$9/5-$

enail Condo @ $con:10$ delellis $\&$ ias edu

Reall the following Det: (Hausdorff measure of dimension) Let $E \subseteq \mathbb{R}^n$, $\sigma \ge 0$, $\int e^{(0)} \omega$. Detecte the Havolumff premane $\pi(\epsilon) = \frac{w_{\epsilon}}{2^{\alpha}}$ int $\left\{\begin{array}{l} 1 \\ \epsilon \neq 1 \end{array} d_{\epsilon} \text{ and } (\epsilon) \right\}^{\alpha}$: $\left\{\epsilon, \frac{2}{3} \text{ is a cover of } \epsilon \right\}$ We deterne
 $\gamma f^{\mu}(\vec{e}) := \lim_{\delta \downarrow 0} \eta^{\mu}_{\epsilon}(\vec{e}) = \sup_{\delta \uparrow 0} \eta^{\mu}_{\epsilon}(\vec{e})$ Remork: $H_{s}^{*}(6) = H_{s}^{*}(6)$ if $s_{6} s^{*}$, so the lost is well-defined $YESR^{n}$. · 1 (.) is an order or extern masure · If x=1, then $H^{\infty}(\cdot) = \mathcal{A}(\cdot)$ alchange never Den (Extern measur) An exterior measure is a set for $\mu : P(\mathbb{R}^n) \to \mathbb{R}_+$ if $\mu(\emptyset) = 0$ and $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i)$ countroly subadditive $H^-(A \cup B) = H^2(A) + H^2(B)$ if $\lim_{x \in A, y \in B} |_{x-y}| = d(A, B) > 0$ P_{out} :

Prot. do this <u>Octo</u> (Canthoding) Construction Let $M := \{ \begin{array}{ccc} F \subset \mathbb{R}^n & s + \mu(A) = \mu(F \cap A) + \mu(A \cap E) & \forall A \} \end{array}$ Then the is a oralgebra, contrany Barel sets à sets of never

Don: (Orter regularity) An (add) messe is regular if $\forall A \subseteq \mathbb{R}^n$, $\exists E$ Hausdarff-a-measurable st. $A \subseteq E$ and $H^{\rightarrow}(A) = H^{\rightarrow}(E)$ Replacy "Howdurff-x-measurable" with "Bord" we get a Bord (outer) measure. If E is Hamcourable and Hotelcoo then MIE is a Radon mesure. <u>Remork:</u> 1² is a Bard, regular outer measur! Det (Restriction of newsves) $(4^{\mu}LE)(A) := 4^{\mu}(A \wedge E)$ Thigs to trow:
- make top or spee of Rader mesure
- noticelity of bounded sileds or the spee of Radon mesure Lenne: Let v_i be a sequene of Radon messes sit. $V_i \rightharpoonup^* V \qquad (ie. \int f d v_i \rightharpoonup \int f d v \qquad \forall f \in C_c(\mathbb{R}^n)$ Then, $\lim_{n \to \infty} \int_{\Omega} u(x) dx = \int_{\Omega} u(x) \qquad \forall u \quad \text{and}$ $l_{x,y}$ \cup ; (k) \leq \cup (k) $\forall k$ \in ∞ T_{ws} $\int_{\mathbb{R}^{n}} v_1(u) \rightarrow v(u)$ if $v(\lambda(u))=0$ for Barl u. Renack: $H^{\alpha}(E)$ $\iota \omega \implies H^{\beta}(E) \in O$ $\forall \beta \ge \kappa$. $\oint H^{\alpha}(E) \ge O \implies H^{\beta}(E) = \omega \quad \forall \beta \ge \kappa$
So, the 3 a view $\kappa \in \mathbb{R}$, st. $H^{\alpha}(E) \notin \{0, \infty\}$. We call this view a to be the Heusderth drawn dung (E)

The we in Herschoff mesne:

Reall $y \in (e) = w_+$ int $\left\{\begin{array}{ll} \mathcal{I}_1(diam(E_i))^{2} & \text{if } e_i \text{ is a cover of } e_i \\ \text{if } e_i \text{ is a odd} \end{array}\right\}$ If $A_i = B_{x_i}(x_i)$ on balls the dur(A): Ω : So, ne setent $w_{\kappa} = 2^{k}(B(\omega))$ when $B(\omega)$ is a unit $|w| \gg R^{k}$ We may extend $w_{\kappa} = \gamma^{d_{\kappa}} \Gamma(1+\xi)$ where $\Gamma(l) = \int_{0}^{\infty} s^{l-1} e^{-s} ds$ We select this so that
 $w_4 = w_K$ s.t. $W^k = 2^{k}$ for sitiger K We is holomorphic with a $\frac{\rho_{\alpha p}}{L}$
If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is L -Lyosolute, then $\mathcal{H}^{\infty}(f(\epsilon)) \leq L^{\infty} \mathcal{H}^{\infty}(E)$

Morone, $H^*(2E) = |1|^n H^*(E)$ $\downarrow \downarrow \downarrow \downarrow$ $1 \in \{0, 1\}$ $2 \in \{1, 1\}$

 $\frac{2\pi k!}{k!}$
Reall that μ is ontwick x^0 $x^0 = \bigcup_{i=1}^{\infty} E_i$ for $\mu(E_i)_{i}$ as Renot: We note that $\mathcal{H}^{*}(\cdot)$ need not be orifinite. Par this!

Girlay: Il dury (E)=k and Oc H"(E)cas, how for is E from a
Question : C' K-din showell of \mathbb{R}^n ?

Rectifination

R Sohn (Rectified 12) UL Sy ESTR¹⁹ B (combilly K-realistable if E an be coured H^k a.e. I.e. $E = E_0 \cup \bigcup_{i=1}^{\infty} E_i$, where $\frac{1}{2} \pi^k(E_0) = 0$ and $E_i = E_0 \Gamma_i \times \frac{e^{i k - 3 \Gamma_i \Delta_i}}{s^{\frac{1}{2} \Delta_i \Delta_i}}$ Such sets are close enough to C' submartlle! Remodes

- i) Rectable cets are approximate effecting by able subspects.
- 2) The area funds holds! So, 4K(E) is computate using diff geo defin of volume.
- 3) If K=1-1, we treat set of this point" as those with restability (a) restability of the method of the car do Green's This and such.
- 4) Rectarable ats play well with podet studies & Filmi stres. $P_{\alpha\rho}$
	- An \mathcal{H}^k -nearable $E \subseteq \mathbb{R}^n$ \iff $\exists \{F_i\}_{i \in \mathbb{N}}$ of Livecht k -dr graph s -t.
 π k -reatifiedle $\qquad \qquad \pi$ $\qquad \qquad$ $H^k(E\setminus \mathcal{U}_f)=0$

Note that these are Lapschin grate, not grat C' grate!

Theory (Rademole) If $f: U \rightarrow \mathbb{R}^k$ (U aper) is Lipsolite, then f is diff. 2-a.e.
I.e. 3 km mp $S|_{x} : \mathbb{R}^n \rightarrow \mathbb{R}^k$ st. $f(g) - (fu) + S(g-x)) = o(|y-x|)$ Theorem (Withou)

If $f: u \to \mathbb{R}^k$ (4 apr) is Lyselity, then $\forall e \times 0$ 3 $\tilde{\psi}: u \to \mathbb{R}^k$ C's.t. $\mathfrak{1}^n(\mathfrak{f}\mathfrak{p}\neq\mathfrak{F}\mathfrak{f})$ \mathfrak{e}

So, C' functors approvant hopedits fre up to sets of artificing said messer.

 T learn (ϵ_{x+1}) If $A: K \rightarrow \mathbb{R}^e$ (KCR) Livelite, $\frac{1}{3}$ on extern $\widetilde{P}: \mathbb{R}^n \rightarrow \mathbb{R}^e$ which is Lapschitz. Remark: $l=1$, it's every to the 3 \tilde{f} with $l_{\phi}(\tilde{p})$ = $l_{\phi}(\tilde{p})$.
It's true, Lt had to slow that it tolds for $l>1$ (knows) $\frac{\rho_{\alpha\mu\nu}}{n}$ If E is \mathcal{H}^k -meanth and $E \subseteq \Gamma$ C' submodell, the E is realitable! Cerdlez: Any O-fink 1th-neasable $E\subseteq\mathbb{R}^{n}$ an be decorposed as $E = R \cup P$, when $H^k(P \cap \Gamma) = 0$ $\forall \Gamma \in K$ submissed K-net Wordy K-unneathere" Proof: Itentary renove the integration with C' submitteds. I $9/7 -$ Example: purely uncertisable sets! $\begin{array}{lllll}\n\hline\n\frac{1}{2} & \hline\n\frac{1}{2} &$ We find on not, k: $|S_{\infty}|$, $3 \in \mathbb{SR}^2$ et $\mathcal{H}^1(\epsilon)$ $\epsilon(\sigma, \infty)$. Method 1: Define F via the 10 "tenny" Carton-type set by starty
with [0,i], droppy each converted piece with [0,t], ($\frac{1}{7}$, $\frac{2}{7}$, $\left[\frac{2}{7}, 1\right]$
and itenty. We know $H'(F) \cdot \frac{1}{7}$. Set $F = F \times F$. Alteratively, $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2$ $\frac{1}{2}$ $7\frac{1}{2}$ (e) $5\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\Rightarrow \eta'(\epsilon) \epsilon \sqrt{2}$

on show that this is the best we are do in the following way: U_{ℓ} $P_{\ell}(\epsilon_{k}) = \frac{\sqrt{2}}{2}$ $\frac{1}{k}$ The otherwal projection $P_{\ell}(\epsilon_{k}) = \sigma = \sqrt{1 + (\frac{1}{2})^2} = \sqrt{3}$ $\Rightarrow P_{\mathcal{L}}(F)=\mathcal{O}$ However, Pr. (E) and Pr. (E) have Leberge 0. Since \mathbb{P}_{ℓ} is 1-Lipsalitz, $\mathcal{H}'(\mathcal{O}) \subseteq Lp(\mathbb{P}_{\ell})$ $\mathcal{H}'(\epsilon) = \mathcal{H}'(\epsilon)$
Since \mathcal{H}' agrees with the Way \mathcal{H}' , we see $\mathcal{H}'(\epsilon) \geq \sqrt[3]{2}$. Now, let Γ be a C^1 and with a param $X: \mathbb{R} \to \mathbb{R}^2$ sit $\eta'(\gamma(F)) = \int_F |\dot{\gamma}(F)| dE$ If $H'(P \cap B)$ o, the JFSR measurable with $\lambda(P)$ so s.t. $\gamma(P)$ SE Pick a x s.t. $2(F \cap B_6(x)) > 0$ VSs0. T^2 Note that are of the fillowing always holds: $\frac{1}{\sqrt{1-\frac{1}{2}}\left(\frac{1}{2}\right)^{2}}$ $1'(P_{x_1}Y(F\wedge B_{\xi}(x)))$ >0 α $1'(P_{x_2}(Y(F\wedge B_{\xi}(x)))$ >0) House, $\pi'(IP_{\kappa_1}(\tilde{\epsilon})) = \pi'(P_{\kappa_2}(\tilde{\epsilon})) = 0$. So, $\tilde{\epsilon}$ holds from
the griphs of all C^1 curves, and is unrectionally. Covery Lenne: $\frac{(5x) - \text{Covex}}{4x}$ There is the contract of $\{B_{52}(x_i)\}_{i\in I}$ be a collection of open balls and $\{B_{52}(x_i)\}_{i\in I}$ be a collection of Then, $\exists F \subset I$ st. $\{B_{x_j}(x_j)\}_{j \in J}$ cansats of parmise disjoint hells
and $\bigcup_{i \in I} B_{x_i}(x_i) \subseteq \bigcup_{f \subset I} B_{5x_j}(x_j)$ Besiocitch County Themen: Let $A \subseteq \mathbb{R}^n$ be a Bowl bounded set. Let $F = \{B_x(x)\}$ be a
Vitali cour of A (i.e. VxeA VEXO, $3B_5(x)eF$ sh Sce). Let u be a Radon means.
The , 3 F's F consisting of painwise disjoint balls s.t. μ (A) $\bigcup_{\text{Ba}(x)} \beta_R(x)$ = 0 (F is part droppert and cover)

Theorem (Redor-Nikodyn) If μ and γ are forder measures on \mathbb{R}^n , then $\exists \mu_3$ st.
 $\mu = f \cup \neg \mu_5$ st. fe $L'(R'', \nu)$ $3A$ of $\gamma(A=0)$ on $\mu_s(\mathbb{R}^n \setminus A)=0$ (i.e. $\mu_s \perp \nu$). Bestoward and Diff. Theory In fact, $\mu_s = \mu \left\{ \begin{array}{ccc} E & \text{where} & E := \frac{2}{3} & \text{lim} & \mu(B_s(x)) \\ \text{sin} & \mu(B_s(x)) & = & \infty \end{array} \right\}.$
Also, $f(x) = \begin{cases} \mu_s & \mu(B_s(x)) \\ \text{sin} & \mu(B_s(x)) \\ \text{sin} & \mu(B_s(x)) \end{cases}$ by when the last exacts I relates to the dentity
of a central function (holds in more)
general spaces) Density Talk: <u> John:</u> We debt the upper deady at a set $E \sim x$ by $\bigoplus^{\alpha^{*k}} (F,x) := \lim_{\delta \to 0} \frac{\pi^{*}(F \wedge B_{\epsilon}(x))}{w_{*} s^{*}}$ Soulary, the lower denotting is the limit.
For any use H LE, we an other the upperlower deaithes with m. Theorem (Besiconter-Press) Let $0.2H^k(E)$ coo for KeN, E^{\prime} /k^k-mesurble. E is realitable \iff (if $f(x) = (H)^k (E,x) = 1$ for a.e. xeE Here are in
and the Prop (nasturd) Hey are maison $\forall x \notin N, \qquad \textcircled{f}^{\text{max}}(E,x) > \textcircled{f}^{\text{max}}(E,x) \qquad \text{for} \qquad \text{H}^{\text{max}}\text{ a.e.} \quad \times$ So, no E can be 11th-realishable. He subsual that $\mathcal{H}^*(E)$: sup $\big\{ \mathcal{H}^*(u) : k \in E \text{ closed } \big\}$

analbys
fles Radon

Let n be a feath mesure, E be Bord-negrable. (a) If $\oplus^{n}(\mu,x) = 100$ Vxet, the π $\mu^2(\epsilon) \leq \frac{1}{2} \mu(\epsilon)$ $(DLE \oplus^{\mathcal{L} \mathcal{L}}(\mu, x)) \leq \gamma_{\mathcal{L} \infty}$ $\forall x \in \mathcal{E}, \forall \mu \in (\mathcal{E}) \subseteq \gamma \uparrow^{\mathcal{L}}(\mathcal{E})$ So, there develops allow us to compre in with 11th. Compre this with $\frac{\rho_{\text{ref}}}{\rho_{\text{ref}}}$: (a) F_{xx} S₃0. $V_{xe}F_{y}$ Jr; $L0$ R_{xx} , $\mu(\beta_{\text{ref}}(x)) \geq (8 - S) \mu_{x} r_{y}^{2}$
 V_{xx} $\rho_{x}R$ $r(x)$ $s+$ $r(x) \geq f_{10}$ $r \geq \lambda$ $\mu(\beta_{\text{ref}}(x)) \geq (8 - S) \mu_{x} r(x)^{2}$ B_9 te Gr-coursy troon, $3\{B_{r_5}(x_5)\}$ parmise despont st. $\{B_{5r_5}(x_5)\}$ covers E. So,
 $H_{s}^{\alpha}(\epsilon)$ $\epsilon_{w_{*}}$ $\sum_{i=1}^{m} (5_{r_{i}})^{\alpha}$ ϵ 5^{α} $\sum_{i=1}^{m} r_{i}^{\alpha} w_{*}$ ϵ $\sum_{s=0}^{r} \sum_{i=1}^{m} \mu (B_{r_{i}}(r_{i}))$ ϵ $\sum_{s=1}^{r} \mu (\tilde{y}B_{r_{i}}(r_{i}))$ (b) we know $\left(\bigoplus_{\alpha} \mathcal{L}(n, x) \leq \gamma\right)$. Suppose we color that $\mathcal{H}^{\epsilon}(E)$ i.e. Take $v = H^2 L \epsilon^2$ and apply Beerowthou dirth. They Somethings
Wars: Lets
Do Line $MLE = \frac{\mu}{\mu}$
 $MLE = \frac{\mu}{\mu}$
 $MLE = \mu_{\text{av}}$ $\frac{\mu}{\mu}$
 $\frac{\mu}{\mu}$
 $\frac{\mu}{\mu}$
 $\frac{\mu}{\mu}$
 $\frac{\mu}{\mu}$ Lenna: H $H^c(E)$ ω the $\frac{1}{2\alpha}$ \in $(H^{\alpha+}(E,x)$ $\in)$ for H^{α} -a.e.x $Proof: (1) Assume Wolve $(\mathcal{B}^{4*}(E,x))$ 1+8 $\forall x \in E$ with E' measurable and $\mathcal{B}^{4}(E)$ so.$ </u> For H^4 -a.e. xeE' , we know by Bes. Dilton that $\frac{m}{R}$ = $\frac{m \times (E \cap B_{\alpha}(x))}{m \times (E \cap B_{\alpha}(x))}$ = 1, so $\omega = 0$ By Desicurity covery 3 a painte disport carry of 8 of balls of dian 63 $H^{\mu}(E^{\prime}\cap B_{\eta}(x))\geq w_{\mu}(1+8\cdot3)$ n_{i} and $H^{\mu}(E^{\prime}\setminus UB_{\eta}(x))=0$. \overline{c} all this \overline{f} " $\Rightarrow \sum_{i=1}^{5} w_{2} n^{2} \leq \frac{1}{45-3} H^{2}(\epsilon^{2})$ We an slow that $4^{\mu}(\epsilon')$ = 0 \Leftrightarrow $H^{\lambda}_{\infty}(\epsilon'')$ = 0 (god exercise). V_3 so, we may theorie cover E' with $\{A\}$ it dien $(A_i)_{i\cdot n}$ and

 $w_1 \leftarrow \frac{1}{2}$ den $(A_i)^2$ \leftarrow 3

Theolor, we my estate
 $\eta_{3}^{\star}(\epsilon') \leq \omega_{2} \leq \frac{dim(A)^{\star}}{2^{\star}} + \omega_{2} \leq n_{1}^{\star} \leq \gamma + \frac{n_{1} \times (\epsilon)}{n_{2}^{\star} n_{3}}$ Lettery 3.70, $H^*(\epsilon') = \frac{H^*(\epsilon')}{1+\delta} \Rightarrow H^*(\epsilon') = 0$.
So, $\mathfrak{B}^{**}(\epsilon_x)$ s les $H^* \rightarrow \epsilon$. x . They s.70, we are done.

9/19-

We tun now to Besseoitel's theory of 10 sets (CR" CR"), and we will

 $D_{\epsilon}f_{n}$:

A rectifiable curre is the surge of a contenuous, injective map $\gamma: [0,1] \rightarrow \mathbb{R}^n$ with finite \mathcal{H}' -measure. or 8' if you
leave at a part of
cover W closed intents

<u>لوسس:</u> A rectifille ane is a 1-rectifille set. Proof: Certainly $H'(8((a,b))) \ge |8(b)-8(a)|$
sine projection to the lie e is a litipschite \sim $18(5-32) = H'(0) = H'(0)(5-3) = H''(8(5,3))$ Most, we wis the mp $t \mapsto \mathcal{H}(\mathcal{E}(E_0, \epsilon))$ is continuous. δ of $\mu := 4^{\prime} L 8(50, 0)$. Then, $\mathcal{H}'(\gamma(s,t)) \leq \mu\left(\overline{\beta}(s(s))\right)$ where $\Gamma := \frac{m \times 1}{\gamma(s(s,t))} |\gamma(\gamma) - \gamma(s)|$ S_{σ} $lim_{t\rightarrow s} \mu(\overline{\beta}_{r}(x(s))) = \mu(\overline{\beta}\gamma(s)) = 0 \implies lim_{t\rightarrow s} H'(y(s(s,t))) = 0$ Next, we will representene van are length. Detre $\gamma(z) = \frac{1}{2} \gamma(s)$: $\gamma'(y(t_0, s)) = z^2 + z - z^2$ (0, 11 ($\gamma(t_0, s)$) By injectivity of γ , the is vell-defined (?). Then, γ is 1-Lipsultz. and in $\widetilde{\delta}$ = in γ . Vie Whitney's The and implicit in Name (?), courses by Lipplitz (3 113 pm) $\mathsf{\Pi}$ Lenna: If $X: [0,1] \rightarrow \mathbb{R}^n$ is continues and $Y(0) \neq Y(1)$, then $\exists \widetilde{Y}: [0,1] \rightarrow \mathbb{R}^n$ Continuous s.t. i) $\gamma(\delta) = \widetilde{\gamma}(\delta)$ ii) $\gamma(\delta) = \widetilde{\gamma}(1)$ iii) $\widetilde{\gamma}$ injective iv) $\widetilde{\gamma}(\delta, \bar{\mu}) \leq \gamma(\delta, \bar{\mu})$ Proof: let a_{1}, b_{1} be $s.t.$ $\delta(a_{1}) = \delta(b_{1})$ and $|b_{1}-a_{1}|$ is mexical. Then, $\forall t \notin [0,1] \setminus [a_{1},b_{1}]$, $\forall (t) \neq \forall (a_{1}) = \forall (b_{1})$.

Also, if $\gamma(a_2)=\gamma(b_2)$, then $\frac{c_1}{a_1}, \frac{c_2}{a_2}, \frac{c_3}{a_3}$
Keep picking runned noringeatre pairs; there are so counterly rang.
Let I; = [a_j, b_j] and constant reveals U; I; and squisting te donor together. Then, we get $\gamma_{\mathcal{N}} : [0, 1 - \frac{\tilde{\gamma}}{2} (b_i - a_j)] \rightarrow \mathbb{R}^2$ and $\overline{\gamma} : [0, 1 - \frac{\tilde{\gamma}}{2} (b_i - a_j)] \rightarrow \mathbb{R}^2$ with $Y_n \rightarrow \overline{Y}$ pointie (by containty of \overline{Y}). So, since each Y_n is entiment so is \overline{Y} .
Forther more, \overline{Y} injective by our algorithm. When $\overline{Y} := \begin{cases} \overline{Y} & \text{if } (b_j - b_j) \\ \overline{Y} & \text{if } (b_j - b_j) \end{cases}$ J

Deh:

A continum is a closed connected set.

Theory:

- A continum E with their H' mesure is rectifiable.
- Proof: The stan of the proof is to cour E with counterly many continues Lenni: Contenum et fite 1+1 mesure à acurer. concerter. $\overline{\rho_{\omega}f}$: For $x_{0,0}eE$ arbitry. Full a clean $x_{0}=x_{1},...x_{N}=y_{0}$ st. $x_{i}eE$ and $1x - x_{2n}$ $s \in \mathbb{R}$ and $B_{\epsilon} (x_{2n}) \cap B_{\epsilon} (x_{2n}) = \emptyset$ $\forall j \ne k$ The precense-line of going through this chain (call it $Y_{\epsilon}:[0,1]\rightarrow \mathbb{R}^{n}$)
has that $Y_{\epsilon}(0)=X_{0}$ and $Y_{\epsilon}(1)=y_{0}$. Also, Y_{ϵ} will be Lapelitz and so
will leg Y_{ϵ} . $\frac{1}{2}w_{0}^{n}$ So, all need to show is fin γ_{ϵ} ([o,i])
	- For each j, define $f_3: \mathbb{R}^n \ni \mathbb{R}$ $s.t.$ $f_3(x) := |x x_{i,jy}|$
So, f_3 is 1-Lypechite and $f_3(\epsilon) \supseteq [0, \frac{\epsilon}{2}]$. Furtunae, $f_3(\epsilon)$ is concerned and $\mathcal{H}^1(\mathcal{B}_{\xi}(z_{\mathsf{in}}) \cap E) \geq \frac{\varepsilon}{2}$

Accumulating this, $(\frac{N-1}{2}) \frac{\epsilon}{2} \leq \frac{1}{2}$ (E). So,

 $H'(Y_{\epsilon}(\omega,\vec{u})) = \sum_{i=1}^{N} |x_i - x_{i-i}| \leq M H'(\epsilon) + \epsilon$

O

- Back to the those. Take 8, to be the geodesic correctly the two most distant points.
- Take V₂:= geoderic correcting nort distut parts in EIV, to V, (EIV, at V, aw) Take $\gamma_{3} = 0$ $\epsilon \setminus (\gamma_{1} \cup \gamma_{2})$ to $\gamma_{1} \cup \gamma_{2}$
- If the ends faithly, then we have filly convert E and are doe.
If not we have $H'(E) \ge \sum_{i=1}^{\infty} H^{1}(X_i)$

We not show that the posts left over one 'H'-ndl.

Clain:	$E \setminus \bigcup_{i=1}^{m} Y_i$	Ans	H' must 0.																												
Let E be	$\bigcup_{i=1}^{m} Z_i$	$\bigcup_{i=1}^{m} Z_i$	$\bigcup_{i=1}^{m} Y_i$																												

 Df

Let
$$
E \subseteq \mathbb{R}^n
$$
 be Borel $u\mathcal{H} \cap \mathcal{O} \subset \mathcal{H}'(E) \subset \infty$. We say xeE is a regular point if $\Theta'(E,x) = 1$ (i.e. $xF \Theta'_*(E,x) = 1 \times e^x$ $\frac{n_1(E \cap B_n(x))}{2R} = 1$)

Let $\varepsilon^R = \frac{1}{2} \times \varepsilon \varepsilon$ regularity of ε regular points. Then, $\varepsilon = \varepsilon^R \cup \varepsilon^R$. In fight,

Theorn:

If
$$
f \mapsto H^1
$$
-a.e. $x \in E$, Θ^1 $(E,x) \ge \frac{2}{x}$, $\forall x$, E is 1-*reducible*

Remember

 $-$ The his been generated to \mathbb{R}^n and even to any netwo spee (Press-Town) with $\theta^1_*(E_x)$ sa, (1.0.7319.)

- Eventually, we will prove that it devily eards ($\theta_{\#}$ = 00), then E realitive.
	- * Bericonital conjectured that $\Theta_{\kappa}(E,x) > E$ for 11-a.e. $x \Rightarrow E$ 1-rectifield.

9/21-

 Δ ch: We define the convert upper denth of ESPE with a so via $\sum_{\omega=0}^{n^{2}}(E,x)=\lim_{\substack{\Delta\to0\\ \Delta\to0}}\sup_{\omega\in\mathbb{R}^n\atop \omega_1\leq x\notin\mathbb{Z}}\left\{\frac{\mathcal{H}^*(E\cap U)}{\omega_L\left(\frac{d\times\omega_L(U)}{L}\right)^2}\right\}$ Remort: VFSIR?, dem(F) = dem(concer hell of F). So, n our definition of the Handerff news, we could have veet corner sets now covers without changing deneter. So, $H_{s}^{*}(E) = id \leq \sum_{i=1}^{\infty} h_{*}(dim(u_{i}))^{*}$: { u_{i} }, cours $E \vee_{i} cl (out)$, cours {
 u_{i} e^{+} dom(u_{i}) e_{s} p_{opt} Let $E, E \subseteq \mathbb{R}^n$ Boat with $0 \angle H^4(E)$ cas. Then, 0 $D_{c}^{A*}(E,x) = D_{c}^{A*}(E,x)$ for $H^{A_{-a,c}}$ $x \in E \cap E$

9 $D_{c}^{A*}(E,x) = D_{c}^{A*}(E,x)$ for $H^{A_{-a,c}}$ $x \in E \cap E$

9 $D_{c}^{A*}(E,x) = 1$ for $H^{A_{-a,c}}$ $x \in E \cap E$ Prest: 1 C C C C , $D_{c}^{\text{max}}(E,x) \leq 2^{\text{max}}(E,x)$, and so she θ =0 for a.e. $x \in E$, we get Φ . 2 Follows from 0. 3 $D_c^{a*}(E_x) = \theta^{a*}(E_x) = 1$ $H^2_{-a.e.}$ on E. So, we not point the upper bound So, suppose Blutch that $b_c^{\text{out}}(F_{ik})$ site for all ref for sur FSE of particular nesse at EsO. We will use covery arguests to show that Ha (P)=0. $Fx\qquad p>0$ s.t. $H^+(F)$ $2H_{b,0}^+(F)+\epsilon$ for some $\epsilon>0$. $U:=\begin{cases} U: & U \text{ closed, convex, and} \\ & \text{if } U \neq \frac{1}{2} \end{cases}$ we $\left(\frac{diam(u)}{d}\right)^{d}$ or $\frac{d}{dx}$ Choose U_1 s.t. den(h.) = $\frac{1}{2}$ srp { den(h) : $u \in U$ } = $\frac{1}{2}$ u_1 at dram(U) = = sup {dam(W): $u \in \mathcal{U}$ and $U \cap U_i = \emptyset$ } ChooR Note that V cours F by construction. Also,

 $\sum_{i=1}^{59} w_{2} \left(\frac{dx-(h_{i})}{2} \right)^{d} \leq \frac{14^{d}(F)}{1+\sum_{i=1}^{6} c} \infty, \text{ and } s \text{ down}(h_{i}) \geq 0.$ W_L clear that $\mathcal{H}_{6_{A}}^{\star}(F) \subseteq \bigotimes_{i=1}^{6} w_{A} \left(\frac{d^{(n-i)(i)}}{2}\right)^{a_{-i}}$ If we tunnele U, by Un and take $B_i := B_3 d_{mn}(u_i)(x_i)$ for $x_i \in U_i$, Her $\{u_{1},...,u_{m},B_{m_1},...\}$ causes F.

So,
$$
4\frac{2}{6\rho}(F) \leq w_{2} \sum_{i=1}^{m} \left(\frac{d^{(m-1)}(h)}{2}\right)^{2} + 6^{+}w_{4} \sum_{i=m+1}^{29} \left(\frac{d^{(m-1)}(h)}{2}\right)^{2}
$$

\nThe X& F\[\[\]U_1, \dots \] for the null problem
$$
U \cap (U_{m}) = \emptyset
$$
.
\nPrik $m_0 + b$ be the null problem $sm_0 + 2$ and $sm_1(u_1) = \emptyset$.
\nand $dim(u_1) = \frac{dim(u_1)}{2}$ by sum_{m_0} , which exists, since $dim(u_1) = 0$.
\nWe claim $U \cap U_1 \neq \emptyset$ for the given $sum_{m_0} \dots \$.
\n $lim_{m_0} (U_{m_0}) = \frac{1}{2} s \cdot p \{ dem(u) : U \in \mathcal{D} \cap m \} \cdot \left(\bigcup_{j=1}^{m_0-1} U_j \right) \cap U = \emptyset \}$.
\nwe will have $U \cap U_1 \neq \emptyset$ for the null problem $lim_{m_0} (u_0) = \mathbb{R}_{sum(u_0)} (x_0)$.\n

Lenn:
If

If
$$
E\subseteq |R^2
$$
 Borel and $0e^{-H^1}(\epsilon) \le \infty$, then

$$
\lim_{\substack{\epsilon \to 0 \\ R\neq 0}} \frac{\sin \epsilon}{\sin \epsilon} \frac{2H^1(\epsilon \cdot R_0(\epsilon_0))}{2\lambda} \le 1
$$
for W^1 are. xe^{ϵ} .

Proof: From per. propositor

Theorn:

Let
$$
EGR^2
$$
 Bod mR , $Q-M^1(\ell) \neq \infty$. IF
 $Q^{1*}(E,x) = \frac{3}{2}$ for H^1 a.e. xeE ,

 $H'(G)$ in $A''(G \wedge E)$, 0. <u>the</u> $3a$ 小 \mathbf{G} مە

Post:	B ₃ ?yduchy of <i>memory</i> , $\forall \beta > 0$ $\forall \gamma > 0$ $\forall \alpha$ α and $\forall \beta$ β β β β β β β γ $\forall \beta$ β γ $\forall \beta$ γ $\forall \beta$ γ $\forall \beta$ γ γ $\forall \beta$ γ γ γ $\forall \beta$ γ $\$
-------	--

$$
Define Re Beiseniteh circle pan of the point b g\nR(x,y) := Blim(x) \cap Blim(y)
$$
\n
$$
\Rightarrow B_{\frac{3}{2}|x-y|}(\frac{x+y}{2}) \ge Blim(x) \cup Blim(y)
$$

So, if
$$
x_{1}y_{1} \in E_{0}
$$
 s.t. $|x-y_{1}| = R \le p$. Thus,
\n
$$
H'(R(x_{1}) \cap E) \ge H'(R_{R}(x) \cap E) + H'(R_{|x-y_{1}|}(y) \cap E) - H'(R_{R}(x) \cup R_{R}(y) \cap E)
$$
\n
$$
\ge \sum_{\substack{(n) \\ (n) \\ (n) }} (\frac{3}{2} + \lambda)MR - (1 + \beta)2 \cdot \frac{3}{2}R = (M - 3\beta)R \ge \lambda R > 0
$$

Deter $G := \left\{ \begin{array}{ll} E_{\alpha}(x) : x \in E_{0} \cap \overline{B}_{\overline{A}}(\overline{A}) \text{ s.t. } R \in \alpha \text{ s.t. } R \in \beta \text{ s.t. } R \in$

Detre M:= (EO 1 BA) U 28x U (Y 5B.)

$$
G := ((E_{o} \cap B_{\overline{A}}) \cup \partial B_{\overline{A}}) \setminus (\psi S B_{i})) \cup (\psi \delta (S B_{i}))
$$

 SL_1 H is cloud

Let
$$
\{x_n\}_n \subseteq M
$$
 s.t. $x_1 \rightarrow x_0$. If $2x_0$ is a cumulative number of $(\ell \wedge B_{\ell})$ \cup $\wedge B_{\ell}$
we are ok. So, $5\nu\rho\rho\omega\omega$ $8\nu\rho\omega$ $x_1 \in 5$ $B_{\delta(\ell)}$ $\omega\omega$ $5(1) \rightarrow \infty$.
Let $y_{5^{(1)}}$ be the *the* $\omega\omega$ $\omega\omega$ $\omega\omega$ $B_{\delta(\ell)} \neq 0$. $\{1 + 0\}$ $S_{\delta\omega}$ $B_{\delta(\ell)} \in \mathcal{E}_0$ $\omega\omega$ $B_{\delta(\ell)} \neq 0$.

Clently,
$$
As
$$
 news 6 is cloud.

Suppose
$$
Broc
$$
 H_1, H_2 $chad$ ab $divjot$ et . $H = H_1 U H_2$.

\nSuppose $W0L06$ $Fl_1 + B_5 \subseteq H_1$. Alg_2 , ech . $5B_1$ 15 $ethc$ m H_1

\nor H_1 . S_2 , $H_1 \cap E_0 \neq \emptyset$. If one drk n m H_2 , H_m $H_1 \cap E_0 \neq \emptyset$ b_3 $(ii) \Rightarrow L(i)$.

\nTake $x, eH_1 \cap E_0$ $x_0 \in H_1 \cap E_0$ $at minimal drk m H_2 $crck$ px_1 , $ah \in R(x_1, x_0) \cap E_0 = \emptyset$ $becure$ $ax_1 \wedge ay_1$ $eble$ $ax_2 \wedge b_1$.$

\nSo, b_3 He $crck$ px_2 hck h $(E \cap R(x_1, x_0)) \geq \lambda |x_1 \cdot x_2|$ g h h h $(e_3 \wedge b_1)$.

\nSo He $R(x_1, x_1) \cap E_0 = \emptyset$, he ce $H^1(B_{12}, x_1) \cap (E_1 E_0) \geq \lambda |x_1 \cdot x_2|$ g h h

10/3

Theorem: (Begicourteh)

Let $E \subseteq \mathbb{R}^2$ be Bord with $0 \in \mathcal{H}'(\varepsilon)$ ∞ أ. جي $\theta_*^1(\epsilon, \kappa)$ \rightarrow 3 for θ^1 -a.e. $\kappa \epsilon$,

then E is restillite.

Suppose B2NOC it x not, then we means they to find a clued, push, which.
E's E with $\Theta^*_{\ast}(E'_{\mathcal{M}}) = \frac{3}{4}$ + a at 14'-a.e. $x \in E'$. Find a continuum 6 PA </u> who octiled cas of H'(GRE) so. we say repeat the post of faday such a G. Out of music them out studied considerations we may fed FEE s.d. OEF and $-4\sqrt{(F\cdot F)}\cap B_{R}(0) < \gamma F$ V_{R-A} (we am pake on 8!) $\sim 385 \text{ }\Omega$ for all $\sqrt{2} \cdot \frac{A}{10}$ Dutie $C := \overline{\{B_R(x): x \in P \cap \overline{B_R}}$, $R_{\leq a}$, and $H'(\overline{B_a}(x) \cap (\overline{e} \setminus P)) \geq \alpha R\}$
This is a VA is conv, at so $3\overline{\{B_i\}} = C$ st.
 $\bigcup_{i=1}^{n} S_i B_i \geq \bigcup_{b \in C} B$ and $\overline{B_i} \cap \overline{B_j} = \emptyset$ if $i \neq j$. We dele $H:=\partial B_{\overline{A}}\cup (F\setminus (\nu_S\overline{B}))\cup (\nu_S\overline{B}))$ $6:3B_{\overline{b}}\cup(F\setminus(\psi\circ\overline{a_1}))\cup(\psi\circ(\circ\overline{a_2}))$ We wish to show connectednes of H, which will sigh 6 connected. Suppose Beroc M= H, UM, when H; dejust closed, and nonegots. We know M. NF+0 and MenF+0; by chose we my title a sumption of (KAFK We know that $B_{|x,-x|}(x_i) \in \mathbb{C}$ and so there is a poth cancely x_i at x_c . So, n is canceled a 6 canceled. Meth, note that rok tut
 $H'(6) \leq H'(F) + 2\bar{A} \leq 10\pi \sum_{r=1}^{\infty} R \leq H'(F) + 2\bar{A} \approx +10\pi \sum_{r=1}^{\infty} \frac{H'(F(P) \cap \bar{B_r})}{\sim} \leq \frac{H'(F) + 2\bar{A} \approx 10\pi \sum_{r=1}^{\infty} \frac{1}{24\pi}$ So, $H'(5 \cap 6) = H'(5 \cap 6) = H'(5 \cap 8) = \frac{2}{15}H'(58) - 2 \times 10(58) = 15(58) - (15) (0 \times 28)$ $= 4' (FAB_{\lambda}) - (I+A) 4' ((E\setminus F) \wedge B_{5\lambda}) + 4' (E \cap B_{\lambda}) - 2(I+A) \vee S_{\lambda}$ $= 3\frac{1}{2}(2\overline{\beta}) - \frac{2(k\beta)\gamma}{4} 5\overline{\beta} = \frac{3}{8}(2\overline{\beta}) > 0.$

The reproces the earlier thereon and so 6 is a continuum.

why deer this may retartable?

 \mathcal{D}

othogenh pri

Besicovitat-Federer

We not tun to proving the Besconstale - Schner Moon.

First, we neet health some ugliness.

- 1 We want to put a measure on O(n), the orthogonal group { AETR¹³⁰⁰: ATA=In}
- 12 me ment de pat a measure on (o(n,m), de Gremmoion {VSIR": V is an moder}

Renotes

1 O(n) \subseteq Th^{own} is a compact submarifold of dimension a(a-1) So, take $\mu := \frac{1}{2} \frac{1}{$

2. Let
$$
m_0 = 3
$$
 both $m_0 = 6(n_m) = P(n_m) \in \mathbb{R}^{nm}$ for $s_{\text{pre}} = 0$ such that $m_0 = 1$ and $m_0 = 1$.

\n2. Leibchbl₃, $m_0 = 0$ when $m_0 = 0$ when $m_0 = 0$ when $m_0 = 0$.

\n3. A projection is S_{0} , $P(n_m) \in \mathbb{R}^{nm}$ is a constant, $m_0 = 3$ when $m_0 = 3$.

\n4. A other may be able to have $\pi_0 = 3$ when $m_0 = 3$ when $m_0 = 3$ when $m_0 = 3$.

\n4. A other may be able to have $\pi_0 = 3$ when $m_0 = 3$ when $m_$

Note that $G(n,n) \cong G(n,n-n)$ are $V \mapsto V^{\perp}$ and $\mathbb{F}_v \mapsto \mathbb{F}_n - \mathbb{F}_{v+1}$

Now, or to the theren!

1.
$$
\frac{d}{dx} \frac{\partial \tan \theta}{\partial x} = \frac{1}{2} \int_{0}^{1} f(x) \cos \theta + \
$$

 \bigcirc at $A_{1,8}(v)$ \circledR a e $A_{\epsilon,s}(v)$ $\circledR(A\setminus \{3\})\wedge (a+v)\wedge B_{s}(a) \neq \emptyset$

Part of Theorem:

\nFrom the lemma, we have the formula for
$$
S_{\alpha, n-k}
$$
 are 10^{-1} .

\nSo, we get $A_{1,1}(0) \Rightarrow 4^{16}$.

\nSo we if $A_{1,2}(0) \rightarrow 4^{16}$.

\nSo we get $A_{1,2}(0) \rightarrow 4^{16}$.

\nSo, we expect S_{α} , we have S_{α} and S_{α} .

\nSo, we expect S_{α} and S_{α} are 10^{10} .

\nSo, we expect S_{α} and S_{α} are 10^{10} .

\nSo, we expect S_{α} and S_{α} are 10^{10} .

\nSo, we get $P_{\alpha}(A)$ and S_{α} are 10^{10} .

\nSo, we get $P_{\alpha}(A)$ and S_{α} are 10^{10} .

\nSo, we have $P_{\alpha}(A)$ and S_{α} are 10^{10} .

\nSo, we have $P_{\alpha}(A)$ and S_{α} are 10^{10} .

\nSo, we have $P_{\alpha}(A)$ and S_{α} are 10^{10} .

\nSo, we have $P_{\alpha}(A)$ and S_{α} are 10^{10} .

\nSo, S_{α} are 10^{10} .

\nSo, S_{α} are 10^{10} .

\nSo, S_{α} are <math display="</p>

 $\mathcal{H}^{k}(\beta) \leq \frac{\beta}{2} \lambda(\overline{\beta_{A_1}(k)}) \leq \omega_{k} \leq \lambda_{1}^{k} \leq \omega_{k} \leq \frac{1}{2} \pi \mathcal{H}^{k}(\mathbb{R}_{\nu^{+}}(\overline{\beta_{A_1}(k)}) \wedge A)$ $\frac{2}{M}\frac{w_{k}}{M}$ yk(A) Take M x as and we are done. \overline{D}

Proof of Lema 1: Let EDO. Then, 350 st. "stift often longer is bounded writing.
Apply propositor for below to care most of $A_{1g}(v)$, and can the $sinh$ $-est.$

 $\rho_{\infty\rho}$.

1.4
$$
u = \text{grad}_{x} k \cdot \text{grad}(k \text{ is odd})
$$
, 2, 50 (0, a).
\n1.4 $u = \text{grad}_{x} k \cdot \text{grad}(k \text{ is odd})$ 2, 50 (0, a).
\n1.4 $u = \text{grad}_{x} (k \text{ is odd})$ 2, 60, 1000,

015-

Let E rectifiable and f: E=R³ be Lipsolitz. Then, the course formule applice.
If E 2-real (i.e. a surface) and j=1, the:

$$
\bigotimes_{\mathbf{f}^*(s)} \mathop{\mathbf{E}}_{\mathbf{f}^*} \longrightarrow \mathbb{R}
$$

The coare founds allow are to fish messe at a set by starting lead sets of the function, Fibri-style, using Jp(x) to eccount for distantion. We know this form

Reall the upper integral $\int_{\phi}^{\phi} f = \int_{\phi}^{\phi} \int_{\phi} \phi$. Fatovs lema holds!

Pop:	(Conve, mequality)	me^{2} when the sum
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ Lipschitz, $s \ge n$, $A' \le \mathbb{R}^{n}$. Then,	Thus, $s \ge \frac{1}{n}$ and $s \ge \frac{1}{n}$.	
\n $\int_{\mathbb{R}^{n}}^{*} \gamma f^{s-n}(A \cap f^{-(\xi_{1}y)}) dy \le C(s_{n}) \cdot \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f^{s}(A)$ \n	where $s\rho = 1$ and $s \ge 1$ and $s \ge 1$.	
\n $\int_{\mathbb{R}^{n}}^{s} \gamma f^{s-n}(A \cap f^{-(\xi_{1}y)}) dy \le C(s_{n}) \cdot \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f^{s}(A)$ \n	See Febler. \n	

\n
$$
\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}
$$
 \n Conv\n $A = \frac{1}{2}$ \n

\n\n $\frac{W_{s}}{2^{3}} \sum_{i} \frac{1}{2} \rho_{\text{form}}(E_{k,j})^{5} \leq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ \n

\n\n $\frac{W_{s}}{2^{3}} \sum_{i} \rho_{\text{form}}(E_{k,j})^{5} \leq \frac{1}{2} \cdot \frac{1$

$$
\int_{0}^{4} H^{s-n}(A \wedge f^{1}(f_{3}\overline{f})) d_{3} = \int_{0}^{4} L_{n} \psi_{\frac{1}{k}}^{s-n}(A \wedge f^{1}(f_{3}\overline{f})) d_{3}
$$

$$
\leq \int_{K-1}^{k} L_{m,n}f(x)dx \leq \frac{2}{2^{s_{m}}}\int_{1}^{s} dm\left(E_{K_{1}}\cap f^{-1}\xi_{3}\right)^{s_{m}}dy
$$

Fatou lunch $2\int_{F_{A_{i_{0}}}}^{F_{A}} \frac{w_{s_{0}}}{2^{s_{0}}}\int_{F_{B_{i_{0}}}}^{2}dw_{1}(E_{k_{1}}\wedge f^{-1}\xi_{1}\zeta) \int_{0}^{5-\gamma}dy$

 \leq lunch $\left(\sum_{i=1}^{n} \frac{w_{i-1}}{2^{n}} \right)$ don $\left(E_{\mu_{i}}\right)$ ⁵⁻¹) $\left(\sum_{\mu_{i}} \frac{w_{i}}{2^{n}}\right)$ $\leq \omega_{n} \text{den}(F_{\kappa,1})^n$ \leq lunt $\left(\frac{w_{s-1} \cdot w_{n}}{2^{s-1}} \left(\frac{1}{p(s-1)} \cdot \frac$ = $\frac{u_{s-n}}{u_s}$ $\frac{u_{n-2}}{u_s}$ $\frac{u_{\rho}(f)^{n}}{u_s}$ $\frac{H^s(A)}{u_s}$ $\mathbf D$

Remark: If + Hölder, you could still do this with the estimate dian (Fa,) & alon (Ea,)"

010-

Proof of Lenna 1 The ar two parts. We will prove 2 first for Ksn.1
(coderanon 1), after what we will do it in generals. 1 Let Ken-1. We my that of G(a,I) as the spher/RP" at 8a, as the Mean messe / uniform prob. on the sphee. $10/8$ -10 Let $L(\Theta)$ be the line possibility by a point Θ on the n-sphere.
Let $L(\hat{\epsilon})$ = $U_{L(\Theta)}$ $V \in \mathcal{S}^{n-1}$ Then, W openys S , $C(0, V, s) = \bigcup_{\Theta' \in B_{\text{average}}(s)} L(\Theta') = L(B_{\text{average}}(s))$ Define the set function $\psi(E) = s v \rho$ $R^{12} H^{12}(A \cap B_R(G) \cap L(E))$
for $E \subseteq S^{12}$ becaus $e^{s \cdot 1/8}(\Psi, \rho)$ **LED** Then, line s¹⁻¹ $\Psi(B_s(\theta))$ = line sup $(RS)^{1-n} A^{n-1}(A \wedge B_{\theta} \wedge C(\theta, \theta, \theta))$ So, we WTS that for $\chi_{n,1}$ -a.e. O ether Here, we are proving it for all points 0 $\theta^{-1,*}(\psi_{\theta}) = \infty$

8 $\theta^{-1,*}(\psi_{\theta}) = 0$

8 $L(\theta) \wedge A \setminus \{\infty\} \wedge B_{\theta}(\omega) \neq \emptyset$

9 $L(\theta) \wedge A \setminus \{\infty\} \wedge B_{\theta}(\omega) \neq \emptyset$

12 $L(\theta) \wedge A \setminus \{\infty\} \wedge B_{\theta}(\omega) \neq \emptyset$

12 $L(\theta) \wedge A \setminus \{\infty\} \wedge B_{\theta}(\omega) \neq \emptyset$

12 $L(\theta) \wedge B_{\theta}$ $(*)$ 0 $\theta^{-1,*}(\psi_{,\theta}) = \infty$
(*) 0 $\theta^{-1,*}(\psi_{,\theta}) = 0$ We want to store 4 is an order negate, since there we mortal Le able to apply the follows. Lenna (Michle-Radó): Let Ψ be an other neuve on R^{n} and E on L"mes. Wt e.t. $\Psi(\epsilon)$ =0. Then, for $\sum_{n=1}^{\infty} a_n e_n$. $x e e_n$
 $\theta^{np}(4, x) = \frac{ln n}{80} e^{-n} 4(B_n(x)) e_n^2(0, \infty)$

$$
3 (4 \times 5 \times 1) \wedge ((L_{\mathfrak{S}} \vee L) + \Delta) \wedge B_{\mathfrak{S}} \omega + \varnothing
$$

von an application of the above kount logic. We have the wight attending,

Let
$$
V_{e} := \{x_{1} = ... = x_{k} = 0\}
$$
, and so
\n $C(\sigma, V_{e}, s) = \{x \in \mathbb{R}^{2}: \sum_{i=1}^{5} x_{i}^{2} \leq s^{2} \} \times \{x_{i}^{3}\} = \{x \in \mathbb{R}^{2}: \sum_{i=1}^{5} x_{i}^{2} \leq \frac{5}{1-s^{2}} \} \times \{x_{i}^{3}\}$
\n $W_{j} := V_{e}^{2} \circ \mathbb{R}e_{j}$, $j \in \{k+1, ..., n\}$ $(f_{s+t} + k, d_{s-t} - \rho k_{s} - \rho k_{s-t} - \rho k_{s$

$$
X_1(D_1V_0 \sigma) = \frac{5}{2} \times 2 \pi
$$
 $\frac{2}{1} \times 2 \times \frac{2}{1} \times 2 \times 2 \times 2$

$$
N_{\text{obc}}\ \{1,1\} \quad \text{if} \quad s=\sigma, \quad \text{Re} \quad X_{\text{i}}(\sigma, v_{\sigma}, \sigma) \subseteq C(\sigma, v_{\sigma}, \varepsilon) \quad \Rightarrow \quad \bigcup_{\text{is-km}} X_{\text{i}}(\sigma, v_{\sigma}, \varepsilon) \quad \subseteq C(\sigma, v_{\sigma}, \varepsilon)
$$
\n
$$
\text{Hom} \quad C(\sigma, v_{\sigma}, \varepsilon) \quad \subseteq \bigcup_{\text{is-km}} X_{\text{i}}(\sigma, v_{\sigma}, \sigma) \quad \text{for} \quad \frac{s^{k^{2}}}{1-s^{k^{2}}} = (n-n)\frac{s^{k}}{1-s^{k}}.
$$

We may map Vo to other storpes un orthogenel trustanation. So, we will reason about

Let
$$
5s0
$$
, $je\xi krl, ..., n3$. For Θ_{n-2n} , $qeO(n)$, one of the follows always holds:

$$
W = \sum_{s,b} P_{0s} P_{1s} (R) - H^{*}(A \cap B_{s}(a)) \cap (a + g X_{3}(0, V_{0}, s)) = 0
$$

$$
9
$$
 $9-40$ 80 10^4 4^k $(AD^2(a) \wedge (a + a)(0, b, s)) = \infty$

$$
B (A \setminus \{\cdot\}) \cap B_{\delta}(\mathbf{a}) \cap (\mathbf{a} + \mathbf{a} \vee \mathbf{a})
$$

$$
\frac{\rho_{\text{col}}!}{\rho_{\text{col}}!} \text{ 1}_{\text{col}} = \frac{\rho_{\text{col}}}{\rho_{\text{col}}!} \text{ 1}_{\text{col}} \
$$

Let
$$
\chi(\sqrt{2}) = \begin{cases} 1 & \text{if } \text{one of } 2 \text{ positive kABs} \\ 0 & \text{otherwise} \end{cases}
$$

Use can conform that
$$
\chi
$$
 is both and to make $(A$ compact will help).

\nWe have $O(n) = \{ \text{orthogonal trrefunder} \neq \mathbb{R}^2 \}$

\nWhen $= \{ \text{gen}(n) : \text{gl}_{w+} = \text{id} \neq \text{id} \}$

Thus,
$$
\int_{O(kn)} \chi d\theta_{kn} = 0
$$
 or
and $\int_{O(kn)} \chi(n) d\theta_{n}(n) = \int_{O(k)} \chi(n_{n}) d\theta_{n}(n)$ $\forall_{0} O(n)$.

 50

So, see
$$
\theta_{km}
$$
 is a probability range,

$$
\int_{\mathcal{O}(\mathcal{Z})} \chi(\kappa) d\varphi_{n}(\kappa) = \int_{\mathcal{O}(\mathcal{M})} \int_{\mathcal{O}(\mathcal{L})} \chi(\kappa) d\varphi_{n}(\kappa) d\varphi_{mn}(\kappa) = \int_{\mathcal{O}(\mathcal{M})} \int_{\mathcal{O}(\mathcal{L})} \chi(\kappa_{\varphi}) d\varphi_{n}(\kappa) d\varphi_{mn}(\kappa)
$$

WAR this lem, or proof of Lema U is couple since the devels is O for a orderare its 1 with for ac. good.

WM lem 4, we know as alongs have the attentive and each are league on a get of neare O, and so we have done it! \prod

 \Box

Besicovitch - Preiss

R Theorn: (Besicated-Prize)

Let ESR^0 Band st. $OLH^k(E) \rightarrow \infty$. If $OLB^{k\epsilon}(E,x) = B^k(E,x) \rightarrow \infty$ enorts for \mathcal{H}^k - a.e. $\kappa_6 \epsilon$, then ϵ is restrible.

Equally.

Let μ Le a Rados nearer and assume $\theta^{k*}(\mu,x) = \theta^{k}(\mu,x)$ easis and is positive and finds for M-agent. Then, 38 retained at dong and fit for the Bond sh $\frac{1}{2}$ $\frac{1}{2}$

$$
\mu = f H'' L F
$$

Remarks To dow equation, we dealy of in to do Ars abs. can. with 7th.

Thearn: (Mastreal) Suppose a satisfies the remembs of BP, but let N. The use. <u>Ruelle So, von-sige-diesen sels mot have holes of some surt.</u>

Theory: (Machand - Mattel)

If E saturfree off conditions and $e^{ax}(\varepsilon,x) = 1$ if $x \in \varepsilon$ the ε is realistic. Renoch: This is maker then BP, and so we work prove it. \mathbf{D}

Input A	Problem	Number	Number	Table	Number	Number	Table	Table	Number	Table	Step	Step	Step	Step	Step													
1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1. $11.2.10$	1	

4.
$$
2\pi
$$
 2π 2π

<u>Renative</u> the regist expect all a-critic messes to be Heusdevil messes on a plane.
In genul, this <u>that t</u>he (what is that is that we as it is the restrooted to an $\frac{1}{2}$ by the core

A complete is
$$
C:=\{x_{u}^{2}+x_{i}^{2}+x_{i}^{2}+x_{i}^{2}\} \subseteq \mathbb{R}^{N}
$$
. Thus $H^{3}LC$ is 3-uniform more

Exore:

A tagent never to a uniform R a violen regue. mone

Proposition: (Mastreal)

whole other

If $a = k$, at least are trangent measure at unneck is $\Theta^k(n,x) \, \gamma t^k L V \quad \text{for} \quad k - 1$

Reach: The is far from allowy is to gooly the tongent messe cities from West 2 to proc restorations one that request state, Museumer on-water forgest meanes. However, it turns out we don't need unequeues.

Theore : (Mastreal-Mattile Restitutibly Cotton) desits and failer upper desity pointed . (Mastreal-Mattile Restilled with problem in production) taget mesure of in is of the fun (A) cH^kLV for some cso and koden subspect V. then in is reatifiable.

Theory (Press)

Under the assumption $\mathfrak{G}^k(n,x)$ earts unale, then for provide x every tengent means a^+ x los the four (x) .

Togetter freis + Mastred-Matthe Reelshability => BP.

0/29

Preposition: (Marthard) Let in de an x-uniform megne and assume xer. They 3xespt(x) and

 $C_{\alpha\beta}$

If a & M, the 13 no arostom near.

Profi repeat above demanding reduction with notenen.

Lenne:

If in 5 nothered and d-uniform, dan, the 3 an d-uniform means 10 ETO 2 (19, 2)

D

$$
\frac{\rho_{\infty}f_{\infty}f_{\infty}f_{\infty}}{\rho_{\infty}f_{\infty}}\left[\int_{\Omega}d\tau+\rho\epsilon\int_{\Omega}d\tau\int_{
$$

<u>Lennis (m. 1888).</u>
1905 - Carl Maria Barbara, política estadounidense e a contra de la contradición de la contradición de la con

Let
$$
veT_{on_{n}}(x,x)
$$
 be as $g_{mn}b_{3}+c_{n}g_{mn}g_{mn}$ leve.
\nThus, $Re_{n} = b_{3}g_{mn}bc$ $H_{n} + \forall \beta \in Tan(y,x)$, for some $x \in sp^{+}(v)$.
\n $0 \beta \in Tan_{n}(x)$ $0 \beta \in Secom+1$ m M

(a) Note the baryeach b(n):=
$$
n^{-4}
$$
 $\int_{B_{r}(0)}^{R} z d\nu(z) = \frac{eR}{h}$ (b) condition, $spt(s) = \frac{5}{2}x, \frac{s}{20}$.
\nIf b(n)=0 by λ in v $\frac{1}{2}x\lambda$ is proportional to a hyperplane about, and
\nwe are done. So, s_{λ} s_{λ} $\frac{1}{2}x\lambda$ $\frac{1}{2}x$

$$
\Rightarrow 2|(b(c), y)| = |c^{-2}| \int_{B_{r}(0)}^{B_{r}(0)} 2(e,y) dv(e)|
$$
\n
$$
\leq h_3|I^2| + |c^{-2}| \int_{B_{r}(0)}^{B_{r}(0)} (c^2 - ||z||^2) dv(x) - c^{-2}| \int_{B_{r}(0)} (c^2 - ||z-y||^2) dv(x)
$$
\n
$$
\Rightarrow 2|c| + |c| \int_{B_{r}(0)}^{B_{r}(0)} (c^2 - ||z||^2) dv(x) + c^{-2}| \int_{B_{r}(0)} (c^2 - ||z-y||^2) dv(x)
$$

$$
1.3. \text{ Nonce, use have } 2(5663.5)^{\frac{1}{2}} \leq ||b_{1}||^{2} + r^{-4} \int_{B_{r}(0)} |r^{2}-1|^{2} = 10(5)
$$
\n
$$
\frac{(B_{r}(0) \cdot B_{r}(0)) \cup (B_{r}(0) \cdot B_{r}(0))}{s_{s_{1}+1} \cdot 10(10-2)} = 10(5)
$$

For
$$
z \in B_r(a) \setminus B_r(a)
$$
, $0 \le ||z-y||^2 - z^2 \le ||z-y||^2 - ||z||^2 \le 2||z||||y|| + ||y||^2 \le 3-||y||$
\nFor $z \in B_r(a) \setminus B_r(a)$, $0 \le r^2 - ||z-y||^2 \le ||z||^2 - ||z-y||^2 \le 3-||y||$
\nSo,
\n $2|a(a), y\rangle | \le ||y||^2 + r^{-2} \ge r ||y|| \le (8-6) \triangle B_r(x)$

$$
V_{\epsilon} \quad \text{from} \quad \{C_1 < b(-1), b_1\} \leq ||c_1|| + |c_2||c_1|| + |c_3||c_2||c_3|| + |c_4||c_3||c_4|| + |c_5||c_4||c_5|| + |c_6||c_4||c_5|| + |c_7||c_5|| + |c_7||c_6|| + |c_8||c_7|| + |c_9||c_8|| + |c_1||c_9|| + |c_1||c_1|| + |c_1||c_2|| + |c_1||c_3|| + |c_1||c_4|| + |c_1||c_3|| + |c_1||c_4|| + |c_1||c_5|| + |c_1||c_4|| + |c_1||c_5|| + |c_1||c_6|| + |c_1||c_7|| + |c_1||c_8|| + |c_1||c_9|| + |c_1||c_1|| + |c_1||c_2|| + |c_1||c_3|| + |c_1||c_4|| + |c_1||c_4|| + |c_1||c_5|| + |c_1||c_4|| + |c_1||c_5|| + |c_1||c_6|| + |c_1||c_7|| + |c_1||c_8|| + |c_1||c_9|| + |c_1||c_1|| + |c_1||c_2|| + |c_1||c_3|| + |c_1||c_4|| + |c_1||c_3|| + |c_1||c_4|| + |c_1||c_5|| + |c_
$$

$$
\Rightarrow 2|2\delta(\lambda,\lambda_1)| \leq ||\eta||^2 + r^{-d-1}c\| \eta\| \left((r+||\eta||)^{d} - (r+||\eta||)^{d} \right) \\ \leq ||\eta||^2 + 3||\eta||r^{-d} \left((C\lambda) ||\eta||^{d-1} \right) \leq (C\lambda) + 3||\eta||^2
$$

Now,
$$
h + \beta := \text{rank} * h
$$
 $v_{0, n}$. $h + \text{rank}(\beta) = \text{rank} * h$ for

$$
S_{\mu\nu} = \mathcal{E}_{\mu} \epsilon s \rho^{\perp} (v_{o_1 \cap \mu}) \quad \text{Thus} \quad c_{\epsilon} \mathcal{E}_{\mu} \epsilon s \rho^{\perp} (v)
$$

a
$$
|b(x)| = \sum_{k=1}^{\infty} |b(x)| \cdot x_k| = \sum_{k=1}^{\infty} |b(x) \cdot (x_k)| \le C ||x_k||^2
$$

\nb $|b(x)| \le \sum_{k=1}^{\infty} x_k \le 0$ |b(x) | $0 \le x_k$ |c(x) | $0 \le x_k$ |d(x) | $0 \le x_k$

 \sim

$$
\circled{1}
$$
 $T_{on(n,x)}$ as weak- $*$ *coppot.*

$$
\circled{1}
$$

$$
U_{e}T_{on(n,x)}
$$
 \downarrow $U_{o,e}T_{on(n,x)}$ $VR_{>0}$.

 P $\overline{}$

a) Suppose that
$$
\{U_{k}\}_{k} \leq T_{on}(p,q)
$$
 with $U_{k} = \int_{j=a}^{n} p_{k}(p,q) k$ if. $V_{k} \rightharpoonup V$.
\n B_{j} (a ~~l~~ or ~~d~~ or ~~g~~ or ~~h~~ and ~~h~~ or ~~g~~ or ~~h~~ or ~~h~~

Lena!

If
$$
U \in U^{\infty}(R^{n})
$$
, $\frac{\mu_{11}}{\mu_{21}} = \frac{1}{3}$ a same $\frac{\sum a_{ii}}{\sum a_{ii}} \leq spt(u)$ ab a square of nabi
\n $\Delta_{11} > 0$ s.t. $U_{a_{i}, \Delta_{n1}} \stackrel{\text{d}}{\longrightarrow} H^{\infty}L V$ for some $V \in G(n,k)$.

 \mathbf{D}

<u>Preef:</u> degentization agan.

Ve have that scaling tangery, but it would be note for swith to do so as well. perna

Proposition:

$$
\frac{\rho_{\text{cos}}f_3}{\rho_{\text{cos}}f_3} = \frac{\rho_{\text{cos}}\rho_{\text{cos}}}{\rho_{\text{cos}}\rho_{\text{cos}}}
$$
\n
$$
\frac{\rho_{\text{cos}}f_3}{\rho_{\text{cos}}\rho_{\text{cos}}\rho_{\text{cos}}}
$$
\n
$$
\frac{\rho_{\text{cos}}f_3}{\rho_{\text{cos}}\rho_{\text{cos}}\rho_{\text{cos}}}
$$
\n
$$
\frac{\rho_{\text{cos}}f_3}{\rho_{\text{cos}}\rho_{\text{cos}}\rho_{\text{cos}}}
$$

Irrolve a divide 8.
$$
Int
$$
 mohrce, Int to change on $Rebo$, $nums$, m s.t.

\n3. C_{nr} s.t. $m(B_{nr}) \leq C_{nr}$ V.V. $C_{1}m$ k. $G_{1}m$ l. Im Im

\n
$$
D_{3} \quad \text{Cauchy} \quad \text{of} \quad G_{3} \quad \text{of} \quad (J_{1} \times J_{n_{e_{1}}} \times J_{n_{e_{2}}} \times \frac{1}{2}E_{n} \text{ in } \mathbb{Z} \times \mathbb{Z}
$$

 \sim

 $\overline{}$

 \rightarrow

 \sim

 $\overline{}$

 $\overline{}$

$|0|3|$ -

Prof: (MM Rectifination) Criteral) Let n be Raden and KEN s.f. (a) $0 \n\in \theta^k_+(n,x) \in \theta^{k*}(n,x)$ cas for n -as. x. (b) $Tan(n,x) = \{ cH^kUV : cer^k, VcGL,n \}$ Sim Ten(n, x) is weak a closed $02C_1(x) 6C_5C_6(x) 60$ ~ 3 reatifiable. They Haven't man proposed y moule Renoks $0.04 e^{k}(\mu,x) \leq \theta^{kn}(\mu,x)$ en $\Rightarrow \mu = f \frac{H^{k}}{k} \leq f^{k}(0)$ nonegative $So, for $v-a.e. \times (ab \circ \mu-a.e. \times),$$ $-\theta_*^k(\mu,x) = f(x) \theta_*^k(\mu,x)$ \cdot $\theta^{k\prime}(\mu,x)$ = $f(x)$ $\theta^{k\prime}(\mu,x)$ Ton $(m, x) = f(x)$ Ton (v, x) Without loss of generality me may suppose M= HkLE and ETS cannot!

Prop: (Marthand, then Mattila)

Let $k\in\Lambda$, $k\in\mathbb{N}$, $\mathcal{E}\subseteq\mathbb{R}^{n}$ compact \mathbb{R}^{n} . $H^{k}(\mathcal{E})=\infty$. If E has the weak linear approximation property at He-a.e.x. than E is realitionble.

Proof: By the above remark, if we the E has the WLAP, the so does m. So, we my prec wards that if E is pucky unredistante.
compact, and has the whole, then E has necessed O. formal up proof from here

(souhour Ton & CTR) which)

Lenni If E purely unrectable of WLAP at Hte a.e. x, then $H^k(\mathbb{P}_v(\mathcal{E})) = 0$ for $EVERY$ kiden line stopped V. $\overline{(\overline{u})}$ Can't use BF. perhaps we ved OF
point? Proof of lemai FX E>O and VEG(n, k). $Skel:$ \overline{d} a comprehence CSE and Moterntan: each tanget measure has to positive r_0, r, δ st. be got of vertical, since otherse A papels with too most most.

 θ $\mathcal{H}^{k}(\epsilon)$ c c

1 7th (E1B-6) 2 Srk Vach, rela lower density bounded a.e.

3 viel Vrero, 3 a plus WeG(n, k) st.

 $C \cap B_{r}(a) \subseteq \{2: \text{dist}(3, a+1) \leq 3r\}$

 ω z<br ϵ

To do then, find C' s.t. \circledcirc holds and $H^k(\epsilon\backslash c')\circ \frac{\epsilon}{2}$ which an be done sine the lower deads is bounded below; this gives S.
By (LA), for a fixed $\gamma = \delta \epsilon$, find $C'' \subseteq C'$ with $H^k(E \setminus C'') \neq \epsilon$. Thn, $74^{\mu}(\epsilon AB,60\sqrt{\epsilon_{2}};du)(2,x+1)=8\sqrt{3}(3\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2\pi^{2}};du)(2\sqrt{2$

Suppose BLOC that dart(y z + 1) z = when y = BCCCO. BLY BCP V

 $\{((3-3)\lambda)^k \leq \gamma((k+3)\lambda)^{k} \}$ since $\{((3-3)\lambda)^k \leq \gamma\}$

Imposing ...

we get $\circled{3}$.

For (A) we get be the
$$
1/e(G_1, F_1)
$$
 but $1/e(G_2, F_2)$ but $1/e(G_1, F_2)$
\n 11.3 b) $6.6 \times 10^{-1} (e^{6.4} \text{m} \cdot \text{s} + 14e^{6.4} \text{m} \cdot \text{s} + 14e^{6.4}$

Let's zoon out. Recall we wish to prove BMP.

 $Theorem: (BMP)$ let uso be hadon on \mathbb{R}^n with a density examing positive, and thiste re-n.e. Тъ, D ac N Ou is a-restable Vider these assumptions, we have seen the following for M-a.e. X 1 d=k for k subject \odot Tan $(\mu, x) \subseteq \mathcal{U}^k(\mathbb{R}^n)$ $\circledS \phi \neq \text{Tor}(n,x) \wedge \theta(n,x) \in (\mathbb{R}^n)^{\text{length}}$ Entre Nechsen With the following them, we would complete BMP. Theorem (Press) It all tengent masses are visitors and one tangent measure Proof of Press Der: The fayest messe at mining of a Redon in is $Ton(n,\infty) = with n, n,$ P_{\sim} \perp $\forall \mu \in \mathcal{U}^k(\mathbb{R}^n)$ uniform, $Ton(\mu, \infty) = \{\xi\}$ is unique! $P_{\alpha\rho}$ 2

 $\frac{1}{3600}$ s.t. if $m \cdot k$ onl $\frac{2}{3}$ are as $m \cdot 8$ orp I and

$$
\sum_{V \in G(n, t)} \int_{B_n} dx t^2(x, v) \, d\xi(x) \, \epsilon
$$

then $3 = H^4LV$ for some V.

 P_{rel} 3

If now ? or as a Prop 1 out $\{ \in C^{n}(\mathbb{R}^{n}) \}$ $\frac{\mu_{\text{m}}}{\mu}$ = {

Using New, we will reason in the following my:
doing $F(n) := \min_{\substack{m \text{min} \\ \text{with} \\ p \text{min}}} \int \psi(p)^2 d\pi f(z, V) d\mu$ for $\int_{\mathbb{R}^n} \psi(p) \psi(p) \psi(p) d\mu$ They F is centures since non of Lipsalatz. Dette $f(c) = F(\mu_{0,c})$. If $\mu_{0,t_{3}} = 0$, then $f(c) = F(v)$ Blow-Dom Procedure $\frac{1}{2}$ $\frac{113}{113}$ Let ϵ 30 be as given by Prop 2. We know finant f(r)=0. By Prop 2, we expect longer $f(c)$ is ϵ . Fix r_i to an s_i to $s.t.$ $f(s_i)$ is and $f(r_i) \rightarrow o.$ B_{3} proton absences, we very suppose WOLOG s_{j} or i . Then, $3\,\mathcal{O}_{j}$ s.t. $f(\mathbf{e}_j) = \mathbf{e} \quad \mathbf{a} \quad \mathbf{a} \quad \mathbf{b} \quad \mathbf{c} \quad \mathbf{c} \quad \mathbf{b} \quad [\mathbf{e}_j, r_j]$ U_{ρ} to subsequent, $M_{\rho, \theta_j} \stackrel{\text{ss}}{\sim} U_{\rho}$ on not a tegent MO, TO De reposed mere Let $3 = \tan(v, \infty)$. The, $363, 54.$ $2560, 53$ s.t. So, $\frac{\partial j}{\partial s} \rightarrow 0$ M_{0, A_j} 33, and so $F(z) = \lim_{j \to \infty} f(A_j) = \epsilon$ By Prop 2, $\frac{2}{5}$ is flat. So, by Prop 3, since U.'s tanget at an
measure is flat, then $v_1 = \frac{2}{5}$ = v_1 is flat. $\mathbf D$ So, to proce Preiss we must proce these 3 props! Ment the i

 $|| / -$

Theorem: (Taget at a 13 view) Prince nous Let $\mu \in \mathcal{U}^m(\mathbb{R}^n)$. Then, $\exists ! \xi \in \mathcal{U}^m(\mathbb{R}^n)$ s.t. m^2 lm $\mu_{0,r} = \frac{7}{2}$ $\frac{\rho_{\sim}f_1}{\rho_{\sim}f_1}$ water $\mu_{\sim}:=e^{-\left|e_1\right|^2}\mu_{\circ,\sim}.$ We write $\mu_{\sim}=\frac{1}{\rho_{\sim}f_1}$ unequely. 40 when shop we are Dela Mc generalized monets as $\begin{array}{c} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{array}$ $b_{\mu,s}(u_1, ..., u_k) = \frac{(2s)^k}{k!} \left(\int e^{-s|x|^2} d\mu(x) \right)^{-1} \int c_{\mu,s}(u_1) ... c_{\mu}u_k \ e^{-s|x|^2} d\mu(x)$ Perecks Theoen above \Leftrightarrow for bes east and is finde Consider the following Taylor experses of bx,s 1 a) $|b_{k,s}(u_1,...,u_n)| \leq \frac{e^{-\frac{1}{k}}}{k!} s^{\frac{k}{k}} |u_1| \cdots |u_n|$ b) $\left| \int_{k=1}^{2\pi} b_{k,s} (x^k, ..., x^k) - \int_{k=1}^{\pi} \frac{s^k |x|^2}{k!} \right| \leq C (s!n^2)^{k+1}$ $V \leq s \rho^{k}(\mu)$ \bigcirc c) $U_{q,e}\mathcal{N}_{s}$ $V_{w,s} = \sum_{s=1}^{q} \frac{s^{3}b_{s}(s)}{k!} + O(s^{q})$ for s to $(s^{0}, b_{w,s} \rightarrow C^{q})$
d) $b_{k}^{(s)} = 0$ if $k_{s}z_{s} = \frac{\int_{S} \sqrt{b_{z_{k}}}}{s^{k}} e^{-\frac{b_{z_{k}}}{s^{k}}}$ $V_{s+1}(s)$ c) $\sum_{k=1}^{2n} b_k^{(n)}(x) = |x|^{2n}$ V_{n} and all $x \in \mathfrak{so}^{+}(x)$ $\begin{pmatrix} \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \end{pmatrix}$ Proof of b_n at the cold of the square of symphic k-terson, when $k \ge 2a$.
Let $X = X^{k,n} = \bigoplus_{j=1}^{k} a_j^n R^n$ with early $O^{s}R^n$ have probably C^{s} ;
Then, X lus on the product $\langle u,v\rangle_X = \frac{a}{i!} \frac{1}{i!} \langle P_i(u), P_i(v) \rangle$ Detached $\lambda_{s} = b_{1,s} \otimes b_{2,s} \otimes \ldots \otimes b_{k,s} \otimes b_{k,s} \times b_{k,s} \times b_{k}$

A)
$$
4x^2 + 8x + 3x + 3
$$
 and $6x + 3x + 3$ or $6x + 3x + 3$
\n $4x - 4 = 4x + 3x + 3$ or $6x - 4x^2 + 1$
\n $5x - 4 = 4x + 3x + 3$ or $6x - 4x^3 + 1$ or $6x - 6x - 6$
\n $9x - 2 = 6x^2 + 4x + 3$ or $9x - 3x + 4$
\n $14x + 16 = 6x + 3x + 16$
\n $14x + 16 = 6x + 3x + 16$
\n $14x + 16 = 6x^2 + 6x^2 + 16x + 16$
\n $14x + 16 = 6x^3 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^3 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^2 + 16x^3 + 16x^2 + 16x^3 + 16x$

Σ d

 w_{L} arl

$$
\frac{\rho_{\infty}f_{\infty}f_{\infty}}{\rho_{\infty}f_{\infty}} = \frac{3}{2} \text{ and } \frac{\rho_{\infty}f_{\infty}}{\rho_{\infty}f_{\infty}} = \frac{3}{2} \text{ for all } \frac{1}{2} \
$$

(m=2) Now, luf x 65,4(9) and hifwy. Dufue S:= {y : | (y,x)|
$$
5
$$
}
\nThus, { (S) = {1(4) + 3(4) = 0
\nThus, 5(5) = {1(4) + 3(4) = 0
\n 5 , 3 3 (5) and 9 3 (5) and 16
\n 5 , 3 3 (5) and 16 x. We have 6 (1/3) = 1
\n 6 , 1/3
\n 6 , 1/4
\n 1 (1/3)
\n $$

(n=3)	Let V be He and plus some hand by the fourth.	
m e: y are does. By many elements of expand,		
$tr(bz^{(i)}LV^{\perp}) = nm$	$tr(b_{z,i}LV^{\perp})$	
Observe that VW, since $\sum_{i=1}^{m} (a_i + b_i)$	$dx + 2(a_i + b_i)$	
$\int e^{- z ^2} dx + 2(a_i + b_i)$	$\frac{1}{e^{x_i}}(a_i + b_i)$	$\frac{1}{e^{x_i}}(b_{z_i} + b_{z_i})$

We know a number of the it's U! In other meds, $\sum_{k}^{n} \int e^{-kx} dx t^{2}(x, u) dt^{2}(x) = tr(k_{1}, Lv^{2})$ By assumption, $\lim_{w \to 0} \int dx t^2(x, w) d^2(x) \leq \epsilon$ Class: $VSSO, \exists \epsilon \text{ small } even \text{ that } B_{\epsilon}(V) \wedge sp\epsilon(3) \neq 0$
 $V \vee \epsilon B, \wedge V.$ 9 ve 18, 11 V.
Arguest 5×50 , let $2-\frac{1}{3}$ for the $3\frac{1}{3}$ candidary the statuat. $= 3 (B_{14}(\nu)) = 0$ controllery $3 = Hⁿ L V$.

 $\epsilon^{\beta_i \Lambda}$ $Fix 500.$ By the class, $3xesp+(3)$ s.t. $|x=ln|cS$ where $e_1, ..., e_m, ...$ are expansions of $b_2, ...$ Then, $a_1 + (n-1)a_n \leq b_n b_{n,1} = n$ Vien $= (d_1 - 1) \in (n-1) (1-1)$ $\downarrow \downarrow \downarrow$ We also know disde vizon. Svank Bwoe duel. Then, $b_{2,1}(x^3) = \sum_{i=1}^{n} \alpha_i (x,e_i)^2 = |x|^2$ $= 0 = \sum_{i=1}^{3} (x_i - 1) \langle x_i e_i \rangle^2 \sum_{a_i \in I} (x_i - 1) \langle x_i e_i \rangle^2$ $\frac{1}{2}(n-1)(1-x)-\int_{0}^{1}^{1}(x, e_{1})^{2} + (1-x)^{2}dx, e_{1}^{2}$ = $(m-1)(1-x_0)$ $\sum_{r=1}^{m} \frac{1}{2}x-c_{m-1}e_1^2 - (1-x_0)(\frac{c_{m-1}x-c_{m}}{2} + \frac{c_{m-1}e_{m-1}}{2})^2$ $5(m-1)(1-a-1)$ $s^2 - (1-a-1)(1-s)^2$ = $(1-4)$ $(6-0^2s^2 - (1-s)^2)$ = (1-2) (6-0⁻⁶-(1-5))
For S snell enorgy, this experison is negative. Contraction.
Taking the E snell enorgy for the clean, lenon proces.

 $\lim_{x\to 0} \int \frac{e^{-|x|}d\Omega}{e^{-|x|}d\Omega}f(z,0)d\zeta=0$

 $\lim_{s \to +\infty} \frac{1}{s} e^{-|z|^2} d_s s^{1}(s, s) d s = \frac{1}{s} s^{1}(s) c' x$

The lemme and the fact to(b2,1)=n mpkes aj= {1 j=n Lettery V be te eigenpere spaned by the 1-eigenvectors, and s_0 $b_2^{c_1}(x^2) = |P_v(x)|^2$ By (:) from above lem, $s_\rho t(\gamma) \leq \frac{1}{2} \kappa$: $|P_\rho(\chi)|^2 = |{\chi}|^2 = 1/\sqrt{2}$
Since $\frac{5}{2}$ is supported on an in-dimensional space, it's flat.

 \Box

11/1

We needed the 3 propositions below for nEUM(MM)

V Prop A: 3 a unique targest ? to n at a.

V <u>Prop B:</u> J $\varepsilon(m,n)$ st. 3 Flut if m sz or if

$$
\lim_{V \in G(n,m)} \int_{R} dx F(x, v) d \xi(x) \angle \epsilon(n, n)
$$

Prop C: 3 flet = 1 flet. (black magic)

$F: N \sim N/28$

Reifenberg's Topological Disc Theorem

Leon Simon [∗]

Here $B_\rho = \{x \in \mathbb{R}^n : |x| \le \rho\}$ and $B_\rho(y) = \{x \in \mathbb{R}^n : |x - y| \le \rho\}.$

First we introduce Reifenberg's ϵ -approximation property for subsets of \mathbb{R}^n .

Definition: If $\epsilon > 0$ and if S is a closed subset of the ball B_2 , we say that S, containing 0, has the m-dimensional ϵ -Reifenberg approximation property in B_1 if for each $y \in S \cap B_1$ and for each $\rho \in (0, 1]$, there is an m-dimensional subspace $L_{y,\rho}$ such that $d_{\mathcal{H}}(S \cap B_{\rho}(y), y + L_{y,\rho} \cap B_{\rho}(y)) < \epsilon$.

Here $d_{\mathcal{H}}(A_1, A_2)$ is the Hausdorff distance between A_1 , A_2 ; thus $d_{\mathcal{H}}(A_1, A_2) = \inf\{\epsilon >$ $0: A_1 \subset B_{\epsilon}(A_2) \& A_2 \subset B_{\epsilon}(A_1)$.

Now we can state the main theorem.

Theorem (Reifenberg's disc theorem). There is a constant $\epsilon = \epsilon(n) > 0$ such that if S, containing 0, is a closed subset of the ball B_2 which satisfies the above ϵ -Reifenberg approximation property in B_1 , then $B_1 \cap S$ is homeomorphic to the closed unit ball in \mathbb{R}^m .

In fact, there is a closed subset $M \subset \mathbb{R}^n$ such that $M \cap B_1 = S \cap B_1$ and such that is homeomorphic to a subspace T_0 of \mathbb{R}^n via a homeomorphism $\tau : T_0 \to M$ with $|\tau(x) - x| \leq C(n)\epsilon$ for each $x \in T_0$, and $\tau(x) = x$ for each $x \in T_0 \setminus B_2$. For any given $\alpha \in (0, 1)$ we can additionally arrange that τ and τ^{-1} are Hölder continuous with exponent α provided S satisfies the ϵ -Reifenberg condition with suitable $\epsilon = \epsilon(n, \alpha)$.

We'll need the following lemma in the proof of the above theorem.

Lemma 1 (Extension Lemma). Let ϵ , $r > 0$, let y_1, \ldots, y_Q be a finite collection of points in \mathbb{R}^n with $|y_i-y_k| \geq r$ for each $i \neq k$, and assume that $f : \{y_1, \ldots, y_Q\} \to \mathbb{R}^N$ is given such that $|f(y_i) - f(y_k)| \leq \epsilon$ whenever $|y_i - y_k| \leq 6r$. Then there is an extension \overline{f} : $\cup_i B_{2r}(y_i) \to \mathbf{R}^N$ such that $|\nabla \overline{f}| \leq C(n) \epsilon r^{-1}$ and $|\overline{f}(x) - f(y_i)| \leq C(n) \epsilon$ for $x \in B_{2r}(y_i)$, $i = 1, ..., Q$.

Furthermore there is $\epsilon = \epsilon(n) > 0$ such that if $N = n^2$ (where \mathbb{R}^{n^2} is identified with the set of $n \times n$ matrices in the usual way) and if each $f(y_i)$ is the matrix of an orthogonal projection of \mathbb{R}^n onto some m-dimensional subspace $L_i \subset \mathbb{R}^n$, then we can

^{*}Expository lecture at Universität Tübingen, May '96; Research partially supported by NSF grant DMS-9504456 at Stanford University

2 L. Simon

choose the extension \bar{f} such that each $\bar{f}(x)$ is the matrix of an orthogonal projection of \mathbb{R}^n onto some m-dimensional subspace L_x .

Proof: The proof uses a partition of unity $\{\psi_i\}$ for $\cup_i B_{2r}(y_i)$ of special type. Indeed we claim that there is a partition of unity for $\cup_i B_{2r}(y_i)$ with $\psi_i \in C_c^{\infty}(\mathbf{R}^n)$, $\psi_i \equiv 0$ outside $B_{3r}(y_i)$, $\psi_i(y_i) = 1$, and sup $|\nabla \psi_i| \leq C(n)r^{-1}$.

We see this as follows: first let ψ^0 be a $C^{\infty}(\mathbf{R}^n)$ function with $\psi^0(x) \equiv 1$ for $|x| < \frac{1}{3}$, $0 < \psi^{0}(x) < 1$ for $\langle \frac{1}{3}|x| \leq \frac{5}{2}$, and $\psi^{0}(x) \equiv 0$ for $|x| \geq \frac{5}{2}$. For each $i = 1, ..., Q$ let $\psi_i^0(x) = \psi_0^0(\frac{x-y_i}{r}), \, \widetilde{\psi}_i^0(x) = \psi_i^0 \Pi_{k\neq i}(1-\psi_k^0(x)),$ and $\psi_i(x) = \frac{\widetilde{\psi}_i^0(x)}{\sum_k \widetilde{\psi}_k^0(x)}$. This evidently gives a partition of unity with the stated properties.

It is now straightforward to check that

$$
\overline{f}(x) = \sum_{i=1}^{Q} \psi_i(x) f(y_i).
$$

is a suitable extension.

For the second part of the lemma we recall that the orthogonal projections onto m-dimensional subspaces of \mathbb{R}^n form a smooth (in fact real-analytic) compact submanifold P of \mathbb{R}^{n^2} , and hence there is a $\delta = \delta(n) > 0$ such that there is a smooth nearest-point projection map Ψ of the δ -neighbourhood \mathcal{N}_{δ} of $\mathcal S$ onto $\mathcal S$.

Now by the first part of the lemma we have an extension \overline{f}^0 such that $|f(y_i) - \overline{f}^0(x)| \le$ $C(n)\epsilon$ for each $x \in B_{2r}(y_i)$; but by definition $f(y_i) \in S$, so this means that if ϵ is small enough (depending only on n) we have $\overline{f}^0(x) \in \mathcal{N}_{\delta/2}$ and hence we can define $\overline{f} = \Psi \circ \overline{f}^0$. Evidently then \overline{f} has the correct properties.

The second lemma involves a simple observation about the subspaces $L_{u,\rho}$ appearing in the ϵ -Reifenberg condition; in particular it shows that these must vary quite slowly (up to tilts of order ϵ) as y and ρ vary.

Lemma 2. If $\epsilon > 0$ and if S satisfies the ϵ -Reifenberg condition above, then $\|L_{y_1,\sigma} - L_{y_2,\sigma}\|$ $L_{y_2,\rho}$ $\leq 32\epsilon$ and $dist(y_1, y_2 + L_{y_2,\rho}) \leq 32\epsilon\rho$ whenever $y_1, y_2 \in S \cap B_1$ and $0 < \frac{\rho}{8} \leq \frac{\epsilon}{2}$ $\sigma \leq \rho \leq 1$.

The proof, which involves only the definition of the ϵ -Reifenberg condition and the triangle inequality for $d_{\mathcal{H}}$, is left as an exercise for the reader.

Finally, we need the following "squash lemma":

Lemma 3 ("Squash Lemma"). There is a constant $\epsilon_0 = \epsilon_0(n)$ such that the following holds. If $\epsilon \in (0, \epsilon_0], \rho > 0$, L is an m-dimensional subspace of \mathbb{R}^n ,

$$
\Phi(x) = p_L(x) + e(x), \qquad x \in B_{3\rho},
$$

where p_L is orthogonal projection onto L and $\rho^{-1}|e(x)| + |\nabla e(x)| \leq \epsilon$ for all $x \in B_{3\rho}$, and if

$$
G = \{x + g(x) : x \in B_{3\rho} \cap L\}
$$

is the graph of a C^1 function $g : B_{3\rho} \cap L \to L^{\perp}$ with $\rho^{-1}|g(x)| + |\nabla g(x)| \leq 1$ at each point x of $B_{3\rho} \cap L$, then $\Phi(G \cap B_{3\rho})$ is the graph of a C^1 -function $\widetilde{g}: U \to L^{\perp}$ over some domain U with $B_{11\rho/4} \cap L \subset U \subset L$ and with $\rho^{-1}|\tilde{g}| + |\nabla \tilde{g}(x)| \leq 4\epsilon$ on $B_{11\rho/4} \cap L$.

Proof of the squash lemma: All hypotheses are written in "scale invariant" form, so there is no loss of generality in taking $\rho = 1$, which we do. Now by definition

(1)
$$
\Phi(x + g(x)) = x + e(x + g(x))
$$

for $x \in B_2 \cap L$, and, if $h(x) = e(x + g(x))$, by the chain rule we have $|d_x h| \leq 2\epsilon$ at each point x of $L \cap B_2$. Now we can write $h = h^{\perp} + h^{T}$, where $h^{\perp} = p^{\perp} L \circ h$ and $h^T = p_L \circ h$. Then (1) says

(2)
$$
\Phi(x + g(x)) = x + h^{T}(x) + h^{\perp}(x), \quad x \in B_2 \cap L.
$$

Now let

$$
Q(x) = x + hT(x), \quad x \in B_2 \cap L,
$$

and observe that

$$
|d Q - \mathrm{id}| \le 2\epsilon, \quad |Q - \mathrm{id}| \le \epsilon \quad \text{on } B_2 \cap L,
$$

and hence, for small enough $\epsilon \in (0, \frac{1}{6})$, by the inverse function theorem Q is a diffeomorphism of $B_2 \cap L$ onto a subset U where $L \cap B_{11/4} \subset U \subset L$ and $|d Q^{-1} - \text{id}| \leq$ $2\epsilon(1+2\epsilon) \leq 3\epsilon$. Thus (2) can be written

$$
\Phi(x + g(x)) = Q(x) + \widetilde{g}(Q(x)), \qquad x \in B_{11/4} \cap L,
$$

where $\widetilde{g} = p_{\perp}^{\perp} \circ h \circ Q^{-1}$ on U, and, since $|dh \circ Q^{-1}| \leq 2\epsilon(1+3\epsilon) \leq 3\epsilon$, we have $|d\widetilde{g}| \leq 3\epsilon$ and the proof is complete.

Proof of the Reifenberg disc theorem: The proof is based on an inductive procedure, making successive approximations to $S_* = S \cap B_1$ by C^{∞} embedded submanifolds.

Let $T_0 = L_{0,1}$ (which without loss of generality we could take to be $\mathbb{R}^m \times \{0\}$) be an *m*-dimensional subspace such that $d_{\mathcal{H}}(S \cap B_1, T_0 \cap B_1) < \epsilon$, and let $r_j = \left(\frac{1}{8}\right)^j$, $j = 0, 1, \ldots$. The quantity r_j is going the be the "scale" used at the jth step of the inductive process.

We in fact define maps σ_j : $\mathbb{R}^n \to \mathbb{R}^n$ and subsets $M_j \subset \mathbb{R}^n$ for $j = 0, 1, \ldots$, as follows:

For $j \geq 1$, let $B_{r_j/2}(y_{ji}), i = 1, \ldots, Q_j$, be a maximal pairwise disjoint collection of balls centered in $S_* = B_1 \cap S$. Then evidently $S_* \subset \bigcup_{i=1}^{Q_j} B_{r_j}(y_{ji})$ and also dist $(S_*, \mathbb{R}^n \setminus \mathbb{R}^n)$ $(\bigcup_{i=1}^{Q_j} B_{3r_j/2}(y_{ji})) \ge r_j/2$. When $j=0$ we take $Q_0 = 1$, $y_{0,1} = 0$, and $M_0 = T_0$, $\sigma_0 =$ the orthogonal projection of \mathbb{R}^n onto T_0 .

For $j \geq 1$ and for each $i = 1, \ldots, Q_j$ let L_{ji} be one of the m-dimensional subspaces $L_{y_{ji},8r_j}$ (corresponding to $y = y_{ji}$ and $\rho = 8r_j$ in the ϵ -Reifenberg condition). Thus

 $d_{\mathcal{H}}(S \cap B_{8r_i}(y_{ji}), (y_{ji} + L_{ji}) \cap B_{8r_i}(y_{ji})) < 8\epsilon r_i, \quad i = 1, \ldots, Q_j.$

For $j \geq 1$ we have by Lemma 2 that

(1)
$$
d_{\mathcal{H}}((y_{ji} + L_{ji}) \cap B_{r_j}(y_{ji}), (y_{\ell k} + L_{\ell k}) \cap B_{r_j}(y_{ji})) \leq 264\epsilon r_j
$$

for any pair y_{ji} , $y_{\ell k}$ with $|y_{ji} - y_{\ell k}| \leq 6r_{j-1}$, where either $\ell = j - 1$ and $k \in$ $\{1,\ldots,Q_{j-1}\}\$ or $\ell=j$ and $k\in\{1,\ldots,Q_j\}$. Notice of course that (1) implies

$$
(2) \t\t\t |p_{ji} - p_{\ell k}| < 264\epsilon, \quad \text{dist}\left(y_{ji}, y_{\ell k} + L_{\ell k}\right) < 264\epsilon r_j
$$

for such j, ℓ , i, k, where p_{ji} denotes the orthogonal projection of \mathbb{R}^n onto L_{ji} .

In view of the inequalities (2) (together with the fact that $|y_{ji} - y_{jk}| \ge r_j$ for each $i \neq k$, we can apply the extension lemma with $r = r_j$, with y_{ji} in place of y_i and with the orthogonal projection p_{ji} in place of $f(y_i)$, to give orthogonal projections $p_{j,x}$ of \mathbb{R}^n onto m-dimensional subspaces $L_{j,x}$ such that $p_{j,x} = p_{ji}$ when $x = y_{ji}$ and

(3)
$$
\left|\frac{\partial p_{j,x}}{\partial x^{\ell}}\right| \leq \frac{C(n)\epsilon}{r_j}, \quad x \in \bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji}), \quad \ell = 1, \ldots, n,
$$

$$
|p_{j,x} - p_{ji}| \leq C(n)\epsilon, \qquad x \in B_{2r_j}(y_{ji}), \quad i = 1, \ldots, Q_j.
$$

Next let ψ_{ji} be a partition of unity for $\bigcup_{i=1}^{Q_j} B_{3r_j/2}(y_{ji})$ such that $|\nabla \psi_{ji}| \leq C(n)/r_j$ and support $\psi_{ji} \subset B_{2r_i}(y_{ji})$ for each $i = 1, \ldots, Q_j$. (This is constructed in precisely the same way as our partition of unity for the extension lemma, except that we start with a smooth function φ with support in $B_2(0)$ rather than in $B_3(0)$ as before; actually the construction can be simplified here because we do not need $\psi_{ji}(y_{ji}) = 1$ and $\psi_{jk}(y_{ji}) = 0$ for $i \neq k$.)

Now we can define σ_j and M_j for $j \geq 1$. First we define ¹

(4)
$$
\sigma_j(x) = x - \sum_{i=1}^{Q_j} \psi_{ji}(x) p_{j,x}^{\perp}(x - y_{ji}), \qquad x \in \mathbf{R}^n,
$$

and then we take

$$
(5) \t\t\t M_j = \sigma_j(M_{j-1}).
$$

First note that, since $\sigma_j(x) \equiv x$ for $x \in \mathbb{R}^n \setminus (\cup_{i=1}^{Q_j} B_{2r_j}(y_{ji}))$, we have

(6)
$$
M_j \setminus (\cup_{i=1}^{Q_j} B_{2r_j}(y_{ji})) = M_{j-1} \setminus (\cup_{i=1}^{Q_j} B_{2r_j}(y_{ji}))
$$

¹of course it doesn't matter that the $p_{j,x}$ are not defined outside $\cup_{i=1}^{Q_j} B_{2r_j}(y_{ji})$ because the ψ_{ji} vanish identically there. (If you wish to be pedantic, you can define e.g. $p_{j,x}$ to be the orthogonal projection onto T_0 for $x \in \mathbb{R}^n \setminus (\cup_{i=1}^{Q_j} B_{2r_j}(y_{ji})).$

for each $j \geq 1$.

We claim that each M_k is a properly embedded C^{∞} m-dimensional submanifold of \mathbf{R}^n and that for each $k \geq 1$ and each $i \in \{1, \ldots, Q_k\}$

(7)
$$
M_k \cap B_{2r_k}(y_{ki}) = \operatorname{graph} g_{ki}
$$

$$
\sup |\nabla g_{ki}| \le \gamma \epsilon, \qquad \sup |g_{ki}| \le \gamma \epsilon r_k.
$$

where $\gamma \geq 1$ is a constant (to be specified as a function of n alone) and where g_{ki} is a C^{∞} function over a domain in the affine space $y_{ki} + L_{ki}$ with values normal to L_{ki} . We want to inductively to check this. Observe that if $j \geq 1$ and if M_{j-1} is a smooth embedded submanifold satisfying (7) with $k = j - 1$, then by the definition (4) we have

(8)
$$
\sigma_j(x) - x = -\sum_{k=1}^{Q_j} \psi_j(x) p_{j,x}^{\perp}(x - y_{jk})
$$

$$
= -\sum_{k=1}^{Q_j} \psi_j(x) p_{jk}^{\perp}(x - y_{jk}) + \sum_{k=1}^{Q_j} \psi_j(x) (p_{jk}^{\perp} - p_{j,x}^{\perp})(x - y_{jk}).
$$

Now for each $i \in \{1, \ldots, Q_j\}$, we can pick an $i_0 \in \{1, \ldots, Q_{j-1}\}$ such that $y_{ji} \in$ $B_{r_{i-1}}(y_{j-1 i_0})$. Then, assuming that (7) holds with $k = j - 1$ and with some constant $\gamma = \gamma_{j-1}$, for $x \in B_{2r_j}(y_{ji}) \cap M_{j-1}(\subset B_{2r_{j-1}}(y_{j-1 i_0}) \cap M_{j-1})$ we can write $x =$ $\xi + g_{j-1}(\xi)$, with $g_{j-1}(\xi) \in L^{\perp}_{j-1 i_0}$, $\xi \in (y_{j-1 i_0} + L_{j-1 i_0}) \cap B_{2r_{j-1}}(y_{j-1 i_0})$ and with $r_{j-1}^{-1}|g_{j-1}(\xi)| + |\nabla g_{j-1}(\xi)| \leq \gamma_{j-1}\epsilon$. Then we have, for each $k \in \{1, ..., Q_j\}$,

$$
p_{jk}^{\perp}(x - y_{jk}) = p_{j-1 i_0}^{\perp}(\xi + g_{j-1}(\xi) - y_{j-1 i_0}) + p_{j-1 i_0}^{\perp}(y_{jk} - y_{j-1 i_0}) + (p_{jk}^{\perp} - p_{j-1 i_0}^{\perp})(\xi + g_{j-1}(\xi) - y_{jk}),
$$

and using (2), (3) together with the fact that $p_{j-1 i_0}^{\perp}(\xi - y_{j-1 i_0}) = 0$ (because ξ – $y_{j-1 i_0} \in L_{j-1 i_0}$, we have clearly then that

$$
|p_{jk}^{\perp}(x-y_{jk})| \leq C(n)\epsilon(1+\gamma_{j-1})r_j, \quad x \in B_{2r_j}(y_{ji}) \cap M_{j-1}, \quad |y_{jk}-y_{ji}| \leq 6r_j.
$$

Using this in (8), and keeping in mind that for any $i \in \{1, ..., Q_i\}$ and for any $x \in B_{2r_i}(y_{ji})$, we have that at most $C(n)$ terms in the sums on the right of (8) can be non-zero, and that these terms correspond to the indices k such that $|y_{ji} - y_{jk}| \leq 6r_j$, hence, using also (3), we again deduce from (8) that

(9)
$$
|\sigma_j(x) - x| \leq C(n)(1 + \gamma_{j-1})\epsilon r_j, \quad x \in \bigcup_{i=1}^{Q_j} B_{2r_j}(y_{ji}) \cap M_{j-1}.
$$

By first differentiating in (8) and using similar considerations on the right side, we also conclude

(9)'
$$
\sup_{x \in M_{j-1}} |\nabla'(\sigma_j(x) - x)| \leq C(n)(1 + \gamma_{j-1})\epsilon r_j,
$$

where ∇' denotes gradient taken on the submanifold M_{i-1} .

6 L. Simon

We refer to (9) and (9)' subsequently as "the coarse estimates" for $|\sigma_j(x)-x|$, because, although useful, they are insufficient in themselves to complete that inductive proof that there is a fixed constant $\gamma = \gamma(n)$ such that (7) holds for all k; indeed after k applications of this coarse inequality, we will only have established that (7) holds with $\gamma = C(n)^k$.

Now assume that $j \geq 2$ and that (7) holds for $k = 1, \ldots, j-1$, take an arbitrary $i_0 \in \{1, ..., Q_j\}$, and write $y_0 = y_{j i_0}, p_0 = p_{j i_0}$, and $L_0 = L_{j i_0}$. Since $\sum_{i=1}^{Q_j} \psi_{ji} \equiv 1$ in $U_j \equiv \bigcup_{i=1}^{Q_j} B_{3r_j/2}(y_{ji})$ we can rearrange the defining expression for σ_j to give

(10)
$$
\sigma_j(x) = y_0 + p_0(x - y_0) + e(x), \quad x \in U_j,
$$

where e is given by

(11)
$$
e(x) \equiv \sum_{i=1}^{Q_j} \psi_{ji}(x) p_0^{\perp}(y_{ji} - y_0) - \sum_{i=1}^{Q_j} \psi_{ji}(x) (p_{j,x}^{\perp} - p_0^{\perp})(x - y_{ji}), \quad x \in \mathbb{R}^n.
$$

Now observe that by (2) and (3) we have $|p_{j,x}-p_0| \leq C(n)\epsilon r_j$ for $x \in B_{6r_j}(y_0)$. Using additionally the first inequality in (3) and the fact that $|\nabla \psi_{ji}| \leq C(n)/r_j$, it then follows easily that

(12)
$$
r_j^{-1}|e(x)| + |\nabla e(x)| \le C(n)\epsilon, \text{ if } x \in B_{3r_j/2}(y_0),
$$

where $C(n)$ is a fixed constant determined by n alone (and which is independent of any properties of M_{j-1} ; in particular it is independent of whatever constant γ appears in (7)).

But now we can apply the Squash Lemma with $\tilde{\sigma}_j(x) \equiv \sigma_j(x + y_0) - y_0$ in place of Φ , $2 r_j$ in place of ρ , and $C(n) \epsilon$ in place of ϵ . Assuming that (7) holds with γ , ϵ such that $\gamma \epsilon \leq \frac{1}{2}$, we thus conclude

(13)
$$
\sigma_j(M_{j-1} \cap B_{3r_j/2}(y_0)) = G_j,
$$

where $G_j = \{x + g_j(x) : x \in \Omega_j\}$ is the graph of a C^{∞} function g_j defined over a domain Ω_j contained in the affine space $y_0 + L_0$ with $B_{11r_j/8}(y_0) \cap (y_0 + L_0) \subset \Omega_j$ and with

(14)
$$
r_j^{-1}|g_j| + |\nabla g_j| \le C(n)\epsilon, \quad x \in B_{11r_j/8}(y_0) \cap (y_0 + L_0),
$$

with $C(n)$ not depending on γ . Of course since $|\sigma_i(x)-x| < C(n)\gamma \epsilon$ (by (8)), we thus have, so long as $C(n)\gamma \epsilon \leq \frac{1}{32}$ that $\sigma_j(M_{j-1}\cap B_{3r_j/2}(y_0)) \supset \sigma_j(M_{j-1})\cap B_{11r_j/8}(y_0)$, and hence (13) and (14) imply

(15)
$$
M_j \cap B_{11r_j/8}(y_0)) = G_j,
$$

with G_j still as in (14).

Now we actually need to establish a result like this over the ball $B_{2r_i}(y_0)$ rather than merely over $B_{11r_i/8}(y_0)$; to achieve this, we observe that each y_{ji} is contained in one of the balls $B_{r_{j-1}}(y_{j-1 i_0})$ for some $i_0 \in \{1,\ldots,Q_{j-1}\}\$, and so $B_{r_{j-1}/4}(y_{ji})\subset$ $B_{5r_{i-1}/4}(y_{j-1 i_0})$. Also, by using the above argument with $j-1$ in place of j and with i_0 in place of i, we deduce that

(15)'
$$
M_{j-1} \cap B_{11r_{j-1}/8}(y_{j-1 i_0})) = G_{j-1},
$$

where $G_{j-1} = \{x+g_{j-1}(x) : x \in \Omega_{j-1}\}\$ is the graph of a C^{∞} function g_{j-1} defined over a domain Ω_{j-1} contained in the affine space $y_{j-1 i_0} + L_{j-1 i_0}$ with $B_{11r_{j-1}/8}(y_{j-1 i_0}) \cap$ $(y_{j-1 i_0} + L_{j-1 i_0}) \subset \Omega_{j-1}$ and with

$$
(14)' \t r_{j-1}^{-1}|g_{j-1}| + |\nabla g_{j-1}| \leq C(n)\epsilon, \t x \in B_{11r_{j-1}/8}(y_{j-1 i_0}) \cap (y_{j-1 i_0} + L_{j-1 i_0}).
$$

But then by using the coarse estimates (9) , $(9)'$ we deduce that in fact (7) holds with $k = j$ and a fixed constant γ which depending only on n and not on γ .

Notice that since $S_* \subset \bigcup_{i=1}^{Q_j} B_{r_j}(y_{ji})$ it is clear from (7) and the ϵ -Reifenberg condition in the ball $B_{2r_i}(y_{ji})$, that

(16)
$$
S_* \subset B_{C(n) \epsilon r_j}(M_j), \quad j \ge 0.
$$

Notice also that (7) tells us that for $j \geq 2$

$$
M_j \cap (\cup_{i=1}^{Q_j} B_{2r_j}(y_{ji})) \subset (\cup_{i=1}^{Q_j} B_{C(n)\epsilon r_j}(y_{ji} + L_{ji})) \subset B_{C(n)\epsilon r_j}(S),
$$

and hence, since $M_j \setminus (\cup_i B_{2r_j}(y_{ji})) = M_{j-1} \setminus (\cup_i B_{2r_j}(y_{ji}))$ by mathematical induction it follows that

$$
(17) \t\t\t M_j \cap B_{1+r_j/2} \subset B_{C(n)\epsilon r_j}(S)
$$

for each $j = 0, 1, \ldots$, provided $\epsilon \leq \epsilon_0$, where $\epsilon_0 = \epsilon_0(n)$.

Next we want to show that the sequence $\tau_j = \sigma_j \circ \sigma_{j-1} \circ \cdots \sigma_0 | T_0$ is a sequence of C^{∞} diffeomorphisms of T_0 onto M_i which converge uniformly on T_0 to a homeomorphism τ of T_0 onto a closed set M. In fact notice that by (8) we have

$$
|\tau_j(x) - \tau_{j-1}(x)| \le C(n)\epsilon \left(\frac{1}{8}\right)^j, \quad j \ge 1, \ x \in T_0,
$$

and hence by iterating we get

(18)
$$
|\tau_{j+k}(x) - \tau_j(x)| \le C(n)\epsilon \left(\frac{1}{8}\right)^j, \quad j \ge 0, \ k \ge 1, \ x \in T_0,
$$

which shows that τ_j is Cauchy with respect to the uniform norm on T_0 , and hence τ_j converges uniformly to a continuous map $\tau : T_0 \to \mathbb{R}^n$. Of course τ is the identity

8 L. Simon

outside B_2 because each σ_j is the identity outside B_2 . We let $M = \tau(T_0)$, so that M is a closed subset of \mathbb{R}^n and in fact is the Hausdorff limit (with respect to the Hausdorff metric $d_{\mathcal{H}}$) of the sequence $M_j = \tau_j(T_0)$. Notice in particular that setting $j = 0$ and taking limit as $k \to \infty$ in the above inequality, we get

(19)
$$
|\tau(x) - x| \le C(n)\epsilon, \quad x \in T_0.
$$

(Thus τ is in the distance sense quite close to the identity if ϵ is small.)

Next we want to discuss injectivity of τ_j , τ ; in fact we'll show that τ_j , τ are injective and that both τ and τ^{-1} are Hölder continuous.

To establish this, we first claim

(20)
$$
(1 - C(n)\epsilon)|x - y| \leq |\sigma_j(x) - \sigma_j(y)| \leq (1 + C(n)\epsilon)|x - y|, \quad x, y \in M_{j-1},
$$

or equivalently

(20)'
$$
|\sigma_j(x) - \sigma_j(y) - (x - y)| \leq C(n)\epsilon |x - y|, \quad x, y \in M_{j-1}.
$$

To prove this, note that if $|x - y| \ge r_j$ with $x, y \in M_{j-1}$, we can write

$$
|\sigma_j(x) - \sigma_j(x) - (x - y)| = |(\sigma_j(x) - x) - (\sigma_j(y) - y)|
$$

\n
$$
\leq |\sigma_j(x) - x| + |\sigma_j(y) - y|
$$

\n
$$
\leq C(n)\epsilon r_j \leq C(n)\epsilon |x - y|,
$$

where we used (8) in the second inequality.

Now if $|x-y| < r_j$ we use the definition (4) to write

$$
(\sigma_j(x) - \sigma_j(y)) - (x - y) = \sum_{i=1}^{Q_j} (\psi_{ji}(x) p_{j,x}^{\perp}(x - y_{ji}) - \psi_{ji}(y) p_{j,y}^{\perp}(y - y_{ji})), \qquad x, y \in \mathbb{R}^n,
$$

and note that we can rearrange the sum here to give

$$
(\sigma_j(x) - \sigma_j(y)) - (x - y) = \sum_{i=1}^{Q_j} (\psi_{ji}(x)(p_{j,x}^{\perp}(x - y) + \psi_{ji}(x)(p_{j,x}^{\perp} - p_{j,y}^{\perp})(y - y_{ji}) + (\psi_{ji}(x) - \psi_{ji}(y))p_{j,y}^{\perp}(y - y_{ji})) .
$$

Now the second group of terms is (by (3)) trivially $\leq C(n)\epsilon |x-y|$ in absolute value for any $x, y \in \mathbb{R}^n$ with $|x - y| \leq r_j$. Further if $x, y \in M_{j-1}$, then by virtue of (7) (used with y in place of z) we see that the first and third group of terms on the right is $\leq C(n)\epsilon |x-y|$ in absolute value. Thus we again get (20).

Now it is easy to establish the required injectivity and continuity of τ . In fact by iterating the inequality (20) we get

(21)
$$
|\tau_j(x) - \tau_j(y)| \le (1 + C\epsilon)^j |x - y|, \quad x, y \in T_0, \ j \ge 1,
$$

and by (8) we have

$$
|\tau_j(x) - \tau_{j-1}(x)| \le C\epsilon r_j, \quad x \in T_0, \ j \ge 1,
$$

and so (Cf. the discussion of uniform convergence of the τ_j above)

(22)
$$
|\tau_j(x) - \tau(x)| \leq C\epsilon r_j.
$$

Then by the triangle inequality, for any $j \geq 0$ we have

$$
|\tau(x) - \tau(y)| \le |\tau(x) - \tau_j(x)| + |\tau_j(x) - \tau_j(y)| + |\tau_j(y) - \tau(y)|
$$

\n
$$
\le 2C(n)\epsilon r_j + (1 + C(n)\epsilon)^j |x - y|
$$

\n
$$
\le r_j + (1 + C(n)\epsilon)^j |x - y| \text{ if } 2\epsilon C(n) \le 1.
$$

Now let $\alpha \in (0, 1)$ be arbitrary and take $x, y \in T_0$ with $0 < |x-y| < \frac{1}{2}$. Choose j such that $r_j \le |x-y|^{\alpha}$ and $(1+C(n)\epsilon)^j \le |x-y|^{-(1-\alpha)}$; thus we need $j \ge \frac{\alpha}{\log 8} \log \left(\frac{1}{|x-y|}\right)$ * and also $j \leq \frac{(1-\alpha)}{\log(1+C(n)\epsilon)} \log \left(\frac{1}{|x-y|} \right)$). Since $\log(1 + C(n)\epsilon) \to 0$ as $\epsilon \downarrow 0$, we see that such a choice of $j \in \{1, 2, \ldots\}$ exists provided $\epsilon \leq \epsilon_0$, where $\epsilon_0 = \epsilon_0(n, \alpha)$. Then the above inequality gives

$$
|\tau(x) - \tau(y)| \le 2|x - y|^{\alpha}, \quad x, y \in T_0 \text{ with } |x - y| < \frac{1}{2}.
$$

Thus we can arrange for Hölder continuity with any exponent $\alpha < 1$. Similarly we have from the first inequality in (20) and (22) that

$$
|x - y| \le (1 + C\epsilon)^{j} |\tau_j(x) - \tau_j(y)|
$$

\n
$$
\le (1 + C\epsilon)^{j} (|\tau_j(x) - \tau(x)| + |\tau_j(y) - \tau(y)| + |\tau(x) - \tau(y)|)
$$

\n
$$
\le (1 + C(n)\epsilon)^{j} (C(n)\epsilon r_j + |\tau(x) - \tau(y)|)
$$

and j is again at our disposal. We in fact first choose ϵ such that $C(n)\epsilon \leq 1$, so that

$$
|x - y| \le (1 + C(n)\epsilon)^j (r_j + |\tau(x) - \tau(y)|),
$$

and then choose j such that $\alpha \in (0, 1)$

$$
4^{-j} \le \frac{1}{2}|x - y| \text{ and } (1 + C(n)\epsilon)^j \le |x - y|^{-(\alpha/(1-\alpha))}.
$$

Notice that this requires $j \geq \log(2/|x-y|)/\log\left(\frac{8}{1+C(n)\epsilon}\right)$) and $j \leq \alpha^{-1}(1-\alpha) \log(1/|x$ $y|)/\log(1+C(n)\epsilon)$, and again certainly such a choice of j exists provided $0 < |x-y| <$ $\frac{1}{2}$ and provided we take $\epsilon \leq \epsilon_0$ for suitable $\epsilon_0 = \epsilon_0(n, \alpha)$. In this case the above inequality gives

$$
\frac{1}{2}|x-y| \le |x-y|^{-\alpha/(1-\alpha)}|\tau(x)-\tau(y)|, \quad |x-y| < \frac{1}{2},
$$

which of course gives

$$
|x - y|^{\alpha} \le 2|\tau(x) - \tau(y)|, \quad |x - y| < \frac{1}{2}.
$$

Thus τ is injective, and the inverse is Hölder continuous with exponent α , for any given $\alpha \in (0, 1)$, provided the ϵ -Reifenberg condition holds with $\epsilon \leq \epsilon_0$, where $\epsilon_0 = \epsilon_0(n, \alpha)$.

Now the proof of the Reifenberg inequality is complete, because we have shown that τ maps T_0 Hölder continuously onto M with Hölder continuous inverse, and by (16) and (17) we have

$$
M \cap B_1 = S_*,
$$

because (by (19)) M_j converges to M with respect to the Hausdorff distance metric.

 $V_x e S \wedge B_z$, $V_r = 1$, $3L_x e G(\neg k)$ of $11/30 \rho_{\rm R}$ $\rho_{\rm R}$ $\rho_{\rm R}$ (x $\rho_{\rm R}$ (x $\rho_{\rm R}$) $\rho_{\rm R}$ (x), $\rho_{\rm R}$ (x)) = ε VLAI \leftarrow Theorn: (Restarting Disk) 3ε = ε (n) = st. if S has the ε -west k-den linear approx. praparty in $D A 18,510,111$ ii) α . To $\neg n$ 5 horomorphs $\begin{array}{lll} \n\pi_1 & | \gamma(x) - x | & \epsilon (f_1) & \epsilon \quad \text{by} \quad \text{$ Proof: $d(\epsilon, \lambda)$ so To pour the above, we will conduct Ma, M, ... satisfyry: To = Lo, θ_j : $\mathbb{R}^n \rightarrow \mathbb{R}^n$ s.l. $M_j = \theta_j(M_{j-1})$. $\{y_{j_1}\}_{j \in [a_1]}$ $\leq S \wedge B$, is a month stock of .
We will also ver the followy leme, which is simple to pose". $\frac{|y_{j_1}-y_{j_2}| \geq c_1 = 8^{-5}}{s}$ Lenn: (Squah Lenne) $3\epsilon_0 - \epsilon_0(\eta)$ s⁺. if \cdot 2 e(0, e) \cdot Le(0(n,4) \cdot Φ (x)= $P_1(x) + e(x)$ V_1eB_1e e^{o} norms $\left\{ -e^{-t}||e||+||b|| \le \epsilon \Rightarrow B_{3\ell} \right\}$. $e^{-t}||g||+||b|g|| \le 1$ $-6 = 3 \pi r h(s)$ $9 \in B_{38} \wedge L \rightarrow L^{\perp}$ The $\frac{1}{2}$ $\frac{1}{2$ From last time, we used partitions of with to construct maps $\bigcup_{i=1}^{k_3} B_{2r_3}(r_{3i_1}) \ni x \mapsto \mathbb{P}_{3,k} \qquad \text{with} \qquad \bigg|\frac{\partial \mathbb{P}_{3,k}}{\partial x} \bigg| \leq \frac{C \epsilon}{r_3}$ Letters $\mathbb{P}_{3i} := \mathbb{P}_{i,j}$, ne also know $|\mathbb{P}_{i,k} - \mathbb{P}_{i,j}| \leq C \epsilon$ Vxe $B_{3i,j}(\eta_{jk})$ S_{\bullet} $d_{\mu}((s_{1i},l_{3i})\wedge B_{r_{1}}(s_{1i}), (s_{1k_{1}}+l_{4k})\wedge B_{r_{1}}(s_{1i}))\leq c_{1}c_{1i}$ ad $|b_{3i} - b_{kk}| \leq 6c_{i-1} = 48c_1$ $\qquad \qquad b_{i}, l_{i}$ where $ke\{i_{i}, i-1\}$

1.1.
$$
cos\theta + sin\theta = 0
$$
 $cos\theta = 0$
\n $sin\theta + sin\theta = 0$
\n $cos\theta = 0$
\n $cos\theta$

We choose a st. (a)l , when goes to as sto To get ^a Bi-Holden estimate, we want to show | x y) ⁼ (ok-G ,())(x, ^y ⁺ M, ^x again by induction Ifeating, [|] x - 3) ⁼ (l - (a) /[, (x) - Tj(y)) ⁼ (1 ⁺ (a))(tj(x) - Tj(y)) Fx, yet Since theEis get uniformly close, wate K :45. The, (T(x) - 4, ()) ⁼ Cat Fj So, [|] +- 3) ⁼ (1 ⁺ (a)((z ⁺ 1t(x) - T())) Fj Choose ^a large enough that [↓] 1-3) ⁼ -,and [|] x y) ^z (1 ⁺ (a))(k(x) - [(y)) We my get (1 ⁺ (a)" - > C1x-y1 for sull crough ^a , giving the Bi-Holder estrcte ↑ [|] x ^y | 3- (Y(x) - T(y)) certa types of dea of these as tros out to be enough completely charactere to & rectfiitity

D

Conrich an n-panan NN. Debre
$$
\beta \cdot \mathbb{R}^n \rightarrow \mathbb{R}
$$
 be the less
horizontal, and make whether assumes to ensure $\beta \in C$

Let
$$
f_{g}
$$
 be $f(x^{n})$ be the density of g with the point g are g with the point g are g with the point g is g .

\nThus, $f(x^{n})$ be the density of g with g is g .

$$
\begin{array}{ll}\n\text{where } \mathbf{a} \text{ is the same value} & \mathbf{b} \text{ is the same value} \\
\mathbf{a} \text{ is the same value} & \mathbf{b} \text{ is the same value} \\
\mathbf{b} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{b} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{c} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{b} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{c} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{c} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{d} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{d} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{c} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same value} \\
\mathbf{e} \text{ is the same value} & \mathbf{e} \text{ is the same
$$

we 0'(x) 170(v)
In particular, re have espectable loss

Id(z) ⁼ S ⁼ (d) ^d x ⁼ O(IR-) "(x) f~

Suppose ur start at percente z and execute one step of SGD.
So, we get an estrate JOEDER with pdf P.

Thus
$$
rdm
$$
 a distribution over pounds mt and skp in $z-3\tilde{v}d(z) \le w$
with $pdP - f_0(w) = \tilde{f}(\frac{z-w}{3})$. So the loss has pdF

$$
f(x) = \int_{w \in \mathcal{D}^{1}(x)} \frac{\widetilde{f}(z-x)}{|v(x)|} d\mathcal{H}^{k-1}(w)
$$

$$
\mathbb{E} \mathscr{O}(z) = \int_{x \in \mathscr{O}(R^n)} x \left(\int_{x \in \mathscr{O}'(z)} \frac{f_{\mathscr{L}}(x)}{|v \mathscr{O}(x)|} d\mathcal{H}^{k-1}(x) \right) dx
$$

Dreport!

N- param nr with loss fretad θ : $\mathbb{R}^N \ni \mathbb{R}$.
For any consit point welk" dropout schees a distribution
our \mathbb{R}^N . The coperted grad \mathbb{E} $\left[\left| \nabla \theta(x) \right| \right]$ and se experient as $S_{R^{N}}f_{V}(z) |\nabla \phi(z)| d z = \int_{R^{N}} dy \int_{\phi^{1}(\sqrt{x})} f_{V} d\pi^{N-1}$

In Lass dropost cure, we have $a_i = \begin{cases} 0 & \text{if } i \in \mathbb{N} \\ w_i & \text{if } i = \rho \end{cases}$. In this case,
 $f_{av}(x) = \prod_{i=1}^{N} p_i^{-\frac{a_{i}}{a_{i}}} (1-p_i)^{\frac{a_{i}}{a_{i}}}$, and so

 $\int_{a^{1}(a)} f(x) dx^{1/2}$

 $m(x) = 16$. 1000) 2 m(E) = 5 pm s or 12 5 pm s or 1000) dyn()

2 Km S_R $H^{N-1}(E \wedge \phi^{(1)})dL = S_E | \theta d(\omega)|d\omega$
for all S' -new. $E \in R^N$. L^{2} interest this!

$$
\int_{0}^{\epsilon} 4^{\mathcal{N}-1} (\phi^{\nu}(k)) d\mathcal{L} = \int_{\epsilon} | \nabla \phi(\mathcal{L}) | d\mathcal{L}
$$

 $f_1 = 1000 \text{ km/s}^{-1} = 1000 \$ From the blue, we also know
 $f''(\epsilon) = \int_{0}^{\epsilon} d\theta \int_{0}^{\infty} d\theta d\theta$ = 0^{∞} dt $1^{1^{M}(\phi^{d}(k) \wedge B_{\omega^{d}}(k)^{c})}$

$$
\int_{0}^{1} (e) = \int_{0}^{1} dA \int_{\mathcal{D}^{1}(A)} \sqrt{1 - \int_{0}^{1} (e^{2})^{2}} dA
$$

For small
$$
l \in E
$$
, we expect $Q(b(x)) \approx \frac{b(x+b) - b(x^2)}{b} = \frac{l}{w-x^2}$
\n
$$
\Rightarrow \int_0^{b} (E) \approx \int_0^c dL \cdot \frac{1}{L} \int_{\phi^4(L)} |w-x^4| dH^{4/2}(x) = 6
$$

$$
\begin{array}{lll}\n\mathbf{B}_{3} & \text{Re} \quad \mathbf{r} \cdot \mathbf{L} \\
\mathbf{L}''(E) & \mathcal{L} \int_{0}^{E} dE \cdot \frac{1}{E} \int_{0}^{\infty} dF \, \mathcal{H}^{N-1}(\mathcal{B}^{+}(E) \cap (\mathbf{R}_{n+1}(E)))^{c}) & \text{Re} \quad \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R}_{n+1}(E) \cdot \mathbf{R}_{n+1}(E) \\
& \quad - \mathbf{r} \cdot \mathbf{R
$$

States from (2), = S_{0}^{c} de $S_{0}^{(1)}(1)$ $\frac{1}{0}$ de (1) de $\frac{1}{1}$ - Spoll $S_{\mathscr{B}^{-1}(L)}$ \P_{ϵ} has $\frac{1}{\mathscr{B}(L)}$ $\frac{1}{\mathscr{B}(L)}$

We wish to capte

 $\int_{\mathscr{A}'(\ell)} \frac{f(\omega)}{|\nabla \mathscr{G}(\omega)|} d^2 H^{\nu \cdot \nu}(\omega) \quad \text{for fixed } \ell$

Write
$$
\beta : \mathbb{R}^{N} \rightarrow \mathbb{R}
$$
 as $\beta(\theta) = f_{\theta}(x)$. $f_{\theta}(x)$

\n
$$
\Rightarrow \nabla \beta(\theta) = f_{\theta}(x)
$$
\n
$$
\nabla f_{\theta}(x) + \nabla f_{\theta}(x)
$$
\n
$$
\Rightarrow \nabla \beta(\theta) = f_{\theta}(x)
$$
\n
$$
\nabla f_{\theta}(x) + \nabla f_{\theta}(x)
$$
\n
$$
\Rightarrow \nabla \beta = \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\rho \mu(\omega)}{|\varphi(\omega)|} d\mathcal{H}^{N-1}(\omega)
$$
\n
$$
\nabla \omega_{\theta} = \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\rho \mu(\omega)}{|\varphi(\omega)|} d\mathcal{H}^{N-1}(\omega)
$$
\n
$$
\int_{\omega} = \frac{1}{2} \int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} (\rho \circ V_{\epsilon}) \quad \text{with } \sigma_{\epsilon}: \mathfrak{z}_{1} + \frac{1}{n} \geq \frac{k}{n}
$$
\nWe have $\int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} (\rho \circ V_{\epsilon}) \quad \text{with } \sigma_{\epsilon}: \mathfrak{z}_{1} + \frac{1}{n} \geq \frac{k}{n}$

\n
$$
\frac{1}{n} \int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} \int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} (\rho \circ V_{\epsilon}) \quad \text{with } \sigma_{\epsilon}: \mathfrak{z}_{1} + \frac{1}{n} \geq \frac{k}{n}
$$
\n
$$
\frac{1}{n} \int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} \int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} (\rho \circ V_{\epsilon}) \quad \text{with } \sigma_{\epsilon}: \mathfrak{z}_{1} + \frac{1}{n} \geq \frac{k}{n}
$$
\n
$$
\frac{1}{n} \int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} \int_{\omega} \frac{\rho^{1}}{|\varphi(\omega)|} (\rho \circ V_{\
$$

$$
V_{\epsilon} \text{ here}
$$
\n
$$
D(\sigma](z_{j}) = D(\sigma) \left(V_{j} \frac{\partial}{\partial t} (\sigma \circ W_{\epsilon}) \right) = 1 + \frac{1}{2} D_{i \alpha_{j}} (z_{j}^{k-1})
$$
\n
$$
U_{\epsilon} \left(V_{\epsilon} \frac{1}{\prod_{\ell=1}^{j-1} D(\sigma)(z_{\ell})} W_{\epsilon} \right) \times
$$
\n
$$
= (V_{\epsilon} \prod_{\ell=1}^{j-1} (1 + \frac{1}{2} D_{i \alpha_{j}}(z_{\ell}^{k-1})) V_{\epsilon}) \times
$$

 km kz^2 ,