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Evan Dogariu PHY 521: Problem Set 1 Problem 2.1

Problem 2.1

Show that the Legendre transform of the entropy function which was computed in (1.6) (using Stirling’s

approximation) is consistent with (2.11).

Solution

Proof. We have that

s(n) = − (n ln(n) + (1− n) ln(1− n))

and we wish to show that

sup
n
[µ̃ · n+ s(n)] = ln

(
1 + eµ̃

)
Note first that since s(n) is bounded and strictly concave, µ̃ · n+ s(n) is also bounded and strictly concave

when viewed as a function of n ∈ [0, 1]. Therefore, there is exactly one critical point, corresponding to the

maximal value (the endpoints n ∈ {0, 1} are certainly not maximal, as s(0) = s(1) = 0). So, we seek the

unique solution to
d

dn
[µ̃ · n+ s(n)] = 0,

which will be the value of n at which the supremum is achieved. We calculate

d

dn
[µ̃ · n+ s(n)] = µ̃+ s′(n) = µ̃−

(
n

n
+ ln(n)− 1− n

1− n
− ln(1− n)

)
= µ̃−

(
1− 1 + ln

(
n

1− n

))
= µ̃− ln

(
n

1− n

)
Setting this to 0, we find

n

1− n
= eµ̃ =⇒ n = (1− n)eµ̃ =⇒ n =

eµ̃

1 + eµ̃

This is the value of n at which the supremum is achieved. To find the actual value of the supremum, we

plug this in to see that

sup
n
[µ̃ · n+ s(n)] = µ̃ · eµ̃

1 + eµ̃
−
(

eµ̃

1 + eµ̃
ln

(
eµ̃

1 + eµ̃

)
+

1

1 + eµ̃
ln

(
1

1 + eµ̃

))
=

1

1 + eµ̃

(
µ̃eµ̃ − eµ̃ ln

(
eµ̃

)
+ eµ̃ ln

(
1 + eµ̃

)
+ ln

(
1 + eµ̃

))
=

1

1 + eµ̃

(
1 + eµ̃

)
ln

(
1 + eµ̃

)
= ln

(
1 + eµ̃

)
as desired.
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Evan Dogariu PHY 521: Problem Set 1 Problem 3.1

Problem 3.1

Prove the following theorem:

Theorem 1. Let Fn be a sequence of convex functions over a common open interval I → R which are

differentiable and converge pointwise as n → ∞. Then for every x ∈ I at which F (x) = limn→∞ Fn(x) is

differentiable,

F ′(x) = lim
n→∞

F ′
n(x)

Furthermore, regardless of the existence of F ′(x) the following relation holds

F ′
−(x) ≤ lim inf

n→∞
F ′
n(x) ≤ lim sup

n→∞
F ′
n(x) ≤ F ′

+(x)

Solution

Proof. Fix x ∈ I. Fix h > 0 (make sure that h is small enough that both x− h, x+ h ∈ I). We know from

the notes that convexity is equivalent to monotonicity of the chord slopes. Thus, the convexity of each Fn

easily yields that for every n ∈ N,

Fn(x)− Fn(x− h)

h
≤ F ′

n(x) ≤
Fn(x+ h)− Fn(x)

h

Let us focus in on the right inequality F ′
n(x) ≤

Fn(x+h)−Fn(x)
h . Since this holds for every n, it will also hold

under performing a limsup. So, taking the limsup as n → ∞ (and similarly taking the liminf on the left

inequality), we get that

lim inf
n→∞

Fn(x)− Fn(x− h)

h
≤ lim inf

n→∞
F ′
n(x) ≤ lim sup

n→∞
F ′
n(x) ≤ lim sup

n→∞

Fn(x+ h)− Fn(x)

h
,

where the middle inequality holds trivially. However, the pointwise convergence Fn(x) → F (x) at x guar-

antees that the liminf and limsup of the chord slopes converge to the appropriate pointwise limit. In other

words,
F (x)− F (x− h)

h
≤ lim inf

n→∞
F ′
n(x) ≤ lim sup

n→∞
F ′
n(x) ≤

F (x+ h)− F (x)

h

Note that this result holds for any arbitrary h > 0. Therefore, it also holds in the limit as h → 0, yielding

that for our fixed x,

F ′
−(x) ≤ lim inf

n→∞
F ′
n(x) ≤ lim sup

n→∞
F ′
n(x) ≤ F ′

+(x)

This holds for an arbitrary x ∈ I, thus proving the second relation of the theorem.

Now, at every point x ∈ I for which F is differentiable, we have that F ′
−(x) = F ′

+(x). Therefore, the

above inequalities must be equality, guaranteeing that for such x,

F ′
−(x) = lim inf

n→∞
F ′
n(x) = lim sup

n→∞
F ′
n(x) = F ′

+(x)

So, the limit limn→∞ F ′
n(x) exists, and must equal F ′(x) for such x, as desired.
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Problem 3.2

Sketch a function G : R → R with a discontinuous derivative. How is this singularity expressed in the

function’s Legendre transform? Sketch, and prove.

Solution

Proof. Consider the absolute value function G(x) = |x|. We can explicitly write the Legendre transform

TG. Seeking to describe

(TG)(y) = sup
x
[y · x−G(x)] = sup

x
[y · x− |x|],

we note that for y = 0, the supremum is clearly achieved at x = 0 =⇒ (TG)(0) = 0, since |x| is always

nonnegative. Next, for y ∈ [−1, 1], we similarly achieve the supremum at x = 0 =⇒ (TG)(y) = 0 for

y ∈ [−1, 1]. To see this, note that if |y| ≤ 1, we have that

yx− |x| ≤ 0

for all x, and the value of 0 is achieved at x = 0. Lastly, note that if y > 1, we can always select a more

positive x to increase the value of yx−|x|, and so the supremum is +∞. Similarly, if y < −1, we can always

select a more negative x to increase the value of yx− |x|. This fully determines the function TG to be

(TG)(y) =

{
0 |y| ≤ 1

+∞ else

Sketches of G and TG are given below in blue and red, respectively.

In this example, we observe that the function G has a discontinuous derivative: to the left of x = 0 the

derivative is -1, and to the right it is +1. This is handled exactly how we would expect it to be in the

Legendre transform TG, where there is a flat linear section connecting the two discontinuous values (±1). In

general, we know that a kink in G (discontinuous derivative at a point) corresponds to a flat linear section

of TG between the values of the derivative before and after the discontinuity, exactly as we see here!
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Problem 3.3

Describe the Legendre transform of a function which fails to be convex in a strict subset of its domain of

definition, as depicted in Fig. 3.4.

Solution

Proof. Consider a setting such as that of Fig. 3.4, which is shown below for convenience.

Let (x1, x2) be the interval over which the function G fails to be convex. We start by noting that any function

that agrees with G outside this interval and also lies above the dotted line on this interval will have the same

Legendre transform. This can be seen either through the fact that the Legendre transform is convex and

the use of the Legendre transform’s involutive property, or by reasoning about sweeping y. We note that the

Legendre transform

(TG)(y) = sup
x
[yx−G(x)]

will find the largest value of x that has a line of support with slope y. For all such functions described above,

the Legendre transform will select points naturally until we get to the value y = G′(x1)− ϵ. Once we cross

y = G′(x1), the supremum will jump to selecting x2, and continue from there. In terms of the value of the

Legendre transform, this yields a continuous curve (as the values of the supremum match at x1 and x2 since

they have the same line of support), but with a discontinuous derivative. More precisely, we find a kink in

the graph of TG at a value y0 = G(x2)−G(x1)
x2−x1

(the slope of the supporting line of both x1 and x2), where the

left derivative equals x1 and the right derivative equals x2. Applying the Legendre transform to this graph

TG will yield a convex curve with a straight line between x1 = (TG)′−(y0) and x2 = (TG)′+(y0) - this curve

is precisely the convex hull of any of the functions described earlier.

To sum up, the Legendre transform TG of a function G failing to be convex in an interval (x1, x2) will

be continuous but have a kink at y = G(x2)−G(x1)
x2−x1

, where the left derivative of TG equals x1 and the right

derivative equals x2. Taking the Legendre transform of TG again yields the convex hull of our original curve.
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Problem 3.4

Prove the following theorem:

Theorem 2. For any strictly convex, differentiable function G : Rν → R ∪ {+∞} for which TG is also

strictly convex and differentiable, we have that

T [TG] = G

Solution

Proof. Let E = {y⃗ ∈ Rν : ∇⃗G(x⃗) = y⃗ for some x⃗ ∈ Rν} be the set of all gradients attained by G. Define

X : E → Rν to be the map such that for all y⃗ ∈ E, we have ∇⃗G(X(y⃗)) = y⃗. In other words, X maps gradients

y⃗ that are achieved by G to the points x⃗ at which G achieves them. Note that strict convexity of G implies

that X is well defined, as no two distinct inputs x⃗1 ̸= x⃗2 can yield the same gradient ∇⃗G(x⃗1) = ∇⃗G(x⃗2)

(the restriction of G to any 1D subspace of Rν , such as the one interpolating between x⃗1 and x⃗2, is strictly

convex and so has strictly increasing derivatives; so, the gradients at these inputs can’t be equal).

We can now play the same game with TG, since we know it to be strictly convex and differentiable as

well. In short, let E′ = {x⃗ ∈ Rν : ∇⃗(TG)(y⃗) = x⃗ for some y⃗ ∈ Rν} and define a map Y : E′ → Rν to be

such that for all x⃗ ∈ E′, we have ∇⃗(TG)(Y (x⃗)) = x⃗. With these definitions out of the way, we can prove

our result.

We have that

(TG)(y⃗) = sup
x⃗

[y⃗ · x⃗−G(x⃗)]

Since the expression inside the supremum is strictly concave as a function of x⃗, we know that this is attained

precisely when the gradient of the expression is 0. This happens precisely when ∇⃗G(x⃗) = y⃗ ⇐⇒ x⃗ = X(y⃗).

So, for all y⃗,

(TG)(y⃗) = y⃗ ·X(y⃗)−G(X(y⃗))

Identical reasoning, replacing G with TG and y⃗ with x⃗, reveals that for all x⃗,

(T [TG])(x⃗) = sup
y⃗

[x⃗ · y⃗ − (TG)(y⃗)] = x⃗ · Y (x⃗)− (TG)(Y (x⃗))

= x⃗ · Y (x⃗)− Y (x⃗) ·X(Y (x⃗)) +G(X(Y (x⃗))),

where for the last step we simply plugged in our earlier form for TG. All that is left to do is to note that

X(Y (x⃗)) = x⃗. To see this, we can compute from the form of TG using the vector-valued function chain rule

that

∇⃗(TG)(y⃗) = X(y⃗) + y⃗TD[X(y⃗)]− (∇⃗G)(X(y⃗))TD[X(y⃗)],

where D[X(y⃗)] is a ν×ν matrix of the componentwise derivatives of X. Note, however, that (∇⃗G)(X(y⃗)) = y⃗

by the definition of the map X. This means that

∇⃗(TG)(y⃗) = X(y⃗) + y⃗TD[X(y⃗)]− y⃗TD[X(y⃗)] = X(y⃗)

This means that X(Y (x⃗)) = x⃗ by our definition of the map Y . We can plug this into our form of T [TG] to

see that for all x⃗ ∈ Rν ,

(T [TG])(x⃗) = x⃗ · Y (x⃗)− Y (x⃗) ·X(Y (x⃗)) +G(X(Y (x⃗)))

= x⃗ · Y (x⃗)− Y (x⃗) · x⃗+G(x⃗)

= G(x⃗)

Therefore, T [TG] = G and we are done.
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