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Episode 1

Theorem 1 (Whitney). Let M be a smooth manifold of dimension ≤ n. Then, a ”generic” smooth map

from M → R2n+1 is injective.

Theorem 2 (Menger–Nöbeling). Let X be a topological space of Lebesgue covering dimension ≤ n. Then,

a ”generic” continuous map from X → R2n+1 is injective.

Theorem 3 (Mañé). Let X be a compact Euclidean set of upper Minkowski dimension ≤ n. Then, Lebesgue

a.e. linear transformation from X → R2n+1 is injective.

hi

Definition 4 (Dimension of a Measure). Let µ be a Borel measure on RN . We define the Hausdorff

dimension of µ as

dimH(µ) := inf{dimH(X) : X is a Borel set of full µ-measure}
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Episode 2

Theorem 5 (3.1 from [1], Short). Let µ be a σ-finite Borel measure on RN of Hausdorff dimension

dimH(µ) < n. Then, for Lebesgue a.e. linear transformation L : RN → Rn there exists a Borel set

XL ⊆ RN such that µ(XL) = 1 and L is injective on XL.

Proof of Theorem. Let λ represent the Lebesgue measure on RN . Define

E := {L : RN → Rk : Lx = (⟨ℓ1, x⟩ , . . . , ⟨ℓn, x⟩) for ∥ℓj∥ ≤ 1}

to be the set of N × k matrices whose rows have norm ≤ 1. Define a measure η on this set to be the

normalized Lebesgue measure, i.e.

η :=

n⊗
k=1

1

ωN
λ|B1(0)

such that η(E) = 1. We will first show the result for η-a.e. L ∈ E, from which the main theorem follows by

rescaling.

Let X ⊆ Rn be a set of full µ-measure such that dimH(X) < n, and so Hn(X) = 0. Define

A := {(x, L) ∈ X × E : Lx = Ly for some y ∈ X \ {x}}

and split it into A =
⋃

k∈NAk, where

Ak :=

{
(x, L) ∈ X × E : Lx = Ly for some y ∈ X with ∥x− y∥ ≥ 1

k

}
Lemma 6. Ak is Borel for each k ∈ N, and therefore so is A.

Proof of Lemma. We may suppose that X is σ-compact since µ is σ-finite and a regular measure. By

construction, E is σ-compact. Let π : X ×X × E be the projection sending (x, y, L) → (x, L). Then,

Ak = π

({
(x, y, L) ∈ X ×X × E : Lx = Ly and ∥x− y∥ ≥ 1

k

})
Since X × X × E is σ-compact, we know that {(x, y, L) ∈ X × X × E : Lx = Ly} is also σ-compact (the

preimage under ϕ will be a countable union of closed subsets of a σ-compact space). So, by continuity of π

and ∥ · ∥, Ak is σ-compact. In particular, it is Borel. Then, so is A.

For x ∈ X and L ∈ E, define the slices Ak,x, Ax ⊆ E and AL ⊆ X via

Ak,x := {L ∈ E : (x, L) ∈ Ak}, Ax := {L ∈ E : (x, L) ∈ A}, AL := {x ∈ X : (x, L) ∈ A}

As a slices of a Borel set, these are all Borel. We aim to show that η(Ak,x) = 0 for all x ∈ X and k ∈ N.

To this end, let x ∈ X and k ∈ N be arbitrary. For notation, write K := {y ∈ X : ∥x − y∥ ≥ 1
k}.

Let ϵ > 0 be arbitrary, and so there is a countable covering of K by balls {Brj (yj)}j such that yj ∈ K and

K ⊆
⋃
j

Brj (yj) and
∑
j∈N

rnj < ϵ

Suppose that L ∈ Ak,x and y ∈ K is such that Lx = Ly. Then, y ∈ Brj (yj) for some j, and so

∥L(yj − x)∥2 = ∥L(yj − y)∥2 ≤ N∥yj − y∥2 ≤ Nr2j ,

where we used Cauchy-Schwartz and our construction of E. Thus,

Ak,x ⊆
⋃
j∈N

{L ∈ E : ∥L(yj − x)∥ ≤
√
Nrj}

We will bound the η measure of these sets with the following key geometric lemma.
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Lemma 7 (2.1 in [1]). For any a ∈ RN \ {0} and b ∈ Rn and any δ > 0, we have

η({L ∈ E : ∥La+ b∥ ≤ δ}) ≤ (CN)n/2
δn

∥a∥n

Proof of Lemma. Let b = (b1, . . . , bn). Using the product structure of η and our definition of E,

η({L ∈ E : ∥La+ b∥ ≤ δ}) ≤
n∏

i=1

η({L ∈ E : |Lia+ bi| ≤ δ})

≤
n∏

i=1

(
1

ωN

)
λ({ℓ ∈ B1(0) : | ⟨ℓ, a⟩+ bi| ≤ δ})

By the image, we compute the volume of the shaded region to be

λ({ℓ ∈ B1(0) : | ⟨ℓ, a⟩+ bi| ≤ δ}) = ωN−1

∫ min{1,(δ−bi)/∥a∥}

max{−1,−(δ+bi)/∥a∥}
(1− r2)(N−1)/2dr

Since the integrand is ≤ 1 and the range of integration is ≤ 2δ
∥a∥ ,

λ({ℓ ∈ B1(0) : | ⟨ℓ, a⟩+ bi| ≤ δ}) ≤ 2ωN−1
δ

∥a∥

It can be computed through Gamma function magic that 2ωN−1

ωN
≤ C ′

√
N for some geometric constant

C ′ > 0 independent of N . We may conclude that

η({L ∈ E : ∥La+ b∥ ≤ δ}) ≤
n∏

i=1

(
C ′

√
N

δ

∥a∥

)
= (CN)n/2

δn

∥a∥n

as desired.

Applying this estimate with a = yj − x, b = 0, and δ =
√
Nrj , we find

η(Ak,x) ≤ Cn/2Nn
∑
j∈N

rnj
∥yj − x∥n

≤ Cn/2Nnkn
∑
j∈N

rnj ≤ Cn/2Nnknϵ

where we used that yj ∈ K =⇒ ∥yj − x∥ ≥ 1
k and the ϵ-efficiency of the cover {Brj (yj)}j of K. Taking

ϵ→ 0, we see that η(Ak,x) = 0. Since Ax =
⋃

k∈NAk,x, we see that η(Ax) = 0 for every x ∈ X. By Fubini’s

theorem, we get that (µ⊗ η)(A) = 0, and so µ(AL) = 0 for η-a.e. L ∈ E. Thus, η-a.e. L ∈ E is injective on

the set XL := X \AL which is Borel and of full µ-measure.

In fact, the following stronger result holds.
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Theorem 8 (3.1 from [1]). Let µ be a σ-finite Borel measure on RN of Hausdorff dimension dimH(µ) < βn.

Let ϕ : RN → Rn be locally β-Hölder. Then, for Lebesgue a.e. linear transformation L : RN → Rn there

exists a Borel set XL ⊆ RN such that µ(XL) = 1 and ϕL := ϕ+ L is injective on XL.

To prove this, one would just split X into a countable covering of open sets {Uj}j on which ϕ is Mj-Holder.

We would then get the bound that ∥L(yj −x)∥ ≤ (Mj +
√
N)rβj and proceed to show that each η(Ak,j,x) = 0

in exactly the same way. There is some cleverness required to make the rescaling argument that allows us

to use E work, but it’s not too bad.
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Episode 3

Definition 9 (s-analytic). A Borel measure µ on RN is s-analytic (s ∈ {1, . . . ,m}) if for each Borel U ⊆ RN

with µ(U) > 0 there exists a Borel A ⊆ Rs with λs(A) > 0 and a real analytic mapping h : Rs → RN of

s-dimensional Jacobian Jh ̸≡ 0 such that h(A) ⊆ U .

hi

Proposition 10 (Lemma IV.3(ii) in [2]). If µ is s-analytic, then µ ≪ Hs. So, if µ is nontrivial then

dimH(µ) ≥ s.

Proof of Proposition. Let U ⊆ RN be Borel with µ(U) > 0; we wish to show that Hs(U) > 0. By

definition, ∃ A ⊆ Rs Borel with λs(A) > 0 and a real analytic h : Rs → RN of s-dimensional Jacobian

Jh ̸≡ 0 such that h(A) ⊆ U . We may assume WOLOG that h|A is an embedding since Jh vanishes on a set

of measure 0 (as it is real analytic). By the area formula,∫
RN

|A ∩ h−1({y})|dHs(y) =

∫
A

Jh(x)dλs(x) > 0

where we know that Jh > 0 on A and λs(A) > 0. Since h is injective and locally-Lipschitz (by real

analyticity), we find that ∫
RN

|A ∩ h−1({y})|dHs(y) = Hs(h(A))

So, Hs(U) ≥ Hs(h(A)) > 0, as desired. Letting X be any set of full µ-measure, we therefore know that

Hs(X) > 0 =⇒ dimH(X) ≥ s, and so taking an infimum we see that dimH(µ) ≥ s.

Theorem 11 (Theorem IV.1 in [2]). Let µ be an s-analytic measure on RN . Let f : RN → Rn be real

analytic. Then, if f is injective on a set of positive µ-measure, it must be that n ≥ s.

Proof of Theorem. Suppose by way of contradiction that the claim is false. Then, we may find s′ ∈ N
such that for some n < s′, f : RN → Rn is injective on a set U with µ(U) > 0. Let s be the smallest such s′

for which the above statement holds. We will show that this implies the above statement holds with s − 1

and n− 1, producing a contradiction. As part of the proof we will end up showing that f being injective on

U is only possible if n ≥ 2. We proceed.

By s-analyticity of µ there is a Borel A ⊆ Rs with λs(A) > 0 and a real analytic h : Rs → RN with

s-dimensional Jacobian Jh ̸≡ 0 such that h(A) ⊆ U , and so f is injective on h(A). Write f(x) =

(f1(x), . . . , fn(x))
⊤ with fj : RN → R as the coordinates, and define ψj := fj ◦ h and ψ = f ◦ h. Then, ψ

and ψj are also real analytic. Define

A0 := {z ∈ A : Dψ(z) = 0 or Jh(z) = 0}}

and

Ai : = {z ∈ A : Dψi(z) ̸= 0 and Jh(z) > 0} (i ∈ {1, . . . , n})
= {z ∈ A : Jψi(z) > 0 and Jh(z) > 0} (i ∈ {1, . . . , n})

So, A = A0∪
⋃n

i=1Ai. We know that Dψ is real analytic, and so it is either identically 0 or nonzero Lebesgue

a.e.. Suppose BWOC that Dψ is identically 0, in which case ψ is constant on A and so f is constant on

h(A). By injectivity of f we must have that h is constant on A, and so Jh ≡ 0, a contradiction. So, Dψ and

Episode 3 continued on next page. . . 6



Evan Dogariu MAT 526: Proofs for Seminar Presentation Episode 3 (continued)

Jh vanish on sets of Lebesgue measure 0, and so λs(A0) = 0. Since λs(A) > 0, this means that λs(Ai) > 0

for some i4 ≤ n. For each y ∈ R define

My := ψ−1
i ({y})

Since ψi is real analytic and so locally-Lipschitz and n < s, the coarea formula gives∫
R
Hs−1(Ai ∩My)dy =

∫
Ai

Jψi(x)dλ
s(x) > 0

So, there must be a set D ⊆ R with λ1(D) > 0 and

Hs−1(Ai ∩My) > 0 (y ∈ D)

By Sard’s theorem (ψi is C
∞) and the fact that λ1(D) > 0, there is some w ∈ D for which Jψi(x) > 0 for

all x ∈ Mw. Therefore, Mw is an (s − 1)-dimensional real analytic submanifold of Rs. By the Lindelof

property and countable subadditivity, there must be some z ∈ Ai ∩Mw for which

Hs−1(Br(z) ∩Ai ∩Mw) > 0 (r > 0)

We may then find a real analytic embedding ϕ : Rs−1 → Rs and η > 0 such that

ϕ(0) = z, Bη(z) ∩Mw ⊆ ϕ(Rs−1)

and ϕ(Rs−1) Borel in Rs. By monotonicity of measure,

Hs−1(Ai ∩ ϕ(Rs−1)) > 0

Define the set C := ϕ−1(Ai ∩ ϕ(Rs−1)) ⊆ Rs−1 and the map h̃ := h ◦ ϕ : Rs−1 → RN . We claim that C and

h̃ produce the contradiction along with the map

f̃ : RN → Rn−1 defined by f(x) = (f1(x), . . . , fi−1(x), fi+1(x), . . . , fn(x))
⊤

To see this, note first that C is Borel. Since ϕ is injective and locally-Lipschitz and Hs−1(ϕ(C)) > 0, we

find that λs−1(C) > 0 as well. h̃ is clearly real analytic. To show that Jh̃ ̸≡ 0, we will show Jh̃(0) > 0.

This follows since ϕ is an embedding, and so rank(Dϕ(0)) = s− 1. Also, since Jh(z) > 0, rank(Dh(z)) = s,

and so the chain rule tells us that Dh̃(0) is full rank. In particular, Jh̃(0) > 0. It remains to show that f is

injective on h̃(C). Note that for all x ∈ C,

fi(h̃(x)) = fi(h(ϕ(x)) = ψi(ϕ(x)) = w

where we used that ϕ(x) ∈ Mw by construction of ϕ. So, fi is constant on h̃(C). Since f was injective on

h(A) and therefore on h̃(C), this means that f̃ must also be injective on h̃(C). This reasoning also shows

that n > 1, since if n = 1 then f = fi and so f is constant on a set of positive measure and cannot be

injective. We arrive at a contradiction, and the theorem is proved.

We have shown that if n < s then f cannot be injective on a set of positive µ-measure, let alone a

set of full µ-measure. This is what makes this a strong converse; if we want to encode with a decoding error

probability < 1, it requires n ≥ s embedding dimensions.
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