
Aizemman



Lre 1/31 - First day babeyy !

Adsorptio
-

V
S V-# sites

⑨ .....
Vz N - # particles

O -
-

O
T

- % 0.
n.

=
M

,
m
=I parties O T

, Ezo
-* partak

local desity variation
& If every configuration is equally likely ,

what is PSIn , -n2k a3 ?
-ropy

=
entrop

vo,

3

We start by noting that the # of states is W(N
,
v) = (v)=res:

-
↑

Boltzmann's
result that # of states

Using the Starting approx. log N! = N(InN-D+ In (2) + 0(b) is exponential in volume

and a bunch of algebra, sin)
-

S(n) =
- [ulnn + (1-n)de(l-n)] local entropy In2

Sdensity

(This is just like Share entropy S(Sp31) = Ple: ) !
!

We can say that, for same desity difference An,

IP3n
.

- n =In 3 VN)W(V2
,N2) =

x (n+1) + s(-1)]k
w(r, v> es(n)v

Taylor -
Es"(n) (2)? very small for large volume !~

Ist order 2 Y
LO

equivalence of ensemble

② If we have a subvolume A
,

what is the distribution of the # at particles in A?

It twos cut that it follows a Poisson distribution V
,
N.::

A
,

NA
that is idential for diffact As and depends only on ils:IAI

,

SatMech Setup -examplesof microstate counting su
&

Recall from PHYIOS that phese space=

On the macroscopia level :

is because internations
evolutions of ((X

,
. ..

, En) , (p. ,
. .. ,p) ·

- divisibility E-additivity
short ranger in the

of happen or a very

/
-

↑ 2 the volume in phase space # of states

Hi
- additivity of V

,
N
,

E,... macro
view preserve the Liorville measure Sdx... dp...

=>
-

many DOFs (spin states of constituents etc) Lionville
-

=> a natural notion of counting microstates
-> W(V, N) = SurSidn Tap eEEtAE)Y did did integral

⑭05 world say WIVN) =Tr Ple
, EtsE)

tree of

density matrix



Note: Sinces is conver and S=es S is also connex.

/

So
,

variational formulations of stat mech .
allow states that maximize the

convey objective S
.

entlona
We amive at the fact that W(CE

,
E+AE)) = eS(E) . /21

as



-Lecture2/2 - Partition Ens + Ensembles

We consider both discrete a continuous models. We describe the configuration of a model

by defining on a doman 6. which is after a lattice
. At each site

,
we have

possible values that depend on the model
. More formally

, W : +M
, where

r = 20
,
13 2 = 2-

1
, 13 r = IR

&

1
adsorption Ising model continuum -

--- ---

&artition Functions
!

For a give space, we defie the partition function by

↳Suspensi didj=
J

Liorville
Measure,

preserveddisa
He "canonical ensemble allows

us to not exclude confymates, = fo-BES(E)SePus(a)(1)dbut to fine-tune the desirable config .

C
IR IRspace van $ (ocemiapotel
11)S (s(u) -B-](1) dui

War me in a discrete model
,

we defin En as a discrete sun over the discrete phase
/energy of

Space certain cellI E (b)= eB S
-

inverse

In such integrals
,

since h is normally smooth-bounded
,

we expect it to be
dominated by Sup (scul-Bu)

Assuming entrosy actually behaves as

WISE, E+AES) es()
. In

then
thermodynamic Z

↑winner

limit

o in In z(p) = SupEs(al-Bu 3 ai

takes"

"Legendre
transform

Typesof ensembles of s()

"microconomical" "Canonical" "grand canonical
"

cheential

HutCE
, Et SE]

·

e
-BH

I eB[- H +uN+ nh]
· particles

↑
magnetization

· releases bounds on E
releases bunds on other extensive

properties like N
,
M



Ed

Adsora lattro↓

euN(w) = & eMWi = (Heavl
wer wer itprodon

t

sun
over

all configurations

Legende
transform

Let ni be the particle desity. Then, of S(.

sup 3s()-Mr=Pohelle = e(+)
This matches the result S(n) = -nInIn)-(a)h(ln) that we found for adsorption
via the Stirling approx.

Convexity
-

Def A set DEMY is corner if Ex
,yeD, D contains live between

+x+ (1- +)yED FteCO
,
D

.

X and I

A function F:DAIR is connex if FryeD,

f lies below live between

f(+x+ (1-t)y) = tf(x) + (1- +> f(y) fli) and fly)

Equivalently
,

EXED and #f(x) is monitore increasing .

a fixed yep, y- X

# is twice differentiable, a sufficient condition of convexity is

f "/x)10 FxeD
.

#earem : Let EGakibe a family of linear functions of X .
Then

,

F(x) = Spbc(x) is convex.

&f: Intersection of closed half-spaces
,
whichwe all connex,

is itself concer.

D

Note that the Legenda Thereform looks similar : it is indeed the case that Legenda
transforms arconnex



# mem : V conver F: [a
,
b] -IR

,

& F is differentiable everywhere except at a countable number of points.

② On the set when FCA) exists
,
it is monature increasing .

③ Exe(ab]
,

both F(x) : him F() andF27 0

exist and satisfyluF(f(x)

& The night deciventives are continuous as
,

and where this happe
,

F' exists.



↓
Lecture 2/7-Convexity + Legendre Transform
D The Legenda Transform of a convex function F is

(TF)() = s-Yyx - F(x))X
* inf for concave

~ g(x)=yx
In a sense

, varying y explores the values ofF
for whichF takes the value

y.

The transform T is itself concer
,

since it is the Se
max of linear functions.

If F is not conver
,
I computes the Legendre Transformwof the connex hall of F

. &
--------
X

,

Both points have same'f
&

but X2 is selected by the
Sup

#eorn: (Inverted Property of the Legendre Transform)

* convex F :-R
, T(Tf) = F

& We porthee assuming F differntable, butthe result holds generally .

Her point where Fx=

y .

Then
,

(TF)(g) = y-x(y) - G(x(y) and G(x(y)) = y

So
, (T* -)(x) = SupExy - (TF)(y)3 = x y(x) - [F)(y(x)) for y(x)st · (TF)(y) = x

We can compute [TF)(y) = x(y)+y x) -@)x () = x(g)
3

-=> (T F)(x) = x - y(x) - y(xx(y(x)) + 6(x(y())) = G(x)
.

B

If we have aF with a Kink
, Legende Transform

maps the kink to a flat region, and viel ulga .

- -
F

x Let ye = Fi(x)
->

·:
2

·

!7 -
This discontinuity looks like

a first-order phase transition.



&ecture 2/9 - Time Evolution + Ergodicity
We defin phase space

to ba (g) under the Hamiltonia

H(p) = I + V(E)

via ↑()== pi:
Poissoendents

=> Q,H) = EQ , H3 =Q-

Evolution under this mechanics preserves the Liorville measure Ididos

Constants of Motion

· We always have Ho => energy is conserved.

· If VIE) = 0
,
then 8 is also a constant of motion .

[· Under boundary conditions like
·

>
a particle reflecting

on a flat
, Lavis-aligned) well only flips one coordinate at a time.

· Reflection on curved boudenes
may mir things.

This leads us to the concept of ergodicity.

BonelEErgodicity statePeace o
algebrameasure

↓ ↓ +

Consider a probability space (o ,
B

, s(dw)
↑we

Our state space is bonded as

⑳

↓



De An invetble measure-presening transformation T: MM satisfiesa

AF (E)) = S(E) FEAR measurable
·

they differ by a set of measure O !

Let: A measure-preserving transformation T is ergodic if f(TX) f(x) holds

only for constant f. In other words
,
if E is st . T'(E) and E differ by a set

at mesue O
,
then eithe ACE= O or SEC = 0.

Ihm: (Birkhoff)

If ETibier is a collection of engadie, measure-preserving transformations,
then I bounded

,
measurable fiRt 1R

,
the limit exists and equels

ein t (t)Sefie(dNEX

If 3T3z0 is a collection of engadie, measure-preserving transformations,
t

then I bounded
,

measurable fiRt 1R
,

the limit exists and equels

entdeSefe(d
Time averages an equivalent to probability averages !

hypothesis is, in general, not tre. Not all microstates are equallyThe engdia a long as we see below.time.

Im: (Poincare Recurrence)

Let T be a measure-preserving transformation on (1,
B

,s) and ACT measurable
with $1A)O . Then

,
for a .

e . xA
,
JmEN sit. TMx EA.

For sets at pos.
measure

,
we eventually return to the

set.

Boltzmann statistics is based on the equidistribution hypothesis :

AEEul EsHInic EtSES where SE= o(E) is tiny
m

↓ time evolution We know that rele Hamilton mechanics
,
Liorville measure is

T

AEf preserved . only un
that's robustly preserved

u by fire evolution

The equilibim hypothesis states that the system equilibriate to
a distribution in t with same Lionville measure and the correct E.



#herodynamics Efct: gravity is no themodynamically stable

E
, ErE,

We have two systems in equilibrium states withtote

energy Ef .

When we combine the two systems, the equilibim

energies are such that the total entropy
- entropy is

S = hplay W
,
(E) + hplogW(Er-Ei additive2

- -

S
,
/Ei SiCE+-E,)

is maximized over E
,

=> in equilibrium, =
Sincewekno temperates is the condition for zacili, we d as

== i
Consister a heat bath with constant temperature T

,

and a system &.

The variatical principle motimizes w .

m i
t

. ES
heat

& & (V, Es,
N

,
...) + Speth (Frot - Ed)

bath
Since T & B constant for the bath

,
this equals

~ Sa(V, Es,
N

,
...) + Spar (Frot)-BEg
-

constant

So
,

we in effect maxive Legenda transform !

- SF(v,p, N) = 5 [Salvia ,

N) -BE
F is the Helmholtz free energy, and is the available energy when held to
a constant temp . B .

So
, B is the Legendre transform dual to energy !

pressure

If we hold Tast D fixed the thermodynam potential is

-BG(p ,
T

,
N
, . . .,
N = -SCE-TSI

=> G(p ,
T
,m)= (E ++N; -TSVEN,N

This is the Gibbs free energy.



Inventing the Legendre transform yields
S(V, FN)= T,

Places when G has a kink singularity correspond to first-order
phase transitions.

Lecture2/14-
From the definition of GC.)

,
we can write the diffential form as

do : -SdT+ Vdp + EMjdNj

StatisticalMechanics

We world like to investigate the natur of entropy.

We work with finite-dim graph (meaning as size diveges
,

the size of boundary is olvolna)),
say R& .

This groph is horgeous to translation
,
and is filable/by cubes in this case).

Mo - measurable set of outcomes for each or#
no soend-each lattice pot

Mo(do) -

measure on outores in Mo

- = Mo = Ew : A +Mo3 - all possible lattice configurationsA
of Acad

w = (0x)
x + zd

: E,, .
.

.,
239-line box of size L

In the example at the Ising model
,

a single spin an tele values - 1
,

0
,

1 with( (equal probability. In this case
, Mo = G-l, 0

,
13

,

and M assigns equal weight.

We turn to the extensive energy function
,

also called the Hamiltonian.
As an example, in the Ising model, OuES-1, 13 and

H (w) = - & In- 00 -h[ou
(n

,r)= 12 ↑ n=1

↑
interaction external field
termi orientation
coupling constant

This is an example wher energy is given to pains and singletons.



is a framework to describe intractionsmore generally
, H(o) =& among all subsets.

We can easily bord by me
& of coupling

~(()) Bal
=> IIIII= al and (M (2) = (1)(12

Now
, let us write out the partition function

7 (B .
2) = Set old

Taking the thermodynamic limit111x1 , we split it into a sum of slices
of configurationTheresharing the same energy Er/11

,
where n is the energy desits .

=> Z(p)Sele du =Set
integrand # of states w a max

Legende energy density u

Transform↓

=> logz - max[s(u)-Buj = -BF(p)
111 -x W

-
because rate of expecti ↑ fee energy

can
be thought of

growth dominatesthe

as thermodyname integral
pressure

Theorem: /Existance of Pressure Function] Ja = JAr and Datu((o)= I ((on)

·
S

For
any translation-invariant system,

the following limit exists

Pe(p,
]) = en log (112(10)

Emportant: this links the stat mech construction to things that are useful for theme !



Lecture2116-
~ressure Function in Thermodynamic Limit
The object of interest is :

En
,
(B....
) = Set iuldu

Letting ↑ (p,
. . .
) =

0 log En
.
(*)

we see a "winne takes all" principle ,

where the w wi the smallest H is

most likely to be observed.

We prom that the Hemodynamic but of (*) exists with a box-chopping
argument: draw smaller boxes of size K

, ignore interaction ters along He boundaries
such that energy is additive andM is multiplicative

. Taking K
,
2- 0 together, Her

surface area natio of the K-boxes converges to 0
,

and so the
sequence-

Volume

& log En
, 3 is carely and has a liv.

fea

IIn fast
, ↓ log En , logz +O

Mil

This only works for Hamiltonies with short range internations across the

boundary . For the geneal case
,
it helps to truncate long-age internations and

bound the error
.

↑
eated to R

Let 11311 : Sin J and It MidianR
We wish to also prove the existence of the themodynamic limit for J(R)
Now,

(H-
(u) - Hi (4) = Gl=P = 111/12X

diamAc R

A5x
↳

If 1191120,
then Faso GRO st

B (bonetr)



So,

=Ser -Bull
=> eBd(11 (R En eBay
=>It log z.

4)
- i lag En)zBa

converge and we can arbiturity approxiate with largeSive Eleg En enough R
,
the the finite-interaction apart · also conceses !

In feet
,

we can band the distance betwe these limits by

14(p
,
2) - 4(p

,
j43)) = 1115 - 3/1

=> 4(, 3) = Im H(,
Howeve

, since the 4s are comet
,

the PSET problem 3
.

1 reveals

that the decieties also converge . This is a very west property because
-

we can new of as a generating function !

mean of
H our state ↑B...) =The

2

vanier of 4...) ...

= ((n (M) = ((n - (i)1 our states

i
In general, ↑ (B ,

..) = i log SeBtnhr)ulde
is the -entgeneeting function ofHe !

This yields secral properties of U !

& ↑(B) is connex in $ (4520 since varue = 0

& ↑(b) is conet in $ /pointe limit is correst

③ At a . e . B ,
U(p) is fectable and

0 =4
Also

, gid = +(B) - 418.) => m(3:(2) 63) : Se



So
,
the regions wher I" is large are rather small

.

Gibbs Equilibrium States

De: Wa have microstates w which are classically configurations in our configuration
spaceil

and quarterly rectors in the Hilbert space.

D Observables are classically functions F(u) over en and avanturly
are operators on our Hilbert space.

&ef : States are expectation-value functionals

: F + (f)
&

F+ SeF(u)p(dw)
given by a probability measure on Sh.

So, (F)p = SeF(u) PH1)dw ite expectationt state
-oricalensemble

-
Gibbs measure Aldw)

The messue Alda) = e-BHr] uldr) is aHeed version of the a priori
EB) distribution in our configuration space.

We can generale this tilting" wie the following measure theory lingo.

Defi Give a (finite) measure space (MB,M] and a fich-IR
&

that is normalized (Stubuldn) = 1)
,
the

A(dw) = f(u)u(dw) is a measure and f=Es is the

Su Radon-Nikodym
devinative

Furtherner
,
the entropy of over m

is give by

S(A(u) =
- S2f(u) loy(f(u)M(dn) = - floy (fluts (dr]



Recall the geneal Jenseis inequality :

Theorem (Probability Jesen) :

for a measur space (X, B,M) of positive mesue
, any integrable g : XtIt,

and
any concave F: R + IR

,

SF(y(x))u(dx) = F((g(u)u(x)
whe Igin is the normalized mean of g

and is give by

& IghnMic = Sxg()(d)
With this

,
we can power

Theorem:

S(plu 10
,

with equality ift f(u) =
I
-

Suldus
concave
- 1

- flogf
#of: The Jensen inequality on g(f)= -flagt lends

a W &

S((m) = (g(f(w) u(dw) -g(dw)= S

The band SS) -0 (in fact slagulen) for umorne) yields
a variational characterization of Gibbs states .

[heaven: (Variational Gibbs)

fuction H
,

(w)
,For afinitesyste withapoh ande the statefa

F(p) := Se
,

Mn(n)s(dn) - *S(((m) = (mis - S(((m)

Notethat controls the weight of te eneg mimetim and eos
to

Large B (swallT] prefer ground states whe smalls/hight) prefer high entropy !



Pressure as Grobs Measure's Generating Function

Recall the pressure function give by
↑

n (B,
2) : = in log z (p,

1)

We saw that expected energy
density

(B, 2) = E Helps aud Y. (p,1) = Varite O

More generally, FA11 we have

- (B1)=
Convexity arguments can also give

↑

limiting expected energy desity. "

o (n= PB, 1) is dentine of use

This holds true forachoices of bais for the finte volumes 12
.

Howe
,
for 1 at which IPSB,

1) is discontinuat
,

values of te tre,aB

depend on boudey conditions
, yulding a first-order phase transition !

For such B's
,

the range of observable energy densities collapses as Les to the interval

- [4(+0
,
3)

,
554(9 - 0

, 27]



google
(1) Cramer large deviation expasim for martingalesConcentration of Measure I i

(2) Donshe-Varadhan theory of large deciations
(

Theorem: (Concentration of energy density)

For any extensive system with Hamiltonian of the form

Un(0)=

oreachBethe
are functions of the for Spt st. Fast, at a se

Y IP (B+0
,
2) -33 = ef(a)(1)

IP our Gibbs -/
tilted aprior 7.measure

IP = EY(3-0,
2) +3) = ef -(a)(1)

-

probability of energy density deviation is exparatively small in volume "



Lecture2123-
&
Recap

Recall Gibbs states given by measure Pr
,
(du) = eBHerM(dw)

z(B, ...)

If we delive Free Energy to be

Fo(s) = Settleda) - ge (H) -tS(ollm)
A minimizer of F minue (Mrs-5Sallm) ,

or equivalently it

maximizes

S(/lm)-B(ts = -Selog ((w)Suda - The

= S(siss) + constants

↑ Gibbs measure

Sinc Sols)-0 with equality iff Sips ,

we see that As maxiie this.

Earivelets,
Gibbs states are the minimizers of F

Note thatI controls the re energy <Mrs and entropy Solelative
↓ this optimization . Temperature controlweightsaletance between energy dentropy !

#Tracite.Ed whe Fre 29, -1,
+ 13

,&

neighbors

EIsing Model : >III 7

Xt &2

Note that as T-O
,

we only want to minimize He
,

and so them are two
-

ground states : + + ++++ and ------- (this is an example of discrete symmetry breaking
,

where

a symmetry of the Hamiltonian (spin flip) leads to multiple distinct states)
.

We can show that for IO
,

there is no phase transition . We can manufacture

a Markor chan where each flip is Bernoullilp)
,

and He length of that

flip is~ Exponential (n) : there is no phase transition in ID
,
/ Evergoona



IsingModel :

We'd like to study the infinite limit. First
, though,

let's discuss things for a finite
volume .

2: [- 1
,2212

0
+

= 3 - 1
,

+ 13

= 200
uny

- L L

We expect majority to be the save sign ,

with some occasional clustes of flips.

& What world symmetry breaking look like ?

A: We ask two questions :

2) if we apply external magnetic field heSE1
,

does the system) (h) have
B

a discontinuity
#

(2) do the borday conditions ( + or - along bording of box) affect
As in

the interior as 1- 00 ?

We work with the second of these two formulations.

De A Derily contro is a closed path on E sit. the spins
on its interior are the same

,
and are opposite the spins on the exterior.

+ + +++ + +

O
⑧ IE

#

&heaven : For the Ising model on R
,

there I a Be sit . Base,
boundarycondition

y(t) Post doesn't
1lb

,

150 = -13 : Po

FL
,

when

deped or L.

Rof: Let V= a polygonal path v. Of 3 or articl
a be a Perils contour.

We claim that any arbitury polygonal path has this property with probability
- e

-2018)
S

indicator for
To see this

,
note that wheth the state

contour

IPs &V satisfie above] = & para Ho
configuration Zu



geometric
form

a

Let us use a rescaled and shiftedHamiltonian Hamiltonian !

Mild) = 21& O + cos
= 2 O +

st the energy counts the # of deviations from uniform +

We canby En& 15o] (e-Pl e

-SH , (Pro]
why?

when (Pro) = 3- if x is insideo is the mapping that flips
otherwise spins inside J.

=> zu ? (l + eBHila)-PHlProT)&TSOY eBHl
Each contour satifies HiLoT-Hc(RO) = 2/21 by our nemutter Hamiltonian

.

=> z = (1 + e
<B1r1)&Do eBHlo

the "energy
estimate"

I

=> IPSV satisfie above: It a
BIU/

↳ of each V; they
are

unlively ,

but the se

many
We can now from the "entropy estimate"

,
or the # of closed polygonal paths

encircling the origin (or any interior point).

The number of Us encircling the origin sit . I = m is ash
why?
and

so by a union bound,
(+)

↑ 300 : - 13 = /S a contro encircles +=03
B,

L

= & plt) 3U satisfie about : S
Vencivaling B, L Verzge-PIU

X=0

I & ePr. Bis
m = Y

↑
length must

encircle a

point!
be 24 to

~fund anentert



We just saw that when BaBa,

(Ox(l-po)- Po = Ipso and (or=
magnetization

Also
,

we
had mp) =&O =B,

=>
- 14/B-D

L > h



Lecture2/28- Continuous Symmetry Breaking
Note that Peierls argument of flip contours no longer works for vector-valued spins.

Generalizing from systems with OEE, 13 with global Spin flip symmetry,

we discuss N-dimensional

Ising model with O(N)
·

~
symmetry and 8 : 10

,
. . ., Ex 1) ES

orthogonal terNXN notices

O (N) - Symmetric Model 1

-[08- En
X

(x,y)(1

- If 111-112 -E
A

(x,y)e1 = 2 -288

BendayConditions
this corresponds to giving the chain

B.
C

.s of 1 can bei into a ring!

-
- -

-- free - uniform : Ox : (1
,

0
,

...) Exed/ - perodic : In 1D
,

N=-

These all generate translation-invariant states in the termodynamic limit !

In fact
,
al B

.
Cis in ID yield translation-invariat states. In 3D

,
we

-

can construct + - which want be.

- I--- I We select periodic B
.
Cis.

-

ZorierTransform

For 12 = -E,Ja
,
let 11 = (, 1!

We have the transform and its inrese given by

Ox =

-

~

(p)lp:
S

= E eip o(11) pe1

All arbitrary Spin configurations can be seem as superpositions of are waves !

We can verify that they are inveses.
=↳She p

-

~

RUS: ip. (i-i)
= & S. n

= Ex
Mul
· en,

2Fino 2

utl



Suppose that h = 0 (no external field)
.

Now
,

we want to with H in tens of (p). Note that [ =0 = H = (0, 10) =Go
is simply a matrix product. Since it is transition invariant

, we know that it is simultaneously diagonalizable
with the dusktion operator. These ar the wares

,
i .e. Upl = + ipx =>

Dal =ereIM
eigenfuntrusof M

Conside the frctim 4(x)=0 = (4) = [(Dp14) (4p) (project to ortoramal basis [14p)3p of (2)
pe1*

The
,

H = (4/ M (4) =
- - ( * (3/4) = &(414p)4p)(414) = @KY14pR: (3)%P, pr

Sp-p(17do

Equivalently, if we write H in diagonal form
,

we get

H =-& 3
x

= Sha
"*- 31 = 1

1)x- yll =0

O otherwise

version

"dree
== (0,

10) Ei - T is
basically

of
the

Laplcia

We here

14= Idiscrete
differes

Computing
,

Ep= -eip) =-- 3 shely
stuff.

his "nose was

to
For small pis, this behoves like ElpEpE = El PR (Kinetic energy is !) too case

blackboard"
the

The energy is the sum of the energies of the plane waves
, yielding

H = [Elp/op -hitl Go if Leo with E(p) = Leipinpent 12)
%

* (P14p) U

F.
T .

of coupling energy

This agrees with our bracket stuff. In total, we get that the enegy decomposes to
the sum of place were eneges ! We also know that if E(p)=

.

(E()) = EkpT

Now,
Parseval If and A have same h"norm) yield

↑ =R
=> 1 : ( STE)+ Ea

&, de

Lastly
,
note that the Forie transfrom of spirspin correlation functions reapers as

~
(p) :=e) = (Epintusity of the pth made

So



Symmetry Breaking as a Concusation Phenome

The above reasoning, togeth with the equipartition law
,

allow us to give a

Sufficient condition for Symmetry breaking much akim to conducation into macroscopic

occupation of the ground state La la Bose-Einstein Condensation)
.

loca

&
Brop 8. 1 : needed

for
of 2

x
integebility

Let d> 2
. Suppose that in a system of bonded spire with nearest-neighbor

interaction
,

we have the Gaussian domination bound

E(p) (p) = + Vo
2B

Define
C := Sto di

Then
,
FBsCO

,
the following hold

(i) liminf
↳ (IliE/1) : 1- E (expected naguitde of balk nogrtztna

with B

(ii) at 5= 8
, 4(B,

h) has discontinous derivative love singularity) (phase transition !)

(iii) in the infinite limit
,

the system has Gibbs states of nonzero magnetization,
i .

e. the spir-rotation symmetry is broke

& (i) Parseval-Planahal yelds that when spins are unit magnitude (llK/1 = 1 Ex),
↓ IIR +

+ S 118(pIP= 1
(11) 11
- pt1* (503

Il
just like

howis araa

Taking an expectation,

(II) =- =-
The Gaussian domination bound leds

= I- [ ]
o

-> 1-2
Rieman appar. for Ca



(ii) From (i)
,

we know that JBCO s .
t

.
VL large enough and all

b
. c .'s

,

DiE (12)
..

12
,3,

2 : 0

= B2

suffices to consider the
I

by rotational symetry
The finite-volume pressure function satisfies (with i = (1

,
0
....)

(1)

C
(P(B

,

2) - P(p
,
0))(1)) = (eBh.20): eP1141111,

1B(1- 2) /P&OB-
A Chebysher-type estimate gies

B(I +DB
=> (P(B

,

2) - P(p
,
0))(11)

= eB1141111, /B(1-2) .A
= H(B,

2) - 4(B,
0) - BBILI (Lenne 8.2 in notes

In particula,
this implies a canical singularity at 5=0.

(iii) As always
,

discontines derivative of 4 = symeaty breaking.
More explicitly , we have the relation

(i)=
When Not has diffect directional derivative (singularity)

,

to each direction corresponds at least one translation-invariant
Gibbs states for which to

s the value of iti
in this direction

Each suchA exhibits rotational symetry breaking.
B

The condition E(p) (p): is in general

not well-understood
,
and we only know it holds for

reflection-positive systems .



Lecture317- "What's a factor of I
among finds ? "

Remarks on Symmetry Breaking
If

a system's Hamiltonian 1) and a priori distribution
MIdd ar

invariant under a certain transformation OI R(O)
,

this is a symmetry.

We
say that a symmetry is broken if there exist B ,

an observable F
,

and a

pain of boudy conditions bC
, be such that

(f(o) (foo(fra = (F(ra))b
↑

B

E is asymmetric
under R in large

volume limit

With F(o) = Go
,

this translates to asking whether an interior point members for
away

bounderg conditions
.

The bonding conditions are heyfor away
,

and observables we construct

to prove symetry breaking /Peierls argument) is

+
-

↑

- * + F

--Y(xox ,

i

j

+

+ +
+ +

+I - &
F
F(o) = 197apathwith spins coret,e

Lo #
I

!
-

....
F (o) = ↑ So(x for continuoussa

Back to Continuous Symmetry Breaking

De: A vector space If lover 4) is a Hilbert space if it has
a positive

inner product <, : ) sit. Fig,
helf

,

(i) < f
,g) : f) (ii) <h

, frag) = (h,
f) + a < h

,g) (iii) <f
,
f) > 0

#heren: (Schwartz Frequality)

Ef
,get, (f

, g) (f
,

fit · 19. g7z



Proof: -3
, (1fty , Iftg)10 = 111(f+[(gif) + <g ,g) =0

-

Al = 2Re(ifg)) B2

T

=X
,
↑ (1 >1+ 2 x =) + Br20 = 12(4+ E)- +B 0

Letting 1 : -E
, - I D

L R

Def : Let (t = Ef : feB
+

w .
Elf]cos

-

be a Hilbot space of measurable functions that depend
C generate

wi

onlyan statesan the hot side of a split half-spaces
and

with inner product
rig

reflection
/

hyperplanes
operator Gibbs

t Y measure

(F
,
6) : SF(d(260)en

,

I do ↑
*

split can be on or

in
between lattice

= I [F(26]

We

if Basystem
he reflection positivity about a reflatea

observables in B
+ ,

(F,
F)= CERF] = 0 and (f

,
6) = (6

,
7)

To characterize which systems have RB
, a sufficient condition is

&

Prop 5. 4 :

A sufficient condition for the Gibbe states to be RP writ.

a reflection 32 is that its Hamiltonian can be written as

K

- H = A + (2A + &BjRB; whe A
,

B
; + )=G deed and or spire

on one side of 12

Roof: check do notes i D

Some other conditions for reflection positivity and examples of long-range RP

interactions are presented in Friedli/Velenik and Frhlich/Zegalinski

For 11d14
,

this class includes two-body spirspin interactions with

power-law decay like
& Ne , Yeld-21



The Chessboard Trequality

Note first that Schwartz + RP gives that FF
,
Gelt+

,

EC = (26] : CEREJE E[46] E

Consider a reflection 12
,

and let Be be the collection of frations depending
and on spirs in

At
i .e . Be e functions measure unt o

The
,
FEB+

and FEB- give through CS-RP that
,

since E = 126 for son GEB
+,

IECFFJR = IECFR26]R= ECFCEJECTRG]
= ECere] ECREE) = ECRE] [ErE]

Suggestively written
,

this meas that the expectation of a product Flot)F(0)
is bounded by the georative mean of ECERF] ,

done by reflecting and

conjugating throughout both dowans by Generalizing to more domans,

Theorem (Chessboard Inequalib)

If a spire system in 1 is RP wrt . a family of reflections

-- - Ea across perpendicular hypeplores that divide 1 into almost-disjoint
s

x
only depends on things

His is L boxes 1= 1 ,
then A failes EFa3 with FatBa

,

in
bot vo

what
is

Fa box
a

meant
by

- / F & ↓ boxes

F t IECIFO] : I (0)]X -

z
↓

-- Ja
L

&

- Fo Fa
"The product is domited by net up0by

Ror
take the

"

on at afire and deplicate then everywhe

Raf: W0106 (by scaliny) , suppose that ELTECO] = 1 Vc

?? huh??

"Read FSS
an

FILS for
more

Rows.

I



We can gain some intuition behind the chessboard inequality by using it to deve a

Peier's-type estimate PSU3ze-B1r1

Consider an Ising model with periodic b
. cis

If J is a Peierls contour
,
then

+ he have
many bonds between - and+

S

2. as shown . We wish to bond this probability
-

t

Suppose WOL00 that I has move vertical

then horizontal bonds across it .

Recall the chessboard inequality:

embles
E ad bot Ba, we

u
/

i

#flor]: ]
Now

,
consider a reticl bond between aIt ,

- pair·

Since the system is reflection positive, reflections along honzental

+ + + + +

!I hyperplaces along the lattice and nertial ores betwe the

- - lattice will deplicate this setup as shown.

+ + + + t t + +

--- - - -- - This is a
balk effect

,
for which we can compute

Ba
+ + + + + + + t

- -
- - :or e

- B(h(0..) -H(0] - 2(1)

+ + + + + + + +

- -

I if Be disjoint from 2 -e
-2B(1)

Faloba) := EH(I] else

probabihHeutweseaf

Chessband
-

=>E
A[ #(0)) (e-20111)m1)

=
e
+

=> El Flora] et
↑
different

F recluded boeaof

theSystem
System

focusinganly an Ex : Be intersents 23 Since Fo is =1 elsenbre,
we supposed more then

#37 all vertin bre/
a

=

-B(r
2

D



The Gaussian Domination Bound

Working once again in an OCM) spin model with

~

H 10: (
me suppose further that corresponding Gibbs states are RP his is automatically the case)Ifor such models

Recall our partitio function

En =C 10 - )

of

Consider a modified partition function

Z
.

(3)=-1
Here

, 3 denotes a stress/biasing of the spins at each site.

Theorem:

Vz
,
z1(3) : Zu translate messe !

# E -Speed
=El

fish proof that OIM models
over zd

with interactions of the n .
n . form (which are RP) satisfy

(6) E(p)=to



Lectura??? - Transfer Matrices

Finish
this



Creationsfrom 411-
"as the Choose proverb says ,

the

are a dezen ways to cook nice

---
Consider a system of sping with periodic b.cis : 111111 7

in 1D

Writing Toge as a transfer matrix and diagonalizing

&

1( :
let 1

,
3 1; Fjzz

T = ...= T=z
k

( S,

and so toI with n.n .
interactions

,

zpe E = tr(t)= x,(1 + e h)
- O

, ...,
On

for periodic b . c . 's
,

& (x
, z) = min 31x-3)

,
2-1x-313

and

(0.; 0.)= (00-ca = 14
,
1Sly <e [1 + 0( )2

truncated connected correlator deags
correlati exponentially fast!

-If we no longe have
n.n .

interactions
, such as 1111111

-
In the case

, we defin Em := (OO) and the

transfer matrix

Tmme
= D The Vam => TEIRYM = Th is positive)

leasures the overlappine mid
sense

Alternatively,
we can group each two sites into a single site and

writes a more complex TEIR2x?.



Ltre3/21- Infinite-Volume Gibbs States

#youdidn'tget therightame
for 42

, you c do t
ana(

Note that upon taking a limit
,

we both gain and losa information. We
may

lose bondy
conditions

,
and we may gain

translation invariance
,
etc

.
So

,

it makes sense to consider Gibbs states

in the infinite-volume limit.

Recall : For frite volumes 1
,

Gibby states form probability measures

on & with density
-BHr(w)

X

configuration Alda) : e

M,
(da)

Space
the

infinite limitE -
->

of the
doesn't

a priori
make

sense
:

measure

In the Ising model
, en = 5-1

,
13 " = wel

,
is a mp w:l-5t, 17

In the infinite: For the Ising model
,
e : 5-1

,
134

,

when were is a no

limit wid+ 5- 1
,

13 and O = W(x).

Note that this infinite sequence of binary choices is exactly like how we

describe Co
,
1) via binary exposin . So, & =Co

,
1. Now

,
let us investigate

the topology ofM .

First, we
will need a cresh course in some messe theory

and conditional probability .

Some measure theory

In the d-algebra of measurable sets we must certainly have all local sets
/

- sets which are describable by a local characterization.

examples -
local description

-
- collections of configurating Sul 7 i 3

-L + L

-

any set for which inclusio can be nevifed by looking at
a

finite region

So
,

we can define
/

measurable
to

B to be the minimal O-algebra containing the

local sets.

# A frction F:R+ IR is measurable writ . a O-algebra B if and only if

& weR : fluic3eB for all JER (preimages of fail are measurable)



We can ask the following question :

is

=
measurable?

↑

Note that this function is very nonlocal : no finte set Al determines
the value of f

.

Howeve
,

we can show thatf is measurable !

The condition Ef(r)c13 is equivalent to the event that

Fa=10
,

EN(k) st.
FLNC)

. Go
#

h is a local

condition !
= B

Let And be the set AnSwee : + 20 *+ 13 EB(11)
+el

Then
,

we can wate
A : Swech : Flat= An

By closure of B under countable intersection
, AxEB = F is measurable .

Lastly ,
let us deve Ro:= Bid (B .

In wods
,
Bdea

within
1

He measurable sets that it depend on any first regin

-~one conditional probability 1

Consider two finite volumes 15
,

and dee 15= [11.

Suppose that we'd like to know the distribution 1

of configurations in 1 given the configuation in 12

Note that H (We
, Wel = He (wire) + Mec (wes

H (w ; We] contains things inside 1 and interactions between 1 and 19; in a sense,

We determines the bounday conditions. We can write out the conditional Gibbs measure

s(dw(w,) = e-BHn(wimn)u(dw)
z1

; wea



The above expression led DLR to defie the infinite Gibbs measure for It - as :

Defi An infinite GibbsState for a Hamiltonian
-

H(m) =1 Dalwa)
is any probability measure an (1

,
B) whose finite volume

conditional probability is

s(dw (w) =
=BMn(wwe)
z,w.

Mldwn)

thatThis formulation give a good characterization of symmetry breaking ! We say ther
is symmetry break if there are infinite Gibbs states whose densities don't haveing

Symmetrics that the system (H
, m) have



-Lecture3/23-

Regular Conditional Expectation

Recall from probability they the following discussion on regular conditional expectation:

In the beginning,

we had IPSAIBS :=B
More generally,

consider a probability space 2 pationed into finite (on)n
that are disjoint .

For each n, define En as its o algebr

Then
, we define

[f1[]( : = Sanflus(dat Xenical
Sa

-

Aldr) 2

From her
, wa generalize to general OraGebras .

Mas forally ,
we
have the existine of regular conditional expectation

#10. 7 :

Let (52 , 8
,
m) be a probability space and God a sub-or-algebra.

The
,
I a migue linear mp associating to each bonded

,
-measurable

fretion fol%2
,
2) the fection ECfIo] : 1+ & S.

t
.

bonded

(i) E[f1[]e(a
Es-measurable

(ii) FFELOR,
2) and all ge20(, E)

,

Saftogloulda = S(fIC)(d) glauldo
Remarks :
-

1 In the 12 perspective, the moping Pso : (2(e
,
2) + ( (2,

2)
exteds in L2/du) into an orthogonal projection - # [f13]
on to the subspace

Range Peo = Eft(del : f is do-measurables

② I montora decreasing secures of Ovalgabres [
,

> ........
the corresponding projections commute and have the towing property

Ps
.
Pa = Pa

.

Fuck i . e
., ECECf[n] /[ .] = ECfIEn] for S

.Er

In probabilistic terms
,

for bouded f
, EPEnfin forms a martingale.

③ By the martingale coregene there,
FfeL(

,
2)

the pointuse limit In Pef(o) exists M-a.s.

and gets the faction

Prot , So : 12. no



-
We have the following there :

#heren: (Dobessian-Lasofre-Ruelle Condition

energy
of o give

For all finite 1229
,

the values of One Pioutside 1

- 1

E(f(
. 00) = So, etc M(do

Zu
↑ normalizationIn the probability theoryrotation ,

ofressure

IE( + /] 10) =So ,
) eco u(do

Zu
In other words

,
the regula conditional expectation is given by a

skemed meague.

: we can use the town rule on top of this !

#(f(a)] = ECE(flo,0
.1)10]]

Example translation
neint

-

Conside Ising madel wh
~

H =
-&IWe'd like to copate EO] .

First
,

note that M10
, /00zc) = - &20.,

000 -no.

: - 0
. [G1., + h]

So
, DLR with the unite

a dimensite#[0. 100]=
bose
E 300 (E20.,

0 + h)

- tanh(Bu)
partition

function

= tach (B(,%20., + h) ·
By the tows rule

, in any
Gibbs State,

In nearst-neighbor intractio,

2dB21 = banded tech

ECo] : [E(ox 103]) : Ettah (B(420 -28th))] that allowsvs to carage
we

expanding range

We can (and eventually will compute this outer expectatio by repectedly conditioning
on a Sy3? The

, for small enough,
asae more further any

,

the bouds on

tash compound and things an nice .

-



We world like to characterize the set of possible Gibbs measures for a

certain (HB) combination, as the cocristace of infinite pibbs states is the hallmark

of first order phase transitions ! First
, some vocabulary.

* The extremal points of a conver set K an He points
X

*x = k st . Ja
,
bek ,

te (0, 1) sit. x= a++ B(1-z) X

(basically the vertices *

& A simpler is a corner set K sit.
Exek

,

↑ has a where representation as a conver sum (or integel) of

He extreme points of K
.

in IR ⑫
IR2 in ↑

X
* ---

T X A----

T X

For find dim K
,

there are 1dmk1 + 1 external points on the simplex,
and all points xEK are expressible as a unique corner combination of them

In infrite-dim K
,

all xek are a unique integral over normalized measure
,

or a expectation
-

#ea : (Properties of infinite Gibbs measures)

For specified (H,B), we have

& The set of Gibbs measures is closed under conver combination

l and so theset is corner)
.

② In fact
,

the set of Gibbs measures is a simplex.

ityou Laumean its ste,uhea itnea positiv



Lecture3/28
Movingan,

we now inspect the relationship betwee uniqueness of Gibbs states

and symmetry breeking .

Consider a probability space
(2

,
%

, e) . Me induces a Gibbs mere A(dw)
and we have the DLR characterization of the Gibbs measure

F(f] = E
_ [Ee[f(On]] = Se(fIOn]e(da) :

with En (10) = S fo, -She lol u(da)
z(0)

We have the following theorem:

Theorem : (limit exists as we condition at )
-

Gover
a prob , space (2 ,

E
, 1) and a macture decessing sequare

of sub-o-algubes Em Y
,

the for any
bonded measurable A

for M-a . 2. ↑ measurable
mint .

E(f((m)(n)E( + /[0](w)
E

where Eg:=Em

Breat: uses the Martingala comegance thorem .
Look it up i

D

To apply this to our uses,

& =
the O-alebe of measmble sets

of configurating within 1

He set at measurable functions
Br : F

induced by Es

(f(0) +Br = + depends als on 1)
We deli Ep :=A and Bo

111

The feBo if f doesn't depend on the states inside-finite volume
.

Examples
-

· An example febo is flo :=I=
· Let midol be defined st. Oj-Bernoulli (p) i .

d
.

~

The LIN = 0 Mip = f(o) = p a .
e

. andGo is trivial (20= 30
,
123)

For m : = Xmk + (1-1)Mz ,
f(0) = S E wip .

X
andIo is not trivial !

↳ W.p .

I - 1



LetAldo) be a Gibbs state. As before
,
but in the probabilistic notation,

Fe(t] = SE(fIf]1a s(do) SECfICo]coecda
↑

the me ala

So
,

for Dae .
O

, flo [f(o]10) is a Gibbs measure Since it satisfies DLR
.

Theore:

(i) Any Gibbs state can be presented as a convex combination of
extremel Gibbs state .

fructions measurable at o are

(ii) A Gibbs state A is extremal Et Ex is trivial writ
. S constant a.

e .; they're only Ssupported on one type of

configuration only

Corollay:

# S, be are extremel Gibbs states (for the see Hamiltonia)
,

the

either

(i) S ,
=Pz or (ii) &, Ba (mutually singular; the measures are

supportedan different sets



Lecture3130-

Infinite Gibbs States + Symmety Breaking

[heren(10 . 11) :

Give an extensive Hamiltonian with finite energy per site and ab,
a Sufficient condition for uniqueness of its infinite volume Gibbs state is :

for
any pair of Gibbs measures &

,12,

-C sit.

& positive fir+ 1R
+,

Es[f] = ClE
.

[f] (absolutely continuous)
S

: It suffices to proce that the exists a miner fera Gibbs states .

This does not allow an AER sit .

S
. (4) = 1

, s. (a) =0

So
,
the cannot be two mutually-singular external Gibbs states

,
since othrise

the world be such an A.
D

Ex
H(0) = - & 1.

=
00z

Ihear :

Fur 10
arrays at (banded) spis 30m3 with &omluko,

the Gibbs state is unique FB10.

Fo particular, In : the and dan => no 1st order phose transition.
↑

chek
His

condition

Ef: Consider < ↓ ! & For any X and
y an opposite sides of u.

Kitsil: /1 Cor .

Now,
for

as Fees,

Ee(f] * SEe[f1G]a(don
:)

We have

O a

LEs(fla] = If(a) eBh(o) .
)

An
,
(don

Zu
from left right

and

Hill) = Melon + Ric,) and IRCalac

↓
&es

=> Eo(fla]
eusco for (do

& timedeaI -TBCoSf(ono) S (don approximate
measurable

zn ↑
we

2

same for an Bla call it EMf(o] frcties
by

local frcture
-

&



=> Es
,
[fo] = ePEffo] an Fa[fn]eufe(flo

,]

=>
s.

(f) =S (=
=

-> eoBCSs
.

(fo]s(do) = eB Es,
(f)

.

By the previe thou,
we must have a unique Gibbs state

in

How does this apply to continues symmetry breaking?

Conside H(O) :
-C wit (,

and let Ro := rotation of o by 0
.

Suppose a rotationally invariant Hamiltarian and a priori measure

H(d) = H (Rd) and M (do) = u(Rdo)
F

Rotation
an configuration space induces rotation on observable space by

(Pof)(0) : = f (Roo)

This
,

in turn
,

induces a rotation on the space of measures where

Rot is defied by Eros(f] = Es[Rof] Of

The
,

we have two dichotomous options :

① either we have a unige
,
notatically-invariant Gibbs state

A= Ros VO

OR

② I an extremel Gibbs state 1 sit. 1 and Rot are singular
-

we can test for condition & and discover wh the

Ro-symmetry of A is broken



Renormalization group
huh?
↓ model7

the bondy In (x-git



Feature4/4- Merwin-Wagner Theorem

First we ought to verify that a rotated infinite-volume Gibbs state

is still an infinite-volume Gibbs state : the DLR condition verifies this.

Theorem: (Mermin-Wagnst

For a two dimensional finite-range system of continuous spin variables

with rotational symmetry ,
i . e.

Hid =-(a) ,

diam(A) = R

if (i) Of is invariant under uniform rotations and (ex : += - 10.0)-

(ii) Of varies smoothly under all notations

Whe any infinite-volume Gibbs state is invariant under uniform

spin rotation; i . e. V observables fiRtIR and all (200(2),

Sfds = SLofdA El Es[f] = Es[Rof]

&of : It suffices to show that Fextrnal Gibbs states A,

7*

s .t. F local f :R+ &R wil 20
,

# [Rot] = cEs(f] pabsothcontet
---------

,
Fix a volue 19 Sit. FeBre ·

For any larger 12, i -the tower rule and DLR condition give
l Or?

Es[f] = En[Es[f(on]] i
--

(l
Consider a soft

,
nonunitum rotation of spins given by angle

G | x | cl

O . W.
oc = S ↑:

|x

and
a rotation (If (0) : = f (3200xxen)->

O operator an functors

Then EnCEfOftColo
7 (0)

M(do)
E is

bejective
and

m
is product rese,

X 10 ulda = u(d a)

=> fa)(con100) - Mr
.(1)] e-e. (Blon

u(dio)-

weighting factor based on effect of t on the zn
, (0)

energ

We have ↑(0)-Mr (a) (a ·(20-
ener penalty

=- ( . (so-)]



We would like to Bord 8. /ep-e) to show that the energy perely is favorable.

For EEs
,

there is only a second-orde tem

% (e-) : IsoR

Othwise
,

we require a line term that we must bord with twickery.

lay:

In the above setting,

there can be
no spontaneous magnetization.

In other words
, Eo] = 0 Ex

.

& By Merwin-Wager, Es[] = Es[-E]. The result follows
.

D

in redem pennteters
Schramm

aces



Lecture4/11-Q-State Potts

Q State Potte Model

Conside a setup on a graph 6 : CV, E) with

Ro = El
, ...,

Q3 s(507) =c
⑧

H = ] (-
-

check this !

We call this the Q-state Potts model
. in

the Ising
crse .

↓
Su,

Q..
2 is

shifted
Ising(When Q= 2

,
we have Ising-like 10 : 31

, 23 => Soon:
+ scald +

&
So,

partition e
$1 >(500-1) = Sog(1-e-P(x) + -Bax = PaySaa + (1 -as) -1

fu

(e) 1 - n (a)

=> z = T [ry So + (1-p-3) ·1) = E & d Pe (l-pe) # Soo
,

O : V+ El, .

., Q3 n : E+ 50, 13 -
m+y

=

↑ wandom clotes ~ Bernoull : (Pe) if -

]sum
over

whe n(e7 : Meechstes spirs agree ,
O

= MO isconta
otherise

alusters where=> Zi
0
,1D

*3
(ps)"

4+33)gN,() of
comet

Pr = 1-eP2x

Spin-spin Give a cluster n
,

we have

~

als onitlation depends
in

corre
al

↑
if n (Su,3) : /c) cluster!

#(Saaln] : to ele

/

From here
,

we can see that the Q-state Potts model

fous cluctes with the same On's that flip togethe
This makes it a perfect place to study percolation.

If Q: 2
, we have (GO) = n (Su

,
(3) with O as in Ising model.

~

Remarks: · Q : 1 is nardom percolation model
↑· Q= 2 is scaled/shifted -sing

· If we take QETT instead
,

we get the Fok nardom cluster model
· As Q4O

,
measure concertutes around clists with low Na; i re .

-> minimum sparing tree



Kramers-Wannie- Duality in 2D

We have on a graph
- *

the QistetPottemade yP(T I X 6 : (V,
ES with

· DT The
, Pay = 1-Pxy ·5 I

Note that percolation occurs in either 6 or G*

Whe one percolates, it choles the dual
,

which deags expartially

When GEG*
and Pry = E

,

the dual is identical
and percolation occus in both

-Sway says
this

night be wrong

Let N (n) duots the # of connected clusters in the dual model.

Lemma : notemet
on

-

↓
On

any finite planar graph , N
.
Cn) - N

*/1) is indet of 1.

#: Conside adding any edge toa (i . e . nCet : - En e )
- "DeIf ·

X.......

Her Nc (r) = N
,
(n) (they ware already in a cluster

" X
i

! Nc* (n) = Nc*(n) + 1 (beaks a dual costal

If ·
l

-

Her Nc (vi) = N
.
(n) - 1 (connects two chesters

X

T Nc* (n) = Nc*(n) (doesn't torch deal)

So
,
A(NC)- NE(n) = - 1 independently of n

B

Note that we can write Ne() = t(Nc() +N()] +t
=> z(a) = cost. &

~ Et 30, 13
(e.e Prs) · (Trad-Prs)

Nat N

check
this
!

-

As before
, when Pry:E ,

the model is dual to itself
.

Another way to formulate this is to draw loops with midpoint-midport edges
that don't cross edges in G or 66· Each loop surrounds exactly 1 cluster in 6 or 6*

r
The

, 719) = cost so is
Lette Per) · Jetrad-P) So

# of loops

D
This kind of formulation shows up often in quantum
statistical physics .



When we consider the connection of an edge,
conditioned or the

rest of n (i . e. IPEnCe) = 1/ Sulet : e = e 33)
,

# #Ple= 11 :3) + P

IPEnc)=ol wi3 p+ (1-p)Q

In the dral
,

O and I flip and the arsons swap .
So

,
the model is

self-dual when

#= H
This is the Krames-Wannie self-duality point in ID.



FKG Monotorists (Fortuin-Kostelyn-Ginibre)

The collection of possible clustes n : E+ 30
,

13 (which we drot 30
,
135)

is partially ordered
-

&ef: (partial ordering)

An orderingI is a partial ordering if

(i) n'In Et reque Ve

(ii) f: 30
,
1

*
+R is if flutsf() Frien

(iii) For prob .
measures 1.,12 on 30,

135,

P= An E fr
, Sflub ,(in)Sfluhbelde

"S,
dominate S :

"

not litae
↓

Bef: A partially-ordered set furms a Flattice" iff Epars (n,
n),

the exists n Va
,

new sit. nVnYn,n and n1n - = n
,
n

+

In this case
, Inville) = maxace)

,
nicel

,
Inent(e) = minEncel

,
nices

&ef: A probability mecue l is positively associated if

Ff
, g

: M+ /R sit. f
, g20 and figt, we have check the

En (fg) = En[t] En[g] & definition

"monotonic
, nonnegative functive are positively associated

"

Theorem

For two measures S,, 12 on 30, 137,

A. Be Ef there exists a coupling r(dn ,
dra) sit.

(i) Sg(nj)M(dn , drz) = Sg()D;
(d) jol2 (correct marginals)

(ii) n, m M-a.S.

Note that for FX
, the second condition implies

Es[f] - Es
.
[f] = Stf(n)uldr ,dra) O

20



Theorem :
-

Let be a probability measue an a partialy-ordered Flattice".
M

A sufficient condition for m to have positive association is that

Em[nUn]En[nent] = En[n]Em[n] En,

Expe (Ising)

0 0 = 0 =0x Vx and sco) = eB2x + 00

Z

Consider o + - + ---

a --
-

+ + -

ov o + - + + +

= 3 thusteeenaa
or o -----

Spin agreement

not sure what this

We can write the relation ↓ has to do w anythingI (0 10) (0j18) + (o vo) (0jv8) - 0x0j + 0+ 0 (

So
, Ising Spin mel Gibbs mesue I satisfies the there

,
size

O 10 and over are more likely then o or :

Expe (FK random cluster model)

The relation Em[nUn]En[nent] = En[n] EmSn] holds iff

u/nVieb)
= Wet) En st riletzulet feeo

u(r)

We can verity this for Fk moder cluster model.

* EEple (Q-State Potts madel)

Note that the Gibbs measure P,
a(n)=T pule)-psWe

has that

· Apa is decessing in Q · Na(n) is decessing in n

As,
a is increasing in · N (n) + In) is increasing in m

Also
,

FQ = Q2/

B, (a) = B,
(a) = S,

(a)
This relates critical points of models for different Q's ! So

,
critical behove

in one implies critical behavior in another



Interpretation :
-

For
any Aldn) satisfying the FKG condition

,
Ff

, g20 with f
,gt

positive associativity gives

#[gF] = Es[g]lEp(f] = fghflimlin)c(Sgiimid)(Sfim(d)

=>Se Saca a

So
, letting Mdhl be the tilted measu Mich) := flus(dn), the

upS

Holley's Theorem :

Wa have thatAds if and it the exists a coupling
uldo,

dot sit.
r has magiel distributions agreeing with1 and s

and M is supported only or states OCO -

The above theore greats that if &CA Y the

s(01)-s(ox) = 2u(0
,

+0x) <
Sortige wrong W

His !



Add Leathe U/18



LectureU170 - Quantre Spin Choing

Suppose we have a Hamiltaian It that we haven't diagonalized.
SYm3m is any

We have the Q-themel expectation value OnB

↳
1

A (Alp =I with Z := tr(eB) = Yule-olin)

We can label Hamiltonians artificially by the time to at which we added
it to the picture, greating a Dyson integral

--Bi= S... S (-1)
+

... (1)e
,

dt, ... din
S

win It = Y

m= 0 Oct
,
<... tr < B

note that the Dyson integ can

-F:&
non-commita Ieith:weap abte untaa&

Writing we get

~- -
= eBligh Kast; (d)

M j= 1

↑time-ordered product

In a sense
,

we
have written out a nardan formulation for th with the following picture

In this picte, we visualize quator

evolution /in real time) asrandomly
M

eBi --Kaj
,
t, appling opentas Kajt; as we

more through (invest time. We assign

measure Aldot to the sequence of

I
O configuration' o I indiaa

Hes transformating
↑

Note that or integrals will look like

[x [0
, B] w = E

,ti He usual dadimasial stuff + 1

extre dimension for theiagiery fire !

Aldw) is a Poisson process on Ix[0
,B] So

, avate stet much in d-dim will

X look like classical stat mech in del-dim.
Agre at I ve

E

Z = ePState



Q-Spin Operators Hereaadjoint

I
We have S : (

, > ,
5z) satisfying [5 . 5) =: with cycle

permutation.

Note that 15:+ counters with each of S
,

"

&
Sz .

I
This is because the magnitude of S is invariant under rotations its
We can also deive It= s(s+1) I

Suppose our states live in a finite-di Hilbet space It.

IF dim H = N
,

we get an ONB for It from eigenvectors of 52

z(s,
m) = m(s

,
m), meS-s

,
-St

, ..., st
, s3 ,

s = E
-- Scareene

( Fun story: we can prove this quantization for 52 by slizing the surface of a splee into (slice .
In 3D

,
Archived proved equally-speed slices have equal area

, implying integer quantization

Suppose we have two
spire, modeled

as

Is
,

* 7ts = Spanis, mills
, mc73m

, me

=H
growpesatation of

Its, It su

Let Si2 be the possible magnitudes of the combined spin,
i . e. The values

Se9Isisl
,

.... Sre] = 5.D S
%...
Each

of theseSe
a



Examples

① Q-bit I

,

dim H = 2

Pericture
S=
-

We can write = =(0x
, E.

Ot) with

or() , [i] ,
o (d)

Writing the Heisebeg anti-ferngete/ferongate Spin chain on I

T

:FX

antferngetiz

# they are all identical Copies, we ca write

. = [5
,
+

"

- 3 . - j -) = z(S(Sn+1) - 2s(s+1]

For sit spires,
S..50, 13 . Let 147: +, and dee Y = 1434/

v nu

Then
, (55z

,

1) 14) = -147
,

and 5 . = -2 do the algebr
/projection onto singlet)

Z

We can't have all links in their lowest states
,

and so we can assign an initial

ground state

1+1)

ar [dimerization)
--

Depending an eveness - address of the frite volume
,

one grond state will be

preferable to another ; trastical symmetry breaking can occur if the preser of these two

ground states remains in the infinite limit.



Lecture 4/15- Quantum Spin Models

Recall the setp with

= -2. =: [E
del

where 5= +(0
, 0307) ar Parti natives and 10) dnote eigestates of OF

To compute expectations of the form (A)np = Tr(eB#A)
we use the expension Tr(e-Bi

eS-Sit d. po on
.

o

-

-

-

To convert this to a probability measure
,

we normalize -

by dividing by eBII! So
,

we get
- I-

e =eP ( (du)
00 ... On

Ew PS
,

v w = 3(;,tj); [Iv/0, B]
poisson process in dol-dim spacetive

If we wet metix elevents in H := Span 310, ...,

0
.
73

Colek)0) = epiSo at oAnd

=> Ze
, p

= Tr(e) : Sub(oklo) Aplda
Y

overanon
a

The singletReturning to the Heisenberg Anti-Ferromagnet, projection
on

to

p(=
147(41

I
+-

2 -

-
t

I-Ju

= + [5- = E -up
↓ 197=

m
,

m+
+ constant

If we wished to extend to other spirvalues then spirit, we can eith leave the

Hamiltonia as 5
.

5
...

Alternatively
,

we can write the singlet as I with sat
,

people define spin systems)
in order to get certain properties

(st =(1) (4) := w
,
-) =

So
, we conside In : -&Cplu (se = 2+)

This
gives

metrix elements Em

Conn /(01) = [7* ~

Ho=- =) Mon = -m =m
n

,
m= - S

Wa know that spins either align or are opposite .
Howeve

,

the form of this

problem forces neighboring sping to be opposite.-



Note that if:O (as it does when

computing trees)
,

we can emphasize this constraint B
O

-
On

-

in the picture via ~tLet Ne be the number of loops
-

-

earch

13 in the depicted picture). The
, we have a

↑ -

degree of freedom of choice for each loop, # I !
must Be be

and for each choice we can select
f-

(1st) options .

So
,

in His case, 00 on ... f ↑ O
U v

p = eBl](2s+)
Nels
p(du)

Let's compute a spir-spin correlation.

Z
~

z

( & S
U

Su oAside2
,
t

(5n · 5) =3() =>T-(en)-eoE
Sa(2s + 1)Nelson Sa(2s + 1)Nelson

If n andr are not connected by w
, they will average to 0 as E counter

Hewith the Es
.
If they are connected

,
their value will be determined by loop

,

and

will be

#2) · -Dis
dee

=> (5. 5) = 3 () = 3(-1"M! IPSu- connectedbua
Note the relation with the Q-State Potts Model

,
whose partitum fuctim

and correlations are analogors as follows :

Quantum spin chain Q-state Potts

dim d d+1

part. An number of loops number of clusters

correlations U
,
v in save loop ur in same cluster

#Knite-width

It wa take L+ - (with fixed parity of 1)
,

one can ven FIG

to show that the infinite measure comeges and is inmint rele translations

By even shifts.

For differnt choices at & and s
,

we can get differnt results for

uniqueness of Gibbs states
,

correlation decay
,

etc.



-

-...A Dichotomy for IB Loop Systere ⑥:g %
-

-

& the infinite limit
,

either every point is contained in infritely may loops an

all points are in finitely may loops. In the finite case
,

the parity of the loops
introduces dimerization

, causing long range order and transitional symmetry breaking.

Conside the following decetie : by translation invariance,

w

& K·)) = 1 · 5) =M
SinceLop dontOulpnHeerbesentifeorget, are lop cotya e

& nk·)) = MEC# loops encircling of

If # of loops about 0 is infite (Kolmogor 01 gives ETH] =0)
,

then the sun

must also divege. In particular, (5) day Miche ther +
n2

So
,

we get that cite

(i) dimezation + treslational symetry Breaking + long range order

(multiple Gibbs measures
,

shifted by 1)

(ii) Spin-spin correlation days slower then it

This is a result of a general result: 21 loop dielotony

either (i) long-range-orde or (ii) slower correlation day



Lecture 4/27 · Final Lecture

the A/B continuum percolation model.Wewillnowdisesplit into strips.

"conside the city of
"33 Venice

A BABA BABA

Now consider radimly placed connections before strips

Each "connects"

3 was

of the san

A BABA BABA

If we conside A as (H) and B as I
,

we Can place a
total order

stateson win <WE under we A is "more corrected"

This crises naturally from investigation into quarte spin models.

Howe
,

recall FK-nadam cluste models (0 . state Potts / QEIRT)

Wa can show that as we take the

continue limit of the lattice we getB &

a model equivalent to the A/B above,

with the diffence that the A/B measure is

weighted by an extre factor

(2s+ 1) Nc (n) of custes



Note thateachme we ada mytothesanor,wela

S(H)
A BABA BA B1

I the work limit
, we an find that both

4 = Go to log(Tret) and =In tlog(T-l↳-
L odd

When SE
,

445
,

and there is synety beeking via dimezation.
When S = E

,
H = 45 and the is slow day of correlations.

Duality !


