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↓
9/l-NNs at Initialization
Consider a FCNN:

input (ctRr+El=w"xc+?"GIR"
-> I =w(x(z) +5tR
↑

S

So, alt-b.rRateLEecIYCMR
T

and E= (z., ..., Ence
We ask how to initialite Wit b.(K) and learning rates for CD?

Gaussian Initialization
Consider wise-Nco,v), 53-NC0,v
We use the information propagation freewark, where we want

feature dot products to be casoned across layers.

↑E... E
IR"2+1

In math, we want to select ve'*(ne.0.4 and vs*(s,0,1 st

vla20,...,L3 ↑(zllE(l) = he (Eist+1) preseneddutprodones



There are two useful consequences of conservation at dot product

① We approximately preserve across It {0, . . . , ↳ I}

tell# 112
,
( Ei
"

¥"" 'É÷:D
② The Law at Large Nantes suggests

ne

kl
,

h-eciifzjm-nt.gz.fi?z-;i?' ≈ F- { 2- iii. zip
"}

So
,

information propagation says he preserve the following
across l : ell 10}E-{ 2- i }

,

Cov { 2-
ija ,

2-
ijp

Both conditions basically say mean and variance stay
constant.

We can develop the following heuristic far V9?v!"
i.•

with respectto me
.

W
,

✗I b

unreasonably
suppose 1*1=0 , ,>

←
low •
Mnet

i. V2 •o big or
smell

✗
n
.

Wn and
Wj~N(0,Vw) , b~rlo.VN

Siree E- (6. E) + b
,
we see É~N(0

, Vyt Vwllxili)

→É⇒ E~NCO.vbtnvw.UA)

We arnie at fan- in scaling, where

V = Cb , Cb -_ Old weight variance
scales with

V = Che
, ,

, Cw--0117 width



Def Let T be a set
.

Then a Gaussian process
by T is

{ ✗
+ }+e, such Thet <✗

+
. ,
. . ,
✗
+a) c- IR

"

is Gaussian b- {t, , . . ,t⇐} ET

et Lett-_ {1, . n} . Let ✗ '
_ (X

, ,
.. ,✗n) be jointly Gaussian

.

ex let T = IR .
F-✗

+
is gaussian process if ✗ is a random function

an IR with finite-In distribution lfdd) ( Xt
,
, .
..gl/tn)c-lR

" Gaussian
.

¥¥¥:Theore (Neal, Lee, . . .. Hanin)
I

→

Fix no
,
n
,+ , ,
O
.
Then as hi

,
. .. ,nL→ A

← Gap?÷?

É"")
✗
→ GP(0,1×(4-1)) an

d- to

parents when
↓ passed in Iip

i.e. F-{ 2- "7=0 and Cortez! , zip
"' ) -_ Sijk't;

"

This describes what happens when we send previous layers to infinite width
.

We can then neewsiely defile

KY, :C ÷:'(E.Es)
no
,.me,

_

Cork 2-%)

KYF.ci?c9E*y.1oci-4YoCz-jeY }
"¥ ""

≈ t.li?'.iY1
'µ÷;;f* " Ha:*.

(¥!;) -No, '
"
'%

Info prop ⇔ 4%4" we set such that KIF is

well- behaved at langel.
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9/12 Trying to Criticality
Note: at a particular layer (CID, we as given
Eal which is a renden variable every neuron in the layer shares

=>zet are id. Ccussion with vaul

C+ ENOCE)IP
-Gaussian with a

redom variance

Recall that the goal of into prop, is to conserve

*(z), zyle) = (zt, ESIIt
↑ ↑

k k(t+1)
xb

5in the intuite limit, the goal is to And C6, Cu
sit. He is as constant as possible across l.

EX OCHit (Deep Linear Networks)

2:D: ke:Co+C#qMSO(z)*3
thisislikesupposing the purious layeraled atthe

za

=3 +cSzentCwk's
x+p:kl+= 2b + (-ly(nY(zc,zs73=Cx + Crkc
Sif offit we want to choose (yi0, (n=1.

&ek: If 2g=0 but [271, we have an initialization

vanishes orkax =(e)-x [explode it (uF



Exact)=ReLUlt)=mer{0,t}
We hone KUH)

✗a
= ↳ + Cwf?ZÉ÷¥¥' day = C.+cw¥

With C
,
-0
,
we require 1- = CY.j.ec#V-e--Cw-- 2

"He- initialization
"

However
, when Ott)≠t, Ewe, } 012-201%7} is hard

.

We can claim that the recursion

Ltd)
(Fl) Kap -_ ↳+ CwEµµ{olz-D.dz,)}

is a 3d dynamical system with variables ( K'% ,k%, K%)
with the parameter l .

To solve such a system, we find fired points, lineate about the

fixed points, and ensure the points are stable & critical .

Fixed points at 1*7 k*=C☐+CwEµ*{ 0%-7}

( KY!=k* ⇒ k¥!=k*)
This codtin will here tht at deep byes, if Éantlo, k*),
then at large l, tell z4Yi≈÷H×ji=k*

parallel, petnbetren
The second condition e. ↓ d-✗air drawer

at ta

"" ᵗ¥¥e, /
µ,q**=1lkÉ÷¥ᵗi¥=k*+sk .- ask"

Third's
,

"'

Y¥&¥|µg
, qq.r.gs#*(kYo;::::k---ikFs--k*.-"' + °"")



These are the dynamical systems constraints for a fixed
,

steve
,

critical fired points. Nole that we treat this as smell perturbation
from a point to generate ×

, , Xp, which is why we we lieer approx.

Now, jkcltl)
=# (↳+ Cw Ewe, {01%5})dk←

= cwÉ£foh-ñé¥→dza ( •⇔
"- a)cuter in Fourier

Space

= cw¥%f 0^471 e- "¥-3'd }Fourier
Transform

= Cwf EY}) C- 137 e-E¥ñd }
F.T.de#tesxedeM--CwS'-iizdo4z-aD d"

X
,,lk*)=¥Ek*{HczD} --1

We can do the sane thy to fid

Xt(k*)=CwEk*{(206-7)%-1
So
,
the constraints d-

"

tuning to criticality
" result with

1*7 k*=qtCwEk*{ 072-7}
( Il) X,lk*)= ¥ F-

*
*

{240%-17}=1

(t) X+lk*)-= Cw F-
*
{1206-77}=1

These conditions confirm that if you have
two inputs

✗
a. Xp

"close" with Cov (✗
a.xp)

-
- I- E
, things don't exponentially

explode or vanish (K* ie fixed point) .



We can return to OCH)= ReLUCH

(kx=2b+2- Caussian

# X integrat

(II)I=GlySz(zMx)3 =E192Mz3=
(1)7 = Ckx3(z+xd33 =cvExxYMz3 = G

So SwF2, Cy =0, K2O orbitary

EXOCH=tahCt FM: the orL Axed pointis kx =0.

*(k+) = EwE,92YoY))3 =CA9)(0(0()3

- CrEkx30()o(z3 + x+ (k+)

3if you want Xx(kx) = x1(kx) = 1, we require

Crk3(a)0+(z)3=0 #kx=0X

oot is
ever and

& at origin
So what happens is that, at criticality,

350,(n =1k -causeat large 1.

Covarines approach fixed point, don't do exponential stuf



t.edu#-NNGPTheoren:Fix L ≥ /
,
no,n , ≥ ! 0 :1R→lRo . Deke

2-
"? 4 b¥

> t.fr?w?j'oCz'%) I≥ I
nu

bi '
"
t

,
Wijxjs 1=0

with Wijk"~Nl0, %) , bi
+Draco

, g)
If 0 is poly bonded (i.e. In≥1,G0 at. ¥1k

'
≤C)

then for
any ( ✗

a ,
. . ., , ✗ajE1R^°, the output vector

E-¥? LEE, . . . , z2¥) c- 112km
"

converge in distribution as

hi
,
.., he → • to a mean 0 Gaussian with

lin
n
., .
.
,nc→oC◦u(Zi!

"! 2- is") :S ;jkL%
where

{
K' =Cb+CwEµe, }o(2-a) 017s) } l≥ /

K's= ↳ + ¥ ix. is 1=0

&# "

(1) Suppose EIRK is a random variable with

F- { e-
iii.}} F- { e-ii.3} t} c- IRK.

Then
, ×

,

→d✗←
" destitutionµ↳mmµ,,,µ,_t(mm)F- { e- i✗n -3} : e-
iii.5-1-58 }

Proa We WTS tht fer any 6=13
, ,

.. ;?ny7 , 3. c- 'R
"

,

lin
n
. ,
. .,n<→•

E- { e- i #
""

• £ } -_ e- t.f.3.tk
"
% (*)

where
k
'

= iii.iii.±)



Steph : Vides: we can think of the layers many through the network as a

Markov chair .

%iiʳᵈi
, andGim 2-% ,

we Ad zj I { 2-ja
,

,
- --17in

Could 't" ""t.la )ja / Zjp

ReTfÉ~ME)eÑadu,ieiRTymm( I. in
,

I. J) is Gaussian with men 0

and Cali .ci,=ñTE✓

Nok tht z
"
= ( bi
""?w; !"

'? . . .
, win!
"" / • (1,017,47 , . -012-1%11

⇒ early.li?zis' ' "'1=1'•↳iy,T[¥ . !÷)( Ici;D]
= c.+ ¥

,

04%701*47=1%+1'
xp

Thus
, # { e- iz-aw.FI = # { # { e- i#

""
• I / ¥"}}

nett

= # { e-
'

-2¥, }ÉÉ¥
"

}
; } ,#jz.fi

"
are i. i. d. Gaussian with

we want this men 0 bit with sore Corriere

to approach content & Ñ "

step : VBI Each tnsitrun between layers is symmetric to penetration of the
neurons . So

, only averages can mettn.
n,

Each entry of tiff" his form Of"=÷
,

fftjla")
= ÷ ;É(btewok-i.io/z-;p'4)

We can use the following Proposition :

Prep: If 1- a poly bonded, sup /F- { 01¥ }/ co (always bonded)
hi, - yn, ≥ /

and lm
n
, , .
.. ,n . →x

Vor / 0%1=0 /
goes

to cadent)



Corollas. If we define KIM
m.mx

F- {ñ¥"} , then # ⇒ 1*7.xp
= lm

(1+1)r (1+1) di
Kap .Proofafcorolknje The proposition gives Kap

cantus

Abu
,
the map

* e-
'

i#K}
is bounded & É

.

So
,
all the network whets

'
variances converge to

the sane shared deterministic covariance King" .
☐

We now knw that the output reeks courage in distributors to
(1+1)men 0 Gavesins with lm Cor /ZiEᵗ" ,tjp↳") : SijkapMy -. ./ML-7✗

We complete the proof by deriving a recurrence nekton
for K'¥3 . We know

(4-1)
=

bm Cor / 2-¥" ,t;p↳")Kap n
,,
.._in •

= lin F- { lolz;
"

, zip
""' / 2-¥) }

Calx,Y)= # { Calx,-1177} La-
of →

(•✓
armed hi , _.-11<-70

+ coil # 9×12-3,15=412-37
=

to"

+ Cuu(E{zi} , F- {É"})
mean 0

= him he Gussied
"' lolz;Ñ }n

.
. ._mix F- { cut ¥¥%i÷⇔

expeetetrn because of symmetry

= Cbt Cw E { 01-2×10/zp) } limiting outputs. So limit
of

K'"
win via

Cantu" MM}
Theon

we on repeat the logic via induction to get the"iÉÉaÉ
"""

relation .

We finish by going
beak and prong the proposition :

Prep: If 1- a poly bonded, sup I# { 01¥ }/ co (always bonded)
hi, _ ..sn, ≥ /

emand
n
, , .
.. ,n . →•

Var / 0%1=0 /
goes

to ardent)

Prof we inductor L
.

When 1=1
,

(1)
2-
i

= ( 2-
in

, ,
. . . ,

2-
i I are ii.d Gaussian with

men 0 and Col 2-if
,Zip

"') = Cbt ¥ É& . is



← all here sane variance

Thus
, E{Of

'"}=E{flz ) } is fink because f is poly
bonded independently d- na .

Furthermore
,

N,

Valof
") -_ Var (¥8 flzjh.D-nt.vn/flzia'7)

5=1
≤ nt.IE/flz-,.a''I}
→ 0

as ↳ •.

The inductee step happens because f is poly bonded
.

☐



Lecture ? thin NTKIGP Regine
Last: We saw

① How to set CB
,
Cw in a random FCNN at

large width of the form
z;%= bill") + ¥, Wijk"O(zj%)

with W
"
v10

, %) and bill""-NO, CB)

② That as n
, ,

. . .,n<→
no É "

→ GPCO
,
K
'"")

with
lin coulz.tt?2-jpH-D)--8i;

+" and the relation
hi , --, he-7ns

K' = C. + Cw Eye,[0*0%7]
with X

, ,
-=C÷ #
*
[5042-1]--1

,

Xt :(WE#
[012-5]--1

Today: We ask how to set LR for GD to be "well-behaved " ?

0-(1-+1)=0-4-1 -%%I(0-(1-7)

Intitren Dadethet III.0-7=0-2 , Y=⊖*X
,

L(0-7=1110×-411?
This yields go.UA = (0×-4)×5=6--0*7XXT

So
,
the GD update step becomes

0-(4-1) - ⊖*=⊖Ct) -0*-310-11-7 -0*7 XXT
= (0-4)-0*7 /I- zxxt)

⇒ 3<12×7×7 = mÉ◦p=1m¥¥ÉÑ
Under this condition

,

110-(1-+1) -0*11, ≤ 110-11-1 -0*11,11-31min(XX'T)
≤ 110-41-0*11

, e-3ᵗ7nnC✗✗7
So
,
the best convergence rate is ék¥xn ,

k(A) =



IHihw Suppose we have noisy gradients
0-4-+17=-04-7%(80110477+4)

,
Zt~N(0,07

⇒ 0-(1-+1) -⊖*:(0-4-7 -⊖*)(I-3+11×7 + 3+7
⇒ 110-(4-1) -0*11

,

≤ 110-11-1 -0*11
, e-%
""

+ 3+11%11

≤ 110-101-0*11. e-É >¥" +8%11%11 e- s:&,
}- kin

5=0

✗

So
,
we need ¥3s -_ • and 3s -70 (also §

.

}:<a)
Now

, returning to wide Nws with Scala- output (non :D,
the effective Jacobin is

} z
,# = (%;dq. 2-

'¥
, jc- { 1, . .., # paws})

Ifor each
parer

⇒ 1m*= It}oÉz¥YP

⇒
. . -

☆
⇒ z

"! old (or OED
b

34=01 6- 0k¥ ))

t.ec# Pathologies of NTK/ b- P Regine
Pathologies: ① As n

, ,
. . ,n<→ no, GD on MSE equivalent to

linear/kernel method 2-11+1110-1→ EY"(e) = 2-4-40-CoD +308oz' (0-107) (0--0-107)

learning happens in last
/ age-

and to first order
is

hidden losers ② No feature learn,y
!

F Mean- field init Wijk {NO, l :L

No
,
¥) e=↳,

and 39--39=04)
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103-Loss Messian
We can summative the optimization of our network via

I I negative
invese

·Loss Messian Hessel(0) = Eero... - other
· NNOPCNN Gaussian Process E(*(D)TEC*(D)RIM,
· inquite-width list of Bayesian network, such as a randomly
initialized NN like Lecture 9/11

· NTk (Nevel Target Kerel) *ozCD;8) (8oz(D;())
T

- Kernel methods replace learning feature rectorizations with weighting the training
inpute and inferencing a Kernel K(x,5). Xxx>IR

- Kerels are great when K(ef= (Y(E), YCIthy for some

weater space - and some 4:x+U

- The NT is a Kerel Y: VixM""-> Is
Youtout

with

9k(x,y:0) = G60iz,(x,y)(0iz,(y;t)
-The NTR represents the influecs of the loss gradient (or2(w,y) Iwialij wrt.
example (iii) on the evolution of the MN E(,0) through CD step

- In large width (large parametal limit, NTK is constant a deterministicl

#

Eigenvalues (Saga et.al.)
converged

a

Spectrum of Messoz(x,8 goers
· decomposes into bulk+ outliers
· bulk has small egavalves

(some negative)
· # outliers# of classes

· outlier size depends on batch size
· left edge of spectrum gets negative!



Propetiesinthrwilde
• Hessian has rank at most min { # data

,
#params}

• Larger eigenvalue ⇒ sharper loss surface, faster optimization

Outlier eigenvalues
correspond to class

means??

Hessianfige.IS/6u--A-iiRoberts.DyertGradenl- Descent. . . ")Happens
2 results
that are ① Top eigenvectors stabilize as
robust! training converges.

② Loss gradients are in

span of top eigenvectors .



↳thel0 . Classifiers ( Parson ,
"
traces of")class

let Xie be input
, C. c-{1, . . ,C} is class and i c-{1

,
.
.,n} is index .

Model output is flxi, c) c- IRC with Satta es plxi,c) = efki.it/%efa-Let g. ice - =ÑL for an example 1 :Xie if assigned label was C!

Gauss.# dear""
>÷ÉÉ%Éje%f#Éxi¥ H⊖[ llfcot)]=%fHp

↑

For cross- entropy , G is 2ⁿᵈ moment matrix : ≈%Egece

gicci-do-llflxi.io?yc.)6=Avgi.c.c-&ici9iccT }
We decompose G into G : Gciasstbcrosst Gunn + Gc :c'

covariance
in

Ga class
a→,

= £49.9T
covariance

with"
Gumm : &class group i.c. e-

Wici (9iccr-9.ci/(9icc--9cc-)T
covariance

between

chess groups
↳ &ᵈᵈG cross

= Wcc' (geo
-

g.c)(gccr-g.IT
iheuneet average

where

sci
-
_ Aug {gici} g. = Aug { Sci}i c≠i

avg. gradient for dos
c if label were c-

Aug. incorrect gradient
3 'ⁿᵈ÷!÷÷;e⇔dkam#Rwhetisc.ard.it#wdnethee

We see the contributions of difrnt parts to the 3-level structure .
( Bulk, C2 outliers with higher eigenvalue of H, C outliers with even higher) .



stmeluecfactmtconsidrtifi-olwmi.fi?.hetHe-=Avg(hie thief)
↑
post-activations infectivecovariance

we decompose H? He
class

1- Henkin
between-

class

nor HE.it?1iitiit} (meant

within chess He
zndmomtm.mn --A9{Ñ! - ice)(ii.

- it)T) cnn.ae)
i. C

where it -=A;s{ i :3 Ii _=Ay{ if}
¥5s

means

We find larger eigenvalues and interesting cottier stiff

happening for H% .
The largest eigenohee is classiest.

-

stmetveafbaokprcp.gadskts.cc.
-
- layer egads, b? Avg { 4.4.18 ,%Y}

ii.

We decompose decks, 1- d&oss+dwdithin + Sc :c'
where

fl
glass

= Az { staff } with

cross
- classSwithin -_ ¥74s :c! - Sci)(Sit. - Scott} 8%-1-718 :&. } !!

dlcnoss -_ AT { (8%-89)/8,4 - SET}
ce
. si -- ¥:{Sci} :L:L



Newetcokpse ( Papyan , "prevalence of Neural Collapse")
>
e

call the lager l output hic
.

We went to understand the late-the dynamics of ¥ via mens

iii. Augtiic KEA? hicie

global mean class mean

and covariances

G-- A:{ Hiiiii.-riot}
Sw - Arg / Iii . - titch :c -ii.I}

ice

phenumad-Neurelcellapse.CHVariability collapse Ew -20 ( predictions approach class mean)
jannetty

(2) {µ, / cel, ..:C} approaches simpler vertices ( class means are orthogonal)and same magnitude
(3) Classification beeves nearest neighbors
H wire -Ño

"

Valtteri/1) and Varahi, -µ
>

,
/1) → 0

" "

Nearest-neighbor and NN behave smiler}
"

so-ta holds A- complex datasets. Doesn't hold for complex detests
(1) and (2) (3)

☆ Pic of 11W - {viii. Heel
,
. . . .CI/1r-

for 1h)

" final layer approaches class means" (U)



5¥ (Cohen etat,
"

Edge of stability
"

)

Train a NN with a fired learning rate 3
.

We track " sharpness
"

,
or 7m

#
= Imax ( Hessian⊖) over the

← Hessian of loss

The theoretical expediter is that y should not be much larger then %me✗
.

The empirical observation is that Imax grows until 1m-✗ ≈ %

They interpret this thet the model finds "sharpest" parts deny training
so that steps are most meaningful .

Sharpness Imax approaches 2/3

ÉRs - Clewkonycz etat , " catapult Phase")
We ask about fixing the NN and varying large 3 . nd

sñ¥ÉᵗasThe finding is three phases × nengxhiss
"°"

- lazy phase 0<3 <%ma×(Ntk)Éᵈ^
µ
,µ,,µÑdivergently

,

but
- catapult phase ¥.×(NTK) < z < (

*/1m. ,,(wth) 11¥
""
"

"

- divergent phase C*/1me✗(NTK) c }

Best 3 is in catapult region .



hectueloxo-Int-c.to NTK
Consider GD with

8-(1-+1)=811-7 -3%210-1+7)
suppose that LCÉ)=É( 2-(0-5) for some z.cn change ofcoordinates

In 2- (É) variables
,

÷;÷÷:÷÷÷÷÷÷:&:*
:*:*"

= 2- (Ect))- z# ITHÉCHD)

= 2-CH - z ☒ 30-2-71
,
,,;Ñz£tdH)

Jacobian

so
,

2-(1-+1) -- 2-(f) - } Kg,,→8z[(2-(A) c- it
"

where kéai R
""

kernel

The picture looks like

" £-7 R ko makes update steps
move along the manifold

allowed by imlt)

¥E÷÷⇔-



EXMSE
Consider a NN z( I;É) and m training data points

D= { (¥,y;),i=I , . . - in} and loss
in

LIÉ)=£(zlÉD= ±
,

tlyi - HE ,ÉÑ
We can use the change of coordinates induced by 2- to get thet

m

ÉCH _= { 2-Ciri ;Éc+D}
"

i= ,
a-d Y -_ { y;}i= ,

image of training dataset 112m
•

⇒ FE¥⇒
We have 11811-11=1114-3-11-1112 and Élt+l--Elt) -3km, tilt) -F)
where

+,
);;

-

- ④ 2- (Ii ;ÉlH)%⊖z(I;;ÉlH ii. c- {1
, .
. . ,m}

Gram Matrix

Kegp•i
• If Kat, -- k is independent d- É, this is

"

kernel methods
"

on [(z) = tally- É/12 .

This is a tire -varying kernel

• Suppose -31 . > 0 s.t.tt≥0, 7min/Koa,) ≥].
⇔ 7ns> Koch ≥ 7-◦ I#-)

2- -III.raid his PD and bounded

g
if Ko PSD

⇒ (Kaizer, izñ
> > °. This condition promises successful

we can aka more optimization .
We don't want in the direction gin by
this ! ÑzI

Pref: L(Élt+N --4114-2-71-+11112 and 3-(1-+1) - D= (I- zko.it/zCH-7
Thus

,

if
z<¥
, ,

L(Élt_D) = tell / I-3km) (Elt)- 51112
≤ Elliot-511211-3%7 ≤ 110-4-1)é

""

⇒ L(⑤(1-+D) ≤ e-23%110-10)
D



TkgoalisasfeHows:_
For wide Nws w/NTK init

,

MSE loss
,
smell 3

,
and Lex fired

,

the
"

Meter Theorem
"

is that
Koa, satisfies /#) ( bonded PD)

.

⇒ 2+0 .

The intuition is Het if Kat, ≥ 101, we can none Zlxi ;É)
at will and always make progress. So, the data points cannot fight each other

.

To show #-) typically,
4) Show Ko,, ≥ II and Lii) Show sup 11 Koa, -Kocak ≤¥1-so

EY simple NN zE= few;%(win . ×;)
with ID ◦Ant
and I hidden layer.

Suppose that 101,101,10" / ≤ 1 and 11%11--1 and we have

NTK init Wj" ~ Nco, 1)

Wj
"'~Mq±, { 0%01

4) We have

= Édw 2-
'

22min 2-% + ( drink
'

,dw.in?-iiYlKo-us)nsk--'=tnIolwiHolwi''Es)+lWrYTo1wk'"E)ohh":DE.%""

µ÷k
⇒ Koco,≥k%, we only need K

'

"⊖w,≥1◦I !

matrices

"°"
1k¥)→=ʰÉ

. .
0k¥.)olz¥•)=&Éri¥⇔↓

"" ""ᵈ

Idc we will write K◦%, -- F-1k¥;oµ}+ʰÉ= . " o.io,
- F-{K¥⇔}

whelk
g.

= olzi.io/zwY) to get cavitation bond on

k%, - F-9k¥,}



theorem Matrix Benskin Inequality

Let 2- = Is
j= ,
j ,

where Sjnriid with E { 5;} -- O tf.

and 1/5,11%4
↳est agenda
d-% ≤ L .

n

Let U= next 11€, #{ spit}/t.pt/&...E1SjTs;3Hop} .
Then

, P{ 112-11
,

> t} ≤ e É3
For " S;

-
- Ik

*,

- # {K;!É,} ⇒ Its;Hp≤ 11kt call;m≤ In

£"↳
, U≤ can IT {11k¥,- # 1k¥,} Hop > t} ≤ e- ÷

ʳtᵗ=Fʰ

⇒ 11k¥, - # {k¥!,}H≤c=[ with high probability .

So
, k%, concentrates well abottk mean

. We now want to show

the result for the erpeektia .
We WTS that if

F- { K'¥,} ≥%I ⇔• 0 is not poly
• i%≠ is if • =p to,B

⇒
(#{ olw"!%)0(w

"?xj)}%I
• 11×41=1 Ya

Note that we can move from expectations in space
to an infinite

dimensioned Hilbert space H:{F-a} s.t.7.f.LY/Rn;e-Hlw'
""2) ← inner prom" " " are

expeditions over W
"

(Also, H -
_ {f. → 1121 #{ flirt} <a})

so
,
it
gives F-{ k¥a}=(Eats )* where I-%01w.is)
⇒ EEK"=[⇒

" ⇐
"⇔ "

] is a Gram Matrixi
,

-

'

.

theorem: (Gram)
for a Gram metric A- BTB

,
the following are equivalent:

(1) A > 0 (2) detA>0 (3) vol ( Parallelepiped ({Bi}))
"

>0 (4) All rows {Bi}
A- is PD rows Thet generate linearly independent

A



We want to show that {ELI , are linearly independent in H,
as this will gie us that # { K'¥, } >0 by the above theorem .

As usual
, suppose that [ g.I, = 0 in It for some Ca's .

2=1

We want to show that the implies ca--0 V2 . Now,

[ C
,
E
,

= 0 in H ⇔ V-felt
, § call-In .FI#-- 0

2=1 ✗ =
I

⇔ V-felt & gE{ 01Wh)fCw)} -0
2=1

Since the Hermite polynomials are orthogonal w.at. weight measure
e-
×? we can use Her as an orthonormal basis for It to decompose 0 :

x

Oct) : & 0¥, Hjct) @ non -pols ⇒ or.≠o Kk)
j -0

Lets be arbitrary . Since our assumption holds V-felt
,

clearly it holds for {E.Cw)},? , , where fµ(w)=↑Hµ(w .

The assumption gies n x

b-KEN
, 0=4.ca#-E.E&r..Hilw.E)-f;Hnlw.xj7 }
*ernie

mq(Ei✗Ñpigs:÷É I
✗=L

As K→x, we fid that II.⇒→ Sap ⇒ Cp -0 .

This line of reasoning holds for all B, and so all the Ca's are 0.

This means that the {EJE , are linearly independent in H .

So
, by the Gm Them. # { k%,} -- Gran /{EJE

,
) > 0 .

Since Kat
⊖↳,

concenluks well about its expectation and Koco, > KEL,,
we achieve the result that the NTK Koos is PD at t=O

.

☐



lecturelOIR-NTksendsf.to
Recall that we consider the smell example

2-411-1=2-2710-(1-1) = ¥ w :'(tlolwi"'lH -2)

with W!"~Unif(C-1. D)
,

Wi
'"~ NCO, -1-7

,
Holla

, 110110,1104/• ≤ 1
.

We inspect gradient desert on MSÉ

0-(1-+1)=0-1+1-380-210-(1-1)210-1 : ¥ 17%10-1 - %;]
Assume the following :

+
freeze 2ⁿᵈ

0-4-7=-3%110-(1-1)
,

WY)CH= Wing laser

we still have the NTK

Kant 1%-2=710-1+17)%•¥Y⊖c+D)
mxm Gram meth

Theoverallgoal-showthetw.h.p.ly/0-CtD1--I0
Last tire we split this into twosubpwble~s.li) 7%-0 sit

. Koco, ≥1◦I w.h.p.lko.io, is PD, showed this last tire)

Iii) Koch ≥ I tt≥0 ( Koen stays PD
,
show this this tie

In other words
, tody we want to show

V-ts-QHKo.cn - ko.io/lop ≤ ¥



112
# Paras

Theideaisasfoows:(Duet. d.)
← stay ¥¥Tso✗

(1) 110--0-10711 ≤ Slam ,%
,
. _

.)
⇒ 1) Ko

.

-Kaal!} ¥ ← Kostis
positive

We WTS the implication and tht
IFthe premises hold

.

(2) While Koen≥# I
,
L(0-(1-7) decays we wait d*≤ S so that we

exponentially
, 11%+0-4-7112≈ Ict) new leave the box of sites

so Hot IN will give us K⊖c+, ≥ E.I.

We first show the inpliatrn in CD
.

he : let Selo, I] . If Hi, 11W!
"
- Wi
">10711 ≤ S

,

It
pours don't

then I/ Ko - Kao, / top ≤2mschensetoopjndikoinstys@nE1ProaIWehaefkdij_tnf.Iwi%ilEa. . otwri" . 014k¥;)
Note that because 0' is bonded

,
we see that

WEIR" 1-70
-(win ;) 0-(WE

,;) is 2- Lipschitz.
To see this ,

bonded to -(Wiri) •TWI;) - o
-CWI ;) OTÑE

,;))

&!= /6-(was ;) -0'(Ñx%DotwÉ;) +010×2;)@TWI;) - Olivia;D/
≤ 211W - ñll

←
largest diff .

Thus
, HK.o-ko.co, //• ≤21

.
Lastly

,
since 1- c- 112

"

? I / All
,
≤ mllAlla

⇒ 11kg - Kow, / top ≤ 2ms .
☐

Corollary: If 11W
,

!"lH - w!"/0111 ≤ Ffm Ht≥0
,
⇒ Koch ≥ I ltt≥0.

The tells us that we wish to set D= Fm



This
proves the .

if 11W
,

!" /H - w!"10111 ≤ ¥mV-ts-oird.EE.

⇒ Koch ≥ ¥ I ltt≥0.
Now

,
all that is left to show is that

110th -010711 ≤ 171%0-671/ds ≤ S* for sure S*≤ A- ^¥m
With this

,
we can use the Corollary to then tht Kong step D.D.

We now show the premises.

Lend: fit≥0 and suppose that Hs 't, Koy, ≥ III (*)
If Ko stays PD.Then V- sat

,

11W!"ld -Wind" ≤ 1*-2?! Hmparwsdoitd①too much

pref. We have 11W!" is - Wincott = 11 fide Wi"⇔dT / / ≤ fit / d-aewiM~ddt.tl
for fired i

,
≈

,
we compute

dd-yw.li?kt--zdw.inLl0-c~D---zdwii&-m.,..&(z-ii'cH-y
=
-

2- /¥'M -

ya;) Await He • is;)
= fnm.%12-iitd-s.it wi%!%!w↓¥⇒ ltdnew! " tell ≤ 2- [ Kittel - ya;lj.nl

We can use the Power-Mean inequality:

V-po.pt/tmj?,ajP)tPe(tm.&ajP)tp-w-..
→ 112µm LLOYD / / ≤ ¥210k))É .

Therefore
,

← apply portal because (A)
11W:"'H - Wi"%N ≤ If?é" deflate = ¥ .?÷} Last

= '¥¥÷ ☐

This tells us to set S*=¥¥±



Here is a quick proof of 121, which we used above .

REed-tlz-HH-y-r-3-ko.ca/z-HH-Dg-
To see (2) ( ko PD ⇒ LCH exponential decay) , noteThet

MSÉ

LCH -
- 1- (Mt) -g)TEND-g) ⇒ LCH = -2,1-21+1-g)tko.cn/z-lH-y)

(ko≥%H≤ -2- 1. ICH

⇒ ICH ≤ e-31ˢᵗ Lcd
At this point, we proved that
henna 1- 11W!"/H - Wi">10711 ≤ S ⇒ Koch ≥ -1gI &

henna 2 Us <t
, Kasi ≥ ^¥I⇒ 11W!"ls) - Wildcat/ ≤ d*

Suppose Thet As ⇔ "
< Em ⇔ ns

Deth 1-
⇐=
if { 1- so sit

. Koa, ≤¥1} ← first tthl-NTK.sn't PD
enough

tj.int {to sit. 7; c-{b. in} sit
.
11W;"1H - Wincott > s*}

first test. weights grow
a lot

1-* = mm {tats}

We claim that t*ne• .

7.Pva Suppose Bwoc that t*co .

Case t*=ts ≤ tie
the
,
V-t<t*

,
we here 11W!"lH - Wi'"CdH≤As €7

"

Koch ≥ I
→← by definition of t⇐

.

Cases: t*=tk≤ ts
Then
,
V-t< 1-*

,
we here ko.ca ≥ I 11W!"lH - Wi

'" call ≤ s*<1

→← by our definitions .
This
, 1-* = - .

☐



So
,

we showed that the weights always stay within A and

therefore that the NTK is always PD
. Applying pert G) as 1-→ no

,

we have shown that Ict) → 0 !



t.ec/-unel013l--KernelsDef:-hetRa1Rd
.
A kernel on R is K:D ✗R→ IR

5.t.lt É
,,
.. -, Én

,
} ER, ta,, . ... are IR

• KCI
, g) = klj , E)

• K is
"

positive
"

⇔ &
i;= ,
aiaj KCÉ,É;) SO if /tall -1-0

We can think of K as a infinite analog of positive definite
matrices .

Efi If R finite /É
, , . . . .int/Rd),kc-lRk+k.KCEi.E;)--kij

⇒ • K is symmetricK

• ¥, , aiajklx.IE;) = aitkoi >0 if 2+-0

2) AIR? KIE
, ;) = (E.5)

• dot product is commutative
N

•

= ,
aiajkcx.IE;) = It f. a; ¥112

3) Read , k(E.g) = e-
"⇒"Hot

The general case is defied via feature mops!

←
arbitrary Hilbert

space

D# The feature
map I :r→H is given by

KII
,
5) = (1-1×7.145))* Rd

whee r÷→"¥T≠C]I (4,1×7,41×7
, .
. ..

)

% a

vector in It of coefficients

in the ONB

where µ;} is an ONB of It.



Theorems : Every kernel cones from a feature map.

Proofs (R compact, K is c)
Fix MEPCR) as a subset

,
and let Tr

,

:[(R
,
v79 be defined at

.

r
ans measure "

☒ f) (E) = II.5) f-(5) dµ(5)

Note that I
,
is compact . We can apply the spectral theorem :

Tk= §
.

]; U; Yjt for an orthonormal basis { 4;}

Moreover
, KIE

,
.) c- ill,µ)

x

⇒ tier
, K↳j)= a ;W¥l5) ☒ ONB)

Further
, 7-4,1×7=14,4;) (E) = f. KEN 4-15) duty)

= ,ÉaHr¥EuH
= ajlx)

⇒ KIE
, g) = 7-4.1×74.1;) = ( F- 1×7,1=-1577≥,

where F- 4=1--1 i -0,13 . . . )

so
,
7-1=4 with the ONB {¥ } .

D

DI Given kernel K
,

the reproducing kernel Hilbert space IRKHS)
is

Hr,=Éi(rid = {
◦

a;Ft; Yi taek}
⇒ (f.g)µ

,

= 4T
- '

f.g) e = 4T¥ f. Ttg ),

propert.es#-RKHS:-
① K(E.) c-Hk at .

•

K in LIKE
, .lt#.--nfE7iYiiHliH.f?..7nYnli)tlnl-7)µ

,RKHS

= [ lljlx), I;]" Hi, In)Hr
,j,K :O



= I Q-HY.IE) 7.7*7;'t -7,5" (f-if,),
j,k :O
✗

= {Til;lÉ=KÉ :)
j:O

② V-fc-H.rs
, (FC)

,
KCI .))

,
( FC)

,
F-(E) ¥=_ f- (E)"

reproducing
"

proper's so
,
fi→f(E) is bounded ( linear function's in Hilbert)the equates

p.it
evolve""

spaces are bounded
to <" """

Note: you are on RKHS if and only if point evaluation is bounded
.

③ (KCE
.
.)
, klj.tl#*--KlEy)

N

④ Hu is the closure of { { a;K(E;;) }
5=1with respect to

(✗(%) , KCET .))
#
= KCÉIT

This means that we can describe Hu
,
via a dataset and

function evaluations {HE;)} .

To
recap, we saw an equivalence
"

→ En :r→Hr.

1¥
,

# KIE
, g) = 8%1×74-1;) where { 4;} ONB f-

j=o Hk
.

MLAppliat
Given E- (14,14

,
. .
) with Yj :R→R, we wish to find

the function a

f(I;⊖) : -0;Yj(E) =/⊖, -1=1×77 that minutes

llflii.gg:) +7110-115
•
•

orthogonal



Optim l.la
,

b) = 's la-bi ⇒ 1,10-1=1114--1-1-01172110112
Yongwei method

We have ÉL
,

= -F- (y_ -1=+0-1+70
and so

go.fr, -0 ⇔ -0=(1-1--5+21)
_'

EY

Ét
, ER

"# + """→

0ptia Let's write Hi
, ;) = (Eli), Ely))e

,

and deal with
kernel method things in Ha -_ span { In} . (So, I is ONB for Hu)

.

We have
✗

HE;⊖)=# ⊖; 4,1×7 c-Ha
,

110-11? = / If /¥
⇒ f-
*
= a-g- in [ llfli:), y;) + F- 111-11*2

,f- c- 7th

i m

{f⇔} -_ {LIKE ;) ,
f)

ii.

Let us consider the (fnik-d.in) subspace of Ha along the
training deksebg.im by II : Hr

,
-7 Span { KIE , ?}

m

and so LIFE),y :) depends only on Tff .

The minuit-ten problem is :

f-
*
= arvin LIIIf) + ¥ 111-1171

,f- c-Hr
,

Ham 11M¥
.

= 111741*2*+1117×1711,5
,.
.

Since I doesn't see 1T¥ (it only sees function eval. at data points)
,

m

f-
*
= argmh

"É¥¥?
4K€:b:)+71k¥

.F- I

m

We paravane f-1×7. & a
;
KIE
, ,
. ) and solve for lla

,

b) = Ha - b)'
5=1 I



⇒ HE;) :(KII. ;)
, ,Éa;K( ii.7)*

,

= .ly?.a;K(xi.i;) = Kai
n n ¥ ¥ -

⇒ HFH,%:-( ajkli;;), aik 7)
it
,

m

=L
i
,;
:c aiajk /Ii;É;) = ñTKa

⇒ a-
*
= ansm.int/H-ka1li+Iitka

ñ Faire
so
,

Ña= -KCY -Katinka -_ 0 ⇔ ñ*=(KAIT 'Y

⇔ f*=kñ*=klk+7I"Y
¥#É# deter

To sum
,
kernel methods for a green

kernel K yield:

* Ink - feature map

* Ha - RKHS ( Represent Theorem)

* f-
µ
- Gaussian Process an R with

F- {fr.li)} -0
,

calf.de?),f,..ljD--KGj)

* DPP He an R



Lectured Quadratic Models
Lastthe-_ We considered linear models

2- (x;⊖)= ITH⊖ = §. ⊖; 4,1×7
¥

0min

Yer All solutions to 110-7=4812-1%0-7 -y;) = 0
÷,

0-c.IR
"

are solutions at F-ETQ -
- EY

{F-(✗iTQ=y:}

Today we study quadratic models
←
F- G) symⁿʰʳ

2- (x; 0-7=1--01×50-+4 #G)⊖ =

◦ 0-jlf.li/)tEj&j,..o0-ii0-jifj.,jz(×)
we notate this via Taylor expansion

f-(x; A) = flx;D + ☐of / × ;o)T-0 + { ⊖TH⊖f(×;D Ot . . .

With the same loss ↳ (⊖) = & { (ya- 2-(±;⊖Ñ
✗ C-A-

and the goal to find minima of La(0-1 to 1ˢᵗ order in E
.

Noten : We define %z(×; -07 ≤ EE(×; -07 = F-↳ + { ECO)

t"
To solve D⊖La(0-7=0 to first order in E

,
we here

to Lalo)=a F-%;⊖) #±:o) -ya)
(1) = { (Ehs) +e -1=1×10-1×181250 + {0-1--1=1×10 -g.)

✗ C-A



free iterating
let's write

⊖*=⊖F+e⊖±+ Oley , where ¥É=¥Y

So
, 0--81+10-1 g.us

0= & (F-(g) +EE(⇒ (⊖F+eÉ×(¥lÑ(o-T-eo-t-i-ECO-FFEWO-f.ge)
DEA

zerothorder
terms ⇒ o.ci/&..nEFiEEiETo-f-oIgyyjy,+hisis0 because

F-ITO?EY
ai

first "k⇒ 0 = {µa¥(✗a)( Iolx#
F-
ya) + I ÉI◦(xD Écxa)⊖]terms

E
'

✗C-A

+ { ICxd¥HTÉᵗ
✗C-A

¢
equal
~, % ,pred÷÷ñ

⇒ C Its)⊖Fyj & E(✗a)ÉIÑÉ+{±EW(o-FTI-k.DE
✗C-A ✗C- A

✗ c-A

+ { F- (xD #(g)To '=

&ᵗI¥
⇒ ⊖

't
:-( F-E)

+

LIE /xD ✗④f)TEL,⇒
pseudo - inverse ✗ C-A ↑

eiemtuise
milt .

Interpretation
(1)We can write (-07T¥ / ✗a)É=( OF, -1=1*70-7
which is almost

F- n.tpos.dk//O-f//2Elxd-
(2) Also, ⊖I= ☒

1-

(Ey
trashed Y via these coefficients

so
,
if we had changed YEYI

deform Y with useful

features - future learning !

and solved last -Savanes with a linear model
,
we
would get

the same predictions
⇔

G-Don nonlinear models learns label features to run linearmodel on



(3) Note Thet
(EET)# =

-f { F-(g) 10-7+-1=1×4
✗C-A

only determines ⊖±
on span { EH} : so, it is unclear

what happens to 0¥ ← this man depend on

apliritetren
method and

allow w ¥3s
to

When we do gradient flow ( continues G-D)
,

9-= -3%1^-10--7
2-(x;G)

Recall the effective features ¥ /×; G) = F-(x)+ EEG)⊖
We can write

F-Elx;⊖+)= EEG)+⊖Fᵗ
""#

+ 0 / e4

Incs :

• IE charges !
• ÉEcol(E) ⇒ ¥+8k; e) c- span { EHEH, - c-A}

Moreover
, since -0¥ solves the linear model

,

dat OE dat/0-1--0*7=-3 F-¥T!F;*;
⇒

o-E-q.ie?tIF-t(0--I-o-*)Thhhhd-+IoEh;o-+7-.eEH(-zE#710-5=0*7
= eE(×)(-zEET)é3ᵗ¥É(⊖É⊖*)

⇒ F-%; 0-+7 - F-%;⊖◦)=eEH(I- ᵗE¥)x( 0%-0*7
At 1-→→

F-
"
(x;E) = F-ᵗ(×;a) + { F-(x ) ( 0-5-0*7



Toneapi
① We got the NTK EÉIIET@ all times

② Formula for what happens to ①
*
to leedy order in E

on span{ Io}
←what hpres to 01 ?

±E
Next day ⊖+ = -3%14-0+7=-3 ¥ᵗ(✗i. 0-+7 * ttlxi, 0-+7 -ya)
that"

day = -z & ( Iowa) + {EH /I - e-
" *E)10%-0*7)

✗ c-A

dq+⊖I cave's
+ ( F-(+a)TO-tl-EO-FI-h-IO-t-y.nl

↓
w/ E§T⊖ -Ey

⇒ 0-+1=-3 { Io /⇒ INTO+1+-1=1×1(I- e-3ᵗ¥¥) (0-5-0*71=41*71-0-1 -g.)
✗ c-A

+ KEW (0-+7+-1=1×1 OF

Projecting onto the orthogonal complement at Spn { ¥/xD}

⇒ day ⊖É1= -32 ÉT±)(I - e-3ᵗ¥¥)(Of_a.)(F-Gitai -%)
✗ C-A



#11/7
Recall last time: gradient flow on quadratic models

L ↓

(0(t) = - 002(t(t) z(x;0) = TCO +EOTFLx O

where 2a(d:@nE(z(xc;0) -yc)"

Note that gradent for () is the lint 370 of

gradict descent (##0(+ +D = 0(+) - zV02(0(+)

We have seen that a small vs.T large can melia qualitative
differences.

*day: We consider Targe" y in quadratic approximation to 1-lage
PeCU rets:

0: DeLU
~ Ad inputz(x,t =ex), us

dy m
↑
ER weights

Writing the quadratic approvalated at to tIRdx

z(x;t) =z0+ 0..(n, - a.(0)) +Gro+n.SoLTITEcco-

tIRd

where z0= E(x;E(0), 0,: Uu,E(x;0(d), 1= 6riz(x;O(0)
H =6 vi Ouiz(x;f(0)) noseconddematein ReLU assumption!I

Goal:FollowingEvetal, weconsideonetraining detpoint isin
Explicity,

1(n,t = 180k(x; 8(1M=E,llOn,z(x;071P + (6v,z(x;0))
NTk

T

is 1x1 adx(t= x(u(+),v(t),2(t) =2(u)+),uCt)



We have the following "phase diagram" for optimization :
"

TI
"

[Zhu] when no> I

0c}<} : optmzetren
"looks liner" in the sense that

f.(f)≈ c( 1- e)
ᵗ
,

14-7--16)

Éa ' } < ¥, :
"

catapult phase
"

TÉ if 1-c-[O
,
T,↑? Let)≈C / + e)

ᵗ
,
act)≈7Co)

this looks
like flatter

exponents-1} É

loss settles if felt
,

f-(f) = ④(m) plateaus, 1.(1-+1)<11+1

loss shrinks if te [Tz, a) : LCH≈ ( 1- e)
ᵗ

,
I (f)→ 7-(a) smell

exponentially

¥µ<3_ : optimization diverges [(f) ≈( He)ᵗ tt

-ntepnHÉ↳i.
* Ict) = ( Ite)ᵗ ⇒ 0-11-1 leaves the region around 0-67

* 711-+17<74-7 ⇒ find a "flat part
" of penile space . Since 7%1

and the NTK (1) are is◦ spectral, H⊖L= 00.2-1%2-7
has the sane nonzero cigarettes as ] = (0oz)T☐⊖Z
⇒ mex eigenvalue keeps decreasing

The teysp is to derive a closed set of equation for two
"order parameters

"

,
which are

reside

'→f
2-(1-+1) - y

= f(zct) -y , 1 (t)) }
coupled Mersin
of two

parameters
NTK → 111-+1) = f- ( 2- (t) - y , 71+1)

fire-Proof2-(1-+1) -y
:( 2-CH -g) (1-374) + "44322-4-112-14 -y)] /1)

we will prove

His
at the

1. (1-+1)=1 (t) + 311×112end To /HH
-yT[311+1 - ¥¥;] /z)¥

part



First
, though, we will prove the theorem from this proposition.

(1) Since most
,
the two quadrate tens above scale like - In

unless the residuals scale with 2-CH - Fn

(note that we can think of e from the
previous lecture)to be like tm ( the thing that scales the Hessian

⇒ early dynamics ( before 2- (t) gets too big) are ahuys ≈ liver
or convergence

(2) So
,

if } <%, , lzlt) - yl ≈ (e-
1- corn ltt , yielding the first

phase"

if you took her and are driven linearly
, you

behne linearly
"

(3) If 3 > 2-
>µ

,

we diverge linearly with 171T
,)l≈(E~fn ⇒1=0/login)
Ict) ≈ -7107

Around t.me f-T
, ,

the recursion in Prop .☆ yields
111-+11=74-1+3 " [3110-4]

So
,
if 32,7T¢, 711-+17<74-1 decreases and I 1-314-71 gets smaller.

⇒ 2- A)-y stops growing until 11-314-71<1
,
and we re-enter the

linear
regime with Ict) -70 exponentially .

This yields the result ! The residuals and NTK fight each other

in the quadratic case.

Now
,
we prove the recursion .

P-td-r.se -

Recall that

2-1+1=2-0 + %? /u:(t)- n:(d)+ 2? (vitt) - ✓i'd) + (u:(A-u;ÑH;°(v:(t)- v:(d)
Taking a gradient, Pu;zlH= Pu?+ H:(vilt) -v:(D)

0We can also write out
Yu, Pu;[

,

¥41070K.at#dJf--m=dFVildTku:ioFxs-0}



Also
,

du;ZlH= Ju
,

? + lu.lt) - u:(07TH?

and ? -. Ju:[ ¥4100K"))="¥ ✗
{u.int≥o}

The mixed derutne is Hi°=¥dH{u;loI≥o}
So
,
we can compute the residual

2- (1-+1) - y = - y + 2-
◦

+ % (nicht)- n:(d)+2%(4.11-+1) -wild)

+ (

ulti-D-uloDTH.ro/v;ltrD-vicoD---ytz-°
+ ⁿ On? Kilt)- wild - 3%111-1) +2? /wilt) -wild - 32; LCH)

+ ((u:(t)- nico -3K; LCH) H? (v:(A-vico -32; LCH)
= 2-1+1-9 -31 :& Ou:( On;⇔IzcH-D) +2%(2,44-1) 12-4-7 -D)

+ u.tk#H?lv;lt1-vicoDl2-lH-g)+(uilH-yicoDTH?ldvi2-ltTD]
1- 3212-11-7-g)'✗ (Ou:[za-DIH.hu#ctB--zCt)-y-lzct7-y)z1(Ht32k-lH-Ix(

☐ui⇔¥¥÷;]
= 6-CH-y) (1-314)+14×1,1 zzzct) ( 2-(t) -

☐



Open problem for quadrate models !

* 0 ≠ Retell
,
one detepo.it (perhaps 0 S.t. O

' monotone)

* # data ≥?
,
d≥2 ( Zhu et . al do D= ! # data --2)

* 2- IT
,
)~Fn

,
same as mean field sailing ?? ☆

rᵈ⇔↳*ᵗʰ "→
fuehrer alpts

Id future

learning/catplt
??

* what happens for E
,
E random?

* Do cubic models have another "catapult phase" ?



Lecture.
-

Implicit Bias
Re Last tie we considered 2-(x;0-7--8450-+2=-0+7-1×10

for smell E expansions to- GD and GF.

Todg:_ [Woodworth]
elementwise
squareConsider quadratic models at the farm

⑤ =/ c- IR
"

where 2- (x;0-1=4, ;×)=(0¥- 0-02
- ,

✗ )

= 0T. ⊖ + 2z⊖T(Diaglxl0 Diag?) ) -0
-1-0--0
,
E-↑?

✗

Die;D
,
E--2

The motrin for this is that we are able to express all linear

functions with
a nonlinear parametrization .

We tram by gradient flow (GF)

0-4-1=-00.110-(1-1)
,
LCQCH)=&t(Hxn;ot -yi

n= I

① G) = - ( ;) ⇒ fold : -0%10-0%7=0

{
""
"

Rd
Ttequesion : As a function of "scale" ×

,

' riff arm!É
a.

"shape" O_O
,
which minimum on I does

do:S %" GF fid?
auadg

de'

(Mean - field is a -20
F- {P / (xn.BZ-yn th} Nyk penetration , < →a)

"
Implicit bias

"

- Set of all irtepolnts,
- perens that perfectly At

the

training data



theorems If GF with some initialization converges to a minium loss

of L
,
the minium is given by

p* = argn
" Q
- ⊖.
(G) subject to ✗TA=Y

.

2,0-0 BE# implicit
"

bias

Qao
,

is strictly convex:
d

Quist. { ñÉq(¥%;)f-I

whine

q(2-7=2 - 4+zT + zarcsinh (E)

Reduce
nonlinear op¥m7atia to liner optimization
with explicit penalty!

HIE :

(1) This says thet we have implicit regularization Qa
, -0.

Sit
.
GF

returns
argmn { IKAW -

y-7+72%43)} with -7-20
"

invite loss first then regular iter

(2) +→ 0 causes Q
- a. (B)→ 11111, implicit L, regularization

"

feature selection
"ˢ,,*⇔µ,⇔.⇔✓-(3) ✗→ • causes ñQa%(f) → tu & A

"

i. , Fi

(4) For ✗ c- (0,07
,
Q somehow interpolates between the two

.

rdxN

ᵗÉ €1T eknetnrseProo predict

off
¥1: we here 0-1+7=-2 ( (×, - (H) ⊖ci"

write

en
where Flt) = ("¥

)

) , f. It)= 1pct),×n) -yn residuals
rwlt)

solve henna ? '
diff
=

We solve

E.•iñ=ÉÉosny÷ÉÉ÷%,er



a-ᵈ%emna Show lemme 2 ⇒ Q
- ⊖. (f) as stated .

pnofaflemne.tt#Fixw=(w.,...,Wd)
.
We can see dw

,

(w°? × ) = 2%4
,

⇒ Eli?⇒ = 250in
Thus

,

N

⊖±lH= -%±L(0-(1-7) = - rnH%(B. E.) =
- Érnct (-0%0--9×3)

N
- N n='

= - { rnH( ±2×5.00-1=(+17--4%2%141) 0 0-1=1+1
n= I

= (2 (±✗)Trlt))③ ⊖± (t) ⇔;
"

-2×711-1 00-+1+1↳ 0-4-1=(8-+0-+41) = ( z×,# ◦ ⊖. ,+,) = -2¢ ×, -✗7%11%00-41¥+0_ It) Treat
☐

PnoafofLenne2:_

We have flt) = -0+04+1-0=-0211-1
By lemma 1

,

①µ, ⊖,,@ e-
2hr, -✗ITS#lads

⇒ ⊖± (t) -. ✗ ⊖
,
①
e
-1-2×+50%4) ds

⇒ pct) : 2%02.0 (e-uxtsircdds.eu/Tfirls7ds)--2a~0-j2osinh(-hxTfotrls7ds)
☐

Note: -4×1-1
-

ricsds c- Col (✗T) is some veto- in data span

This moves us orthogonally to the intepotent hyperplane I, acting as

a Lagrange Multiplier.



Proafaftennars:
suppose Ba,*⊖

.

_= Ba;%(a) is a global minium at L .

⇒ ¥
.
.in )=yn ltn

Let's write f.*◦ (g) = 22%02.0 smh (f) for notation

The KKT conditions (optimality for Lagrange multipliers for

P? arqjnqaq.CA sit . ✗A-Y

are ✗p*=Y and 7.u sit. %Q✗,%(p*)= ✗To
grad of constants lies in

column space of ✗ (i. e. is

orthogonal to interpolative)

But if we have

⑦ Qa,%(I. a. (✗tu)) = ✗Tv
then KKT constants are satisfied

.

So
,
we went

☐Q evaluated at f

④ E.%) ◦ E.% = Identity ⇔ ÑpQa%(f) = fills>⇔ Qa,%CA=É(f;))
since f- •

◦

= 220=02.0 smh (f) , we f-nd

d

Q
,g. (A) = { i⊖◦?q(¥;) whee alzt-2-ui-zi-za-cs.nl (E)

i= I

☐

Open problem for quadrate models !

* Implicit bias of general quadratic model?

(how does optimize & E.E intent)
- 10=0
, I general ar 10=0, I~(×) s.nl/-eneoslyduganel.2-abk or ¥ expenses in E

* Catapult phase for general quadratic models

* Convergence of gradient flow



hectwellllh-T-mplieil-B.us I
N

Consider a detect D= {(x
,;y;)} ,÷ , , ✗iEÑy : c- {± I} ← same sign

that is "linearly separable
"

.

i.e. 7- b.
*
c- IR
, w*e1Rᵈ s.t.y.tw#i+b*)s0

57
O O

O O
◦ ✗ There are no many classifiers

,
since we

0 °
✗

✗
✗ Can scale w* and b.

*
to get the same classifiers.

supports ✗ ✗

hyperplanes
-7

¥:{× / w*I+b*=o}eC,E
set at all
correct
classifies

Go Find implicit bias at GF

wlt)= - 8L(wHD
turn off{ L(w(A) = Elly ;wI;F+ʰ "" where llu) -_ e-

"

, logic /+ e-4, . . .
ii. I

mars.us#-tEd-e
Given a classifier ✗→ ylx)=sgn(wT✗+b) with (w

,
b) c- CD

,

the margin is ✗×,y,
/w
,
b) = "margin on (tiny:)

"

=%lyY;,¥""Yi÷¥
◦
.
-

'

± = dist /✗i. decision boundary)

we define the margin on the dataset

by 8,1W, b) = mm ✗
↳b)c-D (✗i.g.)

(↳b)

We define the max- margin classifier WTI as a

classifier that marmites met 8pm" ( #)④b)



Note that Aw
,
b)c-Cp

, y-iw-y.be) is invariant to

the transformation ↳ b) → Clw, b) for sane C> 0
.

So
,

(w
,
b) c- Cp

we can find (E.5)c- Cp sit.

☒v. b) = 8pct, 5) and min

i
y:(II.+5) =L ⇔ y ;(5%+5)≥ / ki

so
,
*) can be viewed with the numerator of 8D as a constant

in the form
my ¥, , st . yicwtxitb) ≥ / lt:

⇔ mm tzllwlps.tn, y;(wT× ; + b) ≥ / it: mat
- m→
"

classifier objective (##)W

Since this is Carex objective our convex region, we can fid
dual

variable
a dual problem in ,p#

cash""=Rᵈ
↓

L( wjb, 'a)=tHwH2 - Ea:(y:(wtxitb)
- 1)

i=i

So
,
solutions to (##) must have

81=-0
, y:(wtxitb) -1>-0 ai ≥ 0 a:(y:(wtxitb)- 1) =0

[
↳→ panel feasibility dual feasibility boundary constraintspoint

( we are tight and on the
^

" boundary at either primal
or dual]

> ⇒ 0=8wL=w- Craig:X;
,
0--8,1=8 aiy:

it i=i

The boundary constraint girls ti
, a :-O ◦- 8(✗;,y,(w,b)=l-

So
,
deke f- { i / a :-O} ⇒ { Ii lies} we are on

a-
at

THE the supporting, blue

hyperplanes
in

The gradient constraint g.us w= aiyixi c- span {xi.it $}.
So
,

the mix - margin classifier E is defined by the support vectors! If we get
new
,
easier deter

,
we don't change anything . Particularly

,
for any new point É,

y(I;ñ,5) = sgntwtxi-57-sgnllaiyix.tl/+5)ic-5hdFpodot
kernel !

hopefully small If we replace
with

# of support feature representations,

vectors we get kernel
sum .



theorem Given
any init, as 1- → a

• I/ wall → • • Llwct)) → 0

• YwY=¥⇒,+0) where ñ is the max - margin

classifier
find a

half- space

PIF: £ all the points are
in

First
, suppose

WOLOG that all points (x; ,y:) → (y:X; , 1) .
This works since we set the bias to 0.

Note that GF and the definition of L gives
n

w*twH=w*T(- iwflwlt))) = - w*Ty:✗il1wlHTxiy:)
uniform boundn Itu-t _

= -& (y;w*Tx:)l
'

/wlttxiy:) > 0
i-1 -

ÉÉ>0 because

w* c- Cos ll .) -e"

so
, if the date is linearly separable, w*Twlt) > 0

Suppose BWOC that Hult)H≤R Ht≥0 (bounded) . Then
,
78>0

s.t.li/y:wltFx:) ≤ -8<0 ⇒ ¥w*TwlH ≥ Sn inly:w¥x:)
This is a contradiction

,
since the derivative is uniformly bonded Fom below

,

and so must diverge. Therefore
,

I / WITH/ →x

Now
,
GF grants that ¥L(wHD= - I / ÑwL(wltNP

≤ - (w*TÑwLCwltÑ
Similar logic gives flwlt)) -70

.

Lastly
,
let rlt)=wH) - wnloglt) - ñ, where

.fm?w:intV-ic-F,e-+iTw-=a
:
⇒ w^= { e-x.tw,

6T¥
*
""

living $
setyi -1 i=l
cutely

let ⊖ = mm ×;Tw^ go {min non - supported margin
i¢-$

We want to show that 1111-711 is bounded
.

We can do this by show.} the derivative is integrable .



Now
, tllrlt)Ñ=rH))TrlH=f☐L(with - f- ñ)TrH

= @ × ; e-
w#i

_ ttw)rlt)

=/ yet -
'" lost" -⇒Ii

_÷
,
e-×iTw× ;)Trlt)

←
margin!

=/§
,

×:(f)
≈

E
#ie-w-T-i.EC e-×iᵗwI;) a)

i c-$

Collecting lens with it $

ie.s.tie-x.tw/e-rHIi- 1)Try±e
= ¥ [ ×;Tr(+) e- + ' (e-+it't)- 1)
ie$=É!

For i ¢-8
,

11C * (f)
"
"""⇒ _ ""t.tl ≤ n - c.¥ ⇒ [¥+11-1+1112<0.e

i¢$ ↑
⊖> I ⇒

bounded
integral

so
,
Hrltll is bounded ⇒ w ~

Hwan
-
-Y-w.IO/e!I-)Th#: ☐

- Larger gradient signal for sull me-gas
- optimization mais in support unto- directions

◦ for these directions, the aptinitetren his unique solution

(Cov, Rew, ang) are pas . homogenousRema
1) This thing works for any hÑÉiÉr (scaling changes score by a)

power of the scaler2) Convergence is slow ¥+1

0penprob
* Include a bias? * new losses? * quadratic models

Rper:InpbetbeesKsDaspwbkdd-✓



lectrellllb-SGDT-mpl.it Bias

suppose that we are given a model 2- = (x;⊖? ⊖ c- IR
"

which we train by SGD :

[ (E)=±ÉlÉ;o) 0-(1-+1)=0-41-381%-1
K:c

LB / 0-1 = FBI §
,
11¥.es} llxi, ⊖) ✗

v.
c- B. up. 1¥ independently

Theg◦ We wish to understand the implicit bias of SGD.

tl : SGD prefers "wider miina " or
" flatter parts" at IR

"

Yaida
Yaida uses the dynamical systems perspective that -04ps,

"

steady state"

and for any observable 0: IR
"
→ IR
,

(010-1)=(6010--352%-1)]])
"flickr.tn/diss.natic-

"

relationship

where ( . ) is an average w.at. the Pss distribution, and [[ . ]] is
an average w.at . batting B.

The philosophy about this is to use FDR to

c)Taylor expand the RHS
(ii) collect powers of }
Liii) Compute properties d- the steady-state Pss

.

Def let I;j(e) = (2ⁿᵈ moments of EIB w.at. B) ←
Second moat

= [[20,1%-12%2%-1])



←
diagonal ternsLenm In the shady state distribution, are squares

4) (820-7)=0 Iii) ( ⊖ . 521077 = ⇐ zt- (E) ) ≥ 0
no net grad.at in shady state alignment is related to batch- avenged loss covariances

Pro Consider the identity observable 40-7=0-7
.

Then
,
FDR g.ws

(⊖) :( [(0--382%-517)=(0-7-34181%-733)
in
expeditionHowever

,
V-⊖ we have

[[82%-73]=11 'ñ,É×ÑÑK✗r.io)))
= ± § Ella; 0-7=8110-7 ⇒ C:)

.

So
,

(0-7--20) - z (8110-7) ⇒ (820-77=0 .

Next
,
if 010-1=1-20-7

,
FDR gives

( {⊖?) :([[ 11-0 ; -32%1%0-35)))
= fat -0?-3 -0.2%1%-1+1=512%2%-1777,1
= (10-7) - 31%2%1%-7) + É( [[ (2%2%-1))) )

⇒ 3(⊖i2⊖;LC⊖)) = ¥ ( Iii) .

Sunning over i 's
,
we get Lii) . ☐

Wei-SchwI
Typically man

,
and so there 7 n-m directives in which I is flat .

Consider ICO)=É1;(ÉEn) . The landscape looks like
"="

①=/ E. §)e IRN
↑# perms

drakes

directions the
At fixed É directing the loss

"'%Ég↓ loss is flatL
frater as a function of É looks like and invariant

a curved lardscpe with entropic force pushes

Hess
g-
(1) = 2

'
(E) °

) in
this directer whee

'
'

. we
travel along the Spie

° In toward flatter regions.



We have the intuition: É directions evolve
"

slowly
"
writ . E directions

sire -0 directions dr.ve the loss down .

So
, we assure ⑤~ /Pss and ask then about one step in directions .

This assures that É already equilibrates before substantial meant in
⑤ directing .

We sketch below sore helpful clans and tenners :

"clam Write C
;
= Cam, (20,2%-7,2%210-1) . ←

✓"i
"'

At late times
, C =L HE (2) 2>0

P~ Lol we don't prove this
.
Use it as a tool b- late- tho. D

Note For each i =\
, . . ;n , Iii = C-it (2%2%0-1)

"

≥Cii .
This is the relation between second neral] [ and covariances C.

Coolkryton (0-7)>-4-3+044
+
how high up

the walls we walk in ⑦ Pss directions

Pref: We apply FDR with the observable 010-7=(0%2)
. Up to 044,

we set (072*2)=2 (E;) by henna Iii) evaluated

take a component- wise .

¥420521 ; (E)) = % (E)
"

⇒ < 0--7=-7 ≥

←
""in

"

7-27:(E) (E)

⇒ ( ≥ za .

☐

Note that is what we do above
,

we think of ① as fixed as we

determine the overall effect of Pss
. Only after this do we consider

a step in É 'S
.



↓
# w.at . both IPs, and minibetehes

ROI F-{ tr(H◦=(2104-1-1)))) - t- (1%-1110-(1-77))} ≤ 0
So
,
we go

to places with smaller 1's over time (flatter region in loss)

we call this the entropic force .

Proof's Fix it 1, . . .,n , ÉCH .

We have after Eis
evi
""
"

in
⑤

( [[7- (0-(1-+1))=2;(⊖ )
← (Pssas

)
.
1-ke

-
she

= ( [[1,10-1+1-380=1%-4-177-1:(act)))) )
Taylor expand
= ([[-z¥ :(ÉCTD . 8=01%-4-77+062))))
= -

z ( 8¥:(EAD . BELL0-4-177+044
take devote
=
-

z 0%1,10-7+178105760=7; (Ect) +0134
j=1

Corolla]
≤ - q-zigz.co?ctD,.&..0o-7-jl-0CtD+olz4

Sunning this over all i
,
we get a- result.

Since we are riding up the walls ( see corollary),
we are moving in a direction to gie us man room to

ride up the walls
.

☐

(haHeyePnob 1¥

Suppose QCH c- [0,2m) .
We have the dynamics O-lti-dt-0-l.tl ± dt with probability 's .

The steady slate is gin by dPssl⑦=Éxd⊖ uniform distribution
.



Suppose now that we have the dynamics
± dt ⊖ < a

, }down b-Child - Oct) = {here

±2dt ⊖≥#

} fasten up
here

Tien are

We expect mere probability mess up top, siree we bounce around

the bottom 2x fester
.

The answer is dips, lot -_ 5¥, ' ¥
,

d-011%# + II. ¥ do-%>×

far away from the boundary.

The result we see is thet we spend less time where the variance is laser.
Corny beak te SGD, we have

⑤(1-+17-0-4)=-3 81%-01=-3820-1+318210-7- 82%-7)
TEÉ
GF drift

stele- dependent diffusion term

⇒ an implicit bias d-SGD is that
,
in addition to minimizing loss

(which the mean takes care of)
,
to also minimize 1- (((0-7)

We look for areas where the between - batch loss variance is

low
.
This can be thought of as finding flat/isotropic/nice regions of the spine

of the loss
.



Fill in Comtat
notes here



Lecture 11128- Entropy + Widths
-

First
, observe that generalization only makes sense given a priori

about the function f we wantto learn .

To see this precisely
,

note that VR ≤ Rn
,
m≥ /

,

there exists f.R→ IR
sit

. we cannot learn f from any deleset at site m .

Proo Discrete D= 1¥, Rj with n>>n and ftp.gi.i.d.ra-dom .

☐

We need better notions to talk about how complex a function is to encode/ learn .

class of
fnetrms

Def A mÑÑK is a comped subset of a Banach space (11,11-11)

↳↳① k={ f:r→iR / fetflxitlloflidx ≤ I } < [(R)

② K:{ f:r→iRl llflle:p ≤ I}CCIR)
i÷¥¥

The question is: Given any method for " learning" fek, how do
you measure

"how well
you did

"?

É ( Kolmogorov '30s)
model class
✗
to learn

Def let Enlk)=n" entropy # of K = inf / E >0/7 coming of K by 2
"

}balls of radars E⑧



Intuitions

① K compact ⇒ finite cover ⇒ Enlk) < x th

② Enck) -_ error in 114/
✗
of best n -bit compression of K

nearest
Kc ;ÉNe(f:) yields a bijection {fi} {QB

"

where fek ↳ ball eaten
- in K

def. at Enlk)

③ E. (K) typically can be computed as n -7ns
,
but this only tells us how hard

a function is to learn
, not how well a learning procedure does (not yet).

stablewidth.DE
An n-Param approximation scheme for learning K is a pair of functions

11T
"
pa-c- extraction

"

an : K→ IR
" X

"
reconstruction " Mn :P

"

-1K
• a.(f)

•

Mnlanlf))

⇐

DEI The error of (an,Mn) is

worst reconstruction
Ean.mn/K)--supHf-MnlanlfDHxerro-overfc-kfc-kDef:-

The stable n -width of K is

f. (K) = inf Ea.mn/k) best error we can do
an,Mn C- Lip-2

Note that ihitiey, Lipschitz ⇔ "numerically stable" in the sense that it excludes

space- filling curves . !
⇔

Fz•f "nearest neighbor" /
%



The amazing result is
that Enlil and £1k) are equivalent !

We
prove this below . First, recall the following results :

Theories (Johnson - Lndhstevss Lemme)
Let E c- (0,1) . For any ×

, , . . .,
✗
*
EX
,

-3 a 1- Lipschitz (and linear !) function
A:X -7112m sit. Viii (1-e) Hx; -×,- If ≤ 11A ×; -Ax;H,pm≤ HX; -×;)/✗
as long as m > % loglk) .

theorem:(Kirzbraun Extension Theorem)
If f:b

,
→ It
, ,

U
, ≤ It , is Lipschitz, then FF

: )f
,

→Hz sit
.

Flu
,

= f and /IF/I
,:p
=/If / 1

,,

Sam Lipschitz
Constant

With this machinery
,
we can prove both directions .

⇔
Theo-en-V-nf.z.lk)≤ 321k)

definition of
←

Enlk)

i
Prou fix n .

Choose { fi
,
ieczn]} ≤ K s.t. KE Neniklfi)

Applying JL on these ball centers with E-- k
,
k--2? xi.fi

,
we get

a : K-71123
"

s.t.V-i.j.to/Ifi-fj1/✗ ≤Half;) -alf;) / 1*32- ≤ I / fi _ fjl/✗

Note that over V. = {alfi}≤1217 a function M
,
: V. → ✗

that inverts a on the ball centers ( i.e. M
,
Calf;))=f;) is 2-Lipschitz

by the JL inequality. So, by the extension theorem
,
the exists M :Ñ"→✗

that is 2- Lipschitz with M(alf:))=f: Hi . So
,
tfek

,

Hf-Mlalf)) //
✗
≤ /If _f. 11×+1/ fi -Mlalf:))/1×+1 /Mlalf:)) -Mlalf)) //

✗
Triangle inea.

≤ To -
≤ZE.lk) because

11m11
, ,p=2, Hal /

↳it ⇒ HM°aH,ip=2

≤ Enlk) +0+2Elk)=3enlk)
since this holds for all fek

,

-83in/kt≤ Eam /K) ≤341k)
☐



(⇔
theorems F.x r>0 . Then

, £1k) ≤n'⇒ Enlk)≤ (Vlog)
"

(E. 8 go
to 0 together)

Pro◦ Fix n and consider a near-optimal (an.mn) s.t.S-Ea.m.lk) and

£1k) ≤ S ≤ 281k)
. Suppose anlk)cNr(7.) CIR?

¥Ef

Let {Nzglf:)}
"""

be a manual 28 - packing of K.
i = 1 ( Pg / K) is max # of disjoint bells at nodus 28 fitting in K)

Note that {Nys (f;)}?!" is a covering afk (if not, we could have fit

another 28 ball in the packing) . We analyze the functions of an
,
Mn at

each ball center fi
.

Note that V-i.jc-CB.lk],
11mn (alf;D -Mnlancf;D//

×
≥ 28 ⇒ Han(f:)- anlf;)/Ipn ≥ 8 by Mn 2- Lipschitz.

Thus
,

{Nglanlf:))
,
i c- [Pslk)]} is a 8- packing of Nrl?) in IR?

I+É.
Hence

,

Pg /a)≤ (6¥)n=znl•s(%) for some C

} still shaky about
↳ Ene.g(g) (K) ≤

US ≤ 881k) these 3 lines . . .

Then
, if £1k)≤ n-5 Enea,n(K) ≤ n

-
r

.

= En ☐

We combine these as follows:

☆ theorems (Carl, Cohn, Devore, . . .) differby a
universal constant,

↓grow
the sane

When KCCX and ✗ is a Hilbert space, E. (K)=£1k) as n →•.

Pv Results of the two above theorems as n→• .
☐

Operprobkn.SI
☆ Add a dateset of size m ( restrict a to something fctorable over an evaluation

map at m points)
☆ How regular ( Lipschitz?) are NN function,? ☆ Solidify relationship between above and

statistical learning (Enck) is basically VC
din.)



t.edu#30-PathCount-nyfo-ReLV
ne

consider a Rew FCNN CAN
= { Wij""o(z; ) l≥ /

Zi
;a ;ÉW ×;;a

1=0

with widths n
. ,
. .

;
n
,

and
^ lltl)

Ott : tA+≥◦
,

W
"
=# Ñi↑

"

? Wij ~µ i.i.d

where the distribution
µ is symmetric about the mean with variance 1

and finite moments .

The goal is to explain a conb.net?F#pp%aah- to study any statistic
of random Reth at a single input xa≠0.

Def Fo- each n ≥ / write [n]:{ 1 , . . ,n} .
The space of paths in a FCNN with widths no

,
. . ,nc+, is

f-_ [nix . . . ✗ [nai]

i. e. JET is 8=18103,8117, . . , 811+17) , Nl) c-[ne] VI.

to
R" •

"

8107 a
8127 Ku)

Nothin : For each 1=1
,
. . . .

1+1
,

let

(e) (l)
Wr = Wagner, , 2- %? 2- #A # ne8A; a 1=0

ftp.a -_ {Jef : 8107:p
, 814-17=9}



Prof we have no

2-a'i¥=✗p;a&%awi""iTwi"&
"

(b)1=1

where %? ✗ { zyezo} indicates if the neuron Nl) is on .

Roo Given F- (y
,
. ..vn)elÑ

,

Oli)= Dvt
,

where

Dr = Diag( ✗ {u, ≥o} , . . - , ✗ {un ≥o}) ' TH

EY"? w""'o(wool . ..o(W'"%) .- 7)=W
""'D'"w"? . . D '"w ' ",z

where D. (b) = Diag (✗ {z,≥◦} , i
--1
.
. . ./ ne) . Hence

,

no

"+D= & xp;a(W'
""
D.
"
wl
"
. . . . D

'"w ' ")
2-
9:& p=,

pq
hi Nz NL

(L) (L -17
= & { .

. . { D;
,
!
"

w
"?p• . . . • D: wi.in,

• Wai,
p=,

✗
Pit

i.= , ii. i ii. 1

no

=L I wilt" it wide
'"

p-_ I
✗
Pit

self,q 1=1
✗

☐

Prop At Mit
✗
{¥, ≥,}

d- Bernoulli (E) iii.d

and independent af any ex
function of the weights W

"
's
.

i. e. Symmetric with Wc - Wee)

P"
Idea :

given ÉU)
,
ii.d weights Symetra about 0 mens

✗
{z¥≥o}

=ᵈ Bernoulli / E) g.vn EY
.

Siree the distribution is the same regardless at É¥ , we are done
.

For the weight-wise independence
,
check the paper

☐



Corollary: We have 2-24-11 d- Wut
"
j
'"w ' "

. . . Ñ"w"É

where Ñi? - Bernoulli /E) ii.d.
Pv Duh .

☐

(1+1)Cordis : we have 2ᵗ= I w 'T
"

II. wiki"2 Xp;a ✗Effie

Pr◦ Duh
.

☐

Lemn For any ns..int" # {C;É÷÷} } = %
.

P~o Let A. F-{ (%¥;÷T } . Then

A- EE.r.at#.lwri+'Eiwr:' %:) }
¥ÉÉa+

⇒ A:L E- { II. wi.it
"} .it#- { II.WE}E{¥

..EE }8
,,
KEMP,q 1=1

But not tht F-{ II. WEY} -_ 2- S 8
he -1 8. (e) KU) V. (e-1) race-1)

[
van.me#-nottksH

13 a product d- ii. d.
mean 0 weights

so
,

we sum our 8=2--82 .

For this
, F-{ 1¥

,

{¥
' } = # { {j" É .

All together,
1-=L III. E. • ± -- I. ¥-211

✗Efp,q 1=1 A-Pp,a



= % { {1} ← expectation our uniform measure in path space

when { is an average over choices of random ✗c- Pp,q with

V10)=p, 86+17--9
,

✗(l) - Unif([ne]) independently .

Clearly
,

A- %
☐

theorems (Boris spittn)
when n

, ,
. ..nu are large, let 1=5 nte (5. aspect -eliot :

Then
, f;¥÷Y=e×p(v1-E.A- OLE))

←◦⇔
Exponentially sensitive in the aspect ratio!

Pv Nope
☐

Exerc Show that E&¥ )
"

/ = e×p(5É÷e )
ni

lemn Consider the on -diagonal NTK
""1=11%-2-4+712 where nu,

-1
✗a

= &
' " je

"

e. i. fÉ÷¥'T
⇒ El

"3=21"i¥B
no

no

Proo Note that Jzl""
gw→=

{ xp;a . I ⇐WI""Ñ¥w%zj
"

by ☆
8EfpP"
rui:

ij pill)=j

Then
, EIB} -_ F- {ftp.piihei-akei.a.o.r?erp , ÷!ÉwÉ""¥;j¥,Ñi"%i}A 3W



=
É
posterior

& E.ee?-ne..iE1IIwr?'}E{ 7¥ }E{÷!Éw¥+D}
8
,,kᵗ%,1
Wwii" EFne.E.fi

"}
No

= I
p=,
Xp;} -2 # tie & 1 = 21K¥ . 1- #{ Verna : Witter}1=0

8EPp.it ¥, heÑij c-8

=2¥ lnene.it
'

s" E{ ?
"}=É&Ñ"2"✗ Gene.,Y="¥;1=1 it j=1 no

☐



&na: Consider the off-diagonal NTK

where m+
=1OltMEONOEci"SOEcEpCr=0

of: Note that he-apartinitby av(l) = i
-(l-1)

=j

and amilarly all-pip ofroadanev(l) = i
-(l-1)

=j w(l)
ij

The, ESDS: ISE5XRioXoia. aEr,Wise sieset sueUETPac
UseXPs, (W),)z
W(l)= 5y(l) =i

xbinarrightsWc(t-R =xp(1-D=j

no I
I UETPac

&lSE'H" ErlInSHE EYEle letSIEsleyefor=p,pa*Paatpp,p effeca B
W(l)= (p(l) =i ↑
Wc(l-R =yp(1-D=j E95(e) 3eE -> I between

layersfor
any path taSTP, I, Wotto that are distinct, their contributions

disappear. Precise, suppose that Wa(2) + U127 tne)
for some

The, wit
8183,Wa1

H wieel, Uset and so Iwere: ESW3I3re3 =0.

Wand We cannot disagree at a title, since these do not contribute to the derivation
wort. We (we required Wc(l)=Us(1)::, Wa(ln: (g(1-1) =)). This logic at 2:1 requires that

Pc = Ps as well. So, we sun one identical paths to get

-Xoiotois & CarlikesawetzyE ESIce seethe
Watp,
weitis

- goto too E t lESEcet sEE
↓() = i

u(l-1) =)

Due to synutry over paths (can Wier), EESEuglesisthe same



2+ 1

-xoctosve , ESsetss3 amte=U(1:33)
I ne
-
n.Ne-1
l

-EXPatopHT. ESEcetyl =Ea.s.tl.F CESEcet seethe
This gives

ESQIN3-TNeea.s.l.H ESEcet seethe
= a.s.HH.t lESEcet seethe

His sun goes to

2 instead of L+1.

why??

-IcYs.1.22+1# ESE1 sleno

#

ipts for
on ALL nervous in

a path
We have KERRim as the expected NTK on init.

Thus deve Mucx-*walk). Since the top eiganale is t

any
nature warm, we get

Mama max los= noElaroe F ESSas
We have ISS." 3x3 =E-aecos(b.
and [93(11
row/col EManamaxat D-Earcos(ED)
norm



Also, myflatsD-Garcs(e)
Frobering

Iof Cp: ni MottEIEniEpIECIroovi
be datesdepadet. The, Mmcx=Cp

Suppose E9k.?31C.Yl7II"ets
=>var(kcd= (2,05911 hefa
=>o:Mt1.2 fell

Chabysher
=>IPSkx =(1 +EM) ·ElIxcI3=F
viid EIPSTr(x) =(1 +*Me). If flIaIT: IG

=>R = (1+rM5). If diali
The, Matrix Charalf gins



#35mx(x) = 11+9Mna3=m(x,a +a)
ruar

=>IP(xw(x) =x +a)C3=m(,)Cu/d
where

20: 2xSvetEIEniEpIECIroov
(n =2 m SllFall

R=(I +rM5b).i diali



#12/5- Linear Regions
Conside a FC ReLU not:

z+(x) =b,(+1wc+d(z,()
j=1

with nx = 1. Note that FERRPO ICER is continuous,
piecewise linear.

One question we can ask is howpieces we get in

best/worst/ang cases?

We can use this result as a very rough measure of the complexity
of Dell nuts.

A

amples

#deerror 1 z(x) =b'4 + wjo(wi-x +b,4)

Asonthey setme deterbreakpointor, 3, =-55,
#pieces =n, + 1

#pl2 Wo w,(2)
no =2,( =

⑤ · ⑳

z((1) =b'+dCw".x +5)
⑳

For each j=1, ..., n., define
Hj': 37ENOI sgn(wj(. x +6,1) = 113

In R? this makes a 1) I
21.,1

placer subdivision: 10 017
↑ direction

100

00

ofGHs,
of on

f 000

2+2,1-



Note that in each component of 120).ECHCecellofthat
each neuron is either on or off. Thus,
*E(() is constant on each cell of the hyperplane arrangement, and so

#pieces! It cells in arrangent of 3 n,xcno

ahyperplane in no- (,) = rico
n, no

·

oslarsky's Thereare position

*
Setting
B: A linear

regionis a mind no-dimensional corrected aten

which constant.

[Worst Case
# neuronsta: For any nosh, any ... an #lnea regions ↓Eceach neuron partitions space

in3 parts

↑of: for each assignment of neron onoffe
(nix...x(nc]

3: (5:...) a9-1,0,13
define P(s)= 3xxRNO(squ(z:*()) = s.1973.
Each PC) is a region of input space with the same signs a

preactivations, and so UxE'() is constant or each P(g).
They also partition IRNo (disjointwion), i.e. (RNO =A P(d)

We want to show that each PCS) is a connected set. In fact,
we will show that each P(c) is a cover polytopel

--

Write P(E): p(e() and p((c) = p.ce(s), where

p.(1)(c) =3xer)sqv(zi(f)(1)) =9.(4)3

Note that p"(s) is a convex polytope because each

p.":SXI" I sgrlw:"+5(1) = 9."3



is either a half-space or a hyperplace. So, P"(s): Ap."Is
is a convex polytope.

Next, note that or P'(a), it dim/p'(d):no, OE*I is constant.

So, p'd up.(2) is the intersection of P"(s) with a hyperplane on
a half-space. Thus, p(Y(s) = p(s) 1p.(a)
isa convex polytope. Repeat inductively to see that P(a) is a

convex polytope, and is therefore connected. Since there are 35nemore

of possible is, each of which makes a new (possibly empty) region,
the result follows.

>...."pl*(a) for som
~

second layer neron draws a hyperplane
that bends in each different cell

Y

....

T

A
hot: 1125# pieces grows quickly because "bent hyouple"

niggle
*Problems:

* #SZ borded bet hyperplane? =? A for :, 2=1 G#sides apolygon containingan
(Worst case -exporatial in #newers - can exist)
#

A: (Telgarsky
Suppose not. The, 5a Rett not with large enough 2 sit.

·depth = 22 · #newon = 32-1 · It linear regions: Th

f
↑: Deie f(x): a(20(x)-4o(x-1)eLet f(x) = tots....f
-

ltimes I

So to is a Reltrot with I spikes and so It2" regions. 13



(Arg. Case
#omB: CHarivRolisone), b.1-N10,20), no = 1,

Then, IS#linear regions in Ca,b]3=Cola-b). #nerors

&

ide: look up Co-ace formula!

·
Problemsof global regions (set (a,b) to (R).



#

1217 - Bayesian Interpolation
o Linear Nets

WVs have many large parametes:
- depth h

- inpatdm. no
- width ne

- A train datapoints p

We want to ask how do L,ne, no,p influence "model quality"
i.e. feature learning, robustness, generalization, etc.

There are some ages with any analysis:
I model is nonline in its parametes

② limits as P, L,none to in different orders don't commute

=

of non-commuting limits

Ex (Marcheno-Pastul

Suppose X-IRPano with jaNCO,D) and

sample - Enop" toXXTEIPxPcovariance

determines what
linear regressions

do

Since Group is PSD, write 1,11,1....120 as eigenvalves of [no,8
p

and

Mrs Et E8yXcovie
in

meague

or eigenvalues

#em: If no,p to with Plnotcto,D, the

Mropose
distribution weeks

MMP;a, where
almost surely



where depictAssini* * = (1+ x)"

l
>o i He

ExX Deep Linear Network

Consider z(x.0: Whnw= ET when Wii-N(0,e)
-RVo

We have toHell, but pwUifls")IIE~uniform
on sphere

Recall the following fact:F WERR"* has WijN(0,04,
the W: FWO fr UzO(n), UtO(m)
I rotation/reflection invariant!)

SlIw(P ...w'11 = 1Wit lItpock...w
&Mi-samereRew...w
-
W/C rotationally invariant,

can replace ofP
with 2,

·... 8(xi
indep, wemean
and war. He

So, as ntp, (1811->I almost surely
However, we can also do

1811 =exp(Elag(hx))
*exp(v) -E,E))



Sash+0,l(8l)+ ex(N)-x,x))=0.
This looks like the picture

EOtroWooHollo,P
1181 co(p=0

L

&ayesian Interpolation (Hari + Alex Elokapa

M: z(x;t) =wc
+...wk =T

Doe: Xno = (xin+ BV0+0
, Yno = (yj, nd) t(R

P

R: Wii-NCo, ofhe

*: lp(E) = E11 8TKno-Ynolla likelihood & exp(-*22p(8)
l= S81OTXno= Yno3
- interpolants
-

- price
Y

The Bayesian inference on each model is

d IP
post (8) Xno, Yno, L,ne,04 = GindIPpro(OIL,ve,dr) xexp(-fly(t)

aS(8) Ppvir(E) zoitrolLine,of Bar
instit

distribution of posteron
I

- IP3 date I models



We can the perform Bayesian model selection to

marine Ex/Xno,YolL,we.0? I)
MLE on space of

- NNS

maximize volume ofinterpolating
nodds of our Lve,0

architecture

#ts Hid-

*Ipost (8), Ex are computable (not asymptotically!)
*Effective depth P.El-Pene) = A post determines posterior!

*x
post
->xE optical feature learning from date-aquostic priors (0=17

Cain: Any o can be decomposed into on+81, where
~

8.tCo) (Xn) and OItCol (Xno)+

win

nor-itepour l= S81OTXno= Yno3
~t - interpolantsfan o

s

2 of... PTE

We claim For post, the
8=o

8= ex+ nll8+1I,
where u-UFCS col(X) independently at (81

#
oltion for a test point I, F: *x+*1 by projection

outo Xno. The,
how Bayesian

f() = ET = ETF, + (ux111811 this is#

=N(ETF, Ile-i) ↑
inferedcanenele

So, IIE11 controls overall prediction scale in unseen directions!



#

en: Suppose no,PEX with Plnot(ECO,1) sit.

I1@x,noll ElIfL

Then, or agreeEx(Xno,Yo2, re,0) best data
dependant prior

P(no>a
doesn't deed

gives inIPpost
(118(10:01,2,ne) =6 I on architecture

Furthermore,
in n effective

z(x)rExIPpost(I10+11((=1,2,ne) =6,8 3 depthanentP/not&

As -x,z(x)>1. prior in data-

agnostic way


