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Evan Dogariu PHY 521: Final Written Assignment Problem 12.1

Part I

Problem 12.1

Theorem 1 (Monotonicity in the dependence on the boundary condition). For Ising spin systems in any

fixed volume Λ, the finite volume Gibbs measures conditioned on different exterior spin configurations are

monotone in the boundary spins. More explicitly, for any pair of exterior configurations σ̃, σ′ (here, exterior

configurations need only be defined on ΛC), the conditional distributions satisfy:

σ̃ ⪯ σ′ =⇒ ρσ̃Λ,β ⪯ ρσ
′

Λ,β

In particular, each such finite volume Gibbs distribution with an exterior spin configuration σ̃ is bounded

between the − and + finite volume states

ρ−Λ,β ⪯ ρσ̃Λ,β ⪯ ρ+Λ,β

Proof. Let Λ be a finite volume, and let σ̃, σ′ be two arbitrary exterior spin configurations with

σ̃ ⪯ σ′

Let f ∈ B0 be a local and monotone function. Then, letting µ denote the a priori measure over spin

configurations, we have the regular conditional expectations

ρσ̃Λ,β [f ] =

∫
ΩΛ

f(σ, σ̃)
e−βHΛ(σ|σ̃)

Z σ̃
Λ

µΛ(dσ) and ρσ
′

Λ,β [f ] =

∫
ΩΛ

f(σ, σ′)
e−βHΛ(σ|σ′)

Zσ′
Λ

µΛ(dσ)

Define the tilting function

G(σ, σ̃, σ′) :=

(
e−βHΛ(σ|σ̃)

Z σ̃
Λ

)−1
e−βHΛ(σ|σ′)

Zσ′
Λ

=
Z σ̃
Λ

Zσ′
Λ

· e−β[HΛ(σ|σ′)−HΛ(σ|σ̃)]

Lemma 2. G(·, σ̃, σ′) : ΩΛ → R is nonnegative and monotonically increasing.

Proof of Lemma 2. Nonnegativity of G is manifest. For monotonicity, suppose that σ(1), σ(2) ∈ ΩΛ are

such that σ(1) ⪯ σ(2). Then, since the Hamiltonian takes the form

HΛ(σ
(j)|τ) = −

∑
{x,y}⊂Λ
||x−y||=1

Jx−yσ
(j)
x σ(j)

y −
∑

x∈Λ,y∈ΛC

||x−y||=1

Jx−yσ
(j)
x τy − h

∑
x∈Λ

σ(j)
x ,

we know that

HΛ(σ
(j)|σ′)−HΛ(σ

(j)|σ̃) = −
∑

x∈Λ,y∈ΛC

||x−y||=1

Jx−yσ
(j)
x (σ′

y − σ̃y)

Now, note that since σ
(2)
x ≥ σ

(1)
x for all x ∈ Λ and σ′

y − σ̃y ≥ 0 for all y ∈ ΛC and Jx−y ≥ 0, we have that∑
x∈Λ,y∈ΛC

||x−y||=1

Jx−yσ
(2)
x (σ′

y − σ̃y) ≥
∑

x∈Λ,y∈ΛC

||x−y||=1

Jx−yσ
(1)
x (σ′

y − σ̃y)

=⇒ HΛ(σ
(1)|σ′)−HΛ(σ

(1)|σ̃) ≥ HΛ(σ
(2)|σ′)−HΛ(σ

(2)|σ̃)

=⇒ −β[HΛ(σ
(1)|σ′)−HΛ(σ

(1)|σ̃)] ≤ −β[HΛ(σ
(2)|σ′)−HΛ(σ

(2)|σ̃)]

Problem 12.1 continued on next page. . . 2



Evan Dogariu PHY 521: Final Written Assignment Problem 12.1 (continued)

By monotonicity of et, this means that

e−β[HΛ(σ(1)|σ′)−HΛ(σ(1)|σ̃)] ≤ e−β[HΛ(σ(2)|σ′)−HΛ(σ(2)|σ̃)]

Since
Zσ̃

Λ

Zσ′
Λ

≥ 0 (partition functions are positive), we get

Z σ̃
Λ

Zσ′
Λ

· e−β[HΛ(σ(1)|σ′)−HΛ(σ(1)|σ̃)] ≤ Z σ̃
Λ

Zσ′
Λ

e−β[HΛ(σ(2)|σ′)−HΛ(σ(2)|σ̃)]

By definition of G, this is precisely the same statement as

G(σ(1), σ̃, σ′) ≤ G(σ(2), σ̃, σ′)

Since this result holds for all σ(1) ⪯ σ(2), monotonicity follows.

Now, we know by construction that G satisfies a tilting property

ρσ̃Λ,β [f(·) G(·, σ̃, σ′)] = ρσ
′

Λ,β [f ]

By Lemma 12.4, since ρσ̃Λ,β is a Gibbs measure of the ferromagnetic Ising model with a fixed boundary

condition, it obeys the FKG lattice condition and therefore enjoys a positive association property. This

means that since both f and G(·, σ̃, σ′) are monotone,

ρσ̃Λ,β [f ] · ρσ̃Λ,β [G(·, σ̃, σ′)] ≤ ρσ̃Λ,β [f(·) G(·, σ̃, σ′)]

Observe that by the tilting property of G,

ρσ̃Λ,β [G(·, σ̃, σ′)] = ρσ
′

Λ,β [1] = 1

This means that

ρσ̃Λ,β [f ] ≤ ρσ̃Λ,β [f(·) G(·, σ̃, σ′)] = ρσ
′

Λ,β [f ]

Since this holds for all local, monotone functions f , we find that

ρσ̃Λ,β ⪯ ρσ
′

Λ,β ,

as desired. The final conclusion of the lemma comes from observing that the exterior configurations σ± that

produce the ± boundary conditions satisfy

σ− ⪯ σ̃ ⪯ σ+

for all possible fixed exterior configurations σ̃.
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Evan Dogariu PHY 521: Final Written Assignment Problem 12.2

Problem 12.2

Theorem 3 (Translation invariance of the ± infinite volume Gibbs states). Suppose we have a model on

a transitive, locally finite graph, with a translation invariant a priori measure. If for all finite volumes Λ

the Hamiltonian H±
Λ is translation-invariant, then the infinite volume Gibbs states ρ±β are also translation

invariant for all β.

More precisely, fix a vector a that respects the transitivity of the graph (such as with integer coordinates

on Zd) and define a translation map Ta : Ω → Ω that sends σx 7→ σx+a. If H±
Λ (σ) = H±

Λ (Ta(σ)) for all

σ ∈ ΩΛ and all finite Λ, then we have∫
Ω

f(σ)ρ±β (dσ) =

∫
Ω

f(Ta(σ))ρ
±
β (dσ) for all local, measurable functions f ∈ B0 and ∀β

Proof. Let β be arbitrary. Suppose that H±
Λ (σ) = H±

Λ (Ta(σ)) for all σ ∈ ΩΛ and all finite Λ. Let f ∈ B0

be an arbitrary local measurable function. We want to show that

ρ±β [f ] = ρ±β [f ◦ Ta]

Denote by ρ±ΛL,β a finite volume Gibbs state with ± boundary conditions over ΛC
L . We start with a helpful.

Lemma 4. Let ϵ > 0 be arbitrary and suppose that the finite volume Hamiltonian and a priori measures are

translation invariant. Let f ∈ B0 be an arbitrary local measurable function. Then, there exists an M large

enough that for all L > M and all β, ∣∣∣ρ±ΛL,β [f ]− ρ±ΛL,β [f ◦ Ta]
∣∣∣ < ϵ

Proof of Lemma 4. Define for each volume Λ the induced shifted volume map Ta(Λ) := {x+ a : x ∈ Λ}.
We first claim that by translation invariance of the finite volume Hamiltonian,

ρ±T−a(ΛL),β [f ] = ρ±ΛL,β [f ◦ Ta] ∀L < ∞

(The above statement boils down to the fact that shifting the function right is the same as shifting the

volume left). To see this, note that for a translation invariant a priori measure µ(dσ), we can express

ρ±ΛL,β [f ◦ Ta] =

∫
ΩΛL

f(Ta(σ))
e
−βH±

ΛL,β(σ)

Z±
ΛL,β

µ(dσ)

=

∫
ΩΛL

f(Ta(σ))
e
−βH±

ΛL,β(Ta(σ))

Z±
ΛL,β

µ(dσ)

=

∫
ΩT−a(ΛL)

f(σ)
e
−βH±

T−a(ΛL),β
(σ)

Z±
T−a(ΛL),β

µ(dσ)

= ρ±T−a(ΛL),β [f ],

where the second line comes from translation invariance of the Hamiltonian and the third line comes from

translation invariance of the integral w.r.t. µ (note that the volume over which we compute the Hamiltonian

and partition function shifts by −a between the second and third lines, since translating the integral shifts

the boundary conditions).

From here, we can note that for all L > ||a||,

ΛL−||a|| ⊂ ΛL ⊂ ΛL+||a|| and ΛL−||a|| ⊂ T−a(ΛL) ⊂ ΛL+||a||

Problem 12.2 continued on next page. . . 4



Evan Dogariu PHY 521: Final Written Assignment Problem 12.2 (continued)

by definition of T−a(ΛL) = {x − a : x ∈ ΛL}. From Problem 12.1, we know that the measures ρ+Λℓ,β
and

ρ−Λℓ,β
are monotonically decreasing and increasing, respectively, as we increase ℓ (the ± boundary conditions

get relaxed as we increase ℓ). So, monotonicity grants

min
{
ρ±ΛL−||a||,β

[f ], ρ±ΛL+||a||,β
[f ]
}
≤ ρ±ΛL,β [f ], ρ

±
T−a(ΛL),β [f ] ≤ max

{
ρ±ΛL−||a||,β

[f ], ρ±ΛL+||a||,β
[f ]
}

This immediately tells us that∣∣∣ρ±ΛL,β [f ]− ρ±T−a(ΛL),β [f ]
∣∣∣ ≤ ∣∣∣ρ±ΛL−||a||,β

[f ]− ρ±ΛL+||a||,β
[f ]
∣∣∣

Lastly, since the infinite Gibbs states exist for the ± boundary conditions, the sequence (ρ±Λℓ,β
[f ])ℓ is Cauchy,

and so there exists an M ′ such that for all L > M ′ + ||a||,∣∣∣ρ±ΛL−||a||,β
[f ]− ρ±ΛL+||a||,β

[f ]
∣∣∣ < ϵ

Therefore, with M := M ′ + ||a||, we get that for all L > M ,∣∣∣ρ±ΛL,β [f ]− ρ±ΛL,β [f ◦ Ta]
∣∣∣ = ∣∣∣ρ±ΛL,β [f ]− ρ±T−a(ΛL),β [f ]

∣∣∣ < ϵ

as desired.

Now, by definition of the infinite Gibbs states, we know that as L → ∞,

ρ±ΛL,β [f ] → ρ±β [f ] and ρ±ΛL,β [f ◦ Ta] → ρ±β [f ◦ Ta]

Let ϵ > 0 be arbitrary. Then, there exists an N large enough that for all L > N ,∣∣∣ρ±ΛL,β [f ]− ρ±β [f ]
∣∣∣ < ϵ and

∣∣∣ρ±ΛL,β [f ◦ Ta]− ρ±β [f ◦ Ta]
∣∣∣ < ϵ

Furthermore, by Lemma 4 there exists an M large enough that for all L > M ,∣∣∣ρ±ΛL,β [f ]− ρ±ΛL,β [f ◦ Ta]
∣∣∣ < ϵ

From these bounds, a simple application of the triangle inequality grants that for all L > max{N,M},∣∣∣ρ±β [f ]− ρ±β [f ◦ Ta]
∣∣∣ = ∣∣∣ρ±β [f ] + ρ±ΛL,β [f ]− ρ±ΛL,β [f ] + ρ±ΛL,β [f ◦ Ta]− ρ±ΛL,β [f ◦ Ta]− ρ±β [f ◦ Ta]

∣∣∣
≤
∣∣∣ρ±β [f ]− ρ±ΛL,β [f ]

∣∣∣+ ∣∣∣ρ±ΛL,β [f ]− ρ±ΛL,β [f ◦ Ta]
∣∣∣+ ∣∣∣ρ±ΛL,β [f ◦ Ta]− ρ±β [f ◦ Ta]

∣∣∣
< ϵ+ ϵ+ ϵ = 3ϵ

Since this holds for arbitrary ϵ, we find that∣∣∣ρ±β [f ]− ρ±β [f ◦ Ta]
∣∣∣ = 0 =⇒ ρ±β [f ] = ρ±β [f ◦ Ta]

Since this holds for all local and measurable f , we find that ρ±β is translation invariant, and the desired result

is proven.
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Problem 12.3

Theorem 5 (Criterion for uniqueness of the infinite Gibbs state). Consider an Ising spin system on any

countable infinite graph V. For any β > 0, we have the following criterion for uniqueness of the infinite

Gibbs state:

the Gibbs state is unique ⇐⇒ ρ−β [σx] = ρ+β [σx] ∀x ∈ V,
where in the above expression, σx is interpreted as an observable from Ω → {−1, 1} mapping σ 7→ σx.

Proof. ( =⇒ ) Suppose first that the infinite Gibbs state is unique. Then, we know that ρ−β = ρ+β , which

means that for all local, measurable f ∈ B0,

ρ−β [f ] = ρ+β [f ]

This trivially implies that

ρ−β [σx] = ρ+β [σx] ∀x ∈ V

( ⇐= ) Suppose now that ρ−β [σx] = ρ+β [σx] ∀x ∈ V. We know from the result of Problem 12.1 that

ρ−Λ,β ⪯ ρ+Λ,β for all finite volumes Λ, which means that in the limit,

ρ−β ⪯ ρ+β

Applying Holley’s Theorem, this tells us that there exists a monotone coupling µ(dσ, dσ′) on the product

space Ω× Ω that satisfies the following properties:

1. µ(dσ, dσ′) is supported on the collection of pairs (σ, σ′) for which σ ⪯ σ′

2. For all measurable observables f : Ω → R,∫
Ω×Ω

f(σ)µ(dσ, dσ′) =

∫
Ω

f(σ)ρ−β (dσ)

3. For all measurable observables f : Ω → R,∫
Ω×Ω

f(σ′)µ(dσ, dσ′) =

∫
Ω

f(σ)ρ+β (dσ)

Since the observable σ 7→ σx is certainly measurable, we find that by properties 2 and 3, for all x ∈ V we

have

ρ−β [σx] =

∫
Ω×Ω

σxµ(dσ, dσ
′) and ρ+β [σx] =

∫
Ω×Ω

σ′
xµ(dσ, dσ

′)

=⇒ 0 = ρ+β [σx]− ρ−β [σx] =

∫
Ω×Ω

(σ′
x − σx)µ(dσ, dσ

′)

Let

Ex := {(σ, σ′) ⊂ Ω× Ω : σx < σ′
x} and Fx := {(σ, σ′) ⊂ Ω× Ω : σx > σ′

x}
Over Ex, we know that σ′

x − σx = 2 since each σx ∈ {−1, 1}; similarly, over Fx we know that σ′
x − σx = −2.

Lastly, over (Ex ∪ Fx)
C , we know that σ′

x − σx = 0 trivially. So,

0 =

∫
Ω×Ω

(σ′
x − σx)µ(dσ, dσ

′)

=

∫
Ex

(σ′
x − σx)µ(dσ, dσ

′) +

∫
Fx

(σ′
x − σx)µ(dσ, dσ

′) +

∫
(Ex∪Fx)C

(σ′
x − σx)µ(dσ, dσ

′)

=

∫
Ex

2µ(dσ, dσ′) +

∫
Fx

(−2)µ(dσ, dσ′) +

∫
(Ex∪Fx)C

0µ(dσ, dσ′)

= 2µ(Ex)− 2µ(Fx)

Problem 12.3 continued on next page. . . 6



Evan Dogariu PHY 521: Final Written Assignment Problem 12.3 (continued)

However, note that if σx > σ′
x, then it cannot be that σ ⪯ σ′. By property 1 of µ, this means that µ(Fx) = 0.

Thus, µ(Ex) = 0 for all x ∈ V. Now, let

E := {(σ, σ′) ⊂ Ω× Ω : σ ̸= σ′}

It is clear that

E ⊂

(⋃
x∈V

Ex

)
∪

(⋃
x∈V

Fx

)
,

as in order for two states σ ̸= σ′ to be distinct, they must differ at some σx ̸= σ′
x, which means that either

σx > σ′
x or σx < σ′

x. However, applying the countable subadditivity of the measure µ, we find that

µ(E) ≤
∑
x∈V

µ(Ex) + µ(Fx) = 0 =⇒ µ(E) = 0

Now, let ν
(1)
β , ν

(2)
β be two arbitrary infinite volume Gibbs states. For any local, monotone function f , we

know by the taking the limit of the result of Problem 12.1 that

ρ−β [f ] ≤ ν
(1)
β [f ] ≤ ρ+β [f ] and ρ−β [f ] ≤ ν

(2)
β [f ] ≤ ρ+β [f ]

However, using the coupling µ, we find that

ρ+β [f ]− ρ−β [f ] =

∫
Ω×Ω

f(σ)− f(σ′)µ(dσ, dσ′)

=

∫
E

f(σ)− f(σ′)µ(dσ, dσ′) +

∫
EC

f(σ)− f(σ′)µ(dσ, dσ′)

Clearly, f(σ)− f(σ′) = 0 over EC since σ = σ′ on EC . Also, our earlier discussion revealed that µ(E) = 0.

This means that

ρ+β [f ]− ρ−β [f ] = 0 + 0 = 0

Therefore, the result that ρ−β [f ] ≤
{
ν
(1)
β [f ], ν

(2)
β [f ]

}
≤ ρ+β [f ] implies that for all local, monotone f ,

ν
(1)
β [f ] = ν

(2)
β [f ]

This means that

ν
(1)
β ⪰ ν

(2)
β and ν

(1)
β ⪯ ν

(2)
β =⇒ ν

(1)
β = ν

(2)
β

Since this holds for all pairs of arbitrary infinite volume Gibbs states, we find that the infinite volume Gibbs

state is unique.
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Part II

Problem 1

Express for what other boundary conditions on the Ising model (expressed in terms of Ising spins) can one

now conclude convergence of the Ising model’s state in the infinite volume limit (ΛL with L → ∞).

Solution

Theorem 6. The Ising model’s infinite Gibbs state converges for both the free (no edges outside of Λ) and

wired (all edges outside of Λ) boundary conditions to ρfβ and ρwβ , respectively. Furthermore, for all infinite

Gibbs states νβ, we find that

ρfβ ⪯ νβ ⪯ ρwβ

Proof. We work with the natural partial order on FK cluster models, given by

ñ ⪰ n ⇐⇒ ñb ≥ nb ∀b ∈ E

Let Λ be a finite volume. The result from the first part of Problem 12.1 still applies in this case, and so we

find that for any pair of exterior configurations ñ, n′, we know that

ñ ⪯ n′ =⇒ ρñΛ,β ⪯ ρn
′

Λ,β

Now, the exterior configuration (defined on ΛC) for the free boundary condition is that nf
b = 0 for all edges

b that are not fully contained in Λ. Certainly, for any exterior configuration n, we have that nf and n agree

within Λ and that nf is minimal outside of Λ, and so

nf ⪯ n =⇒ ρfΛ,β ⪯ ρnΛ,β

Similarly, the wired boundary conditions are defined via nw
b = 1 for all edges b that are not fully contained

in Λ. Again, for any exterior configuration n, we have that nw and n agree within Λ and that nw is maximal

outside of Λ, and so

n ⪯ nw =⇒ ρnΛ,β ⪯ ρwΛ,β

From this, we can conclude that for all finite Λ and all exterior configurations n that are defined on ΛC , we

have

ρfΛ,β ⪯ ρnΛ,β ⪯ ρwΛ,β

An important thing to note is that this immediately implies that ρfΛ,β (resp. ρwΛ,β) is monotonically increasing

(resp. decreasing) in Λ, since a larger Λ relaxes the constraints on ΛC and can only serve to make the resulting

exterior configuration less minimal (resp. maximal). So, the sequence (ρfΛL,β)L is monotone increasing and

bounded above by ρwΛ,β for any Λ, which means that it converges as L → ∞. Inversely, the sequence (ρwΛL,β)L

is monotone decreasing and bounded below by ρfΛ,β for any Λ, which means it converges as L → ∞. From

this, we conclude that the infinite Gibbs state always converges for the free and wired boundary

conditions. Furthermore, for any infinite Gibbs state induced by a boundary configuration sequence (nL)L,

the bounds

ρfΛL,β ⪯ ρnL

ΛL,β ⪯ ρwΛL,β

will also hold in the limit, and so the infinite state is bounded between the infinite free and wired states. An

important corollary of this is that if the infinite free and wired Gibbs states agree, then there is a unique

infinite Gibbs state and all boundary conditions will converge to this state.
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Problem 2

For what sequence of boundary conditions # can one conclude convergence of the pressure, defined as

Ψ(β)# = lim
L→∞

1

|ΛL|
logZ#

ΛL,β ,

if/when the limit exists?

Solution

Proof. We follow the reasoning in Chapter 5 of the course notes to determine when this limit exists. Let us

first denote the term that a boundary interaction along the boundary of a finite volume Λ with conditions

# contributes to the Hamiltonian by

ϕ#
Λ (σ)

If it is the case that the sequence of volumes (Λ(n))n is a van Hove sequence (which means the ratio of

outer and inner packing numbers converges to 1) such as cubes of increasing side length, then for boundary

conditions # satisfying the condition that

sup
σ

∣∣∣ϕ#
Λ(n)(σ)

∣∣∣ = o
(∣∣∣Λ(n)

∣∣∣) ∀n, (⋆)

Corollary 5.5 guarantees that the pressure function

Ψ(β)# = lim
n→∞

1∣∣Λ(n)
∣∣ logZ#

Λ(n),β

converges.

Now, in general it holds for the Ising Hamiltonian that

sup
σ

∣∣∣ϕ#
Λ(n)(σ)

∣∣∣ = O
(∣∣∣∂Λ(n)

∣∣∣) ∀n,

since the number of terms in that contribute to the boundary term equals the size of the boundary, and each

term contributes at most a value of the coupling J . So, on graphs where we have that van Hove sequences

satisfy
|∂Λ(n)|
|Λ(n)|

→ 0,

such as on lattices Zd (in Zd, the numerator scales to the (d − 1)th power while the denominator scales to

the dth power), the condition (⋆) is satisfied for any choice of boundary conditions #. Therefore, for such

lattices, any boundary condition will yield a convergent pressure function when the limit is taken along a

van Hove sequence.
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Problem 3

(a) What partial order can be introduced on the configuration space Ω which does not respect the A−B

connectivity symmetry and instead gives preference to one over the other, and for which you expect

(or may prove) the FKG lattice condition?

(b) Assuming (without necessarily spelling the proof) that the order you propose does satisfy the FKG

condition – for what collection of the model’s selected states what would that allow to conclude con-

vergence in the double limit Ln, β → ∞ for at least some pre-specified (Ln)n?

Solution

Proof of (a). Consider the A−B continuum model of the antiferromagnetic quantum spin chain, with the

space split into strips going along the β dimension. We can define a partial order on the configuration space

Ω as follows. First, for each position n ∈ Z, define the maps An, Bn : Ω → 2[0,β] that map a configuration

σ to the set of rungs that it contains in the nth A and B strips, respectively. Define a partial ordering as

follows:

σ ⪯ σ′ ⇐⇒ An(σ) ⊆ An(σ
′) and Bn(σ) ⊇ Bn(σ

′) ∀n ∈ Z

This partial ordering certainly does not respect the A−B connectivity symmetry, since configurations that

connect A’s and disconnect B’s dominate; this setup is inherently not symmetric. We expect this partial

ordering to yield an FKG inequality because σ ⪯ σ′ only happens when σ′ makes all A strips more connected

and makes all B strips less connected. The maximal state is the state with all possible rungs across every B

strip so that every pair of neighboring A strips is connected at all heights t ∈ [0, β], and no rungs connecting

any B strips. The minimal state is the exact opposite. Note that these two configurations correspond to the

maximal possible number of loops, which yields the largest Gibbs factor because of the equation〈
Φ|eβHa |Φ

〉
= eβ|J |

∫
ΩJ ,β

(2S + 1)Nℓ(σ)ρJ ,β(dσ)

This tells us that configurations with more loops are preferred by the Hamiltonian, and we know that the

maximal and minimal states generate the maximum possible number of loops. Furthermore, we expect that

the minimum operation induced by this partial ordering forces states more toward the minimal state, and

the maximum operation pushes states toward the maximal state. Since the loop-counting argument reveals

that more minimal/maximal states are more preferred by the Hamiltonian, it is intuitive that we would have

the FKG lattice condition

ρ(σ ∧ σ′) · ρ(σ ∨ σ′) ≥ ρ(σ) · ρ(σ′)

when the measure ρ is a Gibbs state.

Proof of (b). Assume that the partial order from part (a) satisfies the FKG condition, and pre-specify the

sequence Ln to be either the even natural numbers or the odd natural numbers (this will enforce dimerization

and allow for convergence toward the minimal and maximal states, respectively). If we have preset evens,

fix A to be the strip type that we will add rungs to; if odd, fix B. Then, if we set the sequence of states (σ)β
to be that which adds a new rung at β on the strips of the type we just fixed, we see that the infinite states

will converge toward the maximal state if A was fixed and the minimal state if B was fixed.
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