d) We will show this with c = 8. For diam(B) ≥ 1
8 the result holds trivially since the sum of disk diameters

over all the disks of a certain scale is 1. Otherwise, let m := ⌈− log2(diam(B))⌉ be the integer such

that d(m − 1) ≥ diam(B) ≥ d(m). Then, we know that B is only able to intersect two Ei1,...,im−1 ’s

since it is not large enough to span more disks in the construction. Then, the number of Ei1,...,ik ’s that

B can intersect is no more that 4 · 2k−m. So, we have that∑
B∩Ei1,...,ik

̸=∅

diam(Ei1,...,ik) ≤ 4 · 2k−md(k) = 4 · 2−m ≤ 8 diam(B)

Therefore, by Problem 1 we know that 0 < H1(E) < ∞. We now show that the projection onto every line

has 0 measure. Let ℓ ⊆ R2 be an arbitrary 1-dimensional line, say with counterclockwise angle α0, and so

the horizontal lies at an angle of α0 above ℓ. So, we may suppose without loss of generality that ℓ is the

horizontal line if we say that each Ek is constructed from disks whose diameters form angles of
∑k−1

i=0 αi;

that is, if we rotate the entire plane clockwise by α0. We proceed.

Denote by p(·) : R2 → R the projection onto the horizontal line (i.e. p((x, y)) = x).

Lemma 2. There exists a subsequence {kn}n∈N (depending on the αk’s) and a constant C < 1 such that for

every n ∈ N,
H1(p(Ekn

)) ≤ Cn

Problem 5 continued on next page. . . 9



Evan Dogariu MAT 526: Problem Set 2 Problem 5 (continued)

The result that H1(p(E)) = 0 follows clearly from this lemma. To see this, let δ > 0 be arbitrary, and let

N ∈ N be such that CN < δ and so H1(p(EkN
)) ≤ CN < δ. Then, since E ≡

⋂
k Ek ⊆ EkN

by construction,

we see that p(E) ⊆ p(EkN
), and so H1(p(E)) ≤ H1(p(EkN

)) < δ. Since this holds for all δ > 0 it must be

that H1(p(E)) = 0 as desired. So, we conclude by proving the lemma.

Proof of Lemma. For notation, let βk :=
(∑k−1

i=0 αi

)
( mod π) be the cumulative sums of the αk’s

and rk := 2−k. At each step k + 1, from the center of each disk in Ek, we form two disks: one a distance rk
at angle βk and the other a distance rk in the opposite direction. As such, we can index each of the 2k disks

formed at step k with the sequence s = (s1, . . . , sk) ∈ {−1, 1}k, where sj denotes whether we moved in the

βj direction or against it at step j. Then, we have that the center of disk s is located at the point

k∑
j=1

sj (rj cos(βj), rj sin(βj))

As such, denoting the closed disk of radius r > 0 about x ∈ R2 by Br(x) ⊆ R2, we see that

p(Ek) =
⋃

s∈{−1,1}k

p

Brk

 k∑
j=1

sj(rj cos(βj), rj sin(βj))

 =:
⋃

s∈{−1,1}k

A(s),

where we let A(s) := p
(
Brk

(∑k
j=1 sj(rj cos(βj), rj sin(βj))

))
⊆ R for notation. Note that for any two

sequences s, t ∈ {−1, 1}k, the distance between the centers of A(s) and A(t) is precisely∑
j∈J(s,t)

2rj cos(βj), where J(s, t) := {j ∈ [k] : sj ̸= tj}

Since
∑

i αi = ∞ but αi’s are infinitesimal, we can select a subsequence {kn}n∈N such that each | cos(βkn
)| <

2−kn = rkn
. Fix an N ∈ N and pay attention to step kN . For all s, t with J(s, t) ⊆ {k1, k2, . . . , kN}, it

holds that the distance between the centers is less than
∑N

n=1 2rkn
rkn

= 2
∑N

n=1 2
−2kn . We may partition

{−1, 1}kN into equivalence classes, where s ∼ t iff J(s, t) ⊆ {k1, k2, . . . , kn} (it is an equivalence relation

since J is symmetric and transitive). Then, we have that for each s,

H1

 ⋃
t∈{−1,1}kN

s∼t

A(t)

 ≤ 2rkN
+ 2

N∑
n=1

2−2kn ≤ 4

N∑
n=1

2−2kn

since all such A(t) have centers lying at most 2
∑N

n=1 2
−2kn away from the center of A(s). There are 2kN−N

such equivalence classes, since each equivalence class is uniquely determined by the shared values on the

indices in N \ {k1, . . . , kN}. As such, we see that

H1(p(EkN
)) = H1

 ⋃
s∈{−1,1}kN

A(s)

 ≤ 4 · 2kN−N
N∑

n=1

2−2kn =

N∑
n=1

22+kN−2kn−N

The main result follows.
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