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Evan Dogariu ORF 543: Homework 1 Problem A

Problem A

Suppose that X ∼ N (µ, σ2) is a Gaussian. Show that

κk(X) =


µ, k = 1

σ2, k = 2

0, k ≥ 3

(5 points)

Solution

Proof. For Gaussian X, we can explicitly compute the expectation. Using the substitution u := z−µ

σ
√
2
,

E
[
eitX

]
=

∫ ∞

−∞
eitz

e−
(z−µ)2

2σ2

√
2πσ2

dz =
σ
√
2√

2πσ2

∫ ∞

−∞
eit(σ

√
2u+µ)−u2

du

=
eitµ√
π

∫ ∞

−∞
e−u2+itσ

√
2udu =

eitµ√
π

(√
πe−

t2σ2

2

)
= eiµt−

σ2t2

2

=⇒ log E
[
eitX

]
= iµt− σ2t2

2

We can compute

κ1(X) =
1

i

d

dt

[
iµt− σ2t2

2

]
t=0

=
iµ

i
= µ,

κ2(X) =
1

−1

d2

dt2

[
iµt− σ2t2

2

]
t=0

=
−σ2

−1
= σ2,

and, since for k ≥ 3 the derivatives vanish,

κk(X) =
1

ik
dk

dtk

[
iµt− σ2t2

2

]
t=0

= 0,
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Evan Dogariu ORF 543: Homework 1 Problem B

Problem B

Suppose X,Y are independent. Show that for all k ≥ 0

κk(X + Y ) = κk(X) + κk(Y )

(5 points)

Solution

Proof. Since X and Y are independent, we know that E
[
eit(X+Y )

]
= E

[
eitXeitY

]
= E

[
eitX

]
E
[
eitY

]
. So,

κk(X + Y ) =
1

ik
dk

dtk

∣∣∣∣
t=0

log E
[
eit(X+Y )

]
=

1

ik
dk

dtk

∣∣∣∣
t=0

log
(
E
[
eitX

]
E
[
eitY

])
=

1

ik
dk

dtk

∣∣∣∣
t=0

(
log E

[
eitX

]
+ log E

[
eitY

])
=

1

ik
dk

dtk

∣∣∣∣
t=0

log E
[
eitX

]
+

1

ik
dk

dtk

∣∣∣∣
t=0

log E
[
eitY

]
= κk(X) + κk(Y )
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Evan Dogariu ORF 543: Homework 1 Problem C

Problem C

Suppose X1, ..., Xn are i.i.d random variables with the same distribution as a random variable X. Compute

the cumulants of

Sn :=
1

n

n∑
i=1

Xi

in terms of the cumulants of X and of n. (10 points)

Solution

Proof. We want to first investigate how the cumulant changes when we scale a random variable. Let Y be

any random variable and let a ∈ R be arbitrary. Define the cumulant generating function of Y as

KY (t) = log E
[
eitY

]
Then,

KaY (t) = log E
[
eit(aY )

]
= log E

[
ei(at)Y

]
= KY (at)

So, we find that the kth cumulant of a scaled variable can be found to be

κk(aY ) =
1

ik
dk

dtk

∣∣∣∣
t=0

KaY (t) =
1

ik
dk

dtk

∣∣∣∣
t=0

KY (at) = ak · 1

ik
dk

dtk

∣∣∣∣
t=0

KY (t) = akκk(Y ),

where the third equality comes from the chain rule and the fact that at and t look the same when evaluated

at t = 0 (we can think of this by imagining performing k derivatives on KY (at) and k derivatives on KY (t);

when we evaluate at t = 0, they will only differ by a factor of ak). With this in mind, we see that scaling a

random variable by a constant scales the kth cumulant by the kth power of that constant. This, along with

the result from part (b) and the fact that all the Xi have the same cumulants as X, is enough to see that

for all k ≥ 0:

κk(Sn) =
1

nk
κk

(
n∑

i=1

Xi

)
=

1

nk

n∑
i=1

κk(Xi) =
1

nk
· n · κk(X) =

κk(X)

nk−1
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Evan Dogariu ORF 543: Homework 1 Problem D

Problem D

Fix x⃗ ∈ Rn0 . Prove that

κk(z
(2)(x⃗)) =

0, k odd

O
(
n
1− k

2
1

)
, k even

(10 points)

Solution

Proof. We can write the output of the final layer of the network as

z(2)(x⃗) = b(2) +

n1∑
j=1

W
(2)
j σ

(
z
(1)
j

)
,

where W
(2)
j ∼ N (0, CW

n1
), W

(1)
ij ∼ N (0, CW

n0
), and b

(1)
j , b(2) ∼ N (0, Cb) are independent, and z

(1)
j = W

(1)
j x⃗+

b
(1)
j . (A helpful thing to note here is that this means all the z

(1)
j ’s are independent since they are functions of

W
(1)
j ’s and b

(1)
j ’s, which are independent for different j’s; this is abused repeatedly here and in later parts).

Now, we start small by observing that since W
(2)
j ∼ N

(
0, CW

n1

)
E
[
e
itW

(2)
j σ

(
z
(1)
j

)]
=

∫ ∞

−∞

∫ ∞

−∞

1√
2πCW

n1

eitwse
− w2

2
CW
n1 dw · PDF (S),

where S denotes the random variable σ(z
(1)
j ) and PDF (S) is the differential probability density of the

continuous variable s over all the values that S can take. Then, we can use the substitution w′ = w√
2

CW
n1

and some usual Gaussian integral magic to see

E
[
e
itW

(2)
j σ

(
z
(1)
j

)]
=

1√
π

∫ ∞

−∞

∫ ∞

−∞
e
it
√

2
CW
n1

sw′
e−w′2

dw′ · PDF (s)

=
1√
π

∫ ∞

−∞

√
πe−

t2

2 ·CW
n1

s2PDF (s) =

∫ ∞

−∞
e−

t2

2 ·CW
n1

s2PDF (s)

= E
[
e−

t2

2 ·CW
n1

·σ2(z
(1)
j )

]
where the last step comes from the definition of expectation. Therefore, we see that

κk

(
W

(2)
j σ

(
z
(1)
j

))
=

1

ik
dk

dtk

∣∣∣∣
t=0

log E
[
e−

t2

2 ·CW
n1

·σ2(z
(1)
j )

]

Note, however, that the function log E
[
e−

t2

2 ·CW
n1

·σ2(z
(1)
j )

]
is an even function of t, and therefore the kth

derivative of this must vanish for odd k. This means that for odd k, κk

(
W

(2)
j σ

(
z
(1)
j

))
= 0, and so we find

that by independence, for odd k it holds that

κk

(
z(2)

)
= κk

(
b(2)
)
+

n1∑
j=1

κk

(
W

(2)
j σ

(
z
(1)
j

))
= κk

(
b(2)
)
= 0,

where we know that κk

(
b(2)
)
= 0 because the odd cumulants of a zero mean Gaussian are 0. Suppose

now that k is even. Define W =
√
n1 · W (2)

j to be a rescaled version of the random variable W
(2)
j . Then,

W ∼ N (0, CW ). So, we can say that

κk

(
Wσ

(
z
(1)
j

))
= n

k
2
1 κk

(
W

(2)
j σ

(
z
(1)
j

))
Problem D continued on next page. . . 5



Evan Dogariu ORF 543: Homework 1 Problem D (continued)

The cumulant in the left hand side of this equation is written in terms of variables that have nothing to do

with n1; so we can say that κk

(
W

(2)
j σ

(
z
(1)
j

))
= O

(
n
− k

2
1

)
. This yields that for even k,

κk

(
z(2)

)
= κk

(
b(2)
)
+

n∑
j=1

κk

(
W

(2)
j σ

(
z
(1)
j

))
= κk

(
b(2)
)
+

n1∑
j=1

O
(
n
− k

2
1

)
= O

(
n
1− k

2
1

)
,

where we note that κk

(
b(2)
)
=

Cb = O(1) = O
(
n
1− k

2
1

)
, k = 2

0, k ̸= 2
. We have arrived at the result that

κk

(
z(2)

)
=

0, k odd

O
(
n
1− k

2
1

)
, k even
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Evan Dogariu ORF 543: Homework 1 Problem E

Problem E

Fix x⃗ ∈ Rn0 and define

Σ(2) := Cb +
CW

n1

n1∑
i=1

(
σ(z

(1)
i (x⃗))

)2
Show that

E
[
Σ(2)

]
= K(2)

Use this to show that for all t ∈ R

log E
[
eitz

(2)(x⃗)
]
= − t2

2
K(2) + log E

[
e−

t2

2 ∆(2)
]

where

∆(2) := Σ(2) − E
[
Σ(2)

]
(15 points)

Solution

Proof. We have

E
[
Σ(2)

]
= Cb +

CW

n1

n1∑
i=1

E
[(

σ(z
(1)
i (x⃗))

)2]
Much of this proof will feel like repeating steps made in part (d); that is because they are. Note that z

(1)
i

is a random variable distributed as N
(
0, Cb +

CW

n0
||x⃗||2

)
= N

(
0,K(1)

)
. So, we see that

E
[(

σ(z
(1)
i )
)2]

=
〈
σ2
〉
K(1)

=⇒ E
[
Σ(2)

]
= Cb +

CW

n1
· n1 ·

〈
σ2
〉
K(1) = Cb + CW ·

〈
σ2
〉
K(1) = K(2)

Now, we start small by observing that since W
(2)
j ∼ N

(
0, CW

n1

)
E
[
e
itW

(2)
j σ

(
z
(1)
j

)]
=

∫ ∞

−∞

∫ ∞

−∞

1√
2πCW

n1

eitwse
− w2

2
CW
n1 dw · PDF (S),

where S denotes the random variable σ(z
(1)
j ) and PDF (S) is the differential probability density of the

continuous variable s over all the values that S can take. Then, we can use the substitution w′ = w√
2

CW
n1

and some usual Gaussian integral magic to see

E
[
e
itW

(2)
j σ

(
z
(1)
j

)]
=

1√
π

∫ ∞

−∞

∫ ∞

−∞
e
it
√

2
CW
n1

sw′
e−w′2

dw′ · PDF (s)

=
1√
π

∫ ∞

−∞

√
πe−

t2

2 ·CW
n1

s2PDF (s) =

∫ ∞

−∞
e−

t2

2 ·CW
n1

s2PDF (s)

= E
[
e−

t2

2 ·CW
n1

·σ2(z
(1)
j )

]
where the last step comes from the definition of expectation. So, we see that since all our random variables

are independent and b(2) being Gaussian =⇒ E
[
eitb

(2)
]
= e−

t2

2 Cb ,

E
[
e
itW

(2)
j σ

(
z
(1)
j

)]
= E

[
e−

t2

2 ·CW
n1

·σ2(z
(1)
j )

]

Problem E continued on next page. . . 7



Evan Dogariu ORF 543: Homework 1 Problem E (continued)

=⇒ E
[
eitb

(2)
] n1∏
j=1

E
[
e
itW

(2)
j σ

(
z
(1)
j

)]
= e−

t2

2 Cb

n1∏
j=1

E
[
e−

t2

2 ·CW
n1

·σ2(z
(1)
j )

]

=⇒ E

exp
it

b(2) +

n1∑
j=1

W
(2)
j σ

(
z
(1)
j

)
 = E

exp
− t2

2

Cb +
CW

n1

n1∑
j=1

σ2
(
z
(1)
j

)


=⇒ E
[
eitz

(2)
]
= E

[
e−

t2

2 Σ(2)
]

Since we can write Σ(2) = ∆(2) + E
[
Σ(2)

]
= ∆(2) +K(2), we find that

E
[
eitz

(2)
]
= E

[
e−

t2

2 K(2)

· e− t2

2 ∆(2)
]
= e−

t2

2 K(2)

· E
[
e−

t2

2 ∆(2)
]

=⇒ log E
[
eitz

(2)
]
= − t2

2
K(2) + log E

[
e−

t2

2 ∆(2)
]
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Evan Dogariu ORF 543: Homework 1 Problem F

Problem F

Show that

E
[
∆(2)

]
= 0

and that for all q ≥ 2 we have

E
[(

∆(2)
)q]

= O

(
n
−⌈ q

2⌉
1

)
(15 points)

Solution

Proof. Clearly, we have that since E
[
Σ(2)

]
= K(2) is nonrandom,

E
[
∆(2)

]
= E

[
Σ(2) −K(2)

]
= E

[
Σ(2)

]
−K(2) = 0

We will first show that we can define a moment of a random variable X in terms of its lower moments and

cumulants. Observe that if we let the moment generating function of X be

MX(t) = E
[
eitX

]
=

∞∑
j=0

(it)j

j!
E
[
Xj
]
,

we can then relate the cumulant generating function to this with

KX(t) = log E
[
eitX

]
= log MX(t) =⇒ MX(t) = eKX(t)

We can take k derivatives of MX(t) using the Leibniz Rule to find that

dk

dtk
MX(t) =

dk

dtk
eKX(t) =

dk−1

dtk−1

[(
d

dt
KX(t)

)
MX(t)

]
=

k−1∑
j=0

(
k − 1

j

)
dk−1−j

dtk−1−j

[
d

dt
KX(t)

]
dj

dtj
[MX(t)] =

k−1∑
j=0

(
k − 1

j

)
dk−j

dtk−j
KX(t)

dj

dtj
MX(t)

We can evaluate this derivative at t = 0. Let µj(X) = 1
ij

dj

dtj

∣∣∣
t=0

MX(t) be the jth moment and κj(X) =

1
ij

dj

dtj

∣∣∣
t=0

KX(t) be the jth cumulant. Then, we get that

ikµk(X) =

k−1∑
j=0

(
k − 1

j

)
ik−jκk−j(X) · ijµj(X) =⇒ µk(X) =

k−1∑
j=0

(
k − 1

j

)
κk−j(X)µj(X)

We are interested in investigating the order of growth of E
[(
∆(2)

)q]
= µq

(
∆(2)

)
. However, it will be

necessary to first understand the order of growth of the cumulants κq

(
∆(2)

)
. We know from the definition

of the cumulant generating function as the power series of cumulants that

∞∑
j=0

κj

(
∆(2)

)
j!

(iu)j = log E
[
eiu∆

(2)
]

With the substitution of u = i t
2

2 , we find that

∞∑
j=0

κj

(
∆(2)

)
(−2)jj!

(t2)j = log E
[
e−

t2

2 ∆(2)
]

Problem F continued on next page. . . 9



Evan Dogariu ORF 543: Homework 1 Problem F (continued)

With the result from part (e), we know that

log E
[
e−

t2

2 ∆(2)
]
= log E

[
eitz

(2)
]
+

t2

2
K(2),

yielding that for all k > 0,

∞∑
j=0

κj

(
∆(2)

)
(−2)jj!

t2j = log E
[
eitz

(2)
]
+

t2

2
K(2)

=⇒ d2k

dt2k

∣∣∣∣
t=0

 ∞∑
j=0

κj

(
∆(2)

)
(−2)jj!

t2j

 =
d2k

dt2k

∣∣∣∣
t=0

[
log E

[
eitz

(2)
]
+

t2

2
K(2)

]

=⇒

 ∞∑
j=k

κj

(
∆(2)

)
(−2)jj!

(2j)!

(2j − 2k)!
t2j−2k


t=0

= (−1)kκ2k

(
z(2)

)
+K(2) · 1k=1

=⇒ (2k)!

(−2)kk!
κk

(
∆(2)

)
= (−1)kκ2k

(
z(2)

)
+K(2) · 1k=1

=⇒ κk

(
∆(2)

)
=

2kk!

(2k)!
κ2k

(
z(2)

)
−K(2) · 1k=1,

where 1k=1 is an indicator that is 1 when k = 1 and 0 otherwise. We can plug in the result from part (d)

to find that κ2k

(
z(2)

)
= O

(
n1−k
1

)
, and so

κk

(
∆(2)

)
= O

(
n1−k
1

)
We now have all that we need. We will show the claim by strong induction on q. Clearly, the base case holds

for q = 1, since E
[(
∆(2)

)1]
= 0 = O(1). Suppose now that the claim holds for all moments k < q; we want

to show that the claim holds for the qth moment. We can write out our recursive relation

µq

(
∆(2)

)
=

q−1∑
k=0

(
q − 1

k

)
κq−k

(
∆(2)

)
µk

(
∆(2)

)
=

q−2∑
k=0

O(1) ·O
(
n
1−(q−k)
1

)
·O
(
n
−⌈ k

2 ⌉
1

)
,

where the last equality comes from our previous result and the application of our inductive hypothesis. Note

here that the final index of the sum decreased to q − 2; this is because element of the sum with k = q − 1

evaluates to 0 since κ1

(
∆(2)

)
= E

[
∆(2)

]
= 0. Using the identity that

⌈
k
2

⌉
+
⌊
k
2

⌋
= k for all integers k, we

can write

µq

(
∆(2)

)
=

q−2∑
k=0

O

(
n
1−q+⌊ k

2 ⌋
1

)
Observe that the largest exponent occurs for the largest possible value of k, which is k = q − 2. So, we find

that the entire sum has an order of growth equal to O

(
n
1−q+⌊ q−2

2 ⌋
1

)
. We can simplify this exponent: note

that for all integers q we have
⌊
q−2
2

⌋
=
⌊
q
2

⌋
− 1 = q −

⌈
q
2

⌉
− 1. Applying this,

µq

(
∆(2)

)
= O

(
n
1−q+q−⌈ q

2⌉−1

1

)
= O

(
n
−⌈ q

2⌉
1

)
This is exactly our inductive claim for the qth moment. So, we can say by induction that for all q > 1,

E
[(

∆(2)
)q]

= O

(
n
−⌈ q

2⌉
1

)
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Evan Dogariu ORF 543: Homework 1 Problem G

Problem G

Use (e) and (f) to prove that

log E
[
eitz

(2)(x⃗)
]
= − t2

2
K(2) +

t4

8
E
[(

∆(2)
)2]

+O(n−2
1 )

Conclude that

κ4

(
z(2)(x⃗)

)
=

3C2
W

n1

(〈
σ4(z)

〉
K(1) −

〈
σ2(z)

〉2
K(1)

)
(15 points)

Solution

Proof. We start by examining

log E
[
e−

t2

2 ∆(2)
]
= log E

 ∞∑
k=0

(
−t2

2

)k
k!

(
∆(2)

)k = log

∞∑
k=0

(
−t2

2

)k
k!

E
[(

∆(2)
)k]

We have seen from part (f) that the expectation vanishes when k = 1 and has order O

(
n
−⌈ k

2 ⌉
1

)
when

k ≥ 3. So, we can break what we have into

log

1 + 0 +
t4

8
E
[(

∆(2)
)2]

+

∞∑
k=3

(
−t2

2

)k
k!

E
[(

∆(2)
)k] = log

(
1 +

t4

8
E
[(

∆(2)
)2]

+ β

)
,

where β =
∑∞

k=3

(
−t2

2

)k

k! E
[(
∆(2)

)k]
= O

(
n−2
1

)
. We can expand the function log(1 + x) about β, and again

about 0, to see that since E
[(
∆(2)

)2]
= O(n−1

1 )

log

(
1 +

t4

8
E
[(

∆(2)
)2]

+ β

)
= log

(
1 +

t4

8
E
[(

∆(2)
)2])

+O
(
n−2
1

)
=

t4

8
E
[(

∆(2)
)2]

+O
(
n−2
1

)
We can plug this into the result from part (e) to see

log E
[
eitz

(2)(x⃗)
]
= − t2

2
K(2) +

t4

8
E
[(

∆(2)
)2]

+O(n−2
1 )

So, we can find the fourth cumulant to be

κ4

(
z(2)

)
=

1

i4
d4

dt4

∣∣∣∣
t=0

[
− t2

2
K(2) +

t4

8
E
[(

∆(2)
)2]

+O(n−2
1 )

]
= 3E

[(
∆(2)

)2]
We can observe the cuteness of this expectation via

E
[(

∆(2)
)2]

= E
[(

Σ(2)
)2

− 2E
[
Σ(2)

]
Σ(2) + E

[
Σ(2)

]2]
= E

[(
Σ(2)

)2]
− E

[
Σ(2)

]2
= V ar

[
Σ(2)

]
Returning to the definition of Σ(2), since all the z

(1)
i ’s are independent

E
[(

∆(2)
)2]

= V ar
[
Σ(2)

]
= V ar

[
Cb +

CW

n1

n1∑
i=1

(
σ(z

(1)
i )
)2]

=
C2

W

n2
1

n1∑
i=1

V ar

[(
σ(z

(1)
i )
)2]

=
C2

W

n2
1

n1∑
i=1

(〈
σ4(z)

〉
K(1) −

〈
σ2(z)

〉2
K(1)

)
=

C2
W

n1

(〈
σ4(z)

〉
K(1) −

〈
σ2(z)

〉2
K(1)

)

Problem G continued on next page. . . 11



Evan Dogariu ORF 543: Homework 1 Problem G (continued)

We then evaluate the fourth cumulant to be

κ4

(
z(2)

)
= 3E

[(
∆(2)

)2]
=

3C2
W

n1

(〈
σ4(z)

〉
K(1) −

〈
σ2(z)

〉2
K(1)

)

12



Evan Dogariu ORF 543: Homework 1 Problem H

Problem H

Assume that f : R → R is a smooth function that grows no faster than a polynomial at infinity. Show the

following width refinement

E
[
f(z(2)(x⃗))

]
= ⟨f(z)⟩K(2) +

C2
W

8n1

(
⟨σ4(z)⟩K(1) − ⟨σ2(z)⟩2K(1)

)
⟨D4f(z)⟩K(2) +O(n−2

1 ),

where D4 stands for the fourth derivative. (25 points)

Solution

Proof. We can say from the first result in part (g) that the cumulant generating function takes the form

log E
[
eitz

(2)
]
= − t2

2!
K(2) +

t4

4!
κ4(z

(2)) +O
(
n−2
1

)
Exponentiating,

E
[
eitz

(2)
]
= e−

t2

2! K
(2)

· e
t4

4! κ4(z
(2))+O(n−2

1 )

Now, consider the Fourier Transform F (·) of our nice and smooth arbitrary function f such that f(z) =∫∞
−∞ F (ω)eiωzdω. We can write

E
[
f(z(2))

]
= E

[∫ ∞

−∞
F (ω)eiωz(2)

dω

]
=

∫ ∞

−∞
F (ω)E

[
eiωz(2)

]
dω,

where the expectation and integral play nice because f is smooth and poly-bounded, and we can take the

F (ω) out of the expectation because the expectation is over the random variable z(2). We can recognize the

form of this expectation and substitute in our earlier approximation for it to get that∫ ∞

−∞
F (ω)E

[
eiωz(2)

]
dω =

∫ ∞

−∞
F (ω) · e−ω2

2! K
(2)

· e
ω4

4! κ4(z
(2))+O(n−2

1 )

Recognizing from part (a) that e−
ω2

2 K(2)

is the expectation E
[
eiωx

]
over a random variable x ∼ N

(
0,K(2)

)
,

=

∫ ∞

−∞
F (ω) ·

〈
eiωz

〉
K(2) · e

ω4

4! κ4(z
(2))+O(n−2

1 )

We can Taylor expand the exponential to see that

e
ω4

4! κ4(z
(2))+O(n−2

1 ) = 1 +

(
ω4

4!
κ4(z

(2)) +O
(
n−2
1

))
+

1

2!

(
ω4

4!
κ4(z

(2)) +O
(
n−2
1

))2

+ . . .

Now, we know that κ4

(
z(2)

)
is of order O

(
n−1
1

)
, and so any power q > 1 will have

(
ω4

4! κ4(z
(2)) +O

(
n−2
1

))q
on the order of O

(
n−2
1

)
. Therefore, the exponential reduces to 1 + ω4

4! κ4(z
(2)) +O

(
n−2
1

)
, and so

E
[
f(z(2))

]
=

∫ ∞

−∞
F (ω) ·

〈
eiωz

〉
K(2) ·

(
1 +

ω4

4!
κ4(z

(2)) +O
(
n−2
1

))
dω

=

∫ ∞

−∞
F (ω) ·

〈
eiωz

〉
K(2) dω +

∫ ∞

−∞
F (ω) · ω4 ·

〈
eiωz

〉
K(2) ·

κ4

(
z(2)

)
4!

dω +O
(
n−2
1

)
=

∫ ∞

−∞

〈
F (ω)eiωz

〉
K(2) dω +

κ4

(
z(2)

)
4!

∫ ∞

−∞

〈
ω4F (ω)eiωz

〉
K(2) dω +O

(
n−2
1

)

Problem H continued on next page. . . 13



Evan Dogariu ORF 543: Homework 1 Problem H (continued)

We use the laws of Fourier land to see that the Fourier Transform of the fourth derivative D4f(z) = f (4)(z)

is precisely equal to i4ω4F (ω) = ω4F (ω), where F (ω) is the Fourier Transform of f . This allows us swap

the integrals and expectations once again and undo the Fourier Transforms, yielding:

E
[
f(z(2))

]
= ⟨f(z)⟩K(2) +

κ4

(
z(2)

)
4!

〈
D4f(z)

〉
K(2) +O

(
n−2
1

)
Substituting the second result from part (g), we get our final refinement

E
[
f(z(2))

]
= ⟨f(z)⟩K(2) +

C2
W

8n1

(〈
σ4(z)

〉
K(1) −

〈
σ2(z)

〉2
K(1)

) 〈
D4f(z)

〉
K(2) +O

(
n−2
1

)
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