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Problem 1

Denote by dimH the Hausdorff dimension of subsets of Rn. Prove that, if A ⊆ Rk and B ⊆ Rn, then

dimH(A×B) ≤ min{dimH(A) + n, dimH(B) + k}

Solution

Proof. Note that it suffices to show that dimH(A × B) ≤ dimH(A) + n, since we would then be able to

apply identical logic with A and B switched to see the other bound. To accomplish this task, we will show

that HdimH(A)+n+ϵ(A×B) = 0 for all ϵ > 0. In fact, we will show that HdimH(A)+n+ϵ(A×BR) = 0 for every

ball BR ⊆ Rn of diameter R (radius R
2 ), from which the result will follow via a countable union. We proceed.

Let R > 0 be arbitrary. Let ϵ > 0 be arbitrary. Let dA := dimH(A) for notation. By definition of the

Hausdorff dimension,

HdA+ϵ(A) = 0 =⇒ HdA+ϵ
δ (A) = 0 ∀δ > 0

Let δ > 0 be arbitrary. Let γ > 0 be arbitrary. Then, by definition of the infimum there exists an efficient

countable cover {Ei}i∈N of A consisting of sets of diameter < δ such that

ωdA+ϵ

2dA+ϵ

∑
i∈N

diam(Ei)
dA+ϵ < γ

For each i we will attempt to cover BR ⊆ Rn with sets of diameter at most diam(Ei). The following lemma

helps us understand how large such a cover must be.

Lemma 1. Let 0 < r < R, and let BR ⊆ Rn be the closed ball around the origin of diameter R. Then, there

exists a cover {Fj}Nj=1 of BR such that diam(Fj) = r for all j and BR ⊆
⋃N

j=1 Fj. The size of this cover is

N =
⌈
R
√
2

r

⌉n
.

Proof of Lemma 1. Let CR :=
[
−R

2 ,
R
2

]n
be the n-dimensional box of width R centered at the origin in

Rn. For each x ∈ BR, we know that |xi| ≤ R
2 for each coordinate i, and so x ∈ CR; thus, BR ⊆ CR. We may

efficiently tile CR by cubes of width r√
2
(and thus diameter r) by placing them edge to edge. To do so will

require
⌈

R
r√
2

⌉
=
⌈
R
√
2

r

⌉
cubes in each dimension, and so we see that we may cover CR with N :=

⌈
R
√
2

r

⌉n
sets of diameter r. The result of the lemma follows.

Now, for each i ∈ N we may apply Lemma 1 to instantiate a cover {Fi,j}N(i)
j=1 of BR with N(i) =

⌈
R
√
2

diam(Ei)

⌉n
and diam(Fi,j) = diam(Ei). Therefore, since {Ei}i∈N covers A, we find that

A×BR ⊆
⋃
i∈N

N(i)⋃
j=1

(Ei × Fi,j)

Furthermore, we know that

diam(Ei × Fi,j)
2 = diam(Ei)

2 + diam(Fi,j)
2 = 2diam(Ei)

2

=⇒ diam(Ei × Fi,j) =
√
2 diam(Ei) < δ

√
2

2
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So, we have that {Ei × Fi,j}i∈N, j∈[N(i)] is a countable cover of A×BR by sets of diameter < δ
√
2, and so

HdA+n+ϵ

δ
√
2

(A×BR) ≤
ωdA+n+ϵ

2dA+n+ϵ

∑
i∈N

N(i)∑
j=1

diam(Ei × Fi,j)
dA+n+ϵ

=
ωdA+n+ϵ

2dA+n+ϵ

∑
i∈N

N(i)(
√
2)dA+n+ϵ · diam(Ei)

dA+n+ϵ

=
ωdA+n+ϵ

2dA+n+ϵ

∑
i∈N

⌈
R
√
2

diam(Ei)

⌉n

(
√
2)dA+n+ϵ · diam(Ei)

dA+n+ϵ

<
ωdA+n+ϵ

2dA+n+ϵ

∑
i∈N

(
R
√
2 + δ

diam(Ei)

)n

(
√
2)dA+n+ϵ · diam(Ei)

dA+n+ϵ

=

(
ωdA+n+ϵ

ωdA+ϵ
(R

√
2 + δ)n(

√
2)dA−n+ϵ

)
·

(
ωdA+ϵ

2dA+ϵ

∑
i∈N

diam(Ei)
dA+ϵ

)

<

(
ωdA+n+ϵ

ωdA+ϵ
(R

√
2 + δ)n(

√
2)dA−n+ϵ

)
· γ,

where for the first inequality we used the definition of Hα
δ as an infimum over such covers, for the second

inequality we used that
⌈

R
√
2

diam(Ei)

⌉
≤ R

√
2

diam(Ei)
+ 1 = R

√
2+diam(Ei)
diam(Ei)

< R
√
2+δ

diam(Ei)
as diam(Ei) < δ, and for the

last inequality we used our selection criteria for {Ei}i. Since such a bound holds for all γ > 0, we may take

γ → 0 to find that

HdA+n+ϵ

δ
√
2

(A×BR) = 0

Since this holds for all δ > 0, taking a supremum over δ reveals that

HdA+n+ϵ(A×BR) = 0

Since this holds for all R > 0, we may use the countable subadditivity of measure to see that

HdA+n+ϵ(A× Rn) = HdA+n+ϵ

(⋃
R∈N

(A×BR)

)
≤
∑
R∈N

HdA+n+ϵ(A×BR) = 0

Since A×B ⊆ A× Rn, monotonicity of measure grants that

HdA+n+ϵ(A×B) ≤ HdA+n+ϵ(A× Rn) = 0,

and so dimH(A×B) ≤ dA + n+ ϵ. Since this holds for all ϵ > 0, we find that

dimH(A×B) ≤ dimH(A) + n

We may apply identical logic as above with the roles of A and B reversed to see that

dimH(A×B) ≤ k + dimH(B)

Thus,

dimH(A×B) ≤ min{dimH(A) + n, dimH(B) + k}

as desired.
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Problem 2

Prove that there is an uncountable closed set E ⊆ R which has zero Hausdorff dimension.

Solution

Proof. Let ϕ(n) := n(n+1)/2 for all n ∈ N for notation. We will construct a Cantor ternary-type set where

at step n we remove a middle portion so that what remains on the left and right sides are each a proportion
1
3n of the original interval. Let En denote the set that we have after step n. So, E1 ≡

[
0, 1

3

]
⊔
[
2
3 , 1
]
.

Next, for each interval of size 1
3 we remove all but the left and right 1

32 proportions of that interval; so,

E2 ≡
[
0, 1

27

]
⊔
[

8
27 ,

1
3

]
⊔
[
2
3 ,

19
27

]
⊔
[
26
27 , 1

]
. We continue by removing from each interval of size 1

27 a chunk such

that the proportion of the interval remaining is 1
33 on the left and right; so, each interval in E3 would be of

size 1
27 · 1

33 = 1
36 . Continuing this indefinitely, we see that En+1 ⊆ En for all n ∈ N and each set En is a

disjoint union of 2n closed intervals, each interval having size 1
31+...+n = 1

3ϕ(n) . Define the set

E :=
⋂
n∈N

En

We claim this set E has the desired properties.

Firstly, each En is a finite union of closed intervals, and so is closed. Since E is an intersection of closed sets,

E is closed. To see that E is uncountable, note that we may form a injection sending any real number in

[0, 1] with no 1’s in its ternary expansion (an uncountable set) to elements of E. The proof of this proceeds

exactly as in the proof of the uncountability of the usual ternary Cantor set. For each x ∈ [0, 1], write its

ternary expansion as x =
∑∞

n=1
cn(x)
3n with cn(x) ∈ {0, 1, 2} denoting the ternary coefficient in digit n (to

make this unique, we may avoid having coefficients of 1 as much as possible, such that we select .022222

instead of .1 and .2 instead of .11111). Define

A := {x ∈ [0, 1] : cn(x) ̸= 1 ∀n ∈ N}

Then, A is uncountable since its cardinality is as large as {0, 2}N, which is itself uncountable. Define a map

f : A → E as follows: for n ∈ N, use the nth digit to determine whether we map x to an element in a left

interval (if the nth digit is 0) or right interval (if it is 2) of En. To see that f is well defined, note that

at the nth digit we are restricted to an interval of width 1
3ϕ(n) , and so traversing the ternary expansion of

an element x ∈ A provides a Cauchy sequence in R, which will converge to f(x). This will certainly be an

injective map as if two ternary expansions disagree, say at position k, they must be mapped to elements

that are in disjoint intervals in Ek. So, as there exists an injective map from an uncountable set to E, we

see that E is also uncountable. Thus, it suffices to show that E has Hausdorff dimension 0.

To this end, let α > 0 be arbitrary; we want to show that Hα(E) = 0. Let ϵ > 0 be arbitrary. Let

δ > 0 be arbitrary; we want to show that Hα
δ (E) < ϵ. Let n be large enough that αϕ(n) > n and

ϕ(n) > max
{
− log3(δ),

1
α log2/3

(
2αϵ
ωα

)}
. Then, E ⊆ En, and so Hα

δ (E) ≤ Hα
δ (En). Since En is a disjoint

union of 2n intervals, each of size 1
3ϕ(n) < δ (and so it is a valid δ-cover of En), we find by definition of an

infimum that

Hα
δ (En) ≤

ωα

2α

2n∑
k=1

(
1

3ϕ(n)

)α

=
ωα

2α
· 2n

3αϕ(n)
≤ ωα

2α
·
(
2

3

)αϕ(n)

≤ ωα

2α
· 2

αϵ

ωα
= ϵ

So, Hα
δ (E) ≤ ϵ. Since this holds for all δ > 0, by taking a supremum we know that Hα(E) ≤ ϵ. Since this

holds for all ϵ > 0, we know that Hα(E) = 0. Lastly, since this holds for all α > 0, we find that dimH(E) = 0.
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Problem 3

Consider a Borel set A ⊆ Rn with 0 < Hα(A) < ∞ and a Borel set B ⊆ Rm with positive Lebesgue measure.

Prove that

Hα+m(A×B) > 0.

Solution

Proof. Let Lm denote the Lebesgue measure on Rm. Let µ := (Hα A) × (Lm B) denote the product

measure of the measure restrictions. For all x = (xa, xb) ∈ A×B we may write

Θα+m,∗(µ, x) = lim sup
r→0

µ(Br(x))

ωα+mrα+m

Observe that for Br(x) ⊆ Rn × Rm, Br(xa) ⊆ Rn, and Br(xb) ⊆ Rm, we have

y = (ya, yb) ∈ Br(x) =⇒ ∥y − x∥2 = ∥ya − xa∥2 + ∥yb − xb∥2 < r2

=⇒ ∥ya − xa∥2 < r2 and ∥yb − xb∥2 < r2

=⇒ ya ∈ Br(xa) and yb ∈ Br(xb)

=⇒ y ∈ Br(xa)×Br(xb),

and so Br(x) ⊆ Br(xa)×Br(xb). By monotonicity of measure and the defintion of product measures,

µ(Br(x)) ≤ µ(Br(xa)×Br(xb)) = Hα(A ∩Br(xa)) · Lm(B ∩Br(xb))

So, for all x = (xa, xb) ∈ A×B we have

Θα+m,∗(µ, x) ≤ lim sup
r→0

Hα(A ∩Br(xa)) · Lm(B ∩Br(xb))

ωα+mrα+m

=
ωαωm

ωα+m
lim sup

r→0

(
Hα(A ∩Br(xa))

ωαrα
· L

m(B ∩Br(xb))

ωmrm

)
Observe that Lm(Br(xb)) = ωmrm, and so by monotonicity of measure

Lm(B ∩Br(xb)) ≤ Lm(Br(xb)) =⇒ Lm(B ∩Br(xb))

ωmrm
=

Lm(B ∩Br(xb))

Lm(Br(xb))
≤ 1

Thus, for all x = (xa, xb) ∈ A×B we have

Θα+m,∗(µ, x) ≤ ωαωm

ωα+m
lim sup

r→0

Hα(A ∩Br(xa))

ωαrα

Now, we know that since Hα(A) < ∞ it holds that for Hα-a.e. xa ∈ A,

1

2α
≤ Θα,∗(A, xa) = lim sup

r→0

Hα(A ∩Br(xa))

ωαrα
≤ 1

Therefore, for µ-a.e. x ∈ A×B we have

Θα+m,∗(µ, x) ≤ ωαωm

ωα+m

Since the density Θα+m,∗(µ, x) is bounded above for µ-a.e. x ∈ A×B and A×B is Borel, we find that

µ(A×B) ≤ ωαωm

ωα+m
Hα+m(A×B) =⇒ Hα(A) · Lm(B) ≤ ωαωm

ωα+m
Hα+m(A×B),

where we used the fact that µ(A × B) = Hα(A) · Lm(B) by definition. Since Hα(A),Lm(B) > 0 by

assumption, the result follows.
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Problem 4

Assume the validity of the following statement: every Borel A ⊆ Rk with Hα(A) > 0 has a Borel subset E

with 0 < Hα(E) < ∞. Use Problem 3 to prove that, if A ⊆ Rk is Borel with Hα(A) > 0 and R ⊆ Rn is

k-rectifiable with Hk(R) > 0, then

Hα+k(A×R) > 0

Solution

Proof. When k = n then the result comes from a routine application of Problem 3. So, suppose with-

out loss of generality that k < n. We start by applying the assumed statement to find Ã ⊆ A such that

0 < Hα(Ã) ≤ Hα(A) < ∞.

Next, since R is k-rectifiable, we may write

R = N ∪
⋃
j∈N

Ej ,

where Hk(N) = 0 and each Ej is a Borel subset of a k-dimensional Lipschitz graph. In other words,

Ej ⊆ Γj =
{
(x, fj(x)) : x ∈ Rk

}
for some Lipschitz fj : Rk → Rn−k. By countable subadditivity of the Hk measure, we know that there

must be some j ∈ N for which Hk(Ej) > 0, since otherwise we would have that Hk(R) = 0, a contradiction.

For notation purposes, write E := Ej and f := fj for this choice of j. Note that we may lift f to a map

F : Rk → Rn via x 7→ (x, f(x)). It follows that F is Lipschitz via

∥F (x)− F (y)∥2 = ∥x− y∥2 + ∥f(x)− f(y)∥2 ≤
(
1 + Lip(f)2

)
∥x− y∥2 =⇒ Lip(F ) ≤

√
1 + Lip(f)2

Recall the following lemma from class.

Lemma 2. If F : Rk → Rn is Lipschitz and E ⊆ Rk has Lebesgue measure 0, then Hk(F (E)) = 0.

By the contrapositive of Lemma 2, we see that F−1(E) must have positive Lebesgue measure in Rk since

Hk(E) > 0. So, by Problem 3 (which we may apply since F Lipschitz =⇒ F continuous =⇒ F−1(E)

Borel) it holds that

Hα+k
(
Ã× F−1(E)

)
> 0,

where Ã×F−1(E) ⊆ Rk ×Rk. Now, note by definition of F (as a lifted version of f) that F−1(E) is simply

the projection of E onto the first k coordinates. More precisely, consider the map P : Rk × Rn → Rk × Rk

sending ((x1, . . . , xk), (y1, . . . , yk, yk+1, . . . , yn)) 7→ ((x1, . . . , xk), (y1, . . . , yk)); then, we have that

Ã× F−1(E) = P (Ã× E)

Furthermore, since the projection map P is clearly 1-Lipschitz, we get

0 < Hα+k
(
Ã× F−1(E)

)
= Hα+k

(
P (Ã× E)

)
≤ Hα+k(Ã× E)

By construction, we know that Ã ⊆ A, and also that E = Ej ⊆ R. Thus, Ã × E ⊆ A × R, and so by

monotonicity of measure we get

0 < Hα+k(Ã× E) ≤ Hα+k(A×R)

6
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Problem 5

Consider the function fm : [0, 1] → R which takes the valuem2−m2

on every interval [2k2−m2

, (2k+1)2−m2

] ⊆
[0, 1] and the value −m2−m2

on the remaining portion of the domain. Define

f =

∞∑
m=1

fm

Show that the graph Γ(f) of f has positive and finite H1 measure and that it is purely unrectifiable.

Solution

Proof. We will prove the following claims:

1. The infinite sum defining f converges everywhere on [0, 1], and so f is well-defined.

2. H1(Γ(f)) > 0

3. H1(Γ(f)) < ∞

4. For all Lipschitz functions g : [0, 1] → R, the graph Γ(g) has that H1(Γ(f) ∩ Γ(g)) = 0.

All these claims taken together certainly prove the desired results, and so we proceed in order.

(1) We show that the sum is absolutely convergent. For any x ∈ [0, 1], we know that |fm(x)| = m2−m2

for all m ∈ N. As such, ∑
m∈N

|fm(x)| =
∑
m∈N

m2−m2

Let N ∈ N be large enough that for all m > N we know m >
√

3 log2(m) (we can do this since the LHS

grows faster asymptotically than the RHS). Note that for m > N , we have

m >
√
3 log2(m) =⇒ −m2 < −3 log2(m) =⇒ 2−m2

<
1

m3

Then, ∑
m∈N

|fm(x)| =
N∑

m=1

|fm(x)|+
∑
m∈N
m>N

m2−m2

<

N∑
m=1

|fm(x)|+
∑
m∈N
m>N

1

m2
< ∞,

which clearly converges. So, the infinite series defining f(x) converges absolutely, which means that it con-

verges. Since this holds for all x, we see that f is well-defined.

(2) We show that the projection of Γ(f) to the x-axis has positive H1 measure. In particular, let Px :

[0, 1]× R → [0, 1] be the projection map sending (x, y) 7→ x; certainly, it holds that Px is 1-Lipschitz. So,

H1(Px(Γ(f))) ≤ H1(Γ(f))

However, for each x ∈ [0, 1] we know that (x, f(x)) ∈ Γ(f) =⇒ x ∈ Px(Γ(f)), and so Px(Γ(f)) = [0, 1].

Thus,

H1([0, 1]) ≤ H1(Γ(f)) =⇒ H1(Γ(f)) ≥ 1 > 0

(3) We continue with the following lemma.

7
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Lemma 3. Let f be defined as above. Let m ∈ N, j ∈ {0, . . . , 2m2 − 1}, and x, y ∈ (j2−m2

, (j + 1)2−m2

).

Then, we know that

|f(x)− f(y)| ≤ 2−m2

ln(2)

Proof of Lemma 3. By selection of x and y, we know that fn(x) = fn(y) for all n ≤ m (this is because

an interval on which fk+1 is constant is contained in an interval on which fk is constant). As such, we have

that

|f(x)− f(y)| =

∣∣∣∣∣
∞∑

k=m+1

fk(x)− fk(y)

∣∣∣∣∣ ≤
∞∑

k=m+1

|fk(x)− fk(y)|

We know by definition of fk that |fk(x) − fk(y)| ≤ 2k2−k2

always. So, |f(x) − f(y)| ≤ 2
∑∞

k=m+1 k2
−k2

.

Since the function k2−k2

is decreasing in k for all k ≥ 1, we may upper bound this sum by the integral that

it is the right Riemann sum of. Explicitly,

|f(x)− f(y)| ≤ 2

∞∑
k=m+1

k2−k2

≤ 2

∫ ∞

m

x2−x2

dx

Computing this integral with a substitution u = x2,

|f(x)− f(y)| ≤
∫ ∞

m2

2−udu =
2−m2

ln(2)

as desired.

Lemma 3 is the tool that we need to succeed. We will show that H1(Γ(f)) ≤
√
1 + 4

ln(2)2 . To this end, let

δn := 2−n2

for all n ∈ N; this sequence clearly approaches 0. Let n ∈ N be arbitrary. Then, 1
δn

∈ N is even.

For each k = 0, ..., 1
2δn

− 1, define the rectangles in the plane

Ik = [2kδn, (2k + 1)δn]×
[
f

(
2kδn +

1

2

)
− δ2

ln(2)
, f

(
2kδn +

1

2

)
+

δn
ln(2)

]
and

Jk = [(2k + 1)δn, (2k + 2)δn]×
[
f

(
2kδn +

3

2

)
− δ2

ln(2)
, f

(
2kδn +

3

2

)
+

δn
ln(2)

]
We know by Lemma 3 that the rectangle Ik contains the graph of f[2kδn,(2k+1)δn] because over this interval,

the function can only vary by a maximum of δn
ln(2) ; the analogous result holds for each Jk. As such, we see

that

Γ(f) ⊆

1
2δn

−1⋃
k=0

Ik ∪ Jk

Furthermore, we see that each Ik and Jk is a rectangle of width δn and height 2δn
ln(2) , and so it is of diameter

δn
√
1 + 4

ln(2)2 . Thus, by definition of the Hausdorff premeasure as an infimum,

H1

δn
√

1+ 4
ln(2)2

 1
2δn

−1⋃
k=0

Ik ∪ Jk

 ≤ ω1

2

1
2δn

−1∑
k=0

(diam(Ik) + diam(Jk)) =
1

2δn
· 2δn

√
1 +

4

ln(2)2
=

√
1 +

4

ln(2)2

By monotonicity, for all n ∈ N we have

H1

δn
√

1+ 4
ln(2)2

(Γ(f)) ≤

√
1 +

4

ln(2)2

8
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Since the sequence
{
δn
√
1 + 4

ln(2)2

}
n
approaches 0 and this bound holds for all n, it also holds in the limit.

So,

H1(Γ(f)) = lim
δ→0

H1
δ(Γ(f)) ≤

√
1 +

4

ln(2)2

as desired.

(4) Consider the lower density

Θ1
∗(Γ(f), (x, f(x))) = lim inf

δ→0

H1(Γ(f) ∩Bδ((x, f(x))))

2δ

Let ϵ > 0 be arbitrary. Let η > 0 be arbitrary. We will show that for almost every x ∈ [0, 1], there is a δ < η

for which

H1(Γ(f) ∩Bδ((x, f(x)))) ≤ δ(1 + ϵ)

To this end, write c := 2− 2
3 ln(2) ≈ 1.04 > 0 and select a m ∈ N large enough that

m > max

{
3,

1

cϵ
, 2

(√
1
4−log2(η/c)+

1
2

)}
Then, we have the following properties:

1.

m > 3 =⇒ cm2−m2

<

(
2− 2

m ln(2)

)
m2−m2

= 2m2−m2

− 2

ln(2)
2−m2

2.

m >
1

cϵ
=⇒ 1

cm
< ϵ

3.

m > 2

(√
1
4−log2(η/c)+

1
2

)
=⇒

(
log2(m)− 1

2

)2

>
1

4
− log2(η/c)

=⇒ − log2(m)2 + log2(m) < log2(η/c)

=⇒ −m2 + log2(m) < log2(η/c)

=⇒ m2−m2

<
η

c
=⇒ cm2−m2

< η,

where to get from the second to third line we used that m > log2(m) for m > 0.

Let x ∈ [0, 1] \ {k2−j2 : j ∈ N, k ∈ {0, . . . , 2j2 − 1}} (i.e. x is any point that is not a jump), which is a set

of full measure. Define δ := cm2−m2

< η. For all k ∈ {0, . . . , 2m2 − 1}, define Ik := (k2−m2

, (k + 1)2−m2

).

Let n be the unique integer such that x ∈ In (the intervals are disjoint and we know x is not on their

boundaries). Then,

Ik ∩ (x− δ, x+ δ)

{
= ∅ |k − n| > cm

̸= ∅ else

By construction of δ, there are at most 2cm + 1 distinct intervals Ik with nonempty intersection with

(x− δ, x+ δ). Furthermore, we know by definition of fm that for all y ∈ Ik,

|fm(x)− fm(y)| =

{
0 |k − n| even
2m2−m2 |k − n| odd

9
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By Lemma 3 and the reverse triangle inequality, when |k − n| is odd we see that for all y ∈ Ik,

|f(x)− f(y)| ≥

∣∣∣∣∣∣2m2−m2

+
∑
j>m

(fj(x)− fj(y))

∣∣∣∣∣∣ ≥ 2m2−m2

− 2

ln(2)
2−m2

> δ,

where the last inequality holds by property 1 from earlier and our selection of delta. So, we see that if

Bδ((x, f(x))) is the ball of radius δ around (x, f(x)) ∈ R2 and Γ(fIk) is the graph of the restriction of f to

Ik, then

Γ(fIk) ∩Bδ(x, f(x))

{
̸= ∅ |k − n| even and ≤ cm

= ∅ else

There are at most cm+ 1 different intervals Ik satisfying the first possibility. So, since the endpoints of the

Ik’s contribute no mass and each Ik is of length 2−m2

, we may apply similar logic to that of (3) (i.e. covering

Γ(f) ∩Bδ(x, f(x)) with rectangles of heights given by Lemma 3) to see that

H1(Γ(f) ∩Bδ(x, f(x))) ≤ (cm+ 1)2−m2

= cm2−m2

(
1 +

1

cm

)
< δ(1 + ϵ),

where for the final inequality we used property 2 from earlier as well as our definition of δ. To recap,

we have shown that for all ϵ > 0, all η > 0, and almost every x ∈ [0, 1], there exists a δ < η such that

H1(Γ(f) ∩Bδ(x, f(x))) < δ(1 + ϵ). Thus, for all ϵ > 0 and almost every x ∈ [0, 1], we find that

Θ1
∗(Γ(f), (x, f(x))) = lim inf

δ→0

H1(Γ(f) ∩Bδ((x, f(x))))

2δ
≤ lim inf

δ→0

δ(1 + ϵ)

2δ
=

1

2
+

ϵ

2

Since this holds for all ϵ > 0, we may take ϵ → 0 to see that for a.e. x ∈ [0, 1], Θ1
∗(Γ(f), (x, f(x))) ≤ 1

2 . This

immediately guarantees that Γ(f) is purely unrectifiable. To see this, suppose for contradiction that Γ(f)

has positive measure intersection with some Lipschitz graph. (i.e. ∃ Lipschitz g s.t. H1(Γ(f) ∩ Γ(g)) > 0).

Clearly, it also holds by monotonicity of measure that for H1-a.e. z ∈ Γ(f) ∩ Γ(g),

Θ1
∗(Γ(f) ∩ Γ(g), z) = lim inf

δ→0

H1(Γ(f) ∩ Γ(g) ∩Bδ(z))

2δ
≤ lim inf

δ→0

H1(Γ(f) ∩Bδ(z))

2δ
≤ 1

2

Since g is Lipschitz, Γ(f) ∩ Γ(g) should be rectifiable, contradicting the fact that the lower density is ≤ 1
2

almost everywhere. So, Γ(f) cannot have positive measure intersection with any Lipschitz graph, and

therefore Γ(f) is purely unrectifiable.
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