


145-
email Canoe camillo. delellis obias .

edu

Reall the following

& (Harsdorff measure & dimension)

Let EIR"
,

210 , Seco, 0] .
Defie the Hausdorff premengue

#) (E) = int diam (E) : SEi3 is a cover at E &with sets of diam S

We define
7) (E) : = lim Hy(E) =SPIE

Remark :
· HY(E) > HELE) if Se5

,
so the lint is well-defined FEEIR"

· 1) is an outer or exterio measure

· It a :m
,

then H%) = 5%7 +Lebesque measure-

· It a = 0
,

the 14) : #() a coveting measure

De (Exterio measure)

An exterior measure is a set on M : P(IR) -1R+ if

u(0) : 0 and /Newt :) =Em(A :)

countably subadditive

&: H(AuB) = 1%A) + H4) it |-y) = d(A
,

B) : 0

Moat: do this

Lett (Corethoday's Construction)

let M : = SECITY St u(A) = u(EnA) + u(ALE) FA3

The Ih is a Galgebra , containing Bonel sets & Sets of masue

O as desied
.



Det : (outer regularity)
-

An Cooter) measur is regular if

VAcI_-E Hausdorff-a-measurable St. ACE and 14A): H(E)

Y

Replacing Hausdorff-a-measuable" with "Bord, we get a Boel lote) measure.

If E is Hi mesurable and 120 then MFCFLE is a Radon measure.

Remak : I" is a Bacl
,
regular outer measure !m

Let (Restrictive at measures) (HLE)(A) : = H
*

(ANE)

Thingsto know:

- week* topo an speak of Radon messes

- metrizability at bonded subsets on the spece of Radon messes

Lemma !
-

Let Vi
be a sequence of Raden messues sit.

Vi -j (ie . Stdu :
- Ifdo Ffe 2

, (RY)
Then

,

Mint v : (u) = v(u) FU open

ling up v : (k) 0(k) FK closed
it

Thus, ↓ Vi(h) + v (U) if v(aCull = 0 for Bael U
.

mak:

H4(E) x => HP(E)= 0 FBx . & HE) 0 = HPE)= 0 FBa
So

,
the is a unique helRy st

. H4E)30, 03 .

We call this wiser a to be the Hausdarft dimension dim(E)



The wa inHarsdorff mesue :

Reall
15(E) =

wa int[C(diam(E)): SEi3 is a cover of E &with sets of diam S

If A:= Bri(xi) are balls
,

the :M:

So
,

we select
WK:= ** (B

,
(0)) when B

,
Co is a out ball in RK

for ke/

We
may extend

Wa:=* ↑(H) whe NCH :S steds
We select this so that

·

Wa = WK sit.
H= ** for intege K

·

We is holomorphic wit
. a

Pupi
If fiR*ER" is L-Lipschitz, the 144(f(E)) = 25 14(E)

Moreover, HE) = 17/H"(E) for 10
,

1E:= 37x : xeEh

Remark :
masve

-
our space
↓

Reall that h isofite if X= Ei for u(Ei)<

We note that 79) need not be &finite. Prove this !

didng :
It dinyE) =a OcH

"

(Eco
,

how for is E from a

C'K-dim subranifold of IRV ?



~eatifiability
* Du: (Reatifiability)

-should
be

HK-meesmable
We

say EaRU is (countably) K-rectifiable ifE can be coured H a
. e.

by countably may
CK-din submarifolds.

submarifoldI
.e . E= EorEi, where HM/Eo) = 0 and Ei = Err,

Y2'k-dim

Such sets are close enough to C submanifolds !

Remarks

1 Rectifiable sets are approximble efficiently by aftie subspaces.

2) The area famls holds ! So
,

HY(E) is computable using diffgee def
of volume

.

3) It Kent
,

we thet "sets of finite perinate" as those with rectifiable

Calmost C'suberifold) bounday
,

and the we can do Greens The and such.

u) Rectutable sets play well with product strative I Fabri slies.
Prop
-

A H"-mesuable EEIR" F JEtiBica of Lipschtz K-di greply sit.

is K-rectifiable 14(Euri) = 0

Note that these are Lipschitz graphs ,

not just C'grophs !

Them (Rademachen)
M

R
It F : U + IR" (Hopen) is Lipschitz

,
the A is diff.

.
I*

a .e.

I. e . Flea up DIx : -IRY st . fly) -(f(x+ D(y -+) = o((y -x)

Theorem (Whitng)

It f: UFIRK (nopa) is Lipscht
,

the EacO -F: U + RY C' sit.

*(37 + F3)

So
,

C functions approxinte Lipschtz for up to sets of abiting sull measure.



[hean (Extension)

If ↑ E (KCI) Lipschitz
, J an extension FiR-me

which is Lipschitz.

Remak : (= 1
,

its easy to show If with lp[E)= Sp(t)
It's tre

,

but had to show that it holds for 131 (Kinszbar)

Prop
-

If E is It" musmble and EEN C' submerifold
,

then E is rectifiable !
Parti But D

:
Any O-finite HK-measurable ECIRV can be decomposed as

E= Rup whe H*(PIM)= 0 FM &'K-subrefold
T

k-next
spurely K-unrectifiable"

&at: Iterately remove the interation with C'sudranifolds. B

97

Example: purely urrectifiable sets !
-

7.I"- measurable ECIR" with OCCELo
,
IKent sit.

E is unretifable (in foot
,

E will be compart).

We focus on nit
,

K: 1 . So
,
JECHE Sit. (E) (0

,
07.

Method 1 :

Define FIn the ID "Terray" Cantor type set by starting
with Co

, 1
, chopping each connected pice

into Co
, []

,

(n
,
2)

,
[E

,
1)

and testing .
We know #(f) = 1

.
Set E= ExF

.

J*E ==-Alteratively, L We can corn
E with 4" obes Qj" of se hi,F- k

-- and dia Q;
"= Then

,-- - -
k

uk-
L J L

- He(Ewd)u= Fr- M j= 1

=> H'LE E



We an show that the is the best we an do in the following may
:

·

E E=-J L The otlogal projection PelEn) = o: It=
=

I
L

& T

Ex
-

R

-- => PelE)= O-.
J L J L

= Fr--
-

f - However
,
I
,
(E) and PrnIt) have Lebesge 0.& G M

these are

prperdienen
!

Since IPe is 1-Lipschitz
,

↑ (o) < Lp(Pe)HE) = #YE
Since It' ages with the Wesgue I' , we see HLEYE·

Now
,
let t be a Cl curre with a

param V: IR-IR site

H1((f) = Sudt
If HYMME10

,
the FFAIR measurable with DF)c0 St. UIF)CE

Pick a x sit
. ](F1Bskly >O FScO.

TF?

-
Note theane of the following always holds :

&·

2W] ↑(PU(F1By()) 10 a (P(U(F1Bo) > o

Hours
,
x'LIPX

,
(E) = 1(Ixu(E) = 0

.
So

,
E hodes from

the gophs of all c curses
,
and is unretifiable!

B

Covering Lemmas :

(5x) - Covering Themen :

separable
Let X be a

wAutric
Spock

and EBei (xi)Sist be a collection of

open balls and Sup is frite.ieEri3
The

S
- FCI sit . 3 Brijet consists of pairwise disjoint balls

unBri) Be

Besicontch Covering Theorem :

Let AcIR" be E Boo bonded set
.

Let F = EBr()3 be a

Vitali coun of A (i .e. Exet Faso
,
JBgkef st.

Sca) .

Let
M be a Radon messue.

The
-I FIF consisting of painese disjont balls s.t.

~ (A) VBrk) = O (F paren deport and caneA M-a . e
.



Theorem /Radon-Nikodyn)

If
m

and y are Radan measures on IR"
,

the FMs sit.

u = fu + Ms
St. feL'(IRY

,
2)

and JA s .t. WIAT= O and MLA) = 0 (i . e . Mstr). Besicovitch
Theore

In fact
, Ms =uLEnstration to

when E:=Sein B = 03 &to )Also,
f(x) =

ES Fo when the list exists
and B Auter

E O else (hold in

aa b

&ensity Talk :

Ani

Wa deve the upper desity of a set E in x by

⑰
*

(E
,
x) : = bus BS

Similarly ,

the lower density is the limit.
is this the same E?

For
any M = HLE, we can deve the upper/lower desities wint. m

Theorem (Besicontch - Preiss)
-

the
we

S
Let OCTEx for KEN

,

E I-measurable.
1k-a.

e .
a

analogs
of - 2-a- 2.?The

,

E is metivable (Ex) = G Ex = 1 for ac xeE

Mee
andthen Prop (Mastrand)they

rective

VCEN
,

**

(E) (E
,x) for H-ae .

X

So
,

no E can be Ha-rectifiable.

He retract that HE) : sup & +h(r) : K & E closed 3



Pop:

Let
m

be a Rade mesue
,
E be Bowl-measurable

·

and E closed!
↓

(a) If
*

(n ,
x) : VO Free

,
Im 15(E)= u(E)

(b) If(m
,
x) = Wax Free

, h u(E) = 014(E)

So
,

these desitives allow us to compare m
with HC

. Compar this with

Labesque desity stuff.

Proof () Ex So . Free
, Erito st . m(Bri()(X-S)wars-

#x pick (x) St. r25/10 and ulBruk)) = (5-6) were

By the 5x-couting thoe, 75Br
; (x)3 painwise disjont st. EB5r;T] comes

E
. by painisedisjoint5win (ju -gmBriki)]

1) We How
, 10 · Suppose WLOG that HEL0 .

Take V := HLE and apply Besiconitch diffic. The,

somethingsMLE = f1LE +Ms with f(x) = GBx) - wong.
Lets

do (3) next

time

Lemma :
-

If H(E)10
,
the

** (E,x)2) for 7
.
e

. x

&f: ( = 1) Assure WOLOG
*(E

,
x)- ItS Free with Emersueble and 1%E) > 0

.

For HC-a.e . XEE
,

we know by Bes
.

Diffic that

( lin Br =, oooOn (R +0

By Besicowith covery,
J a paine disjoint coving at

F at balls of diam -3

sit HE1 Bri(xi) wa (l+ 8-3) ric an HE) =0

=> W HE) call Er

We can show that HE")= 0 E H (E") = 0 /good exercise)
.

#310
,

we may thefre core E with &Aid st diamlt) are and

want



Therefore
,

we may estimate

< (E) = wa +wi 3+
Letting 350, # "1E1= = H4E) =0

.

So
,

* (E
,
x) - +& H-

g .e . x . Eating St0
,

we are done.



919-
o ID Sets (GIR

,

ERE)
,

and we willWe thennowto Besicovite's thejeate.

Defi

A rectifiable curre is the image of a continuous
, injective map

U: [0,
1 -RV with finite It' -

measure.
-

or $
,

if you
leaven out a point and

cover w/ closed interns

Lemma :
-

A rectifiable come is a 1-rectifiable set.

y

·(b)* CertyH schitz M
7 2

·
·

o

mp,
and so L

1 W(b) -Vail = H'(d) = H'(me(W(a,
bi)) = H(U(da

,bi))

Next
, we wis the mp +HYU(0

,+]) is continuous
Define

m: = LW(10
,3). Then

,

H(r(ds,ti) = /B- (V(s))
,

where :=
IIE-l

So,

& (B-(W(s) = u (323) = 0 = liv 7w((s
,
+3) = 0

t- S

Next
,

we will reparametenze vie are length .

Define

&(E) : = [V(s) : ((((co
,
si)) = 3 for Ee(o,

H(V(0
,1)))

By injectivity of U
,

this is well-defied (?)
. Then

,

E is 1-Lipschitz,
and im F = im2. Vie Whites The and implest on thou (?)

, covering by Lipschitz

graphs (as in the dee of Fretivable") Et covering by images of Lipschtz fus
.
(i treb)

B

Lemma:

If 5:C0
,

13 ->A is contines and U10) USD
,

then 75:C0
,
1 + IRV

continuous sit .

1) ((d = E(0) ii) U( = E(1) iii) E Injective iv) ECO
,
is) [V10

, is)

#of Let a
,

b,
be st . Val = V(b

,) and 16-9
.
) is maximal. Then

,

Ft[o
, D) ([a

,
b

.]
,

U(t) + -(a) = U(B,) ·



Also, if Hazl =2/bc)
,

the 1. ·
⑧

keep picking maximal noninjective pairs; there may be countably many
Let I := Caj

,bj] and conside removing ViEj and squishing the domain togethe.
sThe

,
we get Ur : 10, 1-·Ba] + It are 5 : /0

, 1- [a] +R

with Unt pointuse (by cortunity o It
.

So
,

since each Je is catiwas, so is
E

.

Frthe more
,
I injective by our alontur .

Defen FSE to S
B

Deh :
-

A continue is a closed
,

connected set.

[heren:

A contium E with Unite It' measure is rectifiable.

Proof: The idea of the proof is to cover E with countably may contiers
-

crees or finite It' measure + a set of measure 0
.
First, a kenna :

check

he Continue of fint It' measur is are? connected .

& For to
, JotE arbitury .

Find a Chen Xo= X, ... Xn = yo
St. xitE and

E
Ixi - Xin IEE and Be(X) 1 B(n) = Fitk

·twin The piecanise-line for going through this chan (call it Va : Co
,
D + 1)

has that Vald= Xo and Vall =
yo .

Also
, We will be hipschitz

,
and so

O will E Wa .? why So
,

all need to show is fite It' mese

For each
j,
dete f : V= R s.t. fj(x) : = 1x - x2jt)

So
, fi is 1-Lipschitz and FilE)][0,]. Frotunce

, filit is coreted

and
H'(Be(2j+)1E)=

Accumulating the, (E) H'(E) .
So,

H(va (0, 1)) = (x:
- xi -, 1 =

UH'(E)+ a

B

Back to the there
.

Take W
,

to be the geodesic converting the two
most distant points.

Writ . implicit
metric

Take Ve := geodesia correcting most detect points in EIU, to U
, (EIV ad, )Take Us := "El(UUW) to V, US

If the ends fritely
,

then we have filly covered E and are doe.
X

It not, we has H'(E) : [C+
' (vi)

i=

We must show that the points left over are 7-mill.



Kin: El Wi has It' measure 0.

Let E20 .

Define Br : =&BRU st.

0
, xEl:3

We also impose on Br(x) that 7) (B-
(x)-E) = (1 + 3) diam(Br(x))

Since #F* (E, X) 11 for 1-
.
e

. X
,

this doesn't change that

Be is a fire cover ofE ,

when HE = 0
.

=: F

we
threw any a

Note that FBEBK
, # /BVi)= 3 set E' of masue o to

note that Bri = get the condition

by construction

Since Br is fine cover
, by Besicontch covering Theor

,

let 3Bj3; By be dispont balls careing F Hi a .
e.

kr)The
, H(E) : < [HE1Bi) = (7+ 2) [1+ ((V: )1Bi)

Takry Kee
, +(E) V) = 0

.

B

Remark : me actually cl need 5-covering to do they like this -a
. e.

. If we wanted
-

n - a. 2
.,

we need Besicotch covering

Let:

Let ECI be Boel with OCHICE) < *
.

We say Yet is
I

a regular point if G'(E
,
x) = / (i .c .

Nf Gp(E, x) ==
EIER

Let EP := ExeE regular3 be the regular points. The
,
E = EPUET

.
In feet,

ER is the "rectifiable part" of E.

Theorem :
-

It for Ha .e .
xeE

, OICE,
x) < E

,

the E is I-reatable .

Remarks : His paper
is a good re

↓-The has been generalized to ID" and eve to any
metic space (Press-tise] wit EblExc ,

(2 = 0 .7319
..)

· Eventually
,

we will pee that it desity exists (Ex= 0
*)

,
the Erectifiable.

* Besicotch conjected that ExCE
,
x)* for H-s

.
e . x = El-rectifiable

He constructed an example of a purely unrectifiable set Est. ObCE,

x)=t a .e.



&
We define the concer upper density of EEI writ. 220 via

D
*

(Ex)=Eup]convert

& FFEIR"
,

demf) = dim(cover hill of F)
.

So
,

in our definition of the

Harsdorff measure
,

we could have used convex sets in our covers without

changing diameter.
So,

H(E) = in Swa(d) cov Eglada b
Pop:

Let E
,
EXT Boel with OCHYECD. The

-

& D
<* (E, x) = 0 for H%

-a . e .
xE

C

② D
.

* (Ex) = D& (E,X) for 15-a
.e .
xEnEr

③ D, ** (E, x) = 1 for H*-a
. c .

xEEhiwe

& the 2x pice
PS

&: ① Clearly
,
D* E

,x) = 2****(EX)
,
and so size E = 0 for a .c . XeE,

we get Q-

② Follows from 0.

③ D** (E,X)
**

(E) = 1 He a
.e . on E

. So
,

we must power the upon bore.

So
, suppose BWO2 that D* (F

,x) : I +2 for all ref for sun FCE of positive
measure and EL0.

We will use covering arguments to show that H(F)= 0·

Fix &O s.
t

. 14F)2HF)+ for sue 300
.

&

W= U : U closed cover,
and H*(fnU) = (+)Wa() 3 for ourS and diam(h)

Choose U
, s i

t . dim (hi]sEsrp Edie(U) : UeE3**
Choose He st

. diam (12)> E sup Edem (h) :
NEE and M1H

,
= 03

i

Note that I cores F by construction. Also
,

&wa)h] LX and so den(4) to.

I+
We clain that 2

7 (F) (d)
If

we treats U
, , . .,

Um and take Bi : = Bydem(hi)(i) for xielli,

the SH , ...
Hm

, Bur, ...3 covers Fo
i < m ,



So
, 18(7) =Wa)) +5wn

oo ...Oun
, 43 um

·
x

I XEFIFU:, we ful xellez for which un (vi) = a
=

Pick mo to be the one integer st. diam (Uno) a dinful
2

and dom (h) > Qui) Ficmo,

which exists since dian thi) to
We claim UMU; 0 for some jamo.

Since

dam (Unk E spEdel : Her Us)- = 04
we most here UMUst0 for sue majamo.

So
,

UC
die(n) +die (4) [Bedim(us)

(xi) .

B

Lemma:

If EXIR2 Bonel and OCT'CE) 0
, The

monotone
R

X

lim sup S for 1-
a.

e . XeE.

RLO By(y)zx

It'sEBe()SR

: From
per proposition.

Theoremi
-

Let ECHE Boel with OCHE. If

** (E,x) : E for 1ac.
xE,

#J a continue G with HG20 st. H1(G1EXCO ·

&f : By regularity of measures
,
Also FUSO the exist EOEE

, aso
, 120

, 52 to s .
t-

i) Eo closed

ii) 14(E) > 0

iii) FxEo
, FRcA . c+ '(EnBr(x)) =[+ a)2R

in) H(En Bs(y)) = (1 +3) is by and sc2 S .t
. Bs(y) 1E= 0

.

1) It' (CELEd1B(0))Ur Fra 55

vi) B2j 1 to + 0 Luse an upper desil estimate !)
vii) (Eo1Br)22r Frass



Define the Basicovitch circle pair of two points by
R(x

,g) : = B(x
-y,
(x)1B

,x-

y,
(y)·=> Bely(*) Bix-y(x) UBizg , (g)

So
,
if x, y

to st . (x-yl =: Ras. The

1(R(x
,j)(E) c ((Br()(E) + 1+

' (Bix
-

y , (y)1E) - 1+ ')(Ba() UBm(s))nE)

E +2)YR - (1+1)2 .Em = (a 33)R = &Rs

-
Dete C := &B() : xe Eo155(0) st. RES and Ht((ElEdMrC) =cre3R

via the cicle pers . By the 5--coming theorem
, I a disjoint subcollection BiSi sit.

U5B: =w
BeE

Defi H : = (Eo1BsUCBir (USB :)

6 := () (FonB5) v2B) ( (r5B:) v (W2(5B.)
St1 : H is closed

Let ExBnEl st . Xi+to. If the sequence accumulates in (E1BA) VG BE
-

we an ok
.

So
, Suppose Brow Xi5 Bill whe j(i) + o.

Let
Yic) be the cate of each E ; the (sci-til +O

.
Size each ye

to which is

closed
, to EEo

.

Thus
, XoEH .

Clearly
,
thismeas G is closed.

2: It is corrected

Suppose Broa H
.,

H2 closed and disjoint st
. H = H

,
UHz

·

Suppo W0L0 that H
. Also

,
each 5B is either in H,

o M2 .
So

, MinEo #0 .

If ar disk is in Hu
,

the HuMEo +O by (iii) and (v).

Take X , EH
,
150

, XnEHudEo at minimal distence. Drow the circle pair, and so

R(x
,
x)1E = 0 because anything else would contradict minimal

distence .

So
, by the circle pain bond,

x
enough less in both

1t'(E 1 R(x
,

+z)) = -(x-+)
But H (R(x,x)1(E)Eo) = (+' (Bix(x) NE) ED) Elx-telomernot enoughwass

Since R(x
,2) nEo = 0

,
we see that H is connected.

So
,

G is connected
,
and is the a continu.



13
Then: (Besicritch)

Let ECIR be Bol with Oc H'(E) - sit .

Ob(E, x) < E for Hae
. xeE,

the E is reatifiable.

Let Suppose Bro it is not
,

the use measure they to find a closed
, purely meet.

E-E with (E,) I & + C of Hi 2 . e . xEE Find a continuum C
-

with O2H(0)< Sit.
H /GME) 10 · we now repent the pent of finding such a 6.

Out of
measur they and staded considerations

,
we may

find FEE sit .
OfF and

·It'(En Ba() = E+ 1)2R ExeF
, Fras

· It'CE'n 2) = diam(n) (1+B) -Uexef with dian(n) A (chee B st. circle par property)
·H(ETF)nBy(o)) < Ur VR-A Ive

can pick an W. )
· G Bi If for all 5 - To

Dene 2 : = [Br() : +Fr
,
Ras

,

and H(Brl(ETF)) = Cr)
This is a Vitali cover

,
and so 735

: 3 = C st-
-

USB: = U B and Bi 1 B
;

= 0 if i tj
Be2

We dete H := GB U (F((U) U(U5B:)

6 : =
G Bj r (f)(45) ((42(55:)

We wish to show connectedness of H
,

which will iplyG corrected.

Suppose Beroc H= H
, UH2 with Hi disjoint

,
closed

,

and nonepts .

we know H
. 1F+0 and M21F*0 ; by choose we may take u inset F

pai X,
eraf

, tenf of muldistance
.

So,

~
T
wat

- finf ⑨-H--We how that Bixix]e2 ,

and so the is a path -

E2

connecty X,
and xn .

So
,

11 is corrected -> G connected.

Next
, note that

(t'(b) = 1'(f)+ 25m + 10 k = 1(7)+ 25 +10 )
So,

It (End) = ((10) = c+ (f155) -
,

H(55: nE) = 1(fn Bj) - (1+1)10m &R
-> H (fnBi)- (l+3) F) yBes) = H(E1BE) -2()U5

+ Es densit
= En(35) -

[ 5 = (e) 20 .



The repres the earlier they and so G is a continuum

why does this imply reativiable?
D

Besicovitch-Federer

We now tu to
proving the Besecovitch - Feller them.

First
,

we must hadle some ugliness.

① We wat to put a measure on Oln)
,

the orthguel group 3 Act : AA :In
(i

.
e . sece of all linea isometries)

② we mat to put a measure on 6(n
,
m)

,

th Gresmenian SVEI : Vis anda
Benartg

& OuICIRUT is a compact submanifold of dimension -
So

,

take
Mi=
TLOG)

. We know that for all AzOC)
,

since A is a line iscuets, u(AU) =u(u) =u(A (u)) Fu
.

Define
Gu:=M It turns out this is the Hear masus

,
which is how

Mattila defies it.

orthgad proj

on
to V

↓

2 3O We my identify Glam]EPlam) < R
**

for some P under the map V Ir
We know

eTP =
r ,

IIn = Pr
,

dim range /P = ~

Incidentaly
, any

metix with these properties I a projection So,-

P(n
,
n) &M is a compact mcums-du submenfold.

Let us place the measure

Hmi) [P(r,m) =: Wh
, e

&
m

is to recove that Un(u) = ( (On) FOEO(n)Another us toa (h) : = G
- (0 +0() : 0(= 303)2n3) ,

which will have the sae invariants of Jam.

In feet, W = d -

which is how Mattila defies it. m
in-n)(P(n

,
wi

1,1

Note that Glnm) EGCn,
mu) wa Vaut and Pr # In-IPr+



Now,
on to the Heaven!

*Ihear : (Besecoutch-Federa

Let O2AElco for sure Eat If"-measurable. Then
,

E is

purely vertise
Et HF(IPCED= O for Urin-ae. VeGinn)

(equivalently, HELPrE= 0 for Uncare .
Veb(n

,e-n)

Rems: - we cannot not
,

in geod,
have that the projection to every subspace is 0

, though
this does sorates happen.

We will prove with Fedre's method - WLOG assure E Buel & compact

first, some lemans.

#1 : Let At closed
,
prely urrectifiable #OCH"CAS Sco

,

and VEG(n
,

n- k)
/

-

only place
wa

Set
need unrectifiability! K

CAis(v) : = EatA : linsssoa & Rs 1"(AnBrkin((a,
v, s)) =04

T

come
centred with

-
aris a with as

=
- k)

V and opening S

- T

take stinny cores,

---
take ball mexinting retro

The
,
+"(A

,
s(v)) = 0. of intersection to cross-section

Remark: If A were Lipschtzgeph , the its intersection with the come is always tiny !-

Lem2 : Let ACI copact OCTA) < -
,

500
,

and VeG(n
,
n-4)

.
Set

KAz
,
s(v) := 3 aet : Consu sup [Ms5 #" (An Balan 2(a,

v,s))] = +04STO OLReS

The
,

1+ k(1Pr+(Ans)) = 0
.

#3 : Let AEIT compact v OCT"(A)10 and VeGln
,
n-K)

.

Set

Az(r) : = GaeA : #(An(a+)= 0 3

#m, H*(lPr+ (Ag(u))) = 0
.

themU : Let $20
. For Wanka . e .

VEGG
,
n-K)

.

I"-are
, act satisfies one of

① a + A
,j(r) ② a e Az

,
s(v) ⑤ (A) 3a3)1(a+v) 1 Bs(a) + 0



&of of Theore : From the lennes
,

we see that for Whin-k-a. e.
VEGln

,
n - k)

K
and It-a

.e. att,

① actA ,f(r) = 1
Y

)

② a + ( Az
,+(v) => 1+k(

③ We are in the fiber arr infritely may times

So
,

or projection is in the countable intersection of Ais's
,
Auss, and As

D

Proof of Leave b : Apply the cose inequalityor sirit
,

and f = Put,
courtsmeasur (34)

&* H° (An (a+v) da = (H
*(A)

IRK

=> SPA+O = CH"(A) = H
*

(IPu+(As) = 0
.

I

Proof of Lunna 2 : Let B := Pu+ (Az
,
s (v)) .

Fix Mso large . By defe of lims,
handlestoppiness

= for all beB
,

Ys
,
JAls]CoSS sit.

E Cylinder
of

renders SCs)
:=

Co
· R.

F
for

ea
RIS .

#"(IP(i (b))1A) = Mycs)
*

B

Note that C := Es (b) : beB3 is a fine come of B.

So
,
7 panuise disjoint balls covering

Hh- a . e . xEB
.

Thus,

k#(B)= (5
: (bi) + was :

"
-Wh(P)

Hk(A)
Take Max

,

and we are done.
B

Proof of Leave 1 : Let 230 .
The

,
7520 st.

* stuff atte luep* is bonded urifully.

Apol proposition from below to cover most of Ais(v), and can to

small est.



Pop:

Let A be prely k-uneciable.

Let Seco
, 1

,
Se(0

,
%)

.

If
sp H

*(AmBr(a)n[(a ,

V
,s) = 418s)

* FaeA
,

OcRcS

the, # (AnB
,(a)Cost I FaeA

.

-

: Ex OEA
,

and suppose WOLOG that AB (d). Defin a function
&

2 yeA
-h(x) : = sup3ly-x) : ye A12(x,

v
, z)3 · XA

By pure unestifiability,

ho for La
. e

. X . =-

~

- C(x+V
,

s)

-

Let xeA be .
(x-x*Ehlt X* ((x,

v
,
Sk)

IWe clain that the
green Glide

- 22h(x)
·

x

IPr(B(x) na) = (A1Bay1((x,Ys)]
~ (AnBuncs1((x*, v

,s) n
((x

,

v
,

S)

Applying our assured estimate
, 1*[IPr (B(x)vA)) Chs)

*

So
,
for Hk - a

. e
. zePriCAlBard)

,
JR(z) s .

tr

1")P(Bra(z)11)) =Cerc") ?
=>Itk(IPr(A1By(d) Brz)(z) = C1R(z)k

H"(A 1Bg(0) 1 Pri(Brin(I- +())) = 2 x RA)m

Let A(a) = Ray/s and 6 : = 3 Bein (Im(a)) : acAMBoro ?

& comes Prt(A1Bs) al so there is a parmise disjoint collection
of balls sit.

UB: BertlABs-

So
, H

*(AlBo) - [H *(AMBronIPC5Bil

= [c1(5p(ai": We(ai)
"

by painten WK

-disjo
res

CXskE

I



145-

Let Erectifable and F : EtIRS be Lipschitz .
The

,
the coare formula applies.

It E 2-rect (i .e . a surfe and jil, the

#
+ )) forY

yEIR

The Coate form allows are
to fed more at a set by integrating leal sets

of the function
, Fubini-style, using * It) to account for distortion ,

We knew they for

Smooth E and diffentiet f
,

but the corre for holds for rectifiable E

and Lipschitzf .
Howeve

, a general inequality does hold.

Reall the uppr inteyel g
*

t : it S, Fator's leave holds !

&op: (Coare inequality need not ever

measurable!
be

"CLet f : /R" +I Lipschitz, See
,
A

-
IRY. Then, This is true from

a metric space
to

S-Af(y3) dy2(n)Lip a metric space !

m .2ensure =
When

W

See Federer.-
WS

constant

Proof: Cover A with EExilien with diam (Er,;) te site

[dian (E;
) = 1

°
(A) +k + Sk

Next, let Fa = flEn) = Eye : En 1 f(3y3) + 03
Then

,

Fy,
zefk

, : ly-z) = (p(f) dim(En
:) => dam (Fri) (p (f) diam (EK

,
i)

So,

&* 13m(A1f"(Sy3))dy = S* HE (Alf"(33)dy
E Fr

,
i

Eden(323) dy
=H (A1fEy3)

fatorm die(E
2

~ dian is 0 outside
of Fr

:



-↳Ed

In a
B

&

mark. It f Holder
, you could still do this with the estimate dan (Fr

.
) Identia,

11010-

Proof of Leave 7 - There are two parts .

We will
prese it first for K= n-l

Ccodmesin 1)
,

after which we will do it in geneity.
dable

X
up to

courting
① Let ken-1 . We may

thank of Gla
,
1) as the sphece/RPY, al Wr , as the Haar

mesus/unfom prob on the sphere.

·
Barasit

·
O V= 2(0)

#

Let LE] be the live porratuzed by a point o on the n-spher. ?
n- 1

OLet L(E)
=WLLE FEES . The o

opeigs,i -------

2(0
,
v

, s) = U (103 = L(Baresins (07).
E'EBaresin(s) (E)

Defin the set forations ↑ (E) : = sup R**H""(A1 Br(o) 1L(E)
for EGS? OcR> S

basically qn
- 1* (4

,
0)

L(O)
-

↓
The

,
Insp S

-

P(Bs(E)) = linsu <p (Rs) 1""(AMBR1C(O,
v
, 5)

Sto Stro OcRaS

So
,

we lots that for Uni a . e . O
,

either

Here
,

we are pering
it for all points

①Q
* (4

,
8) = x bby shifting the origin and

are .
V

(#) ② or* (4
,

0) = 0 3 This would imply here 1 rin Fabini applied to

⑤ B
the product messe In

,
x&H

*LA)
,

i . e . we can sup

the abost weys for points and lines.
measurable namework
-

We want to show 4
is -- outer measure

,
since then we would

be able to apply the following:

Lemme (Mickle-Rado) :
-

Let of be an outer mesue on M and E a fences
. Set s.

t . Y(E) = 0.

The
,
for 22-c . e . XeE
(4

,
x) =

linsp RY(Bm() = 50, 03R + 0



#ofof Makle-Rado : Suppose WOLOG that E is closed
. Defe

F :=Exte : 4/Br() jR FOcra

It isn't had to show Fj is closed .
It's bod to see that

= Exce: MYB(x) 03
for the

- brop

Since FiCE, we know N(F)= 0
·

So
, ↑(Bel) = 4 (Brit (Fj)

.j

For as y ,

if Brly]1Fj 0 and McScEi Her
Bark)

· a↑(Br(s)) = Y(Bc(a)) = ERS"j m
·

3 Bals# xeFj and OcRaEs
.

Pick a point yeBrIf;
Lif it doesn't exists the P(Belfi) =0 Fear and the limsup is 0.

Set sy:=) ,&
We know EBs(y) : geBr(1fj] as Baltfj
By the 5r-caving theores we greb painise disjont 5r-core

.

By countable subadditivity of 4
,

↑(Dp(x)(5)= 4(Bisty)(i)) =[
= 2(Bir()(f;) .

So
,
xeFj

,

EK*

(4
,
x) : ensup())

=lR+ 0 RK RK

=cl =(d)=
Fo a sece

,

we took a desity of an outer measure and copped
the set in a good us

to get a hibesque desit.
So

,
whe the density is fite

, ↑efj for sure j,
and the decity - 0.

B

② we now but to get to higher dimensions
.

Conside a k-din ple
K

# 303. The REx303M**
x303= W

.

For ae. line LEGr + 1
,

1 ,
we

have

*** (0
,

L
,
s) = Ex = w = d(x

, 1)csk10W+

[(x,

0) :

dGacskl]

"mFor UK+ 1

-

a . e .
REG

,
/R**-303) and 1"

-c .
e . aeA

,

eite I
① linsup sup (Rst**(AnBm(a)n(x**

(0
,

4
, s) + a)) = 0

S - 0 OcRcS

② linsup sup (Rst**(AnBm(a)n(x**
(0

,
4
, s) + a)) = -

Sto OCRIS



③ (A)5a3)1 ((low+)+a) 1 By(a) + 0

via an application of the abou kindl logia . We have the right alternative,
but for a come at the

wrong shope .
Here is how we will for it.

Let V: = Ex,
=... = X = 03

,
and so

C(o
,
Vs) = Exer: : Exer:c

and Wj:= VotoRej
,
je3kH, .., 13 (first he dins plus another). Then,

* (0, V
,
0) = Exe:

Note that it s=o
,

the X;
(0

,
V

,
0 - ((ous) = ↑ X, (0

, U
,

3) = (10
,
v

,
5)

-

0
j= k+

Howeve
,

(10
,
V,

3)
[VX;

(0
,
Vo

, st for =-
We wa map No to oth subspaces vie orthogonal transformations

.

So
,

we will reason about

ae . arthogona transferation instead of a. e . subspace.

her
t so

, jeskel, ...,
nb

.

For Furce
. geol), one of the following alterates holds :

① eS (Rs)(ABs(a)n(a+ gx(0,
V

,
)

② ES (Rs)(ABs(a)nla+ gx; (0
,v

③ (Alda3) 1 Bg(a) n(a+ gVo)

&: Let j = k+ wor. Let W: = Wh = Exa=... = xn = 03 = V
+

+ Rev

Let X(g) = 31 ifroe
of the 3 expertiesaa

We can confirm that XX is Boel and so measurable /A corpect will hep).

We have O(n) = Sortigar tunsfactors of 1T
0(k) = EgEO() : glut identity 3

The Socu Y &On = o Since

invariance
of

Hear
meague

ach 6. X(dOn(2) = So X(gdOnCh) FgeOl

So
, size Okt is a probability messe,

invariat

SocX(2) dE1) = So SoX()dOn() dom(s) = S
·(So*(g) donChidO(g)

#)don(q) do
_

(2) = 0
.

B

= SocSoci
=C



Win the leave
,

or poof of Lena 1 is complete since the dests is

O for a subspace iff Q holds for a
. e . geOln)

D

With here
,

we know we aless have the alterative and each one happens

on a set at measure O
,

and so we have done it!

B

Besicowitch - Preiss

* #em: (Besiconitch - Press)

Let EEI Bol st.
Oct(Eco. If O-**(Ex) = ECEN)- exists

to I"- a
. e . XeE

, the E is rectifiable .

Equivalently:

Let be a Radon measure and assue E**x) = @ (
,
+) exists and

en

is positive and finite for M-a.e. X .
Im

,
IE rectifiable of dimm and f: EtIR Bonel sit.

call this

m= f 1"LEX
"Mis k-rectifiable

"

&work: To show equiche
,

use decity of
m

to shar its abs .
cente want It

Theorem: (Mastra

Suppose in satiating the requents of BP
,

but GEN
. I

, m = 0

R So
,
non-istge-disia sets must here holes of some sort.

Theorem : (Mastrand-Mattila)
-

If E satisfies BP conditions and E*

(E
,
x) = 1 1"a.e

.
XEE, the E is rectifiable.

Remark: This is make then BP
,

and so we won't proce
it. B



Targent meesres

For a Raden mesme m and a point x at which E
*

(n
,
x)10.

Let RsO ad dee MxM/E) :=RE ·
> BxrE

The
,

FRO
,

8 Bry(x)

(Me(b) =(B)wal MmS

↑ uniforly bonded !

so
,

has weak-a subsequence

For every secure SMnYa + O
, JRm

,
subseque Sit .

Mx
,

R, p

Defi
-

We call a Rada mesue r a tergat measur to
u at X if it comes

about in the above way
La+ To /u

,
x) denote the set of tergent measures.L

Duf:
-

An a-uniform measure is a (Radal measure m
for which 720 s.

t.

>
complet of this is largest ope

m(Br(z)) = CR
*

Fro
, ExEspt(m)

t of mee o

Cie
, for u-a.e . x

Exercise-
let

me
be a measure and fell(u) .

The,

Tanc(fu
,
x) = f(x) Tana (u,

x) for Mae. x

↓anna : (Mastrd)

Asset sat = estsfure . .

① Otspt(v) Cobrious !)

② Facspt() and FRsO
, v(Bp(a)) =Wom

,
>R& (so

,
w is an auniform muse).

& ① FueTaralm
,
+)

,
u(Br(a)=mMR = we S Det

↑

+ let

Eigh= 4x :: Rgoing
on

The
,

F: we know /M &Esk) = 0.
j
,
k
-

Ei



We claim that for mae .
Hik ad FreTangInLE]

Ir (Br(y)) - - m
,
+) waRac Fyzspt(r)

Fox yesptly) . The Fr > 0,

~ (Br(y)) =en
(BrenE if u (bB-()) = 0

rua byweak stiff
.

His holds for all but possibly countably

Pick + sit ,R manyI

The
Burnlerat /Eiske Best () Leisk

=> Barely m+)(ish) = (BCI()LEiyJ
VK

v?
So

, wa may remove the 1
ish business !

Note thatInLESxm = MaraL .

So
,

it must be that distly, +

since otherwise y tspt(m) .
Thus

, 7 EyaS Sit
. 3ntEx and 13ky/ + 0.

LetEn : = 1y-ya)

Berna+) E Brn(ay +1) = Barramudraya++)

= *Bc+)+ (iny++) =m&cran)m) nyn+ +))
k

narC rarc varud

Fr = te

SinceESoto)
,

Eno

Howeve
,

when
y

= 0, ~ (B-
(0)) = we (m,

x) +C
.

Thus
,

(v(Bly) - E(m,) wara : I wa
B

Refer Wenight expect all d-uniform messues to be Hausdaf messes on a plane.
In general ,

this set tre (what is true is that CEN and v is If restricted to a

analytic subvenety of MCN).

light come

A contecaple is C:=Ex=xitit BI? .

The
,
HELC is 3-uniform measure.

Exercise :
-

A target measure to a unitom measure is a unifor measure.



Proposition: [Mastund)
always holds

which
X for

tergat muses

It a = k
,

at least f target measure at
u-ae. X is

E"(m
,
x)7*LV for a k-din subspace VEIT".

&
ok: This is fee from allowing us to apply the turgent messa cutaia from Week 2 to

prove rectifiability, size that required que
, Hausdaff-a-plane target magues.

Howeve
,

it turns out we don't need uniqueness.

#even : (Mastred-Mattila Restifiability Criterial

with positive love dents
and fiter upper desit

~Let
i

be a Raden masus
,

Ke/N
,

and assue that for
M-S .e . X

,
EVERY

attarget measur m is of the form () CH"LV for some cho and Kodin subspace V

# m
is rectifiable.

The: (Preiss)
~

Under the assuption FF(n
,
x) exists brace ,

the for use - every target mesue

ata has the form (d) .

Together, Preiss + Mostred-Mattle Reefiability=>> BP
.

Dzu

Proposition : (Marsrand)
-

Let
in be an -unitom measure and assure acn . The, Exespt(a) and

reTaa(n
,
+) which is supported in a hyperplane.

Golly:

If a &N
,

the zo arrifie measure.

Meats repect above dinasicality reduction until n-laca.
D

Lemme :
-

If
h is noterial and carnivor

,
ada

,
then I an craf mesne veTana(

,
x)

at some respt(v) that is noutorial and supported in the half-spee 3x ,
203.



·

T

Pof Leave: Let +esptb y * spt(m). The
, ..........To

t

sp+ (mx
,

m) = S = (B(z) = 0.

Letting Mara -0 complete the proof. D

Lemme :
-

let retanclex) be
as give by the

periors
lemme

.

The
,

there is a hypeplane I sit. -BeTan(u,x) ,

for some xespt (v) .

① BeTang(m
,
x) ② B is supported in H

ofof Lume: D Exercise

& Defe the barycenter b(r) := r4Spdo(z) By constration
, spt(d) = 3x

, 10)

If bl= 0 Fr
,

the r itself is supeated in a hypeplace already,
and

we are doe.

So
, suppose

blico for some so. We will show

(b(), z)) = Clly11 Fy + spt(r) 1 Bz-
(d)

To see this
,

note that 2 (bi
, y) = llgIR + (r2 - 11 x -y(R) + (r- 11x1M)

=> 2((BC), x)) = /r -c 92( ,3)do(z))Br(0)

= "y/P+/9(lt)dolz-r(-z-got I
If these integels were over the whole space,

truktion invie would see

us . Howeve
,

we here

2 (b(
.3)) - (b + r

- 9 (r-112-3/1/ dolat

(07)Br(s)) v(Br(g)/Br(a)
symmetric differen

For zeBr(d)(Br(y)
,

Ozllz-yIF-llz-yIF-llzIP -ZIzIIIy1I + IyIPabully /I

For ZEB-() (B-/d), Ozr-1lz-yIPallzlk-1lz-yIPz3rllylI
So
,

2) < b(t)
, y)) = ((y(k+ v

- 3- ((y))m (B-(0] /B-(s))
We know

B - (0)1Br(y) = Br+yyy(z) (Br-xyy(z)

=> 2(x(f
, 3)) = /lg (n+ v

-

+3-((y))((r+1y())d- (-yy))))
->(ly /|+ 3 11y 11v

-d ((k)l(y)I ra-1) = (2()+1) llgl12

Now
,

let B := week lin Vore ·

Let zesptip) => z : huzu for
k = 0

some zEspt(Vo
,
ra) .

Thus
,
razuespt(c)



=> (b() :z)= /bl-za = +he 166 · (raza)) - Cllza112
rk k=x

=> (b). ) - In r Clau

Size the ima product is 0 Fzespt(B)
,
it's sported

on the hypeple.
D

Exercise:
-

leto beo urifom messa .
The,

Sf(IIzdo(z) = Sf(llz-y()do(z) Ey + spt(v)

By the "Bafta formula", SF(lIzidr(z) = 9
.

Pu(37 : f(zDst3)dt
For motre f

, = 9.v(B(0)d = go CIf+Hllof

1026

Recall that we are trying to build to Besecortch Preiss.

[hearn: (BMP)

Let 10 be Radon an IRV with a desity existing, positive, and finite rea.e.

The
OneN ②I is a- restifiable

Let's continue our journey!

Prop :

-

-Let
i ber as in BMP.

The
,

for
M-a .e. xER

,

Tanka
,
x) = Om

,
x) U< (IRY

-uniform means

supported at o

Det :
-

&XR) is the set of all - uniform measures m st . Otspt(n).

Pop:

# veU4IY)
,

the Exesptr) and Betan(u, x) st. spt(p) Ye :x =oh
for some etIth" .

Penal : We my teate this to fed
a Br = E

F(v
,
x)#"LV for soe VeG(n

,
2).

-



Lemme:

& Ton (m
,

x) is week-e compact.

& If retan(ut), then VoreTan(m,
+) FRsO

.

Bef:

9) Suppose that [USu ETar(m
,

x) with Unle St . Un

By Cantor diagonalization, I subseque j(k) sit.

Mx
,s

So
,

closed . Compactness ?

b)
- = lime

Mas
With Opto = Vor = Am Mx, Ra,

k+ 0 B

Lenne:
-

If vFIXIV) the 7 a seamce EanBr Espt(c] and a sequence of redii
S

Ar >0 Sit .

Van
, An

Hav
for some Vebln

,
k)

.

↳of: degalization again. D

We hasthat saling pesee togey ,

but it wall be nice for slifts to do so a l

&position :

let
m satisfy BMP. The

,
for Ma . e . x,

· if veTan(n
,
x) and

a +spt(m) and Rso
,

the Vartan (u,
x)

.

#of: We know Respt(v) = (Varo,
= War ,

1
.

So
,

wow we wish to show

that Va
,
it Tan (m

,
x)

.

Introduce a distance of that retrizesmeak- converge on Radon masues u sit.

=. Co sit . M(Br] -C FN
.

Check Comillo's notes to see this
,

looks cool !

Dete Anj : = Exet st . Zoetan(nx) and atspt(o) st . d(M+r . Va
,
1) t Fret]

Note thatNA = Epoints whe the chim at the prop is felses.

We wis m(Anj = 0 !



Home
,

first we must show mesuabilty of Arj . First, we must pull out some

heny stuff.

look no the proof of this

herem: (Universal measurability thoem]

Let EERXIR" be Boul #
,

for e u Roden
, Pru/E) is n-nesreble .

coutable
inde based on he's used toetuate d

Dete Brin= ExeArj at. R=Em
,
x) = R3 ; need that u(B) = 0 .

&- drop indices cause lazy
and fix jok,

R

Defin S := Eva
,

st . UeTarlet for son xeB and aeset() 3
S is a bonded set in the weeke topology by d (why?) .

So
,

its closure is

compact . Thus,
we can covers by finitely many d-balls

center of
ball

6 :
: = 33 : &13

,
57 : tr]

Define

Di : = XeB sit. ZuteTar(ux) and axespt(ux) sit .

S & Myr , vizt Fret an Gi3
In needs

,
since xEBEAn

,
the must be soe contrading target messa. Size S M

coured by the Gis
,

we how the contradicting tergent messe must be in one of the

6is . Measurability of Di is a bitch
,

check Camillos notes.

Note that FayePi , &Va , Va
,

1) i by definitor of 6:.

Next
, choose

drop the subscept

(1) + +Dit st
.lim B =1

breilo

(2) reto sit . More -
*
yx def of target messe

(3) XeED sit .

= ove)Sheespt(of)
,

so
rescaling shorts by re

1lxe-(x+ reax)ll = dreax, D+

The
, (1) =Xan(n,

x) = Tan(uLD
,
x) (since points not in D become smalle and smalle in

measure

uT =By (3),
a +1 =lu* Myxtreax,a

linx (u(B(y + reax)
,

i
l+ =

We how Mxeize ** Val by (2)
.

So
, eventually diexere / wax) he by earlie

remark .

Howe
,

size XeeD
,

we know t = &Luxeive , val)



Be construction of Gi
, &Va , Val it. The teagle merely yields

&LMxeive
,V) Tek ,

a contradation !

S. D is unull = ... > Eas is woul = prop holds ra .e .

D

We are getting there! Lets outline a pla !

Plan :
-

(Part 1) Mostrod-Mattila Reatifubily Antain !

Team: (Murc

Leti be Radon site for
M

-a . e .

· Or G(v,) @
**(n

,

x)

·

every retanlut) has v = CoHLW for

son 2050,
veG(n

,
k)

Im
,

m is rectifiable.

(Part#) Let
me be as in BMP

,

Let x be sit.

· Ta(m
,
x) = Em=) ITR) (whih holds for

m -a . e. x]

· Ou,) GYIY 1 Th (m
,
x) = 0 (wis thes holds are.)

itofSe
To do so

,
we wel red d)6CI)

,
UI))G4Y) > 0

.



131-
Zup: (MM Reatifiability Criterian)

Letm be Raden and KENN Sit .

(a) O-Elex) Ok* (m
,x)20 for

Mae . x .

(b) Tar (m
,
1) SCHFLV : cert VeG(n,

k)3
X

Since Tande
,
x) is week closed

,

0 <Ce(x) = a = an() -

The
, m is rectifiable

.

a That
I
used

:

propositi
there's His

Remark : abot-

Ou
*In o M-fE ,

fel'ld) nonegative

So
, for r-a .e . X (and so e-a .c . x)

,

· G(n,
x) = f(x)G(u,

x)

· O
**

(n,
x) = f(x)0

**
(v

,
x)

· Ton (m
,
x) = f(x) Ta(u

,
x)

Without loss of generality, we

may suppose MIGFLE and E is copact !

Liner approximations

Defin and draw the

pietres



(somehow Tan &ECNmols
Pp: (Marstel

,
the Mattila]

Let kan
,
keN

,
EEIR" compact with 1k(E)20 ·

If E has the weak liver approximation property at 1 - a .e
. x

,

#he E is rectifiable
.

&oat : By the above remark
,
if w : HELE has the WLAP

,
the so does

m .

So
,

we may proce WOLOU that if E is purely unretiftiable
S

compact, and has the WLAP
, the E has measure O

. fish up boat from her

Lenne: If E purely unreetfelle or WLAP at HEac . X, the-

- H(PrCED = 0 for EVERY K-dn live subspace V.
T BF

,we can't use ↳perhaps which holds a.2 .

could hel
on G(n,

k)

used if
instal?

Proof of leave : Ex 250 and VeGln
,

K. 00

&1 : J a compact IEE and
Motration : each target measur has to

positivero, 3
,

5 s.
t.

be sort of vertical
, since othise

① H(E1C)
it projects with too much mass !

② H"(E1BrG)) : Srk VatC, varo3 lowe desi bouched are.

③ Fath
,

Earo
,

J a place WeGln,k) sit.

2 1 Br(a) Ez : dist(z
,
ath) =zr3

④ bes

To do this
,
find & sit . E holds and (EC) <E

,

which can be done since the lower dasiby is boded below; this give S.

By CLAD
,
for a fixed VaSe

,
find C**C' wi H(ELC")2E.

Then
, (j)
#"(E1Br[x))Ez : dest (z

,
x+W) = Ur3)[Urk EncIro

. B(3-2)r 32
↓ 30 w

Suppor BLOC that distly, zth) 23 and yeBr() 1C" ja
&

The
, 1 *(E1 Brcy-2)(s))2S(yest-Y by ② sir C2C

& (13-237" = 2((Its))" since S(-2)"-2
Imposing ---

we get B .



#2 Dete Ci := GaeC : C1By(a) < ((a
,
V,)3 .

Reall Clavit =

SoCit Lipschitz graph our V / Lips 3z : /IP-z1- -(1Pr(a- z)13
Thus

,

Lt* (Ci) = 0 Since CiCE
, pul mreet .E Th(U(i) : 0

So
, for 7k-a ... atC

, Jbie21Brola) 1 By(d) st .

(IPr+ (b:
-c)/k > /1Pr(b: -a)) = (1P(b:

-a)) cy(b :
-a)()

bo.
Be VA to

·bi

⑮

have :

g
and so -2

, 3r

#(IP(C1Br(a)) = Gir" : &Sar ? Note the SBrCal3 is a

fire come of C
.

So
,

Lth-se
.

C is comed with disjoint balls 9 :, Vi

The
,

2+"(IP-(E)) = a + 1+4(-P-(c)) = s + 1+x([(Pr(By()1C))↑
it's -

cover

(d) = = 2 +(4,Er" = a + 43 ?H*
(Br

.
()nE) = E + 2 H

*

(E)

=(1+ 21+"(E))
.

-

Let 30 .

For the rest of the teach
,
throw

any a set of sull measure and

And FCE sit. /F) > O and HCEnBrCaDIfrY FaeF
,

Fraro-
SFind F

,
EF and r

,
30 sit .

1
*
/F,
>SO and facf

,
fors lowe

bonding

overtoo & F1Bz (a) [Ez : dist(z
,

a +h]cyr3 Far
,

and some WEG(v,2)

2 fur

- Z

(A)appl
+

lenne fast.

With O <+
" (E1B

,
(b) = 2(zr]" -be (a+ 2) 1Br()

radius ,
pick

that that
striv densit Your bord

b's
or CLAD

and use Observe that Ward n
,

will both depend on u. House
,

a better agunt
↓ target measur density is love bonded ... we can take J: = Eva

.

Now
, select GEF,

st . OCHG) - and VatG and Franz,

① F1Bz- (a) &z: dist(za+w)c31] &. harsdorfdiea (B)
② Ca+

h) 1B-(a) = Ez : dist(a
,
f) < yr3

vie 6 := ExeF : HULEF) /BAC) = Xe
K Facia3 for some ra

,

sufficiently small XX.

Now the clear stuff. Since EFCE) = 0
a . e .

and YES 11 a .e
.,

we my pick a ok

sit
.

O H(EMB-
(0) < Zwirk Erave

-makin
& dus wer band (c)② I" ((E16) nBzlo) < t rk



From (A)
,

we get some WEGn,) based on 0
. By our leave

,
HR/IPr(E) : 0.

Fix an r=O small enough that (A)
,

(B), (2) hold
.

Dutie
~/ClaYi

the

H : = Do(d) ( Pw(G1Bza(d) sy

·

the
,

I is
open and has full measure. a W

For xet
, defie ~ (x) = dist (x

, IPw(61 Bold)) . Tela?

By CASE and related desil lower bowls
,

Alx

H(B1E)-Uzkok 14/Bzon6)Ezok MPr(cTolo))
⑨ = WOX

We will n the Er
covery than

.
Cour H1DE(d) with

Byo-disks [D20s
:
(xi)3

.

st. EDusi(xi)] are paraisa disjoint and s ::A(xi) VxeH,itI the ros C=0The
,

(o)

&wr(zoel"- (e) = & ( Cae(ar(61B20

Wurte 5 = Eiel : Car(xi)nfnBald + 03 and let k = 115
.

Obser that Fje5, byjef1(ek(x) 1 Bold

1) (Co
,
(x)1(E1) Bo(d) = 14(EnBa,n(yc) = -(1) by (A) .

So, · ()" Cth((E(0) /Balo) = - + 201k by 20

For I sell enough
,

the will surpass (*) .

So
,
Fick

,

Car(xi) 1 F1 Bold= &

B the feet fetof cent intent th ple,
whe theZiff

W

nertial enough to avoid the cylinde.
Wi geortie

constant

Z

T
↓ desjont ,

di-spend
t

E balls
along

Wi

wide
Brit

By the send picture, Il seguet inside zit Wi and Szij]; Zi + Wi O·
call thi zij·

s.
t

. EBze: (zij)3 ; penuse disjoint.
So

, picking Bei(zij] ->FijtF, &Ba : (fij) <Cusi (i) /Brolo) .
So,

7 (En Cus(x)vBzo(d)-ESi Ca
By prince disjointess of the balls around fij

,

1 "(E1Bco(d) : ES Pik

By (C)0
, SikzWa(2d)

=> 3 : Ed With y sellersh, *

K(160)4w

B-

indecent of

3



Let's zoon out. Recall we wish to prome BMP.

[hearn: (BMP)

ht 10 be Radon a I with a desity existing, posive, and white Me an

O LEIN ②I is a- restifiable

Under these assumptions, we have seen the following for e-a .
e. x

Da = k for h integer

② Tan (m
,

x) [H
*(IRY

③ & + Tan (m
,
x)10(m

,
x) &(1)

Hursdorff on

a plane

31+"V : V= 6(,23

Wit the following them
,

we would complete BMP.

Therem (Preiss]

It all target measures are uniform and are target measure

is H
*

LV for VEGh
,
k)

,

the
u is rectifiable

. (i . e . ⑳+ = reat)

Proof of Preiss

&
The target mese at infits of

a
Made u is

Ton (u
,
d) = utlim Mo

, ri

M j +0

Fr <I"(IR) unifor
,

Tan(n
,
-) = 333 is unique!

P2

75s0 Sit
.

if
m

and i are as in Peopl and

min

veGn, Sdat(x,v)d3( , ,

# 3 : C+LV for some V .



Pop3

If
e and I are as in Peopl and EECCIRY,

the n =3
.

-

Using these
,

we will reason in the followingmy: -
detim X ! !

if = 0
, X

F(m) : =

min SY(defzvde for s Y,
for

Matmeasure
!

The
,

F is continous since min of Lipschitz .

Defe f(r) := F(mo
,
n) -

If
Many

=U
, the Ast = Fly

Ban-DomProcedure
R

Let so be as give by Prop 2. We know livet flu) : 0
. By Prop 2

,
we

n= 0

expect linspflcs. Ex HO and sto sto fiss and flo)+ o.rto

By picking subservances
,

we may suppose WOLG Sjarj .

The
, 78 s.

t.

floe and fas on [oj , ri]
Up to subseques

, Mo
,
o; U ,

not a target
measure since F(o,] > 0

Mo
,
r;
= On

-target mess

So
, I to

Let 3 : tan (0
.,
07

.

The
, 73;3

;
St. ECO,

,
ri] s .

t .

No
, 1;
83

,

ad so F(r)= f(x) =

By Prop 2
, E is flat .

So
, by Prop 3

,
sincevis target at

measure is flat
,

the 0
.

= 3 => U
,

is flet.

B

So
,
to

prove Preiss we must prove these I props ! Next time i

Fill in 11/7



Na-

#hom: (Target at to is vieul

pre
rel

atsLet mell"(IR") ·

Then
,
71 BeHMC s .

+
. 3

to
cre miguess

~ lin Mo
,
r

= 3 3 ensure infinit
n- x

Prof: Writer Mr : = e-12Mar
We wit . s . M- uniquely

-

Defi

when
sto,

we
an't

-

if smoothness
Defie the generalized moments as

such holds

↓

& [u
. ,

. .

., un) = (Sesdez) St, 4) ... (
, na) e S(zide()

Remark : There above Et h s ests and is free
-

Consider the following Taylor expesies of bus

specht of

Q K

a Ibu
,
s(u ., . . .,un) In .... In

I3) Dus( ... - C Exs

②
2) Fath, bus = s + o(s) for sto (so

, bus is 2
j=

-

d) b=0 if K2j
-> in bas= t

e) b(x): Fan and all +espt(m)

&
sun one feglar expensions

&of bus and
c.

w.

eSkit's
expension

Proof of be stiff: Introduce OIR
,

the Space of Symmetric k-tensors
,

whe K=Za

Let k
x =y= ⑦ ORT

with each OR having inner produt < . 3%.

x
projection to OSIR

j=

The
,

X has an ive product <uvx= <Picul ,Pic)

Defe bj := b
, s bz

,0 ... brs EHom(X
,

IR) = x
*



xz0 ... ①z

We claim that bec? For an ze0R
,

let zi be the menk-1

symctie taso- geneeted by z . The
,
for any xesptu),

a

b(x+ .. . +xx) = b()d+ o(s

i
=: ws(x+ ... + x ) + o(sa)

Let V: = Span3x+++...+ +3: xEspt(m)3
. By livery

,
the above holds

over V . So
,

by is C9 over V.

By lively
,

we can only wory about what hopees in are component
of by .

So
,

let = CO
, 10, ...)

,
and then bs(A) = bas(A) .

Symmetric I-teson

2006
, A = (4 .Qu + mQu1) size symatic 2-tensor

. Thus,

We know

>2= Se(z
,
u .) (z

,
un) du(z)

-

= (z0z
,

u,0un)
,

= I(s)" JeslzR <t
, z)dn(z)

= I("Sest (SPA) ,
z + E+...) dul

Let Fs := A : (SIP , v = 0 Wevly (so
,
F = u

+).

Note that VOFg = Xa,

n On Es we have bu
,

s
= 0

.

We will make a projection that does what me wat. In particler,

Q : * + X st . [Q(n) = 0 UEFs and entral

Qs(v) = v vev linearly .

So
,

we have by = Wg0Qs since the projector sends her(bs) to 0 anyney.

We clim StQs can be real-malgtially extended to s =0.

We see

[sp) ·(i)
-

m

Bs As

So
, Bs and As are inveses. So

,
wefsEBs(vert= F, W= As(v+)

= Fs = As(rt)
.

Wate ut= indictus : =U O

v =(utr(orpoint) 1 V
,

+

"

Defin As : = Pr + SPry +... + Sh+ P
,

on Vk
,

and the identity on
V.

We know X = VOV, 0
... Va

We know sthAs is realaralytic size it is a power series.



AsAo is the identity
,

it is metible with real-aralyte inverse.

Let Es = POAs" ,

and so G
,

is rel-cubic . Clack Es = QC
.

Since As is the identityan V
, so too is As We was Es =0 an Fs.

A Fs : As (vt
,

we wet to check As maps Agirt H U+ Esco.

Note that on Vi,
Pe(Vj)=0Xkj

5 As = 5 By + 5
-(-

kpj., + ... + 5 P
,
= saPra+... + s P

,
=As

So
,

G
o is Ca

,
and so bo is as well !

D

Theore: indp of u !

↓

Let mEI(l) and I be the target attro
.

The
, Ja(m,n) S .

t.

S def(x,vd = 3 : HV

Proof : For maz, we will show d = 0. We will use the feet
-

that So
,

s
= S for all S20 (coreal property) · To see the

,

note

that if wa seas Mor
* S

S
the So

, s ; uneuess of

toget at > was So
,

s
= 3. We willh the worts of 3.

↓ma :
If 1ET(I) is conce (Yor= Fr)

,

the

(i) b2x - 1,
= 0 and b2k

, s= b
(ii) spt(x)[ 33(x ) = (xma3

.

(iii) If nespt(s) , the FYEC,
<IR2)

SH(1z)
, <z

,n))di = Sin Y(1z1, (u/zldz
(iv) to (b

,
) = m.

ofof lena: We have seen bus = st6K, and so bu
, s = 0 for kodd.

(k) -check why this is ConicalThere is also the Taylor exposio bak
,
s

= Sbak
exact, some

to do with -
-

K!

From Ocel earle
,
* (a)(4) =11

,

and so b (2) = Ix12a
k= 1

Fr (iii)
,

we my compute for all +espt(s) the following :

Se-sli(7
,
x)4dx(z) = Sm

,

s(xh) = Skodd by canicities

Since the labesque measure on I is comial
, verform

,

and spt(1) Espt(24).



So
,

the save computation holds
,

i .e .

Se-siz(z
, x) dz = br

,
s(xk) = ExO kode

C

Taking some deviatives, Sesz(z,
" Izdx(z) = Sizes z, 1 da

So
,
the prop holds for all polynomials, taking sto . By Stue-Weinstress and

some good bounding and messe they and compact reasoning ,
the result follows.

For Cit
,

tr(b)= be = ~I Gate, di
= 2 IC" (Se dz) : Ilig (2) ,z d

integrate by

ok
= - f-e- dzdz =I

D

We know that be
,

(2) = be(x2) by definition.
This is a symetre bilinea form,

and so it's positive semidefite. Diagonalize it and wite its eigenahes
C

,
z ... 22m2 ... 2n 10.

Zume: under assuptime
, (MErdica) ,

the all

&of of line: Since 3 Conical and has normpty support, Exespt(3) with Ix1 = 1
.

So
, be"(xt = b2,,

(x) = 2 /"Se
***

LEdCE2Ie
= I

.

Thes
, d. = 1

.
So

,
we're power

the leave for mil.

(m=2) Now
,

let x espt(3) arbitury .
Defie S : = Ey : ((y ,

x)) + 13
Th

, 3(5) = S4s(z)d3(z) I 0 => spt(s) 19 is unbonded.

Taking a seque Y;EsptbinS that grows, we see
+ y

+x

Tmake it

So
, Fyespt(3) attoga to X .

We have be(g) = / unit

Letting V= Spu(g) , tulb,
(v) = 2.

Since tolb,
)= Alba ,

12) + trdbe
,
LV+]

,
we see be ,

Lvt= 0 .

So
,

sptly) & V
.

(13) Let V be the mrdim place spaced by the first

m eigenvectors. By minex characterization of eigerches,

↓ (b:" LV+) = min +(bz
,,

(w
+)

WeGln
,
u)

Observe that VW, since =
,
f

:
)" : dist(z, 2)

, we
have

i= 1

Ni for
+

Se-lzidist2(z,

2) d3(z) =
= tr (b2 ,

12 w+ )



We know a miner of this - its VI In other words,

un Se- destz,w)d3(z) = tr 16...
(vt)

By assumption, m Sdist(z,
widy(z) E

&: VSIO
,

JS swell enough that By(inspt(3) + 0

- veB
,
1V

.

3; -52

A meet: For Syo
,

let =to for the Est contenety the statuet.

=> 3 (Bo(v)) =0
,

contradiety 3 : #LV.

B,
V

↓
Ex So

. By the char, Exespt(m) si
t . Ix-em/cS

when e
, . . .,

Sm, ...
are eigenectors of ba, 1. Then

,

ai + (m-1met-ba,
= m Ficm

=> ( :
- 1) = (m- 1) (l-c) Firm

We also know hidde Fize
.

Suppose BWO2 <mcl.

Then
,

-
izm

- (n- 1) (1->) * (x
,
ei) + (n-)(x, em)

i =
2

= (m-1(l-an) (x-en
,

e: - (l->) )i = 1 -

232 C . S.

= (- 1) (1- an) (m-1)S2 - (1-2m)(1- 3)2
2)= A (G-D"52 - (1 - 5)

For I swell enough ,

this expression is negative.
Contradiation .

Taking the a small enough for the claim
, leave proces

in

The lene and the fact tulbz=m imples as : 2 Sim
Letting V be the eigespect spaced by the 1-eigenvectors,
and So

b??(xz) = (P-(x))2

By (ii) from above leme, spt(s) - Ex : 1P-() = 1x 13 = v
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Reifenberg’s Topological Disc Theorem

Leon Simon ∗

Here Bρ = {x ∈ Rn : |x| ≤ ρ} and Bρ(y) = {x ∈ Rn : |x− y| ≤ ρ}.

First we introduce Reifenberg’s ϵ-approximation property for subsets of Rn.

Definition: If ϵ > 0 and if S is a closed subset of the ball B2, we say that S,
containing 0, has the m-dimensional ϵ-Reifenberg approximation property in B1 if for
each y ∈ S ∩B1 and for each ρ ∈ (0, 1], there is an m-dimensional subspace Ly,ρ such
that dH(S ∩ Bρ(y), y + Ly,ρ ∩ Bρ(y)) < ϵ.

Here dH(A1, A2) is the Hausdorff distance between A1, A2; thus dH(A1, A2) = inf{ϵ >
0 : A1 ⊂ Bϵ(A2) & A2 ⊂ Bϵ(A1)}.

Now we can state the main theorem.

Theorem (Reifenberg’s disc theorem). There is a constant ϵ = ϵ(n) > 0 such
that if S, containing 0, is a closed subset of the ball B2 which satisfies the above ϵ-
Reifenberg approximation property in B1, then B1 ∩ S is homeomorphic to the closed
unit ball in Rm.

In fact, there is a closed subset M ⊂ Rn such that M ∩ B1 = S ∩ B1 and such that
is homeomorphic to a subspace T0 of Rn via a homeomorphism τ : T0 → M with
|τ(x)−x| ≤ C(n)ϵ for each x ∈ T0, and τ(x) = x for each x ∈ T0 \B2. For any given
α ∈ (0, 1) we can additionally arrange that τ and τ−1 are Hölder continuous with
exponent α provided S satisfies the ϵ-Reifenberg condition with suitable ϵ = ϵ(n, α).

We’ll need the following lemma in the proof of the above theorem.

Lemma 1 (Extension Lemma). Let ϵ, r > 0, let y1, . . . , yQ be a finite collection of
points in Rn with |yi−yk| ≥ r for each i ̸= k, and assume that f : {y1, . . . , yQ} → RN

is given such that |f(yi) − f(yk)| ≤ ϵ whenever |yi − yk| ≤ 6r. Then there is an
extension f : ∪iB2r(yi) → RN such that |∇f | ≤ C(n)ϵr−1 and |f(x)−f(yi)| ≤ C(n)ϵ
for x ∈ B2r(yi), i = 1, . . . , Q.

Furthermore there is ϵ = ϵ(n) > 0 such that if N = n2 (where Rn2

is identified
with the set of n× n matrices in the usual way) and if each f(yi) is the matrix of an
orthogonal projection of Rn onto some m-dimensional subspace Li ⊂ Rn, then we can

∗Expository lecture at Universität Tübingen, May ’96; Research partially supported by NSF
grant DMS-9504456 at Stanford University
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2 L. Simon

choose the extension f such that each f(x) is the matrix of an orthogonal projection
of Rn onto some m-dimensional subspace Lx.

Proof: The proof uses a partition of unity {ψj} for ∪iB2r(yi) of special type. Indeed
we claim that there is a partition of unity for ∪iB2r(yi) with ψi ∈ C∞

c (Rn), ψi ≡ 0
outside B3r(yi), ψi(yi) = 1, and sup |∇ψi| ≤ C(n)r−1.

We see this as follows: first let ψ0 be a C∞(Rn) function with ψ0(x) ≡ 1 for |x| < 1
3 ,

0 < ψ0(x) < 1 for < 1
3 |x| ≤

5
2 , and ψ

0(x) ≡ 0 for |x| ≥ 5
2 . For each i = 1, . . . , Q let

ψ0
i (x) = ψ0(x−yi

r ), ψ̃0
i (x) = ψ0

i Πk ̸=i(1 − ψ0
k(x)), and ψi(x) =

ψ̃0
i (x)∑

k ψ̃
0
k(x)

. This evidently

gives a partition of unity with the stated properties.

It is now straightforward to check that

f(x) =
Q∑

i=1

ψi(x)f(yi).

is a suitable extension.

For the second part of the lemma we recall that the orthogonal projections onto
m-dimensional subspaces of Rn form a smooth (in fact real-analytic) compact sub-
manifold P of Rn2

, and hence there is a δ = δ(n) > 0 such that there is a smooth
nearest-point projection map Ψ of the δ-neighbourhood Nδ of S onto S.

Now by the first part of the lemma we have an extension f
0
such that |f(yi)−f

0
(x)| ≤

C(n)ϵ for each x ∈ B2r(yi); but by definition f(yi) ∈ S, so this means that if ϵ is

small enough (depending only on n) we have f
0
(x) ∈ Nδ/2 and hence we can define

f = Ψ ◦ f
0
. Evidently then f has the correct properties.

The second lemma involves a simple observation about the subspaces Ly,ρ appearing
in the ϵ-Reifenberg condition; in particular it shows that these must vary quite slowly
(up to tilts of order ϵ) as y and ρ vary.

Lemma 2. If ϵ > 0 and if S satisfies the ϵ-Reifenberg condition above, then ∥Ly1,σ−
Ly2,ρ∥ ≤ 32ϵ and dist (y1, y2 + Ly2,ρ) ≤ 32ϵρ whenever y1, y2 ∈ S ∩ B1 and 0 < ρ

8 ≤
σ ≤ ρ ≤ 1.

The proof, which involves only the definition of the ϵ-Reifenberg condition and the
triangle inequality for dH, is left as an exercise for the reader.

Finally, we need the following “squash lemma”:

Lemma 3 (“Squash Lemma”). There is a constant ϵ0 = ϵ0(n) such that the
following holds. If ϵ ∈ (0, ϵ0], ρ > 0, L is an m-dimensional subspace of Rn,

Φ(x) = pL(x) + e(x), x ∈ B3ρ,

where pL is orthogonal projection onto L and ρ−1|e(x)|+ |∇e(x)| ≤ ϵ for all x ∈ B3ρ,
and if

G = {x+ g(x) : x ∈ B3ρ ∩ L}
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is the graph of a C1 function g : B3ρ ∩ L → L⊥ with ρ−1|g(x)| + |∇g(x)| ≤ 1 at
each point x of B3ρ ∩ L, then Φ(G ∩ B3ρ) is the graph of a C1-function g̃ : U → L⊥

over some domain U with B11ρ/4 ∩ L ⊂ U ⊂ L and with ρ−1|g̃| + |∇g̃(x)| ≤ 4ϵ on
B11ρ/4 ∩ L.

Proof of the squash lemma: All hypotheses are written in “scale invariant” form,
so there is no loss of generality in taking ρ = 1, which we do. Now by definition

Φ(x+ g(x)) = x+ e(x+ g(x))(1)

for x ∈ B2 ∩ L, and, if h(x) = e(x + g(x)), by the chain rule we have |dxh| ≤ 2ϵ at
each point x of L ∩ B2. Now we can write h = h⊥ + hT , where h⊥ = p⊥L ◦ h and
hT = pL ◦ h. Then (1) says

Φ(x+ g(x)) = x+ hT (x) + h⊥(x), x ∈ B2 ∩ L.(2)

Now let
Q(x) = x+ hT (x), x ∈ B2 ∩ L,

and observe that

|dQ− id| ≤ 2ϵ, |Q− id| ≤ ϵ on B2 ∩ L,

and hence, for small enough ϵ ∈ (0, 1
6), by the inverse function theorem Q is a

diffeomorphism of B2∩L onto a subset U where L∩B11/4 ⊂ U ⊂ L and |dQ−1− id| ≤
2ϵ(1 + 2ϵ) ≤ 3ϵ. Thus (2) can be written

Φ(x+ g(x)) = Q(x) + g̃(Q(x)), x ∈ B11/4 ∩ L,

where g̃ = p⊥L ◦ h ◦ Q−1 on U , and, since |d h ◦ Q−1| ≤ 2ϵ(1 + 3ϵ) ≤ 3ϵ, we have
|d g̃| ≤ 3ϵ and the proof is complete.

Proof of the Reifenberg disc theorem: The proof is based on an inductive
procedure, making successive approximations to S∗ = S ∩ B1 by C∞ embedded sub-
manifolds.

Let T0 = L0, 1 (which without loss of generality we could take to be Rm × {0}) be

an m-dimensional subspace such that dH(S ∩ B1, T0 ∩ B1) < ϵ, and let rj =
(
1
8

)j
,

j = 0, 1, . . . . The quantity rj is going the be the “scale” used at the j th step of the
inductive process.

We in fact define maps σj : Rn → Rn and subsets Mj ⊂ Rn for j = 0, 1, . . . , as
follows:

For j ≥ 1, let Brj/2(yji), i = 1, . . . , Qj, be a maximal pairwise disjoint collection of

balls centered in S∗ = B1∩S. Then evidently S∗ ⊂ ∪
Qj

i=1Brj(yji) and also dist (S∗, Rn\

(∪
Qj

i=1B3rj/2(yji))) ≥ rj/2. When j = 0 we take Q0 = 1, y0 1 = 0, and M0 = T0, σ0 =
the orthogonal projection of Rn onto T0.
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For j ≥ 1 and for each i = 1, . . . , Qj let Lji be one of the m-dimensional subspaces
Lyji,8rj (corresponding to y = yji and ρ = 8rj in the ϵ-Reifenberg condition). Thus

dH(S ∩B8rj(yji), (yji + Lji) ∩ B8rj(yji)) < 8ϵ rj, i = 1, . . . , Qj.

For j ≥ 1 we have by Lemma 2 that

dH((yji + Lji) ∩ Brj(yji), (yℓ k + Lℓ k) ∩Brj(yji)) ≤ 264ϵrj(1)

for any pair yj i, yℓ k with |yj i − yℓ k| ≤ 6rj−1, where either ℓ = j − 1 and k ∈
{1, . . . , Qj−1} or ℓ = j and k ∈ {1, . . . , Qj}. Notice of course that (1) implies

|pji − pℓk| < 264ϵ, dist (yji, yℓk + Lℓk) < 264ϵrj(2)

for such j, ℓ, i, k, where pji denotes the orthogonal projection of Rn onto Lji.

In view of the inequalities (2) (together with the fact that |yji − yjk| ≥ rj for each
i ̸= k), we can apply the extension lemma with r = rj, with yji in place of yi and with
the orthogonal projection pji in place of f(yi), to give orthogonal projections pj,x of
Rn onto m-dimensional subspaces Lj,x such that pj,x = pji when x = yji and

∣∣∣∣
∂pj,x
∂xℓ

∣∣∣∣ ≤
C(n)ϵ

rj
, x ∈ ∪

Qj

i=1B2rj(yji), ℓ = 1, . . . , n,

|pj,x − pji| ≤ C(n)ϵ, x ∈ B2rj(yji), i = 1, . . . , Qj .(3)

Next let ψji be a partition of unity for ∪Qj

i=1B3rj/2(yji) such that |∇ψji| ≤ C(n)/rj and
supportψji ⊂ B2rj(yji) for each i = 1, . . . , Qj. (This is constructed in precisely the
same way as our partition of unity for the extension lemma, except that we start with
a smooth function ϕ with support in B2(0) rather than in B3(0) as before; actually
the construction can be simplified here because we do not need ψji(yji) = 1 and
ψjk(yji) = 0 for i ̸= k.)

Now we can define σj and Mj for j ≥ 1. First we define 1

σj(x) = x−

Qj∑

i=1

ψji(x)p
⊥
j,x(x− yji), x ∈ Rn,(4)

and then we take

Mj = σj(Mj−1).(5)

First note that, since σj(x) ≡ x for x ∈ Rn \ (∪Qj

i=1B2rj(yji)), we have

Mj \ (∪
Qj

i=1B2rj(yji)) = Mj−1 \ (∪
Qj

i=1B2rj(yji))(6)

1of course it doesn’t matter that the pj,x are not defined outside ∪Qj

i=1
B2rj (yji) because the ψji

vanish identically there. (If you wish to be pedantic, you can define e.g. pj,x to be the orthogonal

projection onto T0 for x ∈ Rn \ (∪Qj

i=1
B2rj (yji)).)



Reifenberg’s Topological Disc Theorem 5

for each j ≥ 1.

We claim that each Mk is a properly embedded C∞ m-dimensional submanifold of
Rn and that for each k ≥ 1 and each i ∈ {1, . . . , Qk}

Mk ∩B2rk(yki) = graph gki
sup |∇gki| ≤ γ ϵ, sup |gki| ≤ γ ϵ rk.(7)

where γ ≥ 1 is a constant (to be specified as a function of n alone) and where gki is
a C∞ function over a domain in the affine space yki + Lki with values normal to Lki.

We want to inductively to check this. Observe that if j ≥ 1 and if Mj−1 is a smooth
embedded submanifold satisfying (7) with k = j − 1, then by the definition (4) we
have

σj(x)− x = −
∑Qj

k=1ψj(x)p
⊥
j,x(x− yjk)

= −
∑Qj

k=1ψj(x)p
⊥
jk(x− yjk) +

∑Qj

k=1ψj(x)(p
⊥
jk − p⊥j,x)(x− yjk).(8)

Now for each i ∈ {1, . . . , Qj}, we can pick an i0 ∈ {1, . . . , Qj−1} such that yji ∈
Brj−1

(yj−1 i0). Then, assuming that (7) holds with k = j − 1 and with some constant
γ = γj−1, for x ∈ B2rj(yji) ∩ Mj−1(⊂ B2rj−1

(yj−1 i0) ∩ Mj−1) we can write x =
ξ + gj−1(ξ), with gj−1(ξ) ∈ L⊥

j−1 i0 , ξ ∈ (yj−1 i0 + Lj−1 i0) ∩ B2rj−1
(yj−1 i0) and with

r−1
j−1|gj−1(ξ)|+ |∇gj−1(ξ)| ≤ γj−1ϵ. Then we have, for each k ∈ {1, . . . , Qj},

p⊥jk(x− yjk) = p⊥j−1 i0(ξ + gj−1(ξ)− yj−1 i0)

+ p⊥j−1 i0(yjk − yj−1 i0) + (p⊥jk − p⊥j−1 i0)(ξ + gj−1(ξ)− yjk),

and using (2), (3) together with the fact that p⊥j−1 i0(ξ − yj−1 i0) = 0 (because ξ −
yj−1 i0 ∈ Lj−1 i0), we have clearly then that

|p⊥jk(x− yjk)| ≤ C(n)ϵ(1 + γj−1)rj, x ∈ B2rj(yji) ∩Mj−1, |yjk − yji| ≤ 6rj.

Using this in (8), and keeping in mind that for any i ∈ {1, . . . , Qj} and for any
x ∈ B2rj(yji), we have that at most C(n) terms in the sums on the right of (8) can be
non-zero, and that these terms correspond to the indices k such that |yji−yjk| ≤ 6rj ,
hence, using also (3), we again deduce from (8) that

|σj(x)− x| ≤ C(n)(1 + γj−1)ϵrj, x ∈ ∪
Qj

i=1B2rj(yji) ∩Mj−1.(9)

By first differentiating in (8) and using similar considerations on the right side, we
also conclude

sup
x∈Mj−1

|∇′(σj(x)− x)| ≤ C(n)(1 + γj−1)ϵrj,(9) ′

where ∇′ denotes gradient taken on the submanifold Mj−1.
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We refer to (9) and (9) ′ subsequently as “the coarse estimates” for |σj(x)−x|, because,
although useful, they are insufficient in themselves to complete that inductive proof
that there is a fixed constant γ = γ(n) such that (7) holds for all k; indeed after
k applications of this coarse inequality, we will only have established that (7) holds
with γ = C(n)k.

Now assume that j ≥ 2 and that (7) holds for k = 1, . . . , j − 1, take an arbitrary

i0 ∈ {1, . . . , Qj}, and write y0 = yj i0 , p0 = pj i0 , and L0 = Lj i0 . Since
∑Qj

i=1 ψji ≡ 1

in Uj ≡ ∪Qj

i=1B3rj/2(yji) we can rearrange the defining expression for σj to give

σj(x) = y0 + p0(x− y0) + e(x), x ∈ Uj,(10)

where e is given by

e(x) ≡

Qj∑

i=1

ψji(x)p
⊥
0 (yji − y0)−

Qj∑

i=1

ψji(x)(p
⊥
j,x − p⊥0 )(x− yji), x ∈ Rn.(11)

Now observe that by (2) and (3) we have |pj,x−p0| ≤ C(n)ϵ rj for x ∈ B6rj(y0). Using
additionally the first inequality in (3) and the fact that |∇ψji| ≤ C(n)/rj, it then
follows easily that

r−1
j |e(x)|+ |∇e(x)| ≤ C(n)ϵ, if x ∈ B3rj/2(y0),(12)

where C(n) is a fixed constant determined by n alone (and which is independent of
any properties of Mj−1; in particular it is independent of whatever constant γ appears
in (7)).

But now we can apply the Squash Lemma with σ̃j(x) ≡ σj(x + y0) − y0 in place of
Φ, 2 rj in place of ρ, and C(n)ϵ in place of ϵ. Assuming that (7) holds with γ, ϵ such
that γϵ ≤ 1

2 , we thus conclude

σj(Mj−1 ∩ B3rj/2(y0)) = Gj,(13)

where Gj = {x + gj(x) : x ∈ Ωj} is the graph of a C∞ function gj defined over a
domain Ωj contained in the affine space y0+L0 with B11rj/8(y0)∩ (y0+L0) ⊂ Ωj and
with

r−1
j |gj|+ |∇gj| ≤ C(n)ϵ, x ∈ B11rj/8(y0) ∩ (y0 + L0),(14)

with C(n) not depending on γ. Of course since |σj(x)−x| < C(n)γϵ (by (8)), we thus
have, so long as C(n)γϵ ≤ 1

32 that σj(Mj−1 ∩ B3rj/2(y0)) ⊃ σj(Mj−1) ∩ B11rj/8(y0),
and hence (13) and (14) imply

Mj ∩ B11rj/8(y0)) = Gj,(15)

with Gj still as in (14).
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Now we actually need to establish a result like this over the ball B2rj(y0) rather
than merely over B11rj/8(y0); to achieve this, we observe that each yji is contained
in one of the balls Brj−1

(yj−1 i0) for some i0 ∈ {1, . . . , Qj−1}, and so Brj−1/4(yji) ⊂
B5rj−1/4(yj−1 i0). Also, by using the above argument with j− 1 in place of j and with
i0 in place of i, we deduce that

Mj−1 ∩ B11rj−1/8(yj−1 i0)) = Gj−1,(15)′

where Gj−1 = {x+gj−1(x) : x ∈ Ωj−1} is the graph of a C∞ function gj−1 defined over
a domain Ωj−1 contained in the affine space yj−1 i0 + Lj−1 i0 with B11rj−1/8(yj−1 i0) ∩
(yj−1 i0 + Lj−1 i0) ⊂ Ωj−1 and with

r−1
j−1|gj−1|+ |∇gj−1| ≤ C(n)ϵ, x ∈ B11rj−1/8(yj−1 i0) ∩ (yj−1 i0 + Lj−1 i0).(14)′

But then by using the coarse estimates (9), (9) ′ we deduce that in fact (7) holds with
k = j and a fixed constant γ which depending only on n and not on γ.

Notice that since S∗ ⊂ ∪Qj

i=1Brj(yji) it is clear from (7) and the ϵ-Reifenberg condition
in the ball B2rj(yji), that

S∗ ⊂ BC(n)ϵrj(Mj), j ≥ 0.(16)

Notice also that (7) tells us that for j ≥ 2

Mj ∩ (∪
Qj

i=1B2rj(yji)) ⊂ (∪
Qj

i=1BC(n)ϵrj(yji + Lji)) ⊂ BC(n)ϵrj(S),

and hence, since Mj \ (∪iB2rj(yji)) = Mj−1 \ (∪iB2rj(yji)) by mathematical induction
it follows that

Mj ∩ B1+rj/2 ⊂ BC(n)ϵ rj(S)(17)

for each j = 0, 1, . . . , provided ϵ ≤ ϵ0, where ϵ0 = ϵ0(n).

Next we want to show that the sequence τj = σj ◦σj−1 ◦ · · · σ0|T0 is a sequence of C∞

diffeomorphisms of T0 onto Mj which converge uniformly on T0 to a homeomorphism
τ of T0 onto a closed set M . In fact notice that by (8) we have

|τj(x)− τj−1(x)| ≤ C(n)ϵ

(
1

8

)j

, j ≥ 1, x ∈ T0,

and hence by iterating we get

|τj+k(x)− τj(x)| ≤ C(n)ϵ

(
1

8

)j

, j ≥ 0, k ≥ 1, x ∈ T0,(18)

which shows that τj is Cauchy with respect to the uniform norm on T0, and hence τj
converges uniformly to a continuous map τ : T0 → Rn. Of course τ is the identity
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outside B2 because each σj is the identity outside B2. We let M = τ(T0), so that
M is a closed subset of Rn and in fact is the Hausdorff limit (with respect to the
Hausdorff metric dH) of the sequence Mj = τj(T0). Notice in particular that setting
j = 0 and taking limit as k → ∞ in the above inequality, we get

|τ(x)− x| ≤ C(n)ϵ, x ∈ T0.(19)

(Thus τ is in the distance sense quite close to the identity if ϵ is small.)

Next we want to discuss injectivity of τj, τ ; in fact we’ll show that τj, τ are injective
and that both τ and τ−1 are Hölder continuous.

To establish this, we first claim

(1− C(n)ϵ)|x− y| ≤ |σj(x)− σj(y)| ≤ (1 + C(n)ϵ)|x− y|, x, y ∈ Mj−1,(20)

or equivalently

|σj(x)− σj(y)− (x− y)| ≤ C(n)ϵ|x− y|, x, y ∈ Mj−1.(20) ′

To prove this, note that if |x− y| ≥ rj with x, y ∈ Mj−1, we can write

|σj(x)− σj(x)− (x− y)| = |(σj(x)− x)− (σj(y)− y)|

≤ |σj(x)− x|+ |σj(y)− y|

≤ C(n)ϵ rj ≤ C(n)ϵ|x− y|,

where we used (8) in the second inequality.

Now if |x− y| < rj we use the definition (4) to write

(σj(x)− σj(y))− (x− y) =
∑Qj

i=1(ψji(x)p
⊥
j,x(x− yji)

− ψji(y)p
⊥
j,y(y − yji)), x, y ∈ Rn,

and note that we can rearrange the sum here to give

(σj(x)− σj(y))− (x− y) =
∑Qj

i=1

(
ψji(x)(p

⊥
j,x(x− y)

+ ψji(x)(p
⊥
j,x − p⊥j,y)(y − yji) + (ψji(x)− ψji(y))p

⊥
j,y(y − yji)

)
.

Now the second group of terms is (by (3)) trivially ≤ C(n)ϵ |x− y| in absolute value
for any x, y ∈ Rn with |x − y| ≤ rj. Further if x, y ∈ Mj−1, then by virtue of (7)
(used with y in place of z) we see that the first and third group of terms on the right
is ≤ C(n)ϵ |x− y| in absolute value. Thus we again get (20).

Now it is easy to establish the required injectivity and continuity of τ . In fact by
iterating the inequality (20) we get

|τj(x)− τj(y)| ≤ (1 + Cϵ)j|x− y|, x, y ∈ T0, j ≥ 1,(21)
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and by (8) we have

|τj(x)− τj−1(x)| ≤ Cϵrj, x ∈ T0, j ≥ 1,

and so (Cf. the discussion of uniform convergence of the τj above)

|τj(x)− τ(x)| ≤ Cϵrj.(22)

Then by the triangle inequality, for any j ≥ 0 we have

|τ(x)− τ(y)| ≤ |τ(x)− τj(x)|+ |τj(x)− τj(y)|+ |τj(y)− τ(y)|

≤ 2C(n)ϵrj + (1 + C(n)ϵ)j|x− y|

≤ rj + (1 + C(n)ϵ)j|x− y| if 2ϵC(n) ≤ 1.

Now let α ∈ (0, 1) be arbitrary and take x, y ∈ T0 with 0 < |x−y| < 1
2 . Choose j such

that rj ≤ |x− y|α and (1 +C(n)ϵ)j ≤ |x− y|−(1−α); thus we need j ≥ α
log 8 log

(
1

|x−y|

)

and also j ≤ (1−α)
log(1+C(n)ϵ) log

(
1

|x−y|

)
. Since log(1 + C(n)ϵ) → 0 as ϵ ↓ 0, we see that

such a choice of j ∈ {1, 2, . . . } exists provided ϵ ≤ ϵ0, where ϵ0 = ϵ0(n,α). Then the
above inequality gives

|τ(x)− τ(y)| ≤ 2|x− y|α, x, y ∈ T0 with |x− y| < 1
2 .

Thus we can arrange for Hölder continuity with any exponent α < 1. Similarly we
have from the first inequality in (20) and (22) that

|x− y| ≤ (1 + Cϵ)j|τj(x)− τj(y)|

≤ (1 + Cϵ)j (|τj(x)− τ(x)|+ |τj(y)− τ(y)|+ |τ(x)− τ(y)|)

≤ (1 + C(n)ϵ)j (C(n)ϵrj + |τ(x)− τ(y)|)

and j is again at our disposal. We in fact first choose ϵ such that C(n)ϵ ≤ 1, so that

|x− y| ≤ (1 + C(n)ϵ)j (rj + |τ(x)− τ(y)|) ,

and then choose j such that α ∈ (0, 1)

4−j ≤
1

2
|x− y| and (1 + C(n)ϵ)j ≤ |x− y|−(α/(1−α).

Notice that this requires j ≥ log(2/|x−y|)/ log
(

8
1+C(n)ϵ

)
and j ≤ α−1(1−α) log(1/|x−

y|)/ log(1+C(n)ϵ), and again certainly such a choice of j exists provided 0 < |x−y| <
1
2 and provided we take ϵ ≤ ϵ0 for suitable ϵ0 = ϵ0(n,α). In this case the above in-
equality gives

1
2 |x− y| ≤ |x− y|−α/(1−α)|τ(x)− τ(y)|, |x− y| < 1

2 ,
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which of course gives

|x− y|α ≤ 2|τ(x)− τ(y)|, |x− y| < 1
2 .

Thus τ is injective, and the inverse is Hölder continuous with exponent α, for any given
α ∈ (0, 1), provided the ϵ-Reifenberg condition holds with ϵ ≤ ϵ0, where ϵ0 = ϵ0(n, α).

Now the proof of the Reifenberg inequality is complete, because we have shown that
τ maps T0 Hölder continuously onto M with Hölder continuous inverse, and by (16)
and (17) we have

M ∩ B1 = S∗,

because (by (19)) Mj converges to M with respect to the Hausdorff distance metric.
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