915-

cneil Conto a can: 110 delellis @ ias. edu

Reall He following Det: (Howsdorff measure of dimension) let E = IR", a =0, Se(9.00]. Dobe the Hausdurff premasure $\mathcal{H}_{\mathcal{S}}^{\mathcal{L}}(\mathcal{E}) = \underbrace{w_{\mathcal{L}}}_{2^{\mathcal{K}}} \quad \text{inf} \left\{ \underbrace{\sum_{i \in I}}_{i \in I} \operatorname{diam} \left(\mathcal{E}_{i} \right)^{\mathcal{K}} : \underbrace{\{\mathcal{E}_{i}\}}_{w : \mathcal{H}_{i}} \text{ sets of diam} \leq \delta \right\}$ We define $\mathcal{H}^{\mathcal{A}}(\vec{e}) := \lim_{s \to 0} \mathcal{H}^{\mathcal{A}}_{s}(\vec{e}) = \sup_{s \to 0} \mathcal{H}^{\mathcal{A}}_{s}(\vec{e})$ Remark: . How (E) > How (E) if SSS', so the list is well-defined UESIR?. · H"(.) is an orter or extrem masure · If a=n, then $H^{\alpha}(\cdot) = J(\cdot) = lebegge negative$ · If <math>a=0 then $H^{\alpha}(\cdot) = \#(\cdot) = country measure$ Den (Extern measur) An exterior measure is a set for $\mu: \mathcal{P}(\mathbb{R}^n) \to \mathbb{R}_+$ if $\mu(\emptyset) = 0$ and $\mu(\bigcup_{i \in A} A_i) \leq \bigcup_{i \in A} \mu(A_i)$ countroly erbadditive $\mathcal{H}^{a}(A\cup B) = \mathcal{H}^{a}(A) + \mathcal{H}^{a}(B)$ if $\inf_{x \in A, y \in B} |x - y| = d(A, B) > 0$ Por:

Part: do this Deta (Carothoday) Construction let M:= {ESTE st: m(A) = m(EnA) + m(A) = HA} The Mrs a or-algebra, containing Barel sets a sets of more O as desired.

Don: (Outer regulary) An lostor) measure is regular if VASTR?, JE Husdurff-a-measurable st. ACE and Ha (A)= Hd (E) Replacy "Huesdarff-a-measurele" with "Bord" we get a Bord (oto) measure. If E TS He marmile and He (E) coo then M:= He LE & a Radon measure. <u>Permank:</u> Ht is a Boul, regular outer measure! Den (Restriction of measures) (Hale)(A) := Ha (ANE) Things to prov: - neck# topo on space of Raden measure - nechtrachilly of bauded scheets on the space of Radon means Lenna: let vi be a sequere of Raden mereres sit. U; -* U (i.e. Stdu: - Stdu +fe Cc(IR")) Then, $l_{i} = 0$ $(u) \ge v(u) \quad \forall u = 0$ hus y u; (K) & U(K) YK closed i-j no Thus, $\lim_{\mu \to \infty} U_{i}(\mu) \xrightarrow{\rightarrow} U(\mu) \xrightarrow{} f \quad U(\partial(\mu)) = 0 \quad \text{for Boul} \quad \mu.$ Renark: $\mathcal{H}^{d}(E) \sqcup \omega \Longrightarrow \mathcal{H}^{\beta}(E) = 0 \quad \forall \beta \Rightarrow \alpha.$ A $\mathcal{H}^{d}(E) \Rightarrow 0 \Rightarrow \mathcal{H}^{\beta}(E) = \omega \quad \forall \beta \sqcup \alpha$ So, the is a unique well, st. $\mathcal{H}^{\alpha}(E) \notin \{0, \omega\}$. We call this view a to be the Hersdorff dimension dim y (E)

The way in Heusdorff manne:

Reall $\mathcal{H}_{\mathcal{S}}^{\mathcal{L}}(E) = w_{\mathcal{L}} \inf \left\{ \sum_{i \in I}^{I} \left(\frac{d_{i}a_{i}}{z} \right(\frac{d_{i}a_{i}}{z} \right) \left(\frac{d_{i}a_{i}}{z} \left(\frac{d_{i}a_{i}}{z} \right) \left(\frac{d_{i}a_{i}}{z} \left(\frac{d_{i}a_{i}}{z} \right) \left($ If A: = Br; (xi) on bally the dan(A:) = SL: So, we select $W_{K}^{2} = \mathcal{I}^{K}(B_{1}(0))$ where $B_{1}(0)$ is a unit half in \mathbb{R}^{K} for $K \in \mathbb{N}$ We may extend $W_{a} := \gamma^{a'z} \Gamma(1+\frac{d}{2})$ when $\Gamma(t) = \int_{0}^{\infty} s^{t-1} e^{-s} ds$ We select this so that · Wz = WK s.t. HK = 2K for integer K · We is holomorphic wint of

 $\frac{P_{OP}}{If} \quad If \quad f: \Pi^{m} \to \Pi^{n} \quad is \quad L-Lipsolule, \quad then \quad \mathcal{H}^{\alpha}(f(e)) \leq L^{\alpha} \mathcal{H}^{\alpha}(E)$ Moreone, H (2E) = (2/"H"(E) for 2+0, 7E= {]x, x e E }

 $\frac{det}{dt} = \frac{det}{dt} = \frac{d$ Perert: We note that Ha(.) need not be onfinite. Pour this!

(Juiday: If dung(E)=k and Och^K(E)cas, how for To E from a Question: C' k-dim solometed of TRⁿ?

Rechtiability

In the say ESTRⁿ is (combility) k-realistable if E can be caused H^k-a.e.
by constably may C' k-day sylowerstables. I.e. E= Eo U U E; where $H^k(E_0) = 0$ and $E_i = E \cap \Gamma_i = C \int_{C_i} L difference de la constante$ Such sets are close erough to C' submassfille ! Penerty 1) Rectited to sets are approximate effected by after subspues. 2) The area funda holds! So, 44(E) is conviluite using didly geo defi of volume. 3) If k=n-1, we trut "sets of fink porinek" as those with reditively (almost C'abanistil) boundary, and then we can do Green's Thin and such. 4) Receptuste ats play rell with product structure & Filmi stores. PNP An HK-neoundle ESIR" 2 3 { P; };et of Lipscher k-den graphe et. is K-reatifiele HK(E\ U/?)=0 14K(E\Ÿ,r;)=0 Note that these are Lipschaz grads, not just C' grade! Theorn (Kade machen) $If f: U \rightarrow \Pi^{k} \quad (U \text{ even}) \xrightarrow{5} Lipselve, \quad \text{then} \quad f \xrightarrow{15} diver. \quad 2^{-a.e.}$ I.e. $\exists loren mp \quad O(x: \Pi^{n} \Rightarrow \Pi^{k} \text{ st}, \quad f(y) - (f(x) + O(y-x)) = O(|y-x|)$ Theorem (Whitney) If f: U > 12k (4 open) is Lipsolder, then Hero 37: U > 12k C' s.t. $2^{(\{f\neq\tilde{f}\})} \ell \epsilon$ So, c' finators approvink hapselite the up to cets of and then y snot measure.

Theon (Exterior) IA f: K= R^e (KCR) Lipselde, 3 an estrem F: R" = R^e which is Lapschitz. <u>Penak:</u> l=1, it's every to show 3 F with hip(F)= hp(F). It's twe, but had to show that it holds for l>1 (kinselower) <u>Propri</u> If E is H^k-mundle and EST C' subnestfield, then E is realifiable! <u>Proved:</u> DM B Consillen: Any O-finite It-measure ECIR° on be decorrect as E= RUP, when HK(PAF)=0 UF c' K-submission K-reat "overly K-unreal Prik" Poor: Itentach rense the intersation with C' submitteds. I 9/7-Exempt: purely uneertifiedte sets! J H^k-neumle E⊆IRⁿ mth Oc7f^k(E)coo, l≤k≤n-1 s.t. E 3 uventistalle (m fast, E uill be compact). We fins on no7, k:1. So, JESM2 s.t. H'(E) E(0,00). Method 1: Define F vn the 10 "terneng" Canton-type set by structury ~M [0, i] doppay each connected prease who [0, th]. (1, 2), [2, i] and iterating. We know H'(F)= 1. Set E=FxF. Alteretisch, in the can are Ex with 4th class Qit at size int. and dim Q; " = 52 Thm, $\mathcal{H}_{\sqrt{2}}^{1}\left(E\right) \leq w_{1}^{2} \underbrace{\int}_{\int_{T}^{T}}^{Q_{1}} \underbrace{dim\left(Q_{1}^{1}\right)}_{2} = q^{k} \sqrt{2} = \sqrt{2}$ = 71'(8) = 52

on show that they is the best we and do in the following may: We The orthogonal projection $\mathbb{P}_{\mathbb{R}}(\mathbb{F}_{\mathbb{R}}) = \mathcal{O} = \sqrt{1+(\frac{1}{2})^2} = \sqrt{\frac{3}{2}}$ $\Rightarrow P_{z}(E) = O$ Houser, Pri(E) and Prin(E) have lebrerge O. Since IPe is 1 - Lipsahitz, H'(O) & Lip(Pe) H'(E) = H'(E) Since H' agrees with the Userge 2', we see H'(E) = 53/2. Now, let I be a C' ance with a param &: TR > TR² site $\mathcal{H}^{1}(\mathcal{F}) = \int_{F} |\dot{s}(t)| dt$ If H'(ME) , the JFSR measurable with 21(F), o s.t. 8(F) SE Pick a x s.t. 2(Fn Bs(x))>0 VS.0. TF? Note that are of the followy always holds: 2 3 (x) 1'(Pxx (FABE(x)))>0 ~ 1'(Pxx (8(FABE(x)))>0 House, 2'(IPx, (i))= 7'(Px, (i))=0. So, E holes from the graphs of all C' curres, and is unredicable! Covery lemmas: (SK) - Coverny Theorem: separable let X be a methic space and { B₅₂, (x;)};eI be a collection of open balls and sup { 52; } is finite. Begiasitch Covery Theren: Let $A \subseteq IR^n$ be a Donel bounded set. Let $\mathcal{F} = \{\overline{B}_{\mathcal{R}}(x)\}$ be a Vitali cover of A (i.e. $\forall x \in A \quad \forall \in XO, \exists B_{\mathcal{S}}(x) \in \mathcal{F} \text{ s.t. } S \in \mathbb{C}\}$. Lot u be a Raden measure. Then, J F'SF consisting of painwike disjoint balls s.t. M (A U Br(W) = O (F'rs pour dryout and cover) Br(W) eF'

Themen (Radon - Nikodym) If μ and ν are haden measures on \mathbb{R}^{n} , then $\overline{f}_{\mu_{s}}$ set. $\mu = f \upsilon + \mu_{s}$ set. $f \in L^{1}(\mathbb{R}^{n}, \nu)$ 3A st. v(A=0 and $\mu_s(\mathbb{R}^n \setminus A) = 0$ (i.e. $\mu_s \perp v$). and Besicoutoh Diff. Them In fact, $M_s = \mu L E$ where $E := \begin{cases} lm \frac{\mu(B_c(x))}{\nu(B_s(x))} = \infty \end{cases}$. Also, $f(x) := \begin{cases} lm \frac{\mu(B_c(x))}{\nu(B_s(x))} & U_x & where here here creates$ $<math>\nu(B_s(x)) = 0 \end{cases}$. prelates to the dente of actor fictor, that is BV (holds in more) general spaces / Density Talk: Detn: We detre the upper dealy of a set E m x by $(\underline{H}^{d} * (E, x) := \underset{\substack{\delta \neq 0}{} \\ s \neq 0} \qquad \underbrace{H^{d} (E \land B_{\epsilon} (x))}_{W_{\mu} s^{d}}$ Southardy, the lower density is the kin not. For any M= H+2E, we can debe the upper/lower densities w.nt. m. Theorem (Bes: courted - Preise) Let OLHK(E) Los for KEN, E HK-messanble. E 3 reatifiable $\iff (E,x) = \bigoplus_{k}^{k} (E,x) = 1$ for a.e. $x \in E$ you as arellige of and who Prop (masterned) yey ~ $\forall \downarrow \notin N, \quad \bigoplus^{\star \#}(E, x) > \bigoplus^{\star}_{\#}(E, x) \quad fo- H^{-}a.e. \times$ So, no E can be Ha-realiseable. He mand that Halt = sup { Hala) : K E E closed }

Raden

let n be a Raden masure, E be Bond-masurable. (a) If $(\mu, x) \ge 8 > 0$ $\forall x \in E, \frac{1}{2}$ $H^{\pm}(E) \le \frac{1}{8} \mu(E)$ (WIF Dat (m,x) & 8 Los VreE, the m(E) & 8 Ht (E) So, these desitions about is to compare in with Ht. Confine this with rebesque desity state. <u>Prof</u>: (a) Fix SoO. VxeF, ∂r; LO st. µ (Br; (x)) ≥ (8-8) W2 r;⁴ Vx pek r(x) st. r(x) 2 €/10 and µ(Brin(x)) ≥ (8-8) W2 r(x)⁴ By the Sur- convery theren, JEBry (x3) 3 primare disjourt st. EBSrg (x3) covers (b) we know $D_{*}^{-}(\mu, x) \geq \delta$. Suppose weog het $\mathcal{H}^{\epsilon}(\tilde{e}) \ge \infty$. Take U:= H'LE and apply Beexout on distin. They, Sorcething's $\mu L E = f \mathcal{H}^{d} L E + \mu_{s} \qquad \text{min} \qquad f(x) = \lim_{r \to 0} \frac{\mu(B_{r}(x))}{\mathcal{H}^{d}(E \cap B_{r}(x))}.$ Do (b) reat time Lema: If Hr(E) Los, Hu Ta & (DK+(E,x) E) for H-a.e.x Proof: ((1) Assure WOLDS (PAR(E,x)= 1+8 VreE with E' mersunde and Hale') >0. For At a.e. ret, we know by Bes. Dillan that $\begin{array}{cccc}
\mu & \underline{\mathcal{H}}^{\star}(\underline{E}' \wedge \underline{B}_{e}(\underline{x})) \\
R \rightarrow 0 & \underline{\mathcal{H}}^{\star}(\underline{E} \wedge \underline{B}_{e}(\underline{x})) \\
\end{array} = 1, \quad s. \quad wolds \\
\end{array}$ By Desicovitch covery 3 a pairie disport covery of E' of balls of dian 53 $H^{d}(E' \cap B_{\gamma}(x;)) \ge w_{\alpha}(1+\delta-3)r;^{2}$ and $H^{d}(E' \setminus UB_{\gamma}(x;)) = 0$. call this E" => \$ w_1 ~ < 1 + 4 (E) We on show that $H^{\perp}(E')=0 \iff H^{\perp}_{\infty}(E'')=0$ (god exercise). 43.50 we my theolie cover E' why EA3 sh dian (A) in and

Wy & den(A;) ~ L3

Theolone, we my estimate $H_{3}^{k}(E') \leq w_{s} \notin \frac{\dim(d_{i})^{k}}{2a} + w_{s} \pounds R_{i}^{*} \leq 3 + \frac{1+k(E')}{1+\delta}$ Let 42 3 = 0, $H^{k}(E') \leq \frac{1+k(E')}{1+\delta} \Rightarrow H^{k}(E') = 0$. So, $\Phi^{**}(E, x) \leq 1+\delta$ $H^{d-1} = K$. Tokey $S \neq 0$, we are done.

9/19-

We tak now to Besicaitch's theory of 10 sets (CR², SR²), and we will work our way up to the 2 conjecture.

Defn:

A rectifiable come is the image of a continuous, injective map ∑: [0,1] → ℝ' with finite H'-mensure.

A rectifielle ane is a 1-rectifieble set. Proof: Certury, H'(&([a,b])) = [&(b) - &(a)] sine projection to the line e is a 1. Lipschitz mp, and so 8(-) 18(1)-82) = H'(0) = H'(re(r([-,6])) = H'(r([-,6])) Must, me with the mp t in H(S(EO,EJ)) is continuous. Define M:= H'L & (EO, is). Then, H'(r([s,t])) ≤ m(B, (r))) where r:= mox 1r(r) - r(s) So $\lim_{t\to s} \mu(\overline{B}_r(\mathcal{X}(s))) = \mu(\overline{\mathcal{X}}(s)\overline{\mathcal{X}}) = 0 \implies \lim_{t\to s} H'(\mathcal{X}(\overline{\mathcal{X}},t\overline{\mathcal{X}})) = 0$ Mest, we will representance in one length. Detre ぞ(と):= {8(s): H'(8([0,s]))= とう tor とe[0, H'(8([0,1]))) By injectivity of S, the 3 rell-defied (?). Then, F is 1-Lipsdits, and in $\tilde{S} = in Y$. Vie Whithey's The and implicit for from (?), covering by Lipshite graphs (as in the defin of "reakthible") \rightleftharpoons covering by innyes of Lipschitz fors. (is the prior) Π lema: If $\mathcal{S}: [0, \mathcal{I} \to \mathbb{R}^2$ is contained and $\mathcal{S}(\mathcal{O}) \neq \mathcal{S}(\mathcal{I})$, then $\exists \mathcal{S}: [0, \mathcal{I} \to \mathbb{R}^2$ continuous s.t. i) $\gamma(0) = \tilde{\gamma}(0)$ ii) $\gamma(1) = \tilde{\gamma}(1)$ iii) $\tilde{\gamma}$ injective iv) $\tilde{\gamma}(s_0, 1) \leq \tilde{\gamma}(s_0, 1)$ Proof: Let a, h be s.t. X(a)=X(b,) and 1b,-a,1 is maximal. Then, ∀t & [0,] \ [a,, b,], X(t) ≠ X(a,)=X(b,).

Also, if $\mathcal{T}(a_2) = \mathcal{T}(b_2)$, then \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_3} , \mathcal{T}_{a_4} , \mathcal{T}_{a_5} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_3} , \mathcal{T}_{a_4} , \mathcal{T}_{a_5} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_3} , \mathcal{T}_{a_4} , \mathcal{T}_{a_5} , \mathcal{T}_{a_1} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_3} , \mathcal{T}_{a_4} , \mathcal{T}_{a_5} , \mathcal{T}_{a_1} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_3} , \mathcal{T}_{a_4} , \mathcal{T}_{a_5} , \mathcal{T}_{a_5} , \mathcal{T}_{a_1} , \mathcal{T}_{a_2} , \mathcal{T}_{a_3} , \mathcal{T}_{a_4} , \mathcal{T}_{a_5} , \mathcal{T} Then, we get $\mathcal{Y}_{\mathcal{N}}: [0, 1-\tilde{\mathcal{Y}}_{1}(\mathbf{b}_{1}-\mathbf{a}_{2})] \rightarrow \mathbb{R}^{2}$ and $\overline{\mathcal{Y}}: [0, 1-\tilde{\mathcal{Y}}_{1}(\mathbf{b}_{1}-\mathbf{a}_{2})] \rightarrow \mathbb{R}^{2}$ with Var > F pointure (by containing of 2). So, since each Var is continuing so is V. Forte more, & njede by or algorithm. Detre F = { F = { 8(1) else D Den:

A continuen is a closel, connected set.

Themen:

Y = ([0,1])

- A containin E with finte H' measure & rectificable.
- Proof: The ster of the proof 18 to come E with countrily many containers corres w/ finite H' mesure + a set of measure O. Finds a terme: Lemmi Continum of five H1 masue is overre? concerted. Prost: Fix xo, Jo EE artitury. Fish a chen Xo=X1,... XN= Jo st. X:EE and $|x_i - x_{in}| \leq \epsilon$ and $B_{e_1}(x_{2,j+1}) \land B_{e_2}(x_{2,k+1}) = \emptyset \quad \forall j \neq k$
 - The precense linen for going through this chain (call it $\mathscr{Y}_{\varepsilon}:(0,1) \rightarrow \mathbb{M}^{2}$) has that $\mathscr{Y}_{\varepsilon}(0) = \chi_{0}$ and $\mathscr{Y}_{\varepsilon}(1) = y_{0}$. Also, $\mathscr{Y}_{\varepsilon}$ will be hapselving and so will less $\mathscr{Y}_{\varepsilon}$. Into So, all need to show is finite \mathcal{H}^{1} measure.
 - For each j, define $f_j: \mathbb{R}^n = \mathbb{R}$ s.t. $f_j(x) := |x x_{ijij}|$ So, f_j is 1-Lipschike and $f_j(E) = [0, \frac{e_j}{2}]$. Furthere, $f_j(E)$ is concerted and $H'(B_{\xi}(z_{j_{H}}) \cap E) \ge E_{z}$ Accumulatery Mis, $\left(\frac{N-1}{2}\right) \stackrel{\varepsilon}{=} \stackrel{}{_{\sim}} \stackrel{}{_{\sim}} \frac{1}{2} \stackrel{}{_{\sim}} \stackrel{}{_{\sim}} \frac{1}{2} \stackrel{}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}}$ \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim} \stackrel{}}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}{_{\sim}} \stackrel{}}}{_{\sim} \stackrel{}}} \stackrel{}}}{_
 - $H'(\mathcal{Y}_{\varepsilon}(\mathfrak{i}_{0},\mathfrak{i}_{3})) = \underbrace{\widetilde{\mathcal{Y}}_{i}}_{i} |x_{i}-x_{i-1}| \subseteq UH'(\varepsilon) + \varepsilon$

۵

- Back to the Herr. Take V, to be the geodesic converter the two most distant points.
- Take $\mathscr{V}_{\mathbf{z}} := \operatorname{geodesic}_{\operatorname{correcting}}$ most distant points in EIV, to \mathscr{V}_{1} (EIV, and \mathscr{V}_{1} are) Take 83:= " E1(8,082) to 8,082
- If the ends finitely, then we have filly control E and are done. If not, we have $H'(E) \ge \sum_{i=1}^{n} H'(X_i)$

We must show that the posts left over one H'-ndl.

$$\begin{array}{c} \underbrace{\operatorname{Clan:}}_{k+1} \in \mathbb{N} \setminus \mathbb{Y}; \quad \text{has} \quad H' \quad \text{respec } 0. \\ \begin{array}{c} \operatorname{Let}_{k+1} \in \mathbb{S} \circ \cdot \\ \operatorname{Deline} \quad \mathbb{D}_{k} := \left\{ \begin{array}{c} \overline{\mathbb{B}}_{r}(k) \subseteq \mathbb{R}^{n} \setminus \bigcup_{i \in I}^{n} Y_{i} \text{ s.t. } r \circ \circ , \quad x \in \mathbb{E} \setminus \bigcup_{i \in I}^{n} Y_{i} \right\} \\ \operatorname{Use} \quad \operatorname{also} \quad \text{space} \quad \text{on} \quad \mathbb{B}_{r}(x) \in \mathbb{R}^{n} \setminus \mathbb{H} + \mathcal{H}'(\mathbb{B}_{r}(x) \wedge \overline{\mathbb{E}}) \circ (1 + \varepsilon) \text{ diam}(\mathbb{B}_{r}(x)) \\ \\ \operatorname{Saee} \quad \mathbb{G}^{1,m}(\overline{F}, x) \leq 1 \quad \text{for} \quad \mathcal{H}^{1-\alpha, \varepsilon, x}, \quad \text{the} \quad \operatorname{doent} + \operatorname{clarge} \quad \operatorname{Het} \\ \\ \mathbb{B}_{k} \quad \mathbb{P} \quad a \quad \text{fore} \quad \operatorname{cover} \quad \mathcal{F} \in \mathbb{E} \setminus (\mathcal{E}' \cup \bigcup_{i \in I}^{n} Y_{i}), \quad \text{wher} \quad \mathcal{H}'(\mathcal{E}) = 0. \\ \\ \operatorname{Mole} \quad \operatorname{Het} \quad \forall \mathbb{B} \in \mathbb{B}_{k}, \quad \mathcal{H}'(\mathbb{B} \cap \bigcup_{i \in I}^{n} Y_{i}) \geq \frac{\operatorname{doen}(\mathbb{D})}{2} \quad \text{we} \quad \operatorname{Hore} \quad \operatorname{and} \\ \\ \operatorname{Mole} \quad \operatorname{Het} \quad \forall \mathbb{B} \in \mathbb{B}_{k}, \quad \operatorname{for} \quad \operatorname{Covers} \quad \operatorname{ho} \quad \mathbb{B}_{2} \quad \text{sub} \quad \mathcal{H} \quad \mathcal{H} \quad \mathcal{H} \quad \mathcal{H} \quad \mathcal{H} \\ \\ \operatorname{Mole} \quad \operatorname{Het} \quad \forall \mathbb{B} \in \mathbb{B}_{k}, \quad \operatorname{for} \quad \operatorname{Covers} \quad \operatorname{Hor} \quad \mathcal{H}'(\mathcal{E}) \quad \mathcal{H} \quad \mathcal{H} \\ \\ \operatorname{Soue} \quad \mathbb{B}_{k} \quad \operatorname{s} \quad \operatorname{fore} \quad \operatorname{covers} \quad \operatorname{ho} \quad \mathbb{B}_{2} \quad \operatorname{Sub} \quad \mathcal{H} \quad \mathcal{H} \quad \mathcal{H} \quad \mathcal{H} \\ \\ \operatorname{Mole} \quad \operatorname{Het} \quad \operatorname{Soue} \quad \mathbb{B}_{k} \quad \operatorname{s} \quad \operatorname{fore} \quad \operatorname{covers} \quad \operatorname{ho} \quad \mathbb{B}_{2} \quad \operatorname{Sub} \quad \mathcal{H} \quad \mathcal{H} \quad \mathcal{H} \\ \\ \operatorname{Mole} \quad \operatorname{He} \quad \operatorname{Soue} \quad \operatorname{H} \quad \mathbb{C} \quad \mathcal{H}'(\mathcal{E} \cap \mathbb{B}_{2}) \leq (2 + 2 \varepsilon) \geq 2 \quad \mathcal{H}'(((\bigcup_{i \in I}^{n} Y_{i}) \wedge \mathbb{B}_{2})) \\ \\ \operatorname{Tohos} \quad \operatorname{K} \quad \operatorname{advaly} \quad \operatorname{soue} \quad \operatorname{Soue} \quad \operatorname{Soue} \quad \mathcal{H} \quad \mathbb{B}_{2} \quad \operatorname{Mole} \quad \operatorname{He} \quad \operatorname{He} \quad \operatorname{Me} \quad \operatorname{meh} \\ \\ \operatorname{Mode} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{Soue} \quad \mathbb{C} \quad \mathbb{B} \\ \\ \begin{array}{c} \operatorname{Reserved} \\ \operatorname{Soue} \quad \operatorname{soue} \quad \operatorname{Soue} \quad \operatorname{Soue} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{He} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{He} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{Mole} \quad \operatorname{Ho} \quad \mathbb{C} \quad \operatorname{Mole} \quad \operatorname{Mo$$

Let
$$E \subseteq \mathbb{R}^{\prime}$$
 be Borel with $O \subseteq H(E) \subseteq \infty$. We say we to is
a regular point if $\Theta'(E,x) = 1$ (i.e. with $\Theta'_{k}(E,x) = \lim_{R \downarrow 0} \frac{H(E \cap B_{R}(x))}{2R} = 1$)
 $E^{R} := \{x \in E \text{ regular}\}$ be the regular points. Then, $E = E^{R} \cup E^{\prime}$. In feet,

Theor:

Den:

If for H-a.e.
$$x \in E$$
, $\Theta_{1}^{+}(E, x) > \frac{3}{4}$, then E is 1-nectorholde

Remerke:

<u>-he:</u> - The has been generalized to TR" and even to any metrice space (Presse-Trian) with $O_{k}^{1}(E,x)$ s.x., (1=0.7319...)

- · Eventually, we will prove that it derety evorts (0+20"), then E realitable
- A Besicalter conjectued that $\Theta_{\mathbf{x}}'(E,\mathbf{x}) > \frac{1}{2}$ for $\mathcal{H}'_{-\alpha,e,\mathbf{x}} \Rightarrow E$ 1-rectifieble. He constructed an example of a purely innectifieble set E sit. $\Theta_{\mathbf{x}}'(E,\mathbf{x}) > \frac{1}{2}$ a.e.

9/21-

Defn: We define the convex upper deaths of ESR wint. a 20 via $D_{c}^{\star}(E,x) = \lim_{R \to 0} \sup_{\substack{\forall x \in \mathcal{U} \in \mathcal{R} \\ \forall x \neq x}} \left\{ \frac{\mathcal{H}^{\star}(E \cap U)}{w_{d}} \right\}$ Remork: UFSTR?, dum(F) = dum(coner hull of F). So, now defaition of the Manderff neasure, we could have used convex sets mon covers without changing deneter. So, $H_{s}^{L}(E) = \inf \left\{ \sum_{i=1}^{2} w_{s} \left(\frac{dian(u_{i})}{2} \right)^{d} : \left\{ u_{i}^{3} \right\} \underset{u_{i} \in \mathcal{H}}{\operatorname{conv}} E_{v} \operatorname{clovel}, \underbrace{\operatorname{conv}}_{i} \right\}$ Prop: Lot E, E'STR Boal when OLH"(E) cos. Then, $\begin{array}{c} \textcircledleft D_{c}^{d*}(E,x)=0 \quad f_{0} \cap \mathcal{H}^{d}-a.e. \quad x \in E \\ \textcircledleft D_{c}^{a**}(E,x)=D_{c}^{a**}(E',x) \quad f_{0} \cap \mathcal{H}^{d}-a.e. \quad x \in E \cap E' \\ \textcircledleft D_{c}^{d**}(E,x)=1 \quad f_{0} \cap \mathcal{H}^{d}-a.e. \quad x \in E \quad f_{0} \cap \mathcal{H}^{d} \cap \mathcal{H}^{d$ Proved: 1) Clearly, $D_c^{au}(E,x) \leq 2^{a} \Theta^{uu}(E,x)$, and so she $\Theta=0$ for a.e. $x \in E$, me get O. € Follows from O. 3 D_c (E,x) = O **(E,x) = 1 Hd a.e. on E. So, we not prove the upon bound So, suppose Burce that $b_c^{d*}(F,x) \ge 1+\overline{\epsilon}$ for all ref for sur FSE of portione mesure and ESO. We will use covering arguments to show that 2+x(P)=0. Fix poo s.L. H=(F) 2 Hgs(F)+ & for som Ero. V:= SU: U closed conver, and H⁴(F∩U) ≥ (1+ €) w₂ (deam (U))^K } ~ free and diam (W) ≤ B Choose U, s.t. dem (4.) > 2 sup { drem (4): 4 e of { 4 2 Mr et. dren (UD) & z sup { dren (W: UeV and UnU, = 0} Chook Note that I comes F by construction. Also, $\sum_{i=1}^{2} W_{2} \left(\frac{d_{2m}(h_{i})}{2} \right)^{d} \leq \frac{H^{d}(F)}{1+\frac{F}{2}} \leq 20, \text{ and so } d_{2m}(u_{j}) \geq 0.$ We clean that $\mathcal{H}_{6s}^{k}(F) \leq \overset{\mathcal{F}}{\underset{i=1}{\overset{\mathcal{F}}{\leftarrow}}} w_{k} \left(\overset{dem(\mathcal{U})}{\overset{\mathcal{F}}{\leftarrow}} \right)^{k}$

To be finally $U_1, ..., U_m$ and take $B_i := B_3 d_{um}(u_i)(x_i)$ for $x_i \in U_i$, then $\{U_1, ..., U_m, B_{mer_j}, ...\}$ covers F_i .

So,
$$\mathcal{H}_{6s}^{\lambda}(F) \leq w_{\lambda} \int_{\overline{i} \in I}^{\overline{i}} \left(\frac{\partial \operatorname{ben}(h_{i})}{2} \right)^{2} + 6^{4} w_{\lambda} \int_{\overline{i} \in \operatorname{mn}}^{\overline{2}} \left(\frac{\partial \operatorname{ben}(h_{i})}{2} \right)^{4}$$

<u>lem:</u> If

.

Proof: From per. proposition.

Theorem:

Let
$$E \subseteq IR^2$$
 Bord with $O \in \mathcal{H}'(E) \subset \infty$. If
 $\Theta'^*(E,x) := \frac{3}{4}$ for $\mathcal{H}' = a.e. x \in E$,

then 3 a computer G with H'(G) cas sh H'(GAE) . O.

Define the Bessenitch circle pair of the points by

$$R(x,y) := B_{|x-y|}(x) \cap B_{|x-y|}(y)$$

 $\Rightarrow B_{\frac{2}{2}|x-y|}(\frac{x+y}{2}) \ge B_{|x-y|}(x) \cup B_{|x-y|}(y)$

So, if
$$x_{1y} \in E_0$$
 s.t. $|x_{-y}| = : R < p$. Thus,
 $H'(R(x_{1y}) \cap E) \ge H'(B_R(x) \cap E) + H'(B_{1x-y}(y) \cap E) - H'((B_R(x) \cup B_R(y)) \cap E))$
 $\stackrel{=}{\longrightarrow} (\frac{3}{4} + a) = (1+\beta) : \frac{3}{4} = (Ma - 3\beta) R \ge a R > 0$
(11)
(N)

Defec $G := \{\overline{B}_{R}(x) : x \in E_{0} \land \overline{B}_{\overline{N}}(\overline{\partial}) \text{ s.t. } R \leq D \text{ and } H^{1}((E|\overline{E}_{0}) \land \overline{B}_{R}(x)) \geq AR \}$ via the crick pairs. By the 5r-coversy theorem, 3 a disjoint rebeallection $\{\overline{E}_{B}_{i}\}_{i}^{2}$ sit. $\bigcup SB_{i} \geq \bigcup B$ Bec

Defre H:= (EO A Bx)U >Bx U (YSB;)

$$G := \left(\left(\left(E_{o} \land B_{\overline{A}} \right) \lor \Im B_{\overline{A}} \right) \land \left((\lor S_{0} \right) \right) \lor \left((\lor \Im (S_{0}) \right)$$

Step 1: 11 75 cloud

Let $\{x_n\}_n \in M$ s.t. $x_i \rightarrow x_0$. If the square accomplates in $(E \land B_{\overline{x}}) \cup \partial B_{\overline{x}}$ we are ok. So, Suppose Bivoc $x_i \in S \overline{B_{\overline{y}(i)}}$ when $\overline{y}(1) \rightarrow \infty$. Let $y_{\overline{y}(i)}$ be the conter of each $\overline{B_{\overline{y}(i)}}$; then $|y_{\overline{y}(i)} - x_i| \rightarrow 0$. Since each $y_{\overline{y}(i)} \in E_0$ when is closed, $x_0 \in E_0$. Thus, $x_0 \in M$.

Clearly, this news G is clusted.

Step 2: 11 is conceled

10/3

Theorem: (Begicovitch)

- Let $E \subseteq \mathbb{R}^2$ be Borel with $O \in \mathcal{H}'(E) \ge \infty$ st. $\Theta'_*(E, x) \ge \frac{3}{4}$ for $\mathcal{H}'_{-n.e.} x \in E$,
- then E 15 reetikable.

Suppose Buroc it & not, then use measure them to find a clush, purch wheet. E'SE with $\Theta'_*(E'_{M}) \rightarrow \frac{3}{2}n$, as at H'-a.e. $x \in E'$. Find a continuum G Pauli un OcH'Gles st. H'(GRE') so. u no reput the part of fadery such a G. Out of musice them and studied considerations, we may fail FEE s.I. OFF and At'(E'∧ B_R(x)) ≥ (3+ x) 2R ∀xeF, ∀Res
At'(E'∧ U) ≤ dum(u)(1+β) ¥U ≥xeF ugn dum(u)es (dum β sit circle per property) · 44'((E'F) ~ B, (0)) < VR VRLD (we an pool on V!) ·) Bo NF for all of the Define $C := \{ \overline{B}_{R}(x) : x \in F \cap \overline{B}_{\overline{B}} , R_{\leq 0}, and H^{1}(\overline{B}_{R}(x) \cap (e^{\epsilon})) \ge a_{R} \}$ Thus is a VAnli cour, at so $3\{\overline{B}_{1}\}_{1} = C$ s.t. $\bigcup_{i} 5\overline{B_{i}} \ge \bigcup_{B \in C} B \quad \text{and} \quad \overline{B_{i}} \wedge \overline{B_{j}} = \emptyset \quad ; f \quad ; \neq_{j}.$ We doke H= 3BI U (F \ (YST;)) U(USB;) $G := \partial B_{\overline{a}} \cup (F) (\overline{\mu} \delta \overline{\mu}) \cup (\overline{\mu} \delta (\overline{\delta B_{i}}))$ We wish to show connecteders of H, which will spy 6 connected. Suppose Broc N= H, U H2 when H: devost, closed, and nonerphy. We know H. NF + & and MenF + &; by chome we my fake a me that F par x, eMAF, xze McAP of minuel distince. So, (notes We know that BIN-me (x,) & C, and so there is a path connecting x, al xe. So, M is conceded - G connected. Marth, note put $\mathcal{H}^{\prime}(G) \leq \mathcal{H}^{\prime}(F)_{+} 2\overline{\beta}\pi + 10\pi \underbrace{\overset{\sigma}{\sum}}_{in} R \leq \mathcal{H}^{\prime}(P)_{+} 2\overline{\beta}\pi + 10\pi \underbrace{\overset{\sigma}{\sum}}_{in} \frac{\mathcal{H}^{\prime}(E(F) \cap \overline{B_{i}})}{4\pi} \leq \mathcal{H}^{\prime}(P)_{+} 2\overline{\beta}\pi + \frac{\mathcal{H}^{\prime}(E(F))}{4\pi} = \frac{\mathcal{H}^{\prime}(F)_{+} 2\overline{\beta}\pi}{4\pi}$ So, $\mathcal{H}'(\mathcal{E} \cap \mathcal{G}) \ge \mathcal{H}'(\mathcal{F} \cap \mathcal{G}) \ge \mathcal{H}'(\mathcal{F} \cap \mathcal{B}_{\overline{A}}) - \tilde{\mathcal{E}} \mathcal{H}'(\mathcal{F} \cap \mathcal{B}_{\overline{A}}) \ge \mathcal{H}'(\mathcal{F} \cap \mathcal{B}_{\overline{A}}) - (1+\beta) \mathcal{O}_{\mathcal{H}} \mathcal{L}_{\mathcal{R}}$ = 4' (FAB_{\overline{A}}) - (1+B) $\frac{1}{4}'((E' F) A B_{S\overline{A}}) = \frac{1}{4} (E A B_{\overline{A}}) - \frac{1}{4} (E A$ $= \frac{2}{2} \left(2\overline{\beta} \right) - \frac{2(1+\beta)}{2} \left(5\overline{\beta} + \frac{2}{2} \left(2\overline{\beta} \right) > 0.$

The reproves the earlier theory and so G is a continuom.

my deer this mply relatively?

D

Besicovitch-Federer

We not tim to proving the Bescenitch-Federer prom.

First, we must headle some ugliness.

- D We want to put a measure on O(n), the orthogonal group & AETR¹²⁰: A^TA=In } (i.e. space of all linear isometries)
- (2) we mant to get a measure on G(n,m), the Grammian {VSR? : V is an index }

Renarks

(1) $O(n) \subseteq \mathbb{R}^{n \times n}$ is a canonal solutifield of dimension $\underline{n(n-1)}$ So, take $\mu := H^{\underline{n(n-1)}} L O(n)$. We know that for all $A \in O(n)$, since A = a line isonets, $\mu(A \cup u) = \mu(U) = \mu(A^{-1}(U))$ $\forall U$. Dolar $\Theta_n := \frac{1}{H^{\underline{n(n-1)}}} \mu$. It ture out that is the theor make, whech is how Mattin deduces A.

(2) We my identify
$$G(n,n) \cong P(n,n) \subset \mathbb{R}^{n \times n}$$
 for some P under the map $V \mapsto \mathbb{R}_{r}$
We know
 $\mathbb{R}_{v}^{2} = \mathbb{R}_{v}$, $\mathbb{P}_{v}^{T} = \mathbb{R}_{v}$, der name $\mathbb{R}_{v} = n$
Twickelikh, an maker with these properties is a projection. So,
 $P(n,n) \subseteq \mathbb{R}^{n \times n}$ is a compart $m(n-n)$ -der sidemassiell. Let us plue the measure
 $\mathcal{W}^{n(n-n)} \sqcup P(n,n) =: \mathcal{Y}_{n,n}$
Another my to defee $\mathcal{Y}_{n,n}$ is to reque that $\mathcal{Y}_{n,n}(u) = \mathcal{Y}_{n}(Ou)$ $\forall O \in O(n)$
So, $u \in \mathcal{M}_{v}$ define $\mathcal{Y}(u) := \Theta_{n}(\{O \in O(n) : O(\mathbb{R}^{n}_{v} \text{ for}\}) \in u_{s}^{2}),$
wheth will have the save provents of $\mathcal{Y}_{n,m}$. To find $\mathcal{Y} = \frac{1}{\mathcal{W}^{n,m}(\mathbb{P}(h,m)}$

Note that $G(n,m) \cong G(n,n-m)$ we $V \mapsto v^{\perp}$ and $\mathbb{P}_r \mapsto \mathbb{I}_n - \mathbb{P}_{r^{\perp}}$

Now, on to the theorem!

 $\bigcirc a \in A_{1,s}(v)$ $\bigcirc a \in A_{2,s}(v)$ $\bigcirc (A \setminus \{a\}) \land (a+v) \land B_{s}(a) \neq \emptyset$

Take M 700, and we are done.

Proof of Lemm 1: Let Ex0. Then, 35>0 st. "stuff after lineup" is bounded wrowing. Apply proposition for below to care most of A15(v), and care to small rest.

ß

Prop:

Let
$$A$$
 be puck k-invicible bet $se(q)$, $1, se(q, \omega)$.
If sup $H^{k}(A \cap B_{R}(a) \cap C(a, V, s)) \leq 2(6s)^{k}$ V_{ned} .
Plum, $H^{k}(A \cap B_{S_{g}}(a)) \leq cont 2t^{k}$ V_{ned} .
Plum, $H^{k}(A \cap B_{S_{g}}(a)) \leq cont 2t^{k}$ V_{ned} .
Plum, $H^{k}(A \cap B_{S_{g}}(a)) \leq cont 2t^{k}$ V_{ned} .
Plum, $H^{k}(A \cap B_{S_{g}}(a)) \leq cont 2t^{k}$ V_{ned} .
Plum, $H^{k}(A \cap B_{S_{g}}(a)) \leq t_{ned} A \leq B_{S_{g}}(a)$. Define a fundam
 $h(a) := sup \{ |y_{ne}| : y \in A \cap C(x, V, k_{n}) \}$
Ps pure unearbolichth, $h(a) > 0$ $C \cap H^{k}(a, x)$.
Let $x \in A$ be $r.k$. $|x - x^{n}| \geq \frac{3}{4}, h(a)$
 $V_{k} chan + the grain a better
 $R_{vi}^{-1}(B_{theod}(a) \cap A) \leq (A \cap B_{steod} \cap C(x, V, s))$
 $V (A \cap B_{steod} \cap C(x, V, s))$
 $F_{vi}^{-1}(B_{theod}(a) \cap A) \leq (A \cap B_{steod} \cap C(x, V, s))$
 $V (A \cap B_{steod} \cap C(x, V, s))$
 $F_{vi}^{-1}(B_{theod}(a) \cap A) \leq (A \cap B_{steod} \cap C(x, V, s))$
 $V (A \cap B_{steod} \cap C(x, V, s))$
 $F_{vi}^{-1}(B_{theod}(a) \cap A) \leq (A \cap B_{steod} \cap C(x, V, s))$
 $V (A \cap B_{steod} \cap C(x, V, s))$
 $F_{vi}^{-1}(B_{theod}(a) \cap A) \leq (A \cap B_{steod} \cap C(x, V, s))$
 $F_{vi}^{-1}(B_{theod}(a) \cap A) \leq (A \cap B_{steod} \cap C(x, V, s))$
 $F_{vi}^{-1}(B_{theod}(a) \cap A) \leq (C_{in}, V_{in})$
 $F_{vi}^{-1}(B_{theod}(a) \cap A) \leq (C_{in}, V_{in})$
 $F_{vi}^{-1}(B_{theod}(a) \cap B_{steod}(x)) \leq (C_{in}, V_{in})$
 $F_{vi}^{-1}(B_{theod}(a) \cap B_{steod}(x)) \leq (C_{in}, V_{in})$
 $F_{vi}^{-1}(B_{theod}(a) \cap B_{si}(a) \cap B_{sin}(x))$
 $F_{vi}^{-1}(B_{theod}(a) \cap B_{sin}(x)) \leq (C_{in}, V_{in})$
 $F_{vi}^{-1}(B_{theod}(a) \cap B_{sin}(x)) \leq (C_{in}, V_{in})$
 $F_{vi}^{-1}(B_{theod}(a) \cap B_{sin}(x))$
 $F_{vi}^{-1}(B_{theod}(x)) = F_{vi}^{-1}(A \cap B_{sin}(x))$
 $F_{vi}^{-1}(B_{theod}(x)) = F_{vi}^{-1}(A \cap B_{sin})$
 $F_{vi}^{-$$

015-

Let E restrictive and $f: E \rightarrow R^{j}$ be Lipschitz. Then, the coorea formula applies. If E 2-rest (i.e. a surface) and join, then:

$$f'(x) \in \mathbb{R}$$

The <u>Coarea formula</u> allow one to find measure of a set by regriting led sets of the fination, Fibrii-style, using Jp(x) to eccount for distantion. We know the for smooth E and differentiable f, but the connea formula holds for real-finable E and Lipschitz f. Nowene, a general meganling does hold.

Real te upper integral St f = int Sy. Fatoers lem holds! 4 mers.

$$\frac{\Pr p_{p}}{\operatorname{Let}} (\operatorname{Conn} \operatorname{Meq} \operatorname{val} \operatorname{ity}) \qquad \operatorname{Meq} \operatorname{me} \operatorname{me}$$

 $\leq \lim_{k \to \infty} \left(\sum_{i=1}^{n} \frac{w_{s}}{2^{s}} + \frac{1}{2^{s}} dim\left(E_{H_{i}}\right)^{s} \right) \left(F_{H_{i}}\right) \\ \leq w_{n} dim\left(F_{H_{i}}\right)^{n}$ $\leq \lim_{k \to \infty} f\left(\frac{w_{s.n.k_n}}{2^{s-n}} Lp(f)^n \underbrace{\{ l \ diam (E_{k,i})^s \}}_{i} \right)$ $= \frac{\omega_{s-n}}{\omega_s} \frac{\omega_n z^n L:p(f)^n}{w_s} \mathcal{H}^s(A).$ D

Remerter IF F Hölder, you could still do this when the extender dian (Fa,:) & due (Ea,:) *

0/10-

Proof at Lemme 4 - Three are two parts. We will prove it first for K=n-1 (codmension 1), often which we will do it in generally. O Let ken-1. We my that of G(a, i) as the sphere/RP, and Sa, as the theore we are prob. on the sphere. 0/800 V= L(O) let L(G) he the line produced by a point & on the n-sphere. Let L(E) = U L(O) VEG S^{n!} The, & opengs S, OEE $C(0, V, s) = \bigcup_{\substack{L(\theta') = L(B_{answell}(\theta))}} C(\theta)$ Detre the set frieten $\Psi(E) := sup R^{-n} H^{-1}(A \cap B_R(G) \cap L(E))$ for ESS. brick only (4,0) LO Then, lower s' $\Psi(B_s(\theta)) = km_{sup} sup (Rs) H^{(AAB_RAC(0, v, s))}$ S=20 S=20 OLPLS So, we with that for Va. - a.e. O, ether (D) G^{nl,*}(Ψ, Θ) = as (by slittly the and ale. V (D) G^{nl,*}(Ψ, Θ) = as (by slittly the and ale. V (D) G^{nl,*}(Ψ, Θ) = 0 (This would mply lem U vin Film: applied to (C) L(Θ) Λ A \ E03 Λ Bs(Θ) ± Ø)the podert nerve 3 not of (H*LA), i.e. we are simp the about it is there in the about we for parts of thes. Here, we are proved it for all points We want to som 4 15 an outer mensue, sine then we would he able to apply the follows: Lenne (Michle-Radó): Let Ψ be an oder neuron on \mathbb{R}^n and \mathbb{E} a $\int_{-\infty}^{\infty} e_{x}$, $\Psi(\varepsilon) = 0$. Then, for $\int_{-\infty}^{\infty} e_{x} \times \varepsilon \varepsilon$, $\int_{0}^{n_{\mathcal{F}}} (\Psi, x) = \lim_{R \to 0} \mathbb{R}^{-m} \Psi(\mathbb{B}_{\mathbb{R}}(x)) \in \{0, \infty\}$

$$(3) (A \setminus \{-1\}) \land ((L_{\odot} \lor^{+})_{+}) \land B_{s}(.)_{\neq} \emptyset$$

von an application of the abue kin-1 lagre. He have the right alterative, but for a care of the wrong chipe. Here is how we will fire it.

Let
$$V_{0}:= \{x_{1}=...=x_{k}=0\}$$
, and so
 $C(0, V_{0}, s) = \{x \in \mathbb{R}^{2} : \sum_{i=1}^{k} x_{i}^{2} \leq s^{2} \hat{\xi}_{i}^{2} x_{i}^{2} \} = \{x \in \mathbb{R}^{2} : \sum_{i=1}^{k} x_{i}^{2} \leq \frac{s^{2}}{1-s^{2}} \hat{\xi}_{i}^{2} x_{i}^{2} \}$
wh $W_{j}:= V_{0}^{1} \otimes \mathbb{R}e_{ij}$, $j \in \{k+1, ..., n\}$ (first k die plus andher). Then,

$$X_{j}(0, V_{0}, \sigma) = \begin{cases} x \in \mathbb{R}^{n} : & \begin{cases} z \\ z \\ z \\ z \end{cases} \\ x_{j}^{2} \leq \frac{\sigma^{2}}{1 - \sigma^{2}} \\ x_{j}^{2} \end{cases} \end{cases}$$

Note that if see the
$$X_{i}(o,v_{0},o) \subseteq C(o,v_{0},s) \Longrightarrow \bigcup_{\substack{j \in kn}} X_{j}(o,v_{0},s) \subseteq C(o,v_{0},s)$$

None, $C(o,v_{0},s) \subseteq \bigcup_{\substack{j \in kn}} X_{j}(o,v_{0},r^{n})$ for $\frac{s^{n}}{1-s^{n}} = (n-m)\frac{s^{n}}{1-s^{n}}$

We may mp Vo to other solospices vin orthogen the fination. So we will reason about a.e. orthogend the photom reduct at a.e. subspace.

Let
$$S_{3}C_{2}$$
 ; $e \xi k_{r1}, ..., n^{3}$. For $\Theta_{n-n.e.}$ $g \in O(n)$, one of the following obtained holds:
(D) lower sup $(R_{2})^{-k} H^{k}(AnB_{5}(n) \wedge (n+qX_{3}(0, V_{0}, s)) = 0)$
 $g \mapsto o_{cRes} (R_{2})^{-k} H^{k}(AnB_{5}(n) \wedge (n+qX_{3}(0, V_{0}, s)) = \infty$
 $g \mapsto o_{cRes} (R_{2})^{-k} H^{k}(AnB_{5}(n) \wedge (n+qX_{3}(0, V_{0}, s)) = \infty$

Prost: Lot j= kr WOLOG. Let W:= WKH = { xKn = ... = xn = 0} = V+ ReKH

lot
$$\mathcal{X}(q) = \begin{cases} 1 & \text{if me of the 3 property lidds} \\ 0 & \text{otherwise} \end{cases}$$

We can confirm that
$$\chi$$
 is Bord and so rescrable (A conjust will help).
We have $O(n) = \{ \text{orthogond traffindang at } (\mathbb{R}^n \}$
 $O(k, \eta) = \{ g \in O(n) : g |_{W^{\perp}} = i \text{dentify} \}$

Then,
$$\int_{O(kq)} \chi d\theta_{kq} = 0 \quad \text{sm}$$

ad
$$\int_{O(kq)} \chi(kq) d\theta_{n}(k) = \int_{O(kq)} \chi(kq) d\theta_{n}(k) \quad \forall q \in O(n).$$

:0

$$\int_{\partial(L_{n})} \mathcal{X}(L_{n}) d\theta_{n}(L_{n}) = \int_{\partial(L_{n})} \int_{\partial(L_{n})} \mathcal{X}(L_{n}) d\theta_{n}(L_{n}) d\theta_{n}(L_{n}) d\theta_{n}(L_{n}) d\theta_{n}(L_{n}) d\theta_{n}(L_{n}) d\theta_{n}(L_{n}) d\theta_{n}(L_{n}) = \int_{\partial(L_{n})} \int_{\partial(L_{n})} \mathcal{X}(L_{n}) d\theta_{n}(L_{n}) d\theta_{n}(L_{n}) = 0.$$

WAR the lem, or poor of lem 4 is cuple size the desety is O for a visione iff O holds for all geoch.

WM rem 4, we know we always have the alterative and each one happens on a set of mesue O, and so we have done it!

Π

Besicovitch - Preiss

* Theorem: (Bes:coniton-Press)

Let $E \subseteq \mathbb{R}^{n}$ Band s.t. $O \in \mathcal{H}^{k}(\overline{e}) \perp \infty$. If $O \in \Theta^{k*}(\overline{e}, x) = \Theta^{k}_{*}(\overline{e}, x) \perp \infty$ enority for $\mathcal{H}^{k} = 0.$ c. $x \in \overline{e}$, then \overline{e} is realisficable.

Equindently:

Let p_{k} be a Rader measure and assure $\Theta^{k,p}(p_{k}, x) = \Theta^{k}_{a}(p_{k}, x)$ enough and is possible and findle for p_{k} -a.e. x. Then, $\exists E$ radichable at \dim_{R} and $f_{1}E = \mathbb{R}^{4}$ Bonel s.t.

M= fH"LE = "m & k-reationic"

Remark: To show equilibres, we dered of in to show Ars abs. cont. most Hk.

Theorem: (Mastrand) Suppose a satisfies the requirements of BP, but k&N. This, in=0. Runck: So rom-milge-densor sets must have holes of some port.

Thean: (Martund - Mattila)

IF E satisfier DP conditions and B^{RE}(E,x)=1 4th a.e. xet, Man E is realifiable. <u>Renorde:</u> This is make the BP, and co we won't prove it. []

<u>Renark</u>: We night expect all d-uniform measures to be Haurdenfit means on a plane. In genul, Mrs. <u>Month</u> time (what is time is that down and U is Ht restricted to an analytic submitted of Rⁿ).

Exore:

A target nearer to a vitam mare is a victor measure.

Proposition: (Mastrud)

Wheel always the

If d=k, at least one tangent measure at prover is $\Theta^{k}(n,x)H^{k}LV$ for a k-dim subspace $V \subseteq \Pi^{n}$.

<u>Puck</u>: The is for from allowy is to apply the tangent measure allow from Veck 2 to prove reaterised: By me that required <u>wrace</u>, Maisdonke-on-a-plane targent measures. However, it turns out me don't need uniqueres.

Theren: (Mastred-Mattile Restified: 12 Critican) with propher loss of faile upper dealy let in be a Raden massie, ke/N, and assue that for m-a.e.x, EVERY target measure of in is of the form (4) CH^RLV for some C>O and K-dom subspace V. <u>then</u> in is readedable.

Them (Press)

Under the assumption $\Theta^{k}(u, x)$ exists prover, then for prove x every fargent more of x has the form (42).

Togetter Preiss + Masterd-Matthe Realistability => BP.

10/20

<u>Proposition</u>: (Marthad) Let je de en a-wiken megne ad assie a.c. The, 3xespt(a) ad UETen, (m,x) which is supported in a hyperplane.

Carolly:

If a & N, the 13 no drustom man.

Prof: repeat above demanding reduction with n-leaven.

Lenna:

If it is northand and e-withing eller, the I an e-within mane vertex. (1,1) at some respective in the half-space {x, 203.

D

$$\frac{P_{20}f + F_{laman}}{Spt(m_{2,rn})} = \frac{Spt(m) - xr}{r_{R}} \Rightarrow n_{r,n} \left(\frac{B_{r}}{h_{R}} \left(\frac{n_{r}}{r_{R}} \right) \right) = 0.$$

$$\frac{L_{0}t}{r_{R}} \Rightarrow n_{r,n} \left(\frac{B_{r}}{h_{R}} \left(\frac{n_{r}}{r_{R}} \right) \right) = 0.$$

$$\frac{L_{0}t}{r_{R}} \Rightarrow n_{r,n} \left(\frac{B_{r}}{h_{R}} \left(\frac{n_{r}}{r_{R}} \right) \right) = 0.$$

$$\frac{L_{0}t}{r_{R}} \Rightarrow n_{r,n} \left(\frac{B_{r}}{h_{R}} \left(\frac{n_{r}}{r_{R}} \right) \right) = 0.$$

$$\frac{L_{0}t}{r_{R}} \Rightarrow n_{r,n} \left(\frac{B_{r}}{r_{R}} \left(\frac{n_{r}}{r_{R}} \right) \right) = 0.$$

(2) Ushe the bargenter
$$b(r):=r^{-r}\int_{B_{r}(0)} z dv(z) \stackrel{\text{def}}{=} B_{3} \text{ construction}, spt(v) \leq \tilde{z}_{x_{1}} \ge 0$$

If $b(r)>0$ by the v strate $B(r)>0$ for some $r>0$. We will show
we are doer. So, suppose $b(r)>0$ for som $r>0$. We will show
 $|(b(r), y)| \leq C ||y||^{2}$ $\forall y \in spt(v) \land B_{2,r}(0)$
To see this, rate that $Z(b(r), y) = ||y||^{2} + (r^{2} - ||x_{r}y|^{2}) + (r^{2} - ||x||^{2})$
 $\Rightarrow 2|(b(r), y)| = |r^{-r} \int Z(z_{r}, y) dv(z)|$
 $\leq ||y||^{2} + |r^{-r} \int_{B_{r}(0)} (r^{2} - ||z|)^{2} dv(z) - r^{-r} \int_{B_{r}(0)} (r^{2} - ||z - y|^{2}) dv(z)|$
If these relations over the value space, two show when we will see
us. Hower, we have
 $Z|(b(r), y)| \leq ||y||^{2} + r^{-r} \int |r^{2} - ||z - y|^{2}| Av(z)$
(Br(0) $B_{r}(y) \cup (B_{r}(y)) D_{r}(0)$

For
$$z \in B_{r}(a) \setminus B_{r}(b)$$
, $O \leq ||_{z \to y|}^{2} - r^{2} \leq ||_{z \to y|}^{2} - ||_{z \to y|}^{2} \leq 2||_{z \to 1|}^{1}||_{y}||^{2} \leq 3r||_{y}||$
For $z \in B_{r}(b) \setminus B_{r}(a)$, $O \leq r^{2} - ||_{z \to y|}^{2} \leq ||_{z}||^{2} - ||_{z \to y|}^{2} \leq 3r||_{y}||$
So,
 $2| \langle b(r), y \rangle| \leq ||_{z}||^{2} + r^{-4} ||_{z}||_{z} (B_{r}(a) \wedge B_{r}(a))$

$$V_{e} \quad k_{e} \qquad B_{r}(a) \land B_{r}(a) \land B_{r+k_{2}k}(a) \land B_{r-k_{2}k}(a)$$

$$= 2|(25(-), y)| \leq ||y||^{2} + r^{-4} ||y|| \left((r+1|y|)^{4} - (r-1|y|)^{4} \right) \\ \leq ||y||^{2} + 3||y|| r^{-4} ((G)||y|| r^{2-1}) \leq ((G) + 1) ||y||^{2}$$

Sume
$$z_{\mu} \in Sp^{\perp}(v_{0, r_{\mu}})$$
. Thus, $r_{\mu} z_{\mu} \in Sp^{\perp}(v)$

$$= |b(r) + | \cdot L_{n} |b(r) + | \cdot L_{n} |L(r) \cdot (r_{n} + r_{n})| \cdot C ||_{\infty} ||^{2}$$

$$= |b(r) + | \cdot L_{n} r_{n} C ||_{\infty} ||^{2} = 0$$
Sing they are product in 0 blocget(b), this product in the hypothes.
B
Exactle
$$= b(r + r_{n} + r_{n} + r_{n} + r_{n})$$

$$= b(r + r_{n} + r_{n})$$

$$= b(r + r_{n} + r_{n} + r_{n})$$

$$= b(r + r_{n} + r_{n} + r_{n})$$

$$= b(r + r_{n} + r_{n} + r_{n})$$

$$= b(r + r_{n})$$

$$= b(r + r_{n} + r_{n} + r_{n})$$

$$= b(r + r_{n})$$

$$=$$

@ Ten (m, x) is weak - * comparent. (D If veTan(,,x), then vo, ReTan(,,x) VRSO.

Proofs

a) Suppose that
$$\{U_k\}_k \leq Ton(\mu, \kappa)$$
 with U_{k2} flows $M_{KJ,\beta,k}$ s.t. $V_k \rightarrow V$.
By Center demonder, \exists subsugare $j(k)$ s.t.
 $M_{X,\beta,k} \rightarrow U$.
So, cloud. Conjunctuse?
b) $U = finter M_{XJ,\beta,k}$ with $\beta_k = 0 \Rightarrow U_{0,R} = fonthere M_{XJ,RAK}$.

lem:

If
$$U \in U^{d}(R^{n})$$
, the \overline{J} a service $\{a_{k}\}_{k} \subseteq \operatorname{spt}(U)$ at a sequence of radii
 $D_{k} > 0$ st. $U_{a_{k}, D_{k}} \xrightarrow{s} H^{d} \downarrow V$ for some $V \in G(n, k)$.

ע

Prost. dregard. roth agen.

Ve have fut scaling presence tanging, but it would be nove for swith to do so as well. It does!

Proposition :

$$\frac{Proof:}{hot} \quad W_{a,1} \in Tan(m,x). \qquad \Rightarrow (V_{a,R})_{0,2a} = U_{2a,1}. \quad So, Wolds \quad us with to show that $V_{a,1} \in Tan(m,x).$$$

Litudure a distance of that notives marked conversion on Redon means in st.

$$\exists C_{nr} \text{ st. } \mu(B_{nr}) \leq C_{nr} \quad \forall N. Check Concillo's notes to see this looks cool!$$

Debe $A_{k_{i}} := \begin{cases} x \in \mathbb{R}^{2} \text{ st. } \exists v \in \mathbb{T}^{n}(x_{i}, x) \text{ and } a \in \operatorname{spt}(v) \text{ st. } d((A_{x,R}, v_{n,2}) \geq \frac{1}{k_{i}} \quad \forall R \leq \frac{1}{2} \end{cases}$
Note that $\bigcup_{k_{i}} A_{k_{i}} = \begin{cases} points when the chan of the prop is filse.}
We with $\mu(A_{k_{n}i}) = 0!$$

Hence, had we not give memorially of
$$A_{n,i}$$
. Finds we must pail at one hang gibt.
It among (Useral anomaly frame)
Let $E \in \mathbb{R}^n$, \mathbb{R}^n be dead. Then, for going μ links, $P_{\mu\nu}(E)$ is promoved.
Debut $\mathbb{R}_{k|k|} \equiv \{x \in A_{k|k} \ al. \mathbb{R}^k \in O^*(A_k, x) \le \mathbb{R}^k\}$; such that $\mu(B) = 0$.
The $\mathbb{R}_{k|k|} \equiv \{x \in A_{k|k} \ al. \mathbb{R}^k \in O^*(A_k, x) \le \mathbb{R}^k\}$; such that $\mu(B) = 0$.
Debut $\mathbb{R}_{k|k|} \equiv \{x \in A_{k|k} \ al. \mathbb{R}^k \in O^*(A_k, x) \le \mathbb{R}^k\}$; such that $\mu(B) = 0$.
Debut $\mathbb{R}_{k|k|} \equiv \{x \in A_{k|k|} \ al. \mathbb{R}^k \in O^*(A_k, x) \le \mathbb{R}^k\}$; such that $\mu(B) = 0$.
Debut $\mathbb{R}_{k|k|} \equiv \{x \in A_{k|k|} \ al. \mathbb{R}^k \in O^*(A_k, x) \le \mathbb{R}^k\}$ and $\mathbb{R}_k \in \mathbb{R}^k$.
Debut $\mathbb{R}_{k|k|} \equiv \{x \in A_{k|k|} \ al. \mathbb{R}^k \in O^*(A_k, x) \le \mathbb{R}^k\}$ and $\mathbb{R}_k \in \mathbb{R}^k$.
Debut $\mathbb{R}_{k|k|} \equiv \{x \in \mathbb{R}^k \in \mathbb{R}^k\}$, the matrix having by \mathbb{A} $\{(a_k)^n\}$. So the obset is considered in the second set \mathbb{R}^k obset is considered in the second set \mathbb{R}^k .
Debut $\mathbb{R}_k = \mathbb{R}^k \times \mathbb{R}^k$ but \mathbb{R}^k considered in the second set \mathbb{R}^k .
Note that \mathbb{R}^k is a free matrix that second set \mathbb{R}^k .
Note that $\mathcal{H}_{k|k|} \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
Note that $\mathcal{H}_{k|k|} \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
Note that $\mathcal{H}_{k|k|} \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(0) \ r_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(1) \ x \in \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(2) \ r_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(3) \ x_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(4) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(4) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(4) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(4) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(4) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(4) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(5) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(6) \ \pi_k \oplus \mathbb{R}^k \oplus \mathbb{R}^k$.
 $(6) \ \pi_k \oplus \mathbb{R}^k$, $\mathbb{R}^k \oplus \mathbb{R}^k$.
 $(6) \ \pi_k \oplus \mathbb{R}^k$.

10131-

Prof: (MM Rectivition Criteron) let in be Roden and KERV s.t. (a) OL OK (n,x) & OK+ (n,x) Las for n-al. x. (b) Ten (m,x) = {cH*LV · cert, VeG(n,k)} Chu Ton(n, x) is weak to cloud, O c c c (x) ≤ c ≤ c h (x) c or Thin, in is realistable. grant the product of mount Remark: OLOH (M,X) & OKM (M,X) 200 = M= f HKLE, fel'(D) nonegetue So, for U-a.e. × (and so pe-a.e. ×), $\cdot \ \Theta_{*}^{k}(\mu, x) = f(x) \ \Theta_{*}^{k}(\nu, x)$ $\cdot \ \theta^{k*}(\mu, x) = f(x) \ \theta^{k*}(u, x)$ · Ton (m,x) = f(x) Ten (v,x) Vithout loss of generality we my suppose in= HKLE and ETS conpact!

Prop: (Monstreal, Hen Mattile)

Let ken, kEN, EER compart with HK(E) Loo. If E has the weak linew approximation property at 174-a.e. x, thes E is realisable.

Proof: By the above remark, if u= 7th/E has the WLAP, the so does m. So, we may price wolde that if E is predy unredict table compact, and has the what , then E has measure O. final up prof for here

Lema: If E purely unredistrate up WLAP at 774-a.e. x. Hun HK(Pr(E)) = O for EVERY kiden liver subspace V. Cent use BF. Josh Ludds a.e. on G(n, h.) (A) perhaps we red OF mond? <u>Proof of leme:</u> Fix =>0 and VeG(n,k). Skel:] a compact CSE and

Motinton: each tagent means has to positive ro, 3, 8 s.t. be got of verticely since other en A projects when for much more! O HK(ELC)LE

(souther Ton & C(R") where)

@ 44(EAB,G) 2 Srk VacC, rero} love dersity bundel a.e.

3 Vac, Vriro, 3 a plane WeG(n,k) st.

C A Br (2) 5 22: dist (2, a+ W) 53 - 3

(32622E

To do this, find C' s.t. @ holds and $H^{k}(E \setminus C') \in \frac{e}{2}$, when an be done sure the lower deals is bounded below; the gave S. By (LA), for a fixed $Y = \delta e$, find $C'' \subseteq C'$ with $H^{k}(E \setminus C'') \in e$. Then, $H^{k}(E \wedge B_{r}(w) \setminus \{z: det(2, x+W) \leq \delta r^{2}\} \leq \delta r^{k}$ Unc2ro. $B_{k}(z, r)$

Suppose BLOC that $dxt(y,z+W) \ge \gamma$ and $y \in B_r(x) \land C''$. Then, $H^k(E \land B_{r(2-2)}(y)) \le \delta((2-2)) \rightarrow^k$ by @ size $C'' \le C'$.

 $S((3-8)-)^{k} \leq S((1+3)-)^{k}$ since $S(3-8)^{k} \leq S$

Inposiny ...

ve get 3.

From (A), we get size Webberger be webberger in a by our lemm,
$$(W^{L}(R_{n}(\delta)) \approx 0)$$
.
Fix an rest sull early that (A) (B) (C) is U.
Here by (A) \R_ (GAB₁₀ (A)
Here by (A) \R_ (A) \R_ (A)
Here by (A) \R_ (A)
Here by (A) \R_ (A) \R_ (A)
Here by (A) \R_ (A)
Here by (A) \R_ (A) \R_ (A)
Here by (A)
He

Let's zoon out. Recall we wish to prove BMP.

Theory (BMP) Let 1 + 0 be haden on TR' with a density existing, positive, and finite re-a.e. Τω, D LEN (2) in is a - netifiele Under these assumptions, we have seen the following for m-a.e. X Datak for k integer D Tan $(\mu, x) \in \mathcal{U}^{k}(\mathbb{R}^{n})$ a plane
{ 14*LV: VeG(n,k)} With the following them, we would complete BMP. Therm (Press) It all targent mannes are uniform and one targent mensue is HuLV for VEG(n,k), then is realisable. (i.e. @r@=rect) Proof of Press Deh: The target masse at mking of a Reden in is Ton (n, a) = v*lm 10, r; Prop VN SUK(IR") uniton, Ton(n, a) = \$ \$ is unique! Prop Z JESO S.L. if m and 3 are as in Prop I and $mn \int dxt^{2}(x, v) d\xi(x) LE,$ VeG(n, e) B.

then z = HhLV for some V.

Prop 3

It is and it are as in Prop 1 and it & C (R), then u= E.

Using there, we will reason in the following my: detree $F(m) := \min \int \psi(z)^2 dut^2(z, V) dm$ for some $\psi \ge \Pi_{B_1}$ $\frac{1}{2} \int \psi = \int \psi$ They, F is centions since no of Lipselitz. Defer $f(r) := F(\mu_{o,r})$. If $\mu_{o,r_{i}} \stackrel{s}{\to} 0$, μ_{in} len f(r) = F(v)Blow - Dom Procedure 5 the Let 500 be as given by Prop 2. Ve know limit f(r)=0. By Prop 2, we expect losso $f(r) \ge E$. Fix $r_{i} \downarrow 0$ and $s_{i} \downarrow 0$ sol. $f(s_{i}) \ge e$ and $f(r_{i}) \rightarrow 0$. By prehig subsequences, ne may suppose WOLOG signing. Then, 30; s.t. f(oj)= e and fie on [oj, rj] Up to subicume, Mo, o; "U, en at a tiget men sure F(v,) >0 Mo, n i Uz a fersut mure Lot 3= Tan (0, 0). The, 3{a;3; st. s; eloj, r;] s.1. So, $\frac{\partial_{j}}{\int_{1}} \rightarrow 0$ $M_{0,A_j} \stackrel{q}{\rightarrow} \stackrel{q}{\epsilon}, and so F(\frac{q}{\epsilon}) = \lim_{j \to \infty} f(A_j) \leq \epsilon$ By Prop Z, $\frac{2}{5}$ is flat. So, by Prop 3, since U's tanget at a massue is flat, then $U_1 = \frac{2}{5} \Rightarrow U_1$ is flat. ם

So, to prove Preise we must prove these 3 props! Ment the i

F:11 m 11/7

11/9-

Theorem: (Taget at a 13 unau) prove real prove to arebots to ere manuals at manits let me Um (Rm). Then, F! Ze Um (Rm) c.t. with Mor = 3 Det. when SLO, we can't Defre Me generalized monets as son holds $b_{K,s}(u_1,...,u_k) = (2s)^k \left(\int e^{-s l_2 l_2^2} d_{\mu}(z) \right)^{-1} \int (2z,u_1) \cdots (2z,u_k) e^{-s l_2 l_2^2} d_{\mu}(z)$ Remerk: Theorer above to him bus ensk and is finde Consider the following Taylor expresses of bris () a) $|b_{k,s}(u_{1,...,s}u_{k})| \leq C \frac{2^{k} k^{k/2}}{k!} s^{k/2} |u_{1}| \cdots |u_{k}|$ 0 c) $\forall a_{e} \in AV$, $b_{k,s} = \sum_{\substack{j=1 \\ s=1}}^{a} \frac{s^{j} b_{k}(s)}{k!} + O(s^{a}) \quad for s \downarrow O$ (co, $b_{k,s} \approx C^{a}$) d) $b_{k} = O \quad ;f \quad k > 2;$ e) $\sum_{k=1}^{2n} b_k^{(n)}(x) = |x|^{2n}$ $\forall a$ and all $x \in q \neq (n)$ (som our fight expanses) of $b_{n,n}$ and $c_{n,n}$ $e^{s|x|^2}$ is express Detre b:= bis e bis e bis e hers e Her (X, R) = X*

We down that by
$$e^{CA}$$
. For an $3e^{CA}$ is the $3e^{-A}$ is the $1e^{-A}$ is the $1e^{-A}$ is $1e^{-A}$ i

As
$$A_0$$
 is the sheatly, it is purched to the real-analytic purse.
Let $\widehat{\Omega}_S = \widehat{P}_{10} \circ A_S^{-1}$, and as \widehat{O}_{1} is real-analytic. Cleach $\widehat{O}_S = \widehat{O}_S$.
As is the sheatly on V_1 is the in A_1^{-1} . We torks $\widehat{O}_S = 0$ on \overline{F}_S .
As $\overline{F}_S : A_g(V^{-1})_{-}$ are methoded A_2^{-1} maps $A_S(V^{-1}) \Rightarrow V^{-1}$ there.
Note that on V_{21} .
 $\overline{S}^{-1}A_1 = s^{-1}\widehat{P}_S + s^{-(s+1)}\widehat{P}_{S1} + \dots + s^{-1}\widehat{P}_s = A_S$.
So \widehat{O}_0 is \mathbb{C}^n , and so be is an end!?
Theorem:
Let $\mu \in \mathcal{U}^{-1}(\mathbb{R}^n)$ and S be the height of so. Thus, $\exists e(n_2n) \in A_S$.
 $\int_{\overline{S}_1} d_0h^2(x_2, V) dS = e \Rightarrow S = W^{-1}V$.
Proof: Four $n_2 Z_1$, we call show $\varepsilon = \infty$. Lie will not the fast
that $\frac{1}{2} \int_{\overline{O}_1} \frac{1}{2} \int_{\overline{S}_1} \frac{1}{2} \int_{\overline{O}_1} \frac{1}{2} \int_{\overline{O}_2} \frac{1}{2} \int_{\overline{O}_1} \frac{1}{2} \int_{\overline{O}_1} \frac{1}{2} \int_{\overline{O}_1} \frac{1}{2} \int_{\overline{O}_2} \frac{1}{2} \int_{\overline{O}_2} \frac{1}{2} \int_{\overline{O}_1} \frac{1$

So, the sum ampletion holds, i.e.

$$\int_{C} -\frac{2\pi i \sqrt{2}}{(2\pi)^{3}} \langle \delta_{2\pi} + \delta_{2\pi} (x) \rangle^{4} \langle \delta_{2\pi} + \delta_{2\pi} + \delta_{2\pi} (x) \rangle^{4} \langle \delta_{2\pi} + \delta_{2\pi} + \delta_{2\pi} + \delta_{2\pi} \rangle^{4} \langle \delta_{2\pi} + \delta_{2\pi} \rangle^{4} \langle \delta_{2\pi} + \delta_{2\pi} + \delta_{2\pi} \rangle^{4} \langle \delta_{2\pi} + \delta_{2\pi} \rangle^{4} \langle \delta_{2\pi} + \delta_{2\pi} + \delta_{2\pi} \rangle^{4} \langle \delta_{2\pi} + \delta_{2\pi} + \delta_{2\pi} \rangle^{4} \langle \delta_{2\pi} + \delta_$$

We know a monorer of the - it's V! In other muds, $\min_{W} \int e^{-1\varepsilon l^2} dy t^2(z, W) d\xi(z) = tr(h_1, LV^2)$ By assumption, min Spligt2(2, W) of 7(2) & E $\frac{Clem:}{VS>0}, \exists \epsilon \text{ snall enough that } B_{S}(J) \operatorname{spt}(3) \neq 0$ $\forall v \epsilon B, \Lambda V.$ $\frac{7_{5}-5}{2}$ $\frac{Aregmente}{VS>0}, \quad let \epsilon \geq \frac{1}{5} \quad for the \frac{7}{5}; \quad contradedy \quad the statuet.$ contedoety 3=H"LV. EB, NV Fix Sio. By the clan, Fixespt (3) s.t. Ix-emics where e, ..., en, ... ore eigeneeters of b2,1. Then, ai+ (m-1) + Et- br, = ~ Vien = (d;-1) ≤ (m-1) (1-dn) ∀; cm We also know disden Vien. Suppose Burde den el. $T_{un},$ n $b_{2,1}(x^2) = \sum_{i=1}^{n} \alpha_i (x,e_i)^2 = |x|^2$ $= 0 = \sum_{i=1}^{1} (a_i - 1) \langle x_i, e_i \rangle^2 \sum_{a_i < 1} (a_i - 1) \langle x_i, e_i \rangle^2$ ≤ (m-1) (1-an) $\frac{p_{1}^{-1}}{2}$ (x,e;)² + (dn-1) (x,en)² = $(m-1)(1-a_n) \underbrace{\xi_1}^{m} (x-e_m,e_1)^2 - (1-a_n)((e_n,x-e_n) + (e_n,e_m))^2$ $\underbrace{\xi_1}^{m} \underbrace{\xi_2}^{m} (c_n, c_n) \underbrace{\xi_2}^{m} (c_n, c_n) + (e_n,e_m)^2$ $(1-4n)(1-4n)(n-1)s^{2}-(1-4n)(1-s)^{2}$ $= (1 - d_{n}) (m - 0^{2} \delta^{2} - (1 - \delta)^{2})$ For & snell erost, this expression is negative. Contreduction. Taking the E smill enough for the claim, lenn procen. The leme and the fact to (be,)= n implies dis = { i sen Letting V be the eigenprese spaned by the 1-eigenvectors, $b_{2}^{(i)}(x^{2}) = |P_{y}(x)|^{2}$

Π

By (ii) from above lenne, $spt(3) \subseteq \{x: |P_r(x)|^2 = |x|^2\} = 1/2$ Since $\{x\}$ is supported on an *m*-dimensional space, it's flat.

and so

11/1n

We needed the 3 propositions below for nEUM(TT)

✓ <u>Prop Ai</u> Ja unique tayent 3 to n at co.

✓ <u>Prop B:</u> J ∈(m, n) st. 3 13 flat if m ∈2 or if

$$\begin{array}{ll}
 & mn & \int dst^2(x, v) d\xi(x) \leq \epsilon(n, n) \\
 & v \in G(n, m) & R.
\end{array}$$

Prop C: 3 flet = In flet. (black magic)

F:11 m 11/28

Reifenberg's Topological Disc Theorem

Leon Simon*

Here $B_{\rho} = \{x \in \mathbf{R}^n : |x| \le \rho\}$ and $B_{\rho}(y) = \{x \in \mathbf{R}^n : |x - y| \le \rho\}.$

First we introduce Reifenberg's ϵ -approximation property for subsets of \mathbf{R}^n .

Definition: If $\epsilon > 0$ and if S is a closed subset of the ball B_2 , we say that S, containing 0, has the *m*-dimensional ϵ -Reifenberg approximation property in B_1 if for each $y \in S \cap B_1$ and for each $\rho \in (0, 1]$, there is an *m*-dimensional subspace $L_{y,\rho}$ such that $d_{\mathcal{H}}(S \cap B_{\rho}(y), y + L_{y,\rho} \cap B_{\rho}(y)) < \epsilon$.

Here $d_{\mathcal{H}}(A_1, A_2)$ is the Hausdorff distance between A_1, A_2 ; thus $d_{\mathcal{H}}(A_1, A_2) = \inf\{\epsilon > 0 : A_1 \subset B_{\epsilon}(A_2) \& A_2 \subset B_{\epsilon}(A_1)\}.$

Now we can state the main theorem.

Theorem (Reifenberg's disc theorem). There is a constant $\epsilon = \epsilon(n) > 0$ such that if S, containing 0, is a closed subset of the ball B_2 which satisfies the above ϵ -Reifenberg approximation property in B_1 , then $B_1 \cap S$ is homeomorphic to the closed unit ball in \mathbb{R}^m .

In fact, there is a closed subset $M \subset \mathbf{R}^n$ such that $M \cap B_1 = S \cap B_1$ and such that is homeomorphic to a subspace T_0 of \mathbf{R}^n via a homeomorphism $\tau : T_0 \to M$ with $|\tau(x) - x| \leq C(n)\epsilon$ for each $x \in T_0$, and $\tau(x) = x$ for each $x \in T_0 \setminus B_2$. For any given $\alpha \in (0, 1)$ we can additionally arrange that τ and τ^{-1} are Hölder continuous with exponent α provided S satisfies the ϵ -Reifenberg condition with suitable $\epsilon = \epsilon(n, \alpha)$.

We'll need the following lemma in the proof of the above theorem.

Lemma 1 (Extension Lemma). Let ϵ , r > 0, let y_1, \ldots, y_Q be a finite collection of points in \mathbb{R}^n with $|y_i - y_k| \ge r$ for each $i \ne k$, and assume that $f : \{y_1, \ldots, y_Q\} \to \mathbb{R}^N$ is given such that $|f(y_i) - f(y_k)| \le \epsilon$ whenever $|y_i - y_k| \le 6r$. Then there is an extension $\overline{f} : \bigcup_i B_{2r}(y_i) \to \mathbb{R}^N$ such that $|\nabla \overline{f}| \le C(n)\epsilon r^{-1}$ and $|\overline{f}(x) - f(y_i)| \le C(n)\epsilon$ for $x \in B_{2r}(y_i)$, $i = 1, \ldots, Q$.

Furthermore there is $\epsilon = \epsilon(n) > 0$ such that if $N = n^2$ (where \mathbf{R}^{n^2} is identified with the set of $n \times n$ matrices in the usual way) and if each $f(y_i)$ is the matrix of an orthogonal projection of \mathbf{R}^n onto some m-dimensional subspace $L_i \subset \mathbf{R}^n$, then we can

^{*}Expository lecture at Universität Tübingen, May '96; Research partially supported by NSF grant DMS-9504456 at Stanford University

L. Simon

choose the extension \overline{f} such that each $\overline{f}(x)$ is the matrix of an orthogonal projection of \mathbb{R}^n onto some m-dimensional subspace L_x .

Proof: The proof uses a partition of unity $\{\psi_j\}$ for $\cup_i B_{2r}(y_i)$ of special type. Indeed we claim that there is a partition of unity for $\cup_i B_{2r}(y_i)$ with $\psi_i \in C_c^{\infty}(\mathbf{R}^n)$, $\psi_i \equiv 0$ outside $B_{3r}(y_i)$, $\psi_i(y_i) = 1$, and $\sup |\nabla \psi_i| \leq C(n)r^{-1}$.

We see this as follows: first let ψ^0 be a $C^{\infty}(\mathbf{R}^n)$ function with $\psi^0(x) \equiv 1$ for $|x| < \frac{1}{3}$, $0 < \psi^0(x) < 1$ for $<\frac{1}{3}|x| \le \frac{5}{2}$, and $\psi^0(x) \equiv 0$ for $|x| \ge \frac{5}{2}$. For each $i = 1, \ldots, Q$ let $\psi_i^0(x) = \psi^0(\frac{x-y_i}{r}), \ \widetilde{\psi}_i^0(x) = \psi_i^0 \prod_{k \neq i} (1 - \psi_k^0(x)), \ \text{and} \ \psi_i(x) = \frac{\widetilde{\psi}_i^0(x)}{\sum_k \widetilde{\psi}_k^0(x)}$. This evidently gives a partition of unity with the stated properties.

It is now straightforward to check that

$$\overline{f}(x) = \sum_{i=1}^{Q} \psi_i(x) f(y_i).$$

is a suitable extension.

For the second part of the lemma we recall that the orthogonal projections onto m-dimensional subspaces of \mathbf{R}^n form a smooth (in fact real-analytic) compact submanifold \mathcal{P} of \mathbf{R}^{n^2} , and hence there is a $\delta = \delta(n) > 0$ such that there is a smooth nearest-point projection map Ψ of the δ -neighbourhood \mathcal{N}_{δ} of \mathcal{S} onto \mathcal{S} .

Now by the first part of the lemma we have an extension \overline{f}^0 such that $|f(y_i) - \overline{f}^0(x)| \le C(n)\epsilon$ for each $x \in B_{2r}(y_i)$; but by definition $f(y_i) \in \mathcal{S}$, so this means that if ϵ is small enough (depending only on n) we have $\overline{f}^0(x) \in \mathcal{N}_{\delta/2}$ and hence we can define $\overline{f} = \Psi \circ \overline{f}^0$. Evidently then \overline{f} has the correct properties.

The second lemma involves a simple observation about the subspaces $L_{y,\rho}$ appearing in the ϵ -Reifenberg condition; in particular it shows that these must vary quite slowly (up to tilts of order ϵ) as y and ρ vary.

Lemma 2. If $\epsilon > 0$ and if S satisfies the ϵ -Reifenberg condition above, then $||L_{y_1,\sigma} - L_{y_2,\rho}|| \leq 32\epsilon$ and $dist(y_1, y_2 + L_{y_2,\rho}) \leq 32\epsilon\rho$ whenever $y_1, y_2 \in S \cap B_1$ and $0 < \frac{\rho}{8} \leq \sigma \leq \rho \leq 1$.

The proof, which involves only the definition of the ϵ -Reifenberg condition and the triangle inequality for $d_{\mathcal{H}}$, is left as an exercise for the reader.

Finally, we need the following "squash lemma":

Lemma 3 ("Squash Lemma"). There is a constant $\epsilon_0 = \epsilon_0(n)$ such that the following holds. If $\epsilon \in (0, \epsilon_0]$, $\rho > 0$, L is an m-dimensional subspace of \mathbf{R}^n ,

$$\Phi(x) = p_L(x) + e(x), \qquad x \in B_{3\rho},$$

where p_L is orthogonal projection onto L and $\rho^{-1}|e(x)| + |\nabla e(x)| \le \epsilon$ for all $x \in B_{3\rho}$, and if

$$G = \{ x + g(x) : x \in B_{3\rho} \cap L \}$$

is the graph of a C^1 function $g : B_{3\rho} \cap L \to L^{\perp}$ with $\rho^{-1}|g(x)| + |\nabla g(x)| \leq 1$ at each point x of $B_{3\rho} \cap L$, then $\Phi(G \cap B_{3\rho})$ is the graph of a C^1 -function $\tilde{g} : U \to L^{\perp}$ over some domain U with $B_{11\rho/4} \cap L \subset U \subset L$ and with $\rho^{-1}|\tilde{g}| + |\nabla \tilde{g}(x)| \leq 4\epsilon$ on $B_{11\rho/4} \cap L$.

Proof of the squash lemma: All hypotheses are written in "scale invariant" form, so there is no loss of generality in taking $\rho = 1$, which we do. Now by definition

(1)
$$\Phi(x+g(x)) = x + e(x+g(x))$$

for $x \in B_2 \cap L$, and, if h(x) = e(x + g(x)), by the chain rule we have $|d_xh| \leq 2\epsilon$ at each point x of $L \cap B_2$. Now we can write $h = h^{\perp} + h^T$, where $h^{\perp} = p_L^{\perp} \circ h$ and $h^T = p_L \circ h$. Then (1) says

(2)
$$\Phi(x+g(x)) = x + h^T(x) + h^{\perp}(x), \quad x \in B_2 \cap L.$$

Now let

$$Q(x) = x + h^T(x), \quad x \in B_2 \cap L,$$

and observe that

$$|dQ - \mathrm{id}| \le 2\epsilon, \quad |Q - \mathrm{id}| \le \epsilon \quad \mathrm{on} \ B_2 \cap L,$$

and hence, for small enough $\epsilon \in (0, \frac{1}{6})$, by the inverse function theorem Q is a diffeomorphism of $B_2 \cap L$ onto a subset U where $L \cap B_{11/4} \subset U \subset L$ and $|dQ^{-1} - \mathrm{id}| \leq 2\epsilon(1+2\epsilon) \leq 3\epsilon$. Thus (2) can be written

$$\Phi(x+g(x)) = Q(x) + \widetilde{g}(Q(x)), \qquad x \in B_{11/4} \cap L,$$

where $\tilde{g} = p_L^{\perp} \circ h \circ Q^{-1}$ on U, and, since $|dh \circ Q^{-1}| \leq 2\epsilon(1+3\epsilon) \leq 3\epsilon$, we have $|d\tilde{g}| \leq 3\epsilon$ and the proof is complete.

Proof of the Reifenberg disc theorem: The proof is based on an inductive procedure, making successive approximations to $S_* = S \cap B_1$ by C^{∞} embedded submanifolds.

Let $T_0 = L_{0,1}$ (which without loss of generality we could take to be $\mathbb{R}^m \times \{0\}$) be an *m*-dimensional subspace such that $d_{\mathcal{H}}(S \cap B_1, T_0 \cap B_1) < \epsilon$, and let $r_j = \left(\frac{1}{8}\right)^j$, $j = 0, 1, \ldots$. The quantity r_j is going the be the "scale" used at the jth step of the inductive process.

We in fact define maps $\sigma_j : \mathbf{R}^n \to \mathbf{R}^n$ and subsets $M_j \subset \mathbf{R}^n$ for $j = 0, 1, \ldots$, as follows:

For $j \geq 1$, let $B_{r_j/2}(y_{ji})$, $i = 1, \ldots, Q_j$, be a maximal pairwise disjoint collection of balls centered in $S_* = B_1 \cap S$. Then evidently $S_* \subset \bigcup_{i=1}^{Q_j} B_{r_j}(y_{ji})$ and also dist $(S_*, \mathbf{R}^n \setminus (\bigcup_{i=1}^{Q_j} B_{3r_j/2}(y_{ji}))) \geq r_j/2$. When j = 0 we take $Q_0 = 1$, $y_{01} = 0$, and $M_0 = T_0$, $\sigma_0 =$ the orthogonal projection of \mathbf{R}^n onto T_0 . For $j \ge 1$ and for each $i = 1, \ldots, Q_j$ let L_{ji} be one of the *m*-dimensional subspaces $L_{y_{ii},8r_j}$ (corresponding to $y = y_{ji}$ and $\rho = 8r_j$ in the ϵ -Reifenberg condition). Thus

 $d_{\mathcal{H}}(S \cap B_{8r_j}(y_{ji}), (y_{ji} + L_{ji}) \cap B_{8r_j}(y_{ji})) < 8\epsilon r_j, \quad i = 1, \dots, Q_j.$

For $j \geq 1$ we have by Lemma 2 that

(1)
$$d_{\mathcal{H}}((y_{ji} + L_{ji}) \cap B_{r_i}(y_{ji}), (y_{\ell k} + L_{\ell k}) \cap B_{r_i}(y_{ji})) \le 264\epsilon r_j$$

for any pair y_{ji} , $y_{\ell k}$ with $|y_{ji} - y_{\ell k}| \leq 6r_{j-1}$, where either $\ell = j - 1$ and $k \in \{1, \ldots, Q_{j-1}\}$ or $\ell = j$ and $k \in \{1, \ldots, Q_j\}$. Notice of course that (1) implies

(2)
$$|p_{ji} - p_{\ell k}| < 264\epsilon, \quad \text{dist}(y_{ji}, y_{\ell k} + L_{\ell k}) < 264\epsilon r_j$$

for such j, ℓ, i, k , where p_{ji} denotes the orthogonal projection of \mathbf{R}^n onto L_{ji} .

In view of the inequalities (2) (together with the fact that $|y_{ji} - y_{jk}| \ge r_j$ for each $i \ne k$), we can apply the extension lemma with $r = r_j$, with y_{ji} in place of y_i and with the orthogonal projection p_{ji} in place of $f(y_i)$, to give orthogonal projections $p_{j,x}$ of \mathbf{R}^n onto *m*-dimensional subspaces $L_{j,x}$ such that $p_{j,x} = p_{ji}$ when $x = y_{ji}$ and

(3)
$$\left| \frac{\partial p_{j,x}}{\partial x^{\ell}} \right| \leq \frac{C(n)\epsilon}{r_j}, \quad x \in \bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji}), \ \ell = 1, \dots, n,$$
$$|p_{j,x} - p_{ji}| \leq C(n)\epsilon, \qquad x \in B_{2r_j}(y_{ji}), \ i = 1, \dots, Q_j.$$

Next let ψ_{ji} be a partition of unity for $\bigcup_{i=1}^{Q_j} B_{3r_j/2}(y_{ji})$ such that $|\nabla \psi_{ji}| \leq C(n)/r_j$ and support $\psi_{ji} \subset B_{2r_j}(y_{ji})$ for each $i = 1, \ldots, Q_j$. (This is constructed in precisely the same way as our partition of unity for the extension lemma, except that we start with a smooth function φ with support in $B_2(0)$ rather than in $B_3(0)$ as before; actually the construction can be simplified here because we do not need $\psi_{ji}(y_{ji}) = 1$ and $\psi_{jk}(y_{ji}) = 0$ for $i \neq k$.)

Now we can define σ_i and M_j for $j \ge 1$. First we define ¹

(4)
$$\sigma_j(x) = x - \sum_{i=1}^{Q_j} \psi_{ji}(x) p_{j,x}^{\perp}(x - y_{ji}), \qquad x \in \mathbf{R}^n$$

and then we take

(5)
$$M_j = \sigma_j(M_{j-1}).$$

First note that, since $\sigma_j(x) \equiv x$ for $x \in \mathbf{R}^n \setminus (\bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji}))$, we have

(6)
$$M_j \setminus (\bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji})) = M_{j-1} \setminus (\bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji}))$$

¹of course it doesn't matter that the $p_{j,x}$ are not defined outside $\bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji})$ because the ψ_{ji} vanish identically there. (If you wish to be pedantic, you can define e.g. $p_{j,x}$ to be the orthogonal projection onto T_0 for $x \in \mathbf{R}^n \setminus (\bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji}))$.)

for each $j \geq 1$.

We claim that each M_k is a properly embedded C^{∞} *m*-dimensional submanifold of \mathbf{R}^n and that for each $k \geq 1$ and each $i \in \{1, \ldots, Q_k\}$

(7)
$$M_k \cap B_{2r_k}(y_{ki}) = \operatorname{graph} g_{ki}$$
$$\sup |\nabla g_{ki}| \le \gamma \,\epsilon, \qquad \sup |g_{ki}| \le \gamma \,\epsilon \, r_k.$$

where $\gamma \geq 1$ is a constant (to be specified as a function of *n* alone) and where g_{ki} is a C^{∞} function over a domain in the affine space $y_{ki} + L_{ki}$ with values normal to L_{ki} . We want to inductively to check this. Observe that if $j \geq 1$ and if M_{j-1} is a smooth embedded submanifold satisfying (7) with k = j - 1, then by the definition (4) we have

(8)
$$\sigma_j(x) - x = -\sum_{k=1}^{Q_j} \psi_j(x) p_{j,x}^{\perp}(x - y_{jk}) \\ = -\sum_{k=1}^{Q_j} \psi_j(x) p_{jk}^{\perp}(x - y_{jk}) + \sum_{k=1}^{Q_j} \psi_j(x) (p_{jk}^{\perp} - p_{j,x}^{\perp})(x - y_{jk}).$$

Now for each $i \in \{1, ..., Q_j\}$, we can pick an $i_0 \in \{1, ..., Q_{j-1}\}$ such that $y_{ji} \in B_{r_{j-1}}(y_{j-1i_0})$. Then, assuming that (7) holds with k = j - 1 and with some constant $\gamma = \gamma_{j-1}$, for $x \in B_{2r_j}(y_{ji}) \cap M_{j-1}(\subset B_{2r_{j-1}}(y_{j-1i_0}) \cap M_{j-1})$ we can write $x = \xi + g_{j-1}(\xi)$, with $g_{j-1}(\xi) \in L_{j-1i_0}^{\perp}$, $\xi \in (y_{j-1i_0} + L_{j-1i_0}) \cap B_{2r_{j-1}}(y_{j-1i_0})$ and with $r_{j-1}^{-1}|g_{j-1}(\xi)| + |\nabla g_{j-1}(\xi)| \le \gamma_{j-1}\epsilon$. Then we have, for each $k \in \{1, \ldots, Q_j\}$,

$$p_{jk}^{\perp}(x-y_{jk}) = p_{j-1i_0}^{\perp}(\xi+g_{j-1}(\xi)-y_{j-1i_0}) + p_{j-1i_0}^{\perp}(y_{jk}-y_{j-1i_0}) + (p_{jk}^{\perp}-p_{j-1i_0}^{\perp})(\xi+g_{j-1}(\xi)-y_{jk}),$$

and using (2), (3) together with the fact that $p_{j-1i_0}^{\perp}(\xi - y_{j-1i_0}) = 0$ (because $\xi - y_{j-1i_0} \in L_{j-1i_0}$), we have clearly then that

$$|p_{jk}^{\perp}(x-y_{jk})| \le C(n)\epsilon(1+\gamma_{j-1})r_j, \quad x \in B_{2r_j}(y_{ji}) \cap M_{j-1}, \quad |y_{jk}-y_{ji}| \le 6r_j.$$

Using this in (8), and keeping in mind that for any $i \in \{1, \ldots, Q_j\}$ and for any $x \in B_{2r_j}(y_{ji})$, we have that at most C(n) terms in the sums on the right of (8) can be non-zero, and that these terms correspond to the indices k such that $|y_{ji} - y_{jk}| \leq 6r_j$, hence, using also (3), we again deduce from (8) that

(9)
$$|\sigma_j(x) - x| \le C(n)(1 + \gamma_{j-1})\epsilon r_j, \quad x \in \bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji}) \cap M_{j-1}.$$

By first differentiating in (8) and using similar considerations on the right side, we also conclude

(9)'
$$\sup_{x \in M_{j-1}} |\nabla'(\sigma_j(x) - x)| \le C(n)(1 + \gamma_{j-1})\epsilon r_j,$$

where ∇' denotes gradient taken on the submanifold M_{j-1} .

L. Simon

We refer to (9) and (9)' subsequently as "the coarse estimates" for $|\sigma_j(x)-x|$, because, although useful, they are insufficient in themselves to complete that inductive proof that there is a fixed constant $\gamma = \gamma(n)$ such that (7) holds for all k; indeed after k applications of this coarse inequality, we will only have established that (7) holds with $\gamma = C(n)^k$.

Now assume that $j \ge 2$ and that (7) holds for k = 1, ..., j - 1, take an arbitrary $i_0 \in \{1, ..., Q_j\}$, and write $y_0 = y_{ji_0}$, $p_0 = p_{ji_0}$, and $L_0 = L_{ji_0}$. Since $\sum_{i=1}^{Q_j} \psi_{ji} \equiv 1$ in $U_j \equiv \bigcup_{i=1}^{Q_j} B_{3r_j/2}(y_{ji})$ we can rearrange the defining expression for σ_j to give

(10)
$$\sigma_j(x) = y_0 + p_0(x - y_0) + e(x), \quad x \in U_j,$$

where e is given by

(11)
$$e(x) \equiv \sum_{i=1}^{Q_j} \psi_{ji}(x) p_0^{\perp}(y_{ji} - y_0) - \sum_{i=1}^{Q_j} \psi_{ji}(x) (p_{j,x}^{\perp} - p_0^{\perp})(x - y_{ji}), \quad x \in \mathbf{R}^n.$$

Now observe that by (2) and (3) we have $|p_{j,x}-p_0| \leq C(n)\epsilon r_j$ for $x \in B_{6r_j}(y_0)$. Using additionally the first inequality in (3) and the fact that $|\nabla \psi_{ji}| \leq C(n)/r_j$, it then follows easily that

(12)
$$r_j^{-1}|e(x)| + |\nabla e(x)| \le C(n)\epsilon, \text{ if } x \in B_{3r_j/2}(y_0),$$

where C(n) is a fixed constant determined by n alone (and which is independent of any properties of M_{j-1} ; in particular it is independent of whatever constant γ appears in (7)).

But now we can apply the Squash Lemma with $\tilde{\sigma}_j(x) \equiv \sigma_j(x+y_0) - y_0$ in place of Φ , $2r_j$ in place of ρ , and $C(n)\epsilon$ in place of ϵ . Assuming that (7) holds with γ , ϵ such that $\gamma \epsilon \leq \frac{1}{2}$, we thus conclude

(13)
$$\sigma_j(M_{j-1} \cap B_{3r_j/2}(y_0)) = G_j,$$

where $G_j = \{x + g_j(x) : x \in \Omega_j\}$ is the graph of a C^{∞} function g_j defined over a domain Ω_j contained in the affine space $y_0 + L_0$ with $B_{11r_j/8}(y_0) \cap (y_0 + L_0) \subset \Omega_j$ and with

(14)
$$r_j^{-1}|g_j| + |\nabla g_j| \le C(n)\epsilon, \quad x \in B_{11r_j/8}(y_0) \cap (y_0 + L_0),$$

with C(n) not depending on γ . Of course since $|\sigma_j(x) - x| < C(n)\gamma\epsilon$ (by (8)), we thus have, so long as $C(n)\gamma\epsilon \leq \frac{1}{32}$ that $\sigma_j(M_{j-1} \cap B_{3r_j/2}(y_0)) \supset \sigma_j(M_{j-1}) \cap B_{11r_j/8}(y_0)$, and hence (13) and (14) imply

(15)
$$M_j \cap B_{11r_j/8}(y_0)) = G_j,$$

with G_j still as in (14).

Now we actually need to establish a result like this over the ball $B_{2r_j}(y_0)$ rather than merely over $B_{11r_j/8}(y_0)$; to achieve this, we observe that each y_{ji} is contained in one of the balls $B_{r_{j-1}}(y_{j-1i_0})$ for some $i_0 \in \{1, \ldots, Q_{j-1}\}$, and so $B_{r_{j-1}/4}(y_{ji}) \subset$ $B_{5r_{j-1}/4}(y_{j-1i_0})$. Also, by using the above argument with j-1 in place of j and with i_0 in place of i, we deduce that

(15)'
$$M_{j-1} \cap B_{11r_{j-1}/8}(y_{j-1i_0})) = G_{j-1},$$

where $G_{j-1} = \{x+g_{j-1}(x) : x \in \Omega_{j-1}\}$ is the graph of a C^{∞} function g_{j-1} defined over a domain Ω_{j-1} contained in the affine space $y_{j-1i_0} + L_{j-1i_0}$ with $B_{11r_{j-1}/8}(y_{j-1i_0}) \cap (y_{j-1i_0} + L_{j-1i_0}) \subset \Omega_{j-1}$ and with

$$(14)' \quad r_{j-1}^{-1}|g_{j-1}| + |\nabla g_{j-1}| \le C(n)\epsilon, \quad x \in B_{11r_{j-1}/8}(y_{j-1i_0}) \cap (y_{j-1i_0} + L_{j-1i_0}).$$

But then by using the coarse estimates (9), (9)' we deduce that in fact (7) holds with k = j and a fixed constant γ which depending only on n and not on γ .

Notice that since $S_* \subset \bigcup_{i=1}^{Q_j} B_{r_j}(y_{ji})$ it is clear from (7) and the ϵ -Reifenberg condition in the ball $B_{2r_j}(y_{ji})$, that

(16)
$$S_* \subset B_{C(n)\epsilon r_j}(M_j), \quad j \ge 0.$$

Notice also that (7) tells us that for $j \ge 2$

$$M_{j} \cap (\cup_{i=1}^{Q_{j}} B_{2r_{j}}(y_{ji})) \subset (\cup_{i=1}^{Q_{j}} B_{C(n)\epsilon r_{j}}(y_{ji} + L_{ji})) \subset B_{C(n)\epsilon r_{j}}(S),$$

and hence, since $M_j \setminus (\bigcup_i B_{2r_j}(y_{ji})) = M_{j-1} \setminus (\bigcup_i B_{2r_j}(y_{ji}))$ by mathematical induction it follows that

(17)
$$M_j \cap B_{1+r_j/2} \subset B_{C(n)\epsilon r_j}(S)$$

for each $j = 0, 1, \ldots$, provided $\epsilon \leq \epsilon_0$, where $\epsilon_0 = \epsilon_0(n)$.

Next we want to show that the sequence $\tau_j = \sigma_j \circ \sigma_{j-1} \circ \cdots \sigma_0 | T_0$ is a sequence of C^{∞} diffeomorphisms of T_0 onto M_j which converge uniformly on T_0 to a homeomorphism τ of T_0 onto a closed set M. In fact notice that by (8) we have

$$|\tau_j(x) - \tau_{j-1}(x)| \le C(n)\epsilon \left(\frac{1}{8}\right)^j, \quad j \ge 1, \ x \in T_0,$$

and hence by iterating we get

(18)
$$|\tau_{j+k}(x) - \tau_j(x)| \le C(n)\epsilon \left(\frac{1}{8}\right)^j, \quad j \ge 0, \, k \ge 1, \, x \in T_0,$$

which shows that τ_j is Cauchy with respect to the uniform norm on T_0 , and hence τ_j converges uniformly to a continuous map $\tau : T_0 \to \mathbf{R}^n$. Of course τ is the identity

L. Simon

outside B_2 because each σ_j is the identity outside B_2 . We let $M = \tau(T_0)$, so that M is a closed subset of \mathbf{R}^n and in fact is the Hausdorff limit (with respect to the Hausdorff metric $d_{\mathcal{H}}$) of the sequence $M_j = \tau_j(T_0)$. Notice in particular that setting j = 0 and taking limit as $k \to \infty$ in the above inequality, we get

(19)
$$|\tau(x) - x| \le C(n)\epsilon, \quad x \in T_0.$$

(Thus τ is in the distance sense quite close to the identity if ϵ is small.)

Next we want to discuss injectivity of τ_j , τ ; in fact we'll show that τ_j , τ are injective and that both τ and τ^{-1} are Hölder continuous.

To establish this, we first claim

(20)
$$(1 - C(n)\epsilon)|x - y| \le |\sigma_j(x) - \sigma_j(y)| \le (1 + C(n)\epsilon)|x - y|, \quad x, y \in M_{j-1},$$

or equivalently

(20)'
$$|\sigma_j(x) - \sigma_j(y) - (x - y)| \le C(n)\epsilon |x - y|, \quad x, y \in M_{j-1}.$$

To prove this, note that if $|x - y| \ge r_j$ with $x, y \in M_{j-1}$, we can write

$$\begin{aligned} |\sigma_j(x) - \sigma_j(x) - (x - y)| &= |(\sigma_j(x) - x) - (\sigma_j(y) - y)| \\ &\leq |\sigma_j(x) - x| + |\sigma_j(y) - y| \\ &\leq C(n)\epsilon r_j \leq C(n)\epsilon |x - y|, \end{aligned}$$

where we used (8) in the second inequality.

Now if $|x - y| < r_i$ we use the definition (4) to write

$$\begin{aligned} (\sigma_j(x) - \sigma_j(y)) - (x - y) &= \sum_{i=1}^{Q_j} (\psi_{ji}(x) p_{j,x}^{\perp}(x - y_{ji}) \\ &- \psi_{ji}(y) p_{j,y}^{\perp}(y - y_{ji})), \qquad x, y \in \mathbf{R}^n, \end{aligned}$$

and note that we can rearrange the sum here to give

$$(\sigma_j(x) - \sigma_j(y)) - (x - y) = \sum_{i=1}^{Q_j} (\psi_{ji}(x)(p_{j,x}^{\perp}(x - y) + \psi_{ji}(x)(p_{j,x}^{\perp} - p_{j,y}^{\perp})(y - y_{ji}) + (\psi_{ji}(x) - \psi_{ji}(y))p_{j,y}^{\perp}(y - y_{ji})) .$$

Now the second group of terms is (by (3)) trivially $\leq C(n)\epsilon |x-y|$ in absolute value for any $x, y \in \mathbf{R}^n$ with $|x-y| \leq r_j$. Further if $x, y \in M_{j-1}$, then by virtue of (7) (used with y in place of z) we see that the first and third group of terms on the right is $\leq C(n)\epsilon |x-y|$ in absolute value. Thus we again get (20).

Now it is easy to establish the required injectivity and continuity of τ . In fact by iterating the inequality (20) we get

(21)
$$|\tau_j(x) - \tau_j(y)| \le (1 + C\epsilon)^j |x - y|, \quad x, y \in T_0, \ j \ge 1,$$

and by (8) we have

$$|\tau_j(x) - \tau_{j-1}(x)| \le C\epsilon r_j, \quad x \in T_0, \ j \ge 1,$$

and so (Cf. the discussion of uniform convergence of the τ_j above)

(22)
$$|\tau_j(x) - \tau(x)| \le C\epsilon r_j.$$

Then by the triangle inequality, for any $j \ge 0$ we have

$$\begin{aligned} |\tau(x) - \tau(y)| &\leq |\tau(x) - \tau_j(x)| + |\tau_j(x) - \tau_j(y)| + |\tau_j(y) - \tau(y)| \\ &\leq 2C(n)\epsilon r_j + (1 + C(n)\epsilon)^j |x - y| \\ &\leq r_j + (1 + C(n)\epsilon)^j |x - y| \text{ if } 2\epsilon C(n) \leq 1. \end{aligned}$$

Now let $\alpha \in (0, 1)$ be arbitrary and take $x, y \in T_0$ with $0 < |x-y| < \frac{1}{2}$. Choose j such that $r_j \leq |x-y|^{\alpha}$ and $(1+C(n)\epsilon)^j \leq |x-y|^{-(1-\alpha)}$; thus we need $j \geq \frac{\alpha}{\log 8} \log\left(\frac{1}{|x-y|}\right)$ and also $j \leq \frac{(1-\alpha)}{\log(1+C(n)\epsilon)} \log\left(\frac{1}{|x-y|}\right)$. Since $\log(1+C(n)\epsilon) \to 0$ as $\epsilon \downarrow 0$, we see that such a choice of $j \in \{1, 2, \ldots\}$ exists provided $\epsilon \leq \epsilon_0$, where $\epsilon_0 = \epsilon_0(n, \alpha)$. Then the above inequality gives

$$|\tau(x) - \tau(y)| \le 2|x - y|^{\alpha}, \quad x, y \in T_0 \text{ with } |x - y| < \frac{1}{2}.$$

Thus we can arrange for Hölder continuity with any exponent $\alpha < 1$. Similarly we have from the first inequality in (20) and (22) that

$$|x - y| \le (1 + C\epsilon)^{j} |\tau_{j}(x) - \tau_{j}(y)|$$

$$\le (1 + C\epsilon)^{j} (|\tau_{j}(x) - \tau(x)| + |\tau_{j}(y) - \tau(y)| + |\tau(x) - \tau(y)|)$$

$$\le (1 + C(n)\epsilon)^{j} (C(n)\epsilon r_{j} + |\tau(x) - \tau(y)|)$$

and j is again at our disposal. We in fact first choose ϵ such that $C(n)\epsilon \leq 1$, so that

$$|x - y| \le (1 + C(n)\epsilon)^j (r_j + |\tau(x) - \tau(y)|),$$

and then choose j such that $\alpha \in (0, 1)$

$$4^{-j} \le \frac{1}{2}|x-y|$$
 and $(1+C(n)\epsilon)^j \le |x-y|^{-(\alpha/(1-\alpha))}$.

Notice that this requires $j \ge \log(2/|x-y|)/\log\left(\frac{8}{1+C(n)\epsilon}\right)$ and $j \le \alpha^{-1}(1-\alpha)\log(1/|x-y|)/\log(1+C(n)\epsilon)$, and again certainly such a choice of j exists provided $0 < |x-y| < \frac{1}{2}$ and provided we take $\epsilon \le \epsilon_0$ for suitable $\epsilon_0 = \epsilon_0(n, \alpha)$. In this case the above inequality gives

$$\frac{1}{2}|x-y| \le |x-y|^{-\alpha/(1-\alpha)}|\tau(x) - \tau(y)|, \quad |x-y| < \frac{1}{2},$$

which of course gives

$$|x - y|^{\alpha} \le 2|\tau(x) - \tau(y)|, \quad |x - y| < \frac{1}{2}.$$

Thus τ is injective, and the inverse is Hölder continuous with exponent α , for any given $\alpha \in (0, 1)$, provided the ϵ -Reifenberg condition holds with $\epsilon \leq \epsilon_0$, where $\epsilon_0 = \epsilon_0(n, \alpha)$.

Now the proof of the Reifenberg inequality is complete, because we have shown that τ maps T_0 Hölder continuously onto M with Hölder continuous inverse, and by (16) and (17) we have

$$M \cap B_1 = S_*,$$

because (by (19)) M_j converges to M with respect to the Hausdorff distance metric.

VxeSnBe, Vrel, JLxe G(nk) st. ||/30-"Revenues" Qu((x+Lm-) A Br(x), SABr(x)) = E VLA Theorem: (Restender Disk) B = ε(n)>0 s.t. if S has the ε-weak k-dim linear approx. properly m B3 and OeS, then 3 M⊆TR², To GG(n,k), and a nep C: To = M s.t. $\partial \wedge \partial B_{,=} S \wedge B_{,}$ ii) ~ : To - M is hone mayour iii) | ?(x) - x | ≤ ((n) ∈ ∀x iu) TX=X VIXIZB2 v) T, T'E C* for some vi) 271 as Elo Prouf: To prom the above, we will conduct Mo M., satisfying: · To = Lo, , · Oj: R^ → R s.t. Mj=Oj(Mj-1) · {yj;} S.AB, is a remained subject c.t. Inj:- yjk 12 mj:=8⁻¹ We will also nee the followy lemme, which is "simple to prove". We will also nee the followy lemme, which is "simple to prove". Lenne: (Squed Lenne) 3 Eo= Eo(n) st. if • $e \in (0, e_0]$ • Le G(n, k) • $\overline{\Phi}(w) = P_2(w) + e(w) \quad \forall x \in B_{3R}$ Concresson R'lleu+ 11Dellse in B3R 2. R'llgll + 11Dgll≤ I · G= j-ph(2) geB3RAL -> L The, $\overline{\Psi}(G \cap B_{3_A})$ is the graph of a map $\overline{g}: L > U \to 2^L$ st. $B_{\underline{u}\underline{R}} \wedge L \subset U$ and $\mathbb{R}^1 \| \widetilde{g} \|_{c^0} + \| D \widetilde{g} \|_{c^0} \leq 4 \varepsilon$. From last time, we used partitions of with to construct maps $\bigcup_{i=1}^{u_j} B_{2r_j}(y_{i_j}) \Rightarrow x \mapsto P_{j,x} \quad \text{when} \quad \left| \frac{\partial P_{j,x}}{\partial x_x} \right| \leq \frac{C \epsilon}{r_j}$ Lotting IPy: = IPLI; , we also know IPin - PL: Is CE Vie Bar; (y); So, $d_{\mu}\left(\left(\gamma_{3i}, L_{3i}\right) \land B_{r_{i}}\left(\gamma_{3i}\right), \left(\gamma_{x_{k}} + L_{x_{k}}\right) \land B_{r_{i}}\left(\gamma_{3i}\right)\right) \leq c \in r_{i}$ and |y_{3i} - y_{ke}| ≤ 6r₃₋₁ = 48r; Ui, L, when ke{s, j-1}

D

Let f cc $L^{n}(\mathbb{R}^{n})$ be the density of some distribution over verseles. Then, this indees a distribution f cc $L'(\mathbb{R})$ with density

$$f(x) = \int \frac{f_{\theta}(w)}{|\nabla \theta(w)|} d\mathcal{H}^{\mu-1}(w) \quad \text{for a.e. } y \in \theta(\mathbb{R}^{n})$$

$$w \in \theta^{-1}(x) \quad |\nabla \theta(w)|$$

In perticular, we have especified loss

$$\mathbb{E} \, \varphi(z) = \int_{x \in \varphi(\mathbf{n}^{n})} \left(\int_{w \in \varphi^{n}(x)} \frac{f_{\varphi}(w)}{|\nabla \varphi(w)|} \, d\mathcal{H}^{k-1}(w) \right) \, d_{x}$$

Suppose we start at parende 2 and essente one step of SGD. So, we get an extinute $\overline{\nabla} \mathcal{O}(z) \in \mathbb{R}^n$ with pdf $\widehat{\mathcal{F}}$.

This relates a distribution over parades in the rest step in 2-3
$$\vec{\nabla} \mathcal{O}(\vec{z}) = ir$$

with pdf $f_{\Theta}(ir) = \tilde{f}\left(\frac{z-ir}{z}\right)$. So, the loss has pdf

$$f(x) = \int_{w \in \mathcal{O}^{-1}(x)} \frac{\widetilde{f}(\underbrace{z-\frac{w}{y}})}{|v\mathcal{O}(w)|} d\mathcal{H}^{k-1}(w)$$

 $\mathbb{E} \phi(z) = \int_{x \in \phi(\mathbb{R}^n)}^{x} \left(\int_{w \in \phi^{-1}(x)}^{x} \frac{f_{+}(w)}{|\nabla \phi(w)|} d\mathcal{H}^{k-1}(w) \right) dx$

Drupert!

N-paran n with loss fretal $\mathcal{O}: \mathbb{R}^N \to \mathbb{R}$. For an another parameter \mathbb{R}^N , dropart index a distribution one \mathbb{R}^N . The coperted grid $\mathbb{E}\left[[\nabla \mathcal{O}(2)]\right]$ on be expected as \mathbb{E} -droparticle on the expected as $\int_{\mathbb{R}^{N}} f_{w}(z) |\nabla \phi(z)| dz = \int_{\mathbb{R}^{N}} \int_{0}^{1} f_{w} d\mathcal{H}^{N-1}$

I basic droport case, we have $z_{i} = \begin{cases} 0 & m_{P} \cdot P \\ w_{i} & m_{P} \cdot I - p \end{cases}$ In this case, $f_{w}(z) = \frac{N}{\prod_{j \in I} p} \int_{p}^{1-\frac{2j}{m}} (1-p)^{2j} (r_{j}, and so$

S f & d 7 + "=

 $\mathcal{M}(w) = \sqrt{\frac{1}{16} \frac{1}{100} \frac{1$

We have $S_{R}^{N-1}(E \wedge O^{r}(R))dR = S_{E} |DO(W)|dw$ for all S_{R}^{N-new} . $E \leq R^{N}$. mer pro.

let E:= Emerren: Ø(w) LE3. The,

f. 1012 hand > State = Swate ({ .: + h>2+3) dt From the blue, we elso how = for d+ Huni ({ ... b(w)=l }) IN CE C I DOWN = 50 dt 4" (0"(2) 1 B. (8) C)

For sull
$$I \in \mathcal{E}$$
, we expect $\nabla \mathcal{O}(w) \approx \frac{\mathcal{O}(w^* + w) - \mathcal{O}(w^*)}{w} = \frac{1}{w}$
 $\Rightarrow \int_{-\infty}^{\infty} \langle \mathcal{E} \rangle \approx \int_{-\infty}^{\infty} d\mathcal{L} \cdot \frac{1}{\mathcal{L}} \int_{\mathcal{O}^{-1}(\mathcal{L})} |w - w^*| d\mathcal{H}^{m}(w)$ (4)

$$\begin{split} B_{n} & he \quad \text{rel}, \\ & \int_{n}^{\infty} \left(E \right) \approx \int_{0}^{\infty} de \cdot \frac{1}{E} \int_{0}^{\infty} dt + \mathcal{H}^{n-1} \left(\mathscr{G}^{+}(E) \cap \left(B_{n-n}(E) \right)^{0} \right) & \leq e^{\int_{0}^{\infty} dt \cdot \mathcal{H}^{n-1} \left(\frac{1}{E} \left[\delta^{+}(\Delta n - 1) \right] \right)} \\ & = \int_{0}^{\infty} dd \cdot \frac{1}{E} \int_{0}^{\infty} dd \cdot \int_{0}^{\infty} \mathcal{H}^{+} \mathcal{$$

Startoy from (4), $= \int_{0}^{c} dL \int_{0}^{c} \int_{0}^{1} \frac{|w - w|}{\sigma(w)} d\mathcal{H}^{n-1}(w)$ = Small South 11 = munth determin

Souther 10000 dry (w) for find & and F. We win to capte

Write
$$\beta: \prod_{k=1}^{N} | \Pi_{k}$$
 as $\beta(\theta) = f_{\theta}(x_{1}) \cdot f_{\theta}(x_{2})$
 $\Rightarrow \nabla \beta(\theta) = f_{\theta}(x_{1}) \nabla f_{\theta}(x_{2}) + \nabla f_{\theta}(x_{1}) f_{\theta}(x_{2})$
 $\Rightarrow E \theta = \int_{R} dx = \int_{V \in \mathcal{G}^{-1}(x_{2})} dH^{N,i} dH$

Ve here

$$D[o](z_{j}) = D[o](W_{j} \stackrel{o}{e}(o \circ W_{e})) = 1 + \frac{1}{n} Diag(Z_{j}^{k-1})$$

 $\nabla + (w) \{W_{L} \stackrel{l-1}{\Pi} D[o](z_{e}) W_{e}\} \times (U_{L} \stackrel{L-1}{\Pi} (1 + \frac{1}{n} Diag(Z_{e}^{k-1})) W_{e}) \times (U_{L} \stackrel{L-1}{\Pi} (1 + \frac{1}{n} Diag(Z_{e}^{k-1})) W_{e$

w.m k=2,