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Evan Dogariu PHY 521: Problem Set 2 Problem 4.1

Problem 4.1

Assuming all the relevant differentiability, prove that for energy (or energies) E = E(V, T,N) at which the

infimum F (T,N, V, ...) := infE′ [E′ − TS(V,E′, N, ...)] is realized, we have

S(V,E,N, ...) = −∂F (T, V,N)

∂T

Solution

Proof. In order for E to be a minimizer, we must have that the derivative with respect to E′ of the things

inside the infimum must be 0 when evaluated at E′ = E. In other words,

∂

∂E′ [E
′ − TS(V,E′, N, ...)] = 0 =⇒ 1− T

∂S(V,E′, N, ...)

∂E′

∣∣∣∣
E

= 0

So, we get that
∂S(V,E′, N, ...)

∂E′

∣∣∣∣
E

=
1

T

From here, we note that the value of F , written in terms of the minimizing energy E (which is implicitly a

function of T ), is

F (T,N, V, ...) = E − TS(V,E,N, ...)

Differentiating with respect to T and applying the product rule and chain rule,

∂F (T, V,N)

∂T
=

∂E

∂T
− S(V,E,N)− T

(
∂S(V,E,N)

∂E

∂E

∂T
+

∂S(V,E,N)

∂V

∂V

∂T
+

∂S(V,E,N)

∂N

∂N

∂T

)
Note that ∂V

∂T and ∂N
∂T both are simply 0 (they are fixed w.r.t. the infimum), and we have already computed

that ∂S
∂E = 1

T at our minimizing energy E. Plugging all of this in,

∂F (T, V,N)

∂T
=

∂E

∂T
− S(V,E,N)− T

(
1

T

∂E

∂T

)
= −S(V,E,N)

So, the result is proven.
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Problem 4.2

Give an expression for the specific latent heat of water’s boiling transition, at constant pressure, in terms of

water’s Gibbs free energy function G(p, T,N).

Solution

Proof. Consider a setting where we are boiling liquid water by raising the temperature (i.e. we are raising

the temperature while keeping the pressure constant in a fixed volume with a fixed number of particles). We

know that

S(V,E,N) = −∂G(p, T,N)

∂T

The boiling transition (a first order phase transition) occurs where G(p, T,N) has a kink singularity as a

function of T , at a value that we will denote T ∗ (note that for boiling liquid water, T ∗ = 373.15). At this

phase transition, we have a latent change in entropy given by

∆S = −

(
∂G

∂T

∣∣∣∣
T∗
+

− ∂G

∂T

∣∣∣∣
T∗
−

)
=

∂G

∂T

∣∣∣∣
T∗
−

− ∂G

∂T

∣∣∣∣
T∗
+

We know that we can write the latent heat of this transition as

∆E = T ∗∆S

So, if we denote the total mass of the water as mtotal = N · mwater, where mwater is the mass of a single

water molecule and N is the number of water molecules, then we can say that the specific latent heat is

L =
∆E

mtotal
=

T ∗∆S

Nmwater

Plugging in our value for the difference in entropy across the phase transition, we get the result that the

specific latent heat of water’s boiling transition in this setting is

L =
T ∗

Nmwater

(
∂G

∂T

∣∣∣∣
T∗
−

− ∂G

∂T

∣∣∣∣
T∗
+

)
,

where T ∗ is the temperature at which liquid water boils, mwater is the mass of a single water molecule, and

N is the number of water molecules.
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Problem 5.1

Lemma 1. Let H,H ′ be a pair of Hamiltonians with common interaction terms ΦA = Φ′
A but different

translation invariant couplings J and J ′. Then, for all Λ ⊂ Zd and σ ∈ ΩΛ,

|HΛ(σ)| ≤ ||J || · |Λ|

and

|HΛ(σ)−H ′
Λ(σ)| ≤ ||J − J ′|| · |Λ|

Solution

Proof. We prove the second inequality first. Note that

|HΛ(σ)−H ′
Λ(σ)| =

∣∣∣∣∣∑
A⊂Λ

(JA − J ′
A) ΦA(σA)

∣∣∣∣∣ ≤ ∑
A⊂Λ

|JA − J ′
A| · |ΦA(σA)|,

where we have applied the triangle inequality. Then, since supσ |ΦA(σ)| = 1 (i.e. the ΦA’s are normalized),

we get that

|HΛ(σ)−H ′
Λ(σ)| ≤

∑
A⊂Λ

|JA − J ′
A| =

∑
x∈Λ

∑
A∋x

1

|A|
|JA − J ′

A|,

where we divide by |A| because we are counting each A one time for every element of A, and so overcounting

by a factor of |A|. Now, since the couplings are translation invariant, we see that for all x ∈ Λ,∑
A∋x

1

|A|
|JA − J ′

A| =
∑
A∋0

1

|A|
|JA − J ′

A|,

since we can simply subtract the vector x from all elements of A. So, we get that

|HΛ(σ)−H ′
Λ(σ)| ≤

∑
x∈Λ

∑
A∋x

1

|A|
|JA − J ′

A| = |Λ|
∑
A∋0

1

|A|
|JA − J ′

A| = ||J − J ′|| · |Λ|

This proves the second equation.

From the second equation, we can trivially derive the first by letting J ′
A ≡ 0 for all A, which means

that H ′
Λ(σ) = 0 for all σ. So, this means that ||J − J ′|| = ||J || and |HΛ(σ)−H ′

Λ(σ)| = |HΛ(σ)|. The first

equation follows.
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Problem 5.2

Consider the d-dimensional Ising Hamiltonian with translation invariant interaction

HΛ(σ) = −
∑

{x,y}⊂Λ

J|x−y|σxσy − h
∑
x∈Λ

σx,

where the Jn are not limited to finite range.

(i) Under what condition on the coupling constants {Jn} would the energy of a given spin’s interaction

with the rest be bounded uniformly in the system’s size?

(ii) In the one-dimensional version of the model, under what condition on {Jn} would the total interaction

of spins in ΛL := [−L,L] ⊂ Z with the rest of the system (i.e. ΛC
L ) be bounded uniformly in L?

(iii) Which of the above pair of conditions suffice for the convergence of this model’s pressure function

ΨΛ(β,J ) := 1
|Λ| lnZΛ(β) in the thermodynamic limit?

Solution

Proof of (i). Since J is translation invariant, we can suppose without loss of generality that we are

interested in bounding the spin at 0’s interaction energy, since it will be the same as any other. Now, let us

consider the part of the Hamiltonian corresponding to the interactions of σ0 with all other sites:

IΛ :=

∣∣∣∣∣∣−
∑
y∈Λ

J|y−0|σ0σy

∣∣∣∣∣∣ ≤
∑
y∈Λ

|J|y||,

where the inequality comes from the triangle inequality and the fact that |σy| = 1 for all y. So, if we were

able to bound the quantity

IΛ ≤
∑
y∈Λ

|J|y|| ≤ M

for some finite M independent of |Λ|, then the energy of a given spin’s interaction with the rest of the system

would be bounded uniformly in the system’s size. Such a condition can only happen if we can bound this

quantity over the entire lattice. In other words, we can ensure a uniform bound if we can find a finite M

such that ∑
y∈Zd

|J|y|| ≤ M

Proof of (ii). Consider the 1D Ising model, with the definition ΛL := [−L,L] ⊂ Z. For any L, we

can write the total interaction of spins in ΛL with the rest of the system as

IL :=

∣∣∣∣∣∣−
∑
x∈ΛL

∑
y/∈ΛL

J|x−y|σxσy

∣∣∣∣∣∣ ≤
∑
x∈ΛL

∑
y/∈ΛL

|J|x−y||,

where we have once again applied the triangle inequality and the fact that the spins have magnitude 1. Now,

for any fixed x, we can note by a simple shift z = y − x that∑
y/∈ΛL

|J|x−y|| =
∑

z/∈[−L−x,L−x]

|J|z||

When we sum this expression over different values x ∈ ΛL, note that the number of times an element of the

form |J|z|| appears depends on the value |z|, since this denotes the number of x’s such that z ∈ [−L−x, L−x].

Problem 5.2 continued on next page. . . 5



Evan Dogariu PHY 521: Problem Set 2 Problem 5.2 (continued)

In particular, if |z| ≤ 2L, then there are precisely 2|z| such x’s such that x ∈ ΛL and z ∈ [−L − x, L − x],

whereas if |z| > 2L then this number is |ΛL| = 2L; in either case, we can say that the number of times each

|J|z|| shows up is upper bounded by |z|. In this way,

IL ≤
∑
x∈ΛL

∑
y/∈ΛL

|J|x−y|| ≤
∑
z∈Z

2|z||J|z||

Note that the quantity on the right doesn’t depend on L, and so it uniformly bounds IL. So, if there were

some finite M such that ∑
z∈Z

2|zJ|z|| ≤ M,

then this would yield a uniform bound over the total interaction of spins in ΛL with those not in ΛL.

Proof of (iii). Let us note that for translationally invariant interactions that only involve pairs of

sites (like the Ising Hamiltonian given), it is the case that

||J || :=
∑
A∋0

1

|A|
|JA| =

∑
y∈Zd

1

2
|J|y||

because each set A ∋ 0 with nonzero interaction is of the form {0, y} for some y ∈ Zd. So, if the condition

from part (i) holds (the sum is finitely bounded by some M), then

||J || ≤ M

2
< ∞

Under this condition, we can then apply the result of Theorem 5.3 with no boundary conditions to see that

the pressure function converges in the thermodynamic limit.

We note that the condition in part (ii) is a stronger assumption, as it is the case that

1 ≤ |z| ∀ nonzero z ∈ Zd =⇒
∑
z∈Zd

|J|z|| ≤
∑
z∈Zd

2|zJ|z||

So, if the sum in the condition of (ii) is finitely bounded, then so is the sum from condition (i), which

means we can apply the same earlier logic and Theorem 5.3 for the convergence of the pressure function.

This tells us that either condition will suffice for the convergence of the model’s pressure function in the

thermodynamic limit.
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Problem 5.3

Let ϵ > 0. Given a translation invariant interaction with ||J || < ∞, explain how can it be approximated by

a finite range interaction J (R) such that for every finite subset Λ ⊂ Zd the corresponding energy functions

satisfy ∣∣∣HΛ(σ)−H
(R)
Λ (σ)

∣∣∣ ≤ ϵ|Λ| for all configurations σ ∈ ΩΛ

By how much would the thermodynamic pressure Ψ(β,J ) differ? That is, state an upper bound on∣∣∣Ψ(β,J )−Ψ(β,J (R))
∣∣∣

Solution

Proof. Let ϵ > 0. We have that for our original J ,

||J || =
∑
A∋0

1

|A|
|JA| < ∞

Since the sum converges, we know that there must be some R large enough that the tail gets arbitrarily

small if we sort the A’s that contain the origin by diameter. In particular, there must be some R > 0 such

that ∑
A∋0

diam(A)>R

1

|A|
|JA| ≤ ϵ

For this value of R, define

J (R)
A = JA · 1diam(A)≤R ∀A ⊂ Λ,

where JA is the coupling term for A in the original interaction. This is clearly finite range with range R, as

the coupling term is 0 for all sets A with diameter larger than R. Now, we can compute that

||J − J (R)|| =
∑
A∋0

1

|A|
|JA − J (R)

A | =
∑
A∋0

1

|A|
∣∣JA(1− 1diam(A)≤R)

∣∣ = ∑
A∋0

diam(A)>R

1

|A|
|JA| ≤ ϵ

From here we can use Lemma 5.1, which states that for two different J ,J ′, we have that for all finite Λ ⊂ Zd

and all σ ∈ Λ

|HΛ(σ)−H ′
Λ(σ)| ≤ ||J − J ′|| · |Λ|

So, since our finite range interaction J (R) has that ||J − J (R)|| ≤ ϵ, the result follows.

We can express the partition function of the original interaction in terms of the finite range Hamiltonian to

get that for all Λ ⊂ Zd and a-priori measures µ(dσ),

ZΛ(β) =

∫
ΩΛ

e−βHΛ(σ)µ(dσ) =

∫
ΩΛ

e−βH
(R)
Λ (σ) · e−β

(
HΛ(σ)−H

(R)
Λ (σ)

)
µ(dσ)

By the previous result, HΛ(σ)−H
(R)
Λ (σ) ≤ ϵ|Λ|, and so

e−βϵ|Λ|
∫
ΩΛ

e−βH
(R)
Λ (σ)µ(dσ) ≤

∫
ΩΛ

e−βHΛ(σ)µ(dσ) ≤ eβϵ|Λ|
∫
ΩΛ

e−βH
(R)
Λ (σ)µ(dσ)

=⇒ e−βϵ|Λ|Z
(R)
Λ (β) ≤ ZΛ(β) ≤ eβϵ|Λ|Z

(R)
Λ (β)

Taking the natural log and dividing by |Λ|,

ΨΛ(β,J (R))− βϵ ≤ ΨΛ(β,J ) ≤ ΨΛ(β,J (R)) + βϵ

Problem 5.3 continued on next page. . . 7



Evan Dogariu PHY 521: Problem Set 2 Problem 5.3 (continued)

Therefore, for all Λ ⊂ Zd, ∣∣∣ΨΛ(β,J )−ΨΛ(β,J (R))
∣∣∣ ≤ βϵ

Taking the limit as |Λ| → ∞, we get that∣∣∣Ψ(β,J )−Ψ(β,J (R))
∣∣∣ ≤ βϵ

for the value of R such that
∑

A∋0
diam(A)>R

1
|A| |JA| ≤ ϵ.
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Evan Dogariu PHY 521: Problem Set 2 Problem 6.1

Problem 6.1

Consider the d-dimensional finite-volume Ising model in ΛL = (−⌊L/2⌋, ⌊L/2⌋]d with boundary conditions

τ , whose Hamiltonian is given by

H#
ΛL,h(σ) = −J

∑
{x,y}⊂ΛL

||x−y||=1

σxσy − J
∑

x∈ΛL,y∈Zd\ΛL

||x−y||=1

σxτy − h
∑
x∈ΛL

σx

We would like to investigate four possible choices for boundary conditions τ :

τy =


0 free b.c.

+1 + b.c.

−1 − b.c.

σper(x)/2 periodic b.c.

,

where per(x) is to be summed over the sites u ∈ ΛL \ {x} which are the neighbors of x under the periodic

boundary conditions.

(i) Prove that Ψ(β, J, h) (the system’s pressure in the infinite volume limit) is convex in h.

(ii) Summarize the arguments proving that at (β, h) for which Ψ(β, h) is differentiable with respect to h,

for all boundary conditions,

lim
L→∞

1

|ΛL|
⟨MΛL

⟩#β,ΛL
= − 1

β

∂

∂h
Ψ(β, h)

where MΛ(σ) :=
∑

x∈Λ σx is the bulk magnetization of the finite system.

Solution

Proof of (i). Let h0, h1 ∈ R be arbitrary. Define for t ∈ (0, 1) the quantity

ht := th0 + (1− t)h1

Then, if we define EΛL
(σ) := −J

∑
{x,y}⊂ΛL

||x−y||=1

σxσy − J
∑

x∈ΛL,y∈Zd\ΛL

||x−y||=1

σxτy, we get

Ψ(β, ht) = lim
L→∞

1

|ΛL|
ln

∫
ΩΛ

e−βEΛL
(σ) · e−βht

(∑
x∈ΛL

σx

)
dσ

= lim
L→∞

1

|ΛL|
ln

∫
ΩΛ

e−βEΛL
(σ) ·

(
e
−βh0

(∑
x∈ΛL

σx

))t

·
(
e
−βh1

(∑
x∈ΛL

σx

))1−t

dσ

= lim
L→∞

1

|ΛL|
ln

∫
ΩΛ

(
e−βEΛL

(σ) · e−βh0

(∑
x∈ΛL

σx

))t

·
(
e−βEΛL

(σ) · e−βh1

(∑
x∈ΛL

σx

))1−t

dσ

Applying Holder’s inequality
∣∣∫ f tg1−tdµ

∣∣ ≤ (∫
|f |dµ

)t (∫ |g|dµ
)1−t

(set p = 1
t and q = 1

1−t ) and noting

that everything is nonnegative and ln(·) is monotonic, we get

Ψ(β, ht) ≤ lim
L→∞

1

|ΛL|
ln

[(∫
ΩΛ

e−βEΛL
(σ) · e−βh0

(∑
x∈ΛL

σx

)
dσ

)t

·
(∫

ΩΛ

e−βEΛL
(σ) · e−βh1

(∑
x∈ΛL

σx

)
dσ

)1−t
]

= lim
L→∞

1

|ΛL|

(
t ln

(∫
ΩΛ

e−βEΛL
(σ) · e−βh0

(∑
x∈ΛL

σx

)
dσ

)
+ (1− t) ln

(∫
ΩΛ

e−βEΛL
(σ) · e−βh1

(∑
x∈ΛL

σx

)
dσ

))
= t

(
lim

L→∞

1

|ΛL|
ln

∫
ΩΛ

e
−βH

(σ)
ΛL,h0

dσ

)
+ (1− t)

(
lim

L→∞

1

|ΛL|
ln

∫
ΩΛ

e
−βH

(σ)
ΛL,h1

dσ

)
= tΨ(β, h0) + (1− t)Ψ(β, h1)

Problem 6.1 continued on next page. . . 9
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Since this holds for all h0, h1 and all values of t, we certainly have that Ψ is convex in h.

Proof of (ii). For all finite volumes ΛL, we can compute via a simple chain rule that at values of

(β, h) for which Ψ(β, h) is differentiable with respect to h (which means ΨΛL
is as well),

∂

∂h
ΨΛL

(β, h) =
∂

∂h

[
1

|ΛL|
lnZΛL

(β, h)

]
=

1

|ΛL|

∂
∂h [ZΛL

(β, h)]

ZΛL
(β, h)

=
1

|ΛL|

∑
σ∈ΩΛL

e
−βH#

ΛL,h(σ) · (−β) · ∂
∂h

[
H#

ΛL,h(σ)
]

ZΛL
(β, h)

=
1

|ΛL|

∑
σ∈ΩΛL

e
−βH#

ΛL,h(σ) · (−β) · (−MΛL
(σ))

ZΛL
(β, h)

=
β

|ΛL|

∑
σ∈ΩΛL

e
−βH#

ΛL,h(σ) ·MΛL
(σ)

ZΛL
(β, h)

We recognize the second fraction to be the Gibbs canonical ensemble average of MΛL
(σ) (since it is multiplied

by the Gibbs measure and summed over all possible states. This yields that

∂

∂h
ΨΛL

(β, h) =
β

|ΛL|
⟨MΛL

⟩#β,ΛL

We want to take the limit L → ∞. Note that interchanging the limit w.r.t L and the derivative w.r.t h on

the left hand side can only happen if limL→∞
∂
∂hΨΛL

(β, h) exists for almost all (β, h), which it does. To see

this, note that the convexity of ΨΛL
w.r.t h from part (i) and Theorem 3.6 guarantee that the derivatives

w.r.t. h converge wherever ΨΛL
is differentiable. So, taking the limit and dividing by β, we get the desired

result that

lim
L→∞

1

|ΛL|
⟨MΛL

⟩#β,ΛL
=

1

β

∂

∂h
Ψ(β, h)

10
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Problem 7.1

Lemma 2. Let 1 ≪ L0 ≪ L1 denote the lengths of two volumes, with ΛL0 ⊂ ΛL1 . For the 2D Ising model

with the nearest neighbor interaction
(
Jx,y = J · 1||x−y||=1 for some J > 0

)
with h = 0, i.e.

HΛ,J(σ) := −
∑

{x,y}⊂Λ

Jx,yσxσy,

at β > β̂ (at which 3e−2β̂J < 1), we have

lim
L0→∞

lim
L1→∞

〈
1

[
L−
L0,L1

]〉+
β
= 0

lim
L0→∞

lim
L1→∞

〈
1

[
L+
L0,L1

]〉+
β
= 1

Solution

Proof. Suppose without loss of generality that σ0 ∈ ΛL0 . To prove the first equation, note that L−
L0,L1

is the event that there exists a path of − spins from the boundary of ΛL0
to the boundary of ΛL1

. Since

the boundary conditions are +, such a path must have a maximal contour enveloping it with +’s on the

outside and −’s on the inside. Since the length of the path must be at least L1 − L0, the length of any

contour enveloping this path is at least 2(L1 − L0). So, we seek the probability of such a contour existing

as a function of L0, L1, J , and β. Using Lemma 7.3 (the Peierls contour estimate), we know that for any

contour γ we have that the probability of its existence is at most

P+
β [γ] ≤ e−2βJ|γ|

For a contour of length l drawn from any arbirtary start point, if we always traverse the contour going

above the horizontal line going through the start, there are at most l/2 choices for the first edge (otherwise

there won’t be enough edges below the horizontal line to complete the closed path). Now, since there are 4

neighbors to each site, each subsequent step will only have 3 possible choices since we aren’t going backward

(note that this weak bound doesn’t force the path to be closed, but it will suffice). This yields that there

are at most l
23

l possible contours of length l. So, we can apply a union bound and the fact that any contour

γ containing a path of −’s from Λ0 to Λ1 must have |γ| ≥ 2(L1 − L0) to see that

〈
1

[
L−
L0,L1

]〉+
β
≤

∑
γ containing path of −’s

P+
β [γ] ≤

∞∑
l=2(L1−L0)

∑
{γ:|γ|=l}

P+
β [γ]

≤
∞∑

l=2(L1−L0)

∑
{γ:|γ|=l}

e−2βJl =

∞∑
l=2(L1−L0)

e−2βJl |{γ : |γ| = l}|

≤
∞∑

l=2(L1−L0)

e−2βJl · l
2
3l =

∞∑
l=2(L1−L0)

l

2

(
3e−2βj

)l
Since β > β̂, we know that the term inside the parenthesis is < 1 and the sum is therefore convergent. This

means that if we take the limit as L1 → ∞, this tail of the sum must go to 0 (it is a convergent sum of

nonnegative things). So, since
〈
1

[
L−
L0,L1

]〉+
β
is nonnegative, the above bound gives us

lim
L1→∞

〈
1

[
L−
L0,L1

]〉+
β
= 0 =⇒ lim

L0→∞
lim

L1→∞

〈
1

[
L−
L0,L1

]〉+
β
= 0

Problem 7.1 continued on next page. . . 11
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For the second equation, note that
〈
1

[
L+
L0,L1

]〉+
β

is the event that there is a path of +’s between L0 and

L1. The complement of this event (i.e. the event that there is no such path) is equivalent to the event that

there is a loop of −’s within ΛL1 encircling ΛL0 . In other words, if we let E+
L0,L1

be the event that there is

such a contour encircling ΛL0
, then we have that

〈
1

[
L+
L0,L1

]〉+
β
= 1−

〈
1

[
E+

L0,L1

]〉+
β
. Any possible contour

γ that could satisfy E+
L0,L1

must have a length of at least |γ| ≥ 2L0, since it has to envelop ΛL0
. Using the

exact above logic, we can apply a similar union bound to see that〈
1

[
E+

L0,L1

]〉+
β
≤

∑
γ containing Λ0

P+
β [γ] ≤

∞∑
l=2L0

∑
{γ:|γ|=l}

P+
β [γ]

≤
∞∑

l=2L0

∑
{γ:|γ|=l}

e−2βJl =

∞∑
l=2L0

e−2βJl |{γ : |γ| = l}|

≤
∞∑

l=2L0

e−2βJl · l
2
3l =

∞∑
l=2L0

l

2

(
3e−2βj

)l
As before, this sum is convergent. Note that this value is independent of L1; so, taking the limit as L1 → ∞
yields the same bound. Therefore, taking the subsequent limit L0 → ∞ causes this tail to go to 0, yielding

lim
L0→∞

lim
L1→∞

〈
1

[
E+

L0,L1

]〉+
β
= 0

=⇒ lim
L0→∞

lim
L1→∞

〈
1

[
L+
L0,L1

]〉+
β
= 1− lim

L0→∞
lim

L1→∞

〈
1

[
E+

L0,L1

]〉+
β
= 1
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