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Abstract

In this work, we consider a practical and general setting: the ReLU neural network
of arbitrary width and depth with no biases and output dimension 1, parameter-
ized in the NTK regime. We study the distribition of entries of the Neural Tangent
Kernel (NTK) upon reasonable initialization. We use a combinatorial approach to
investigate the off-diagonal elements of the NTK, and find an expression for the
expectation of all entries of the NTK in terms of the two-point correlator of the ac-
tivation indicators for the same neuron on different datapoints. Using our results
and well known methods from random matrix theory, we may place bounds on
the initialized spectrum of the NTK.

We motivate and then explore a geometric approach to derive a closed form ex-
pectation for this two-point correlator in the first layer of a ReLU network. We also
suggest research directions that might be explored by finding tighter bounds on
this two-point correlator in deeper layers of the neural network.
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1 Expectations of NTK Matrix Elements

We are interested firstly in solving for the expected NTK for an arbitrary dataset. Doing so will allow us to make
claims about the expected training dynamics and trajectories of ReLU networks in a data-informed way. We state
and prove the result in the next section.

1.1 Path Counting

Theorem 1.1. Consider the following ReLU neural network with no biases and output dimension 1, parame-
terized in the NTK regime. We have depth L and input dimension n0, output dimension nL+1 = 1, and layer
widths n1, ..., nL ∈ N arbitrary. For an input xα ∈ Rn0 , we denote the preactivations of neuron i in layer l as z(l)i;α,
suppressing the dependence on xα. The network is defined recursively by

z
(l+1)
i;α =


∑nl

j=1 W
(l+1)
ij σ

(
z
(l)
j;α

)
l ≥ 1∑nl

j=1 W
(l+1)
ij xj;α l = 0

with weights parameterized as W
(l)
ij =

√
2

nl−1
Ŵ

(l+1)
ij and Ŵ

(l+1)
ij drawn i.i.d from a distribution µ that is sym-

metric about 0 with mean 0, unit variance, and no atoms. We consider a dataset of m inputs {xα}mα=1 that are
distinct. Define the neural tangent kernel K ∈ Rm×m to be the Gram matrix of the Jacobians for different inputs,
with elements

Kαβ =
(
∇⃗θz

(L+1)
α

)T (
∇⃗θz

(L+1)
β

)
=

L+1∑
l=1

nl∑
i=1

nl−1∑
j=1

∂z
(L+1)
α

Ŵ
(l)
ij

∂z
(L+1)
β

Ŵ
(l)
ij

Here, z(L+1)
α denotes the value of the single output neuron given input xα. Lastly, define

ξ
(l)
i;α = 1

z
(l)
i;α>0

2



to be an indicator random variable for if the ith neuron in layer l activates when passed input xα. Then, the
elementwise expectation over initializations satisfies

E[Kαβ ] = (xα · xβ)
L

n0

(
2L+1

) L∏
l=1

E
[
ξ
(l)
i;αξ

(l)
i;β

]

Proof. We will approach this with the path counting framework, following up on a line of work presented in [1]
[3] [2] [4] [5]. Formally, let [n] denote {1, ..., n} and let Γ = [n0]×. . .×[nL+1] be the set of all possible paths through
the network. So, each element γ ∈ Γ is a tuple of the form

γ = (γ(0), . . . , γ(L+ 1))

where each γ(l) denotes the index of the neuron in layer l that the path passes through. Denote

Γp = {γ ∈ Γ s.t. γ(0) = p}

to be the set of all paths through the network starting at input neuron p. Also, let Ŵ (l)
γ = Ŵ

(l)
γ(l),γ(l−1) denote the

weight that the path γ passes through at layer l, and similarly let ξ(l)γ;α denote ξ
(l)
γ(l);α. We start with the well-known

path counting result that

z(L+1)
α =

n0∑
p=1

xp;α

∑
γ∈Γp

W (L+1)
γ

L∏
l=1

W (l)
γ ξ(l)γ =

n0∑
p=1

xp;α

∑
γ∈Γp

√
2

nL
Ŵ (L+1)

γ

L∏
l=1

√
2

nl−1
Ŵ (l)

γ ξ(l)γ

From here, we can compute the partials with respect to each weight simply, as

∂z
(L+1)
α

Ŵ
(l)
ij

=

n0∑
p=1

xp;α

∑
γ∈Γp

γ(l)=i
γ(l−1)=j

√
2
nL

Ŵ
(L+1)
γ

∏L
l′=1

√
2

nl′−1
Ŵ

(l′)
γ ξ

(l′)
γ;α

Ŵ
(l)
ij

This is clear since only paths that pass through Ŵ
(l)
ij will contribute to this derivative. Now, let

Bijl;αβ =
∂z

(L+1)
α

Ŵ
(l)
ij

∂z
(L+1)
β

Ŵ
(l)
ij
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be a random variable denoting the contribution of weight Ŵ (l)
ij to the NTK1. We can simply write

Bijl;αβ =

n0∑
pα,pβ=1

xpα;αxpβ ;β

∑
γα∈Γpα
γβ∈Γpβ

γα(l)=γβ(l)=i
γα(l−1)=γβ(l−1)=j

2
nL

Ŵ
(L+1)
γα Ŵ

(L+1)
γβ

∏L
l′=1

2
nl′−1

Ŵ
(l′)
γα Ŵ

(l′)
γβ ξ

(l′)
γα;αξ

(l′)
γβ ;β(

Ŵ
(l)
ij

)2

=

(
L∏

l′=0

2

n′
l

)
n0∑

pα,pβ=1

xpα;αxpβ ;β

∑
γα∈Γpα
γβ∈Γpβ

γα(l)=γβ(l)=i
γα(l−1)=γβ(l−1)=j

Ŵ (L+1)
γα

Ŵ (L+1)
γβ

ξ(l)γα;αξ
(l)
γβ ;β

L∏
l′=1
l′ ̸=l

Ŵ (l′)
γα

Ŵ (l′)
γβ

ξ(l
′)

γα;αξ
(l′)
γβ ;β

where for the second equality we simply used the fact that both paths γα and γβ agree at layer l. We would
like to consider the expectation of Bijl;αβ over random initializations. Note that each element is a product of
many things, many of which are independent from each other. We have seen in Lecture that each random
variable ξ

(l)
γα;α is distributed as Bernoulli( 12 ) and is independent from all other ξ

(l′)
γα;α, l′ ̸= l. Furthermore, we

have seen that each ξ
(l)
γα;α is independent of any even function of the weights2. What this (in addition to the

fact that each Ŵ
(l)
ij is i.i.d.) means is that for each pair of paths γα, γβ , we have that the four random variables(

Ŵ
(L+1)
γα Ŵ

(L+1)
γβ

)
,
(
ξ
(l)
γα;αξ

(l)
γβ ;β

)
,
(
Ŵ

(l′)
γα Ŵ

(l′)
γβ

)
,
(
ξ
(l′)
γα;αξ

(l′)
γβ ;β

)
are all pairwise independent for l′ ̸= l. So, we can

use the rules of expectation to see that each element of the inner sum, in expectation, looks like

E
[
Ŵ (L+1)

γα
Ŵ (L+1)

γβ

]
E
[
ξ(l)γα;αξ

(l)
γβ ;β

] L∏
l′=1
l′ ̸=l

E
[
Ŵ (l′)

γα
Ŵ (l′)

γβ

]
E
[
ξ(l

′)
γα;αξ

(l′)
γβ ;β

]

From here, we note that if for any l′ it is the case that γα and γβ don’t agree (meaning either γα(l
′ − 1) ̸= γβ(l

′)

or γα(l
′) ̸= γβ(l

′ − 1)), we get that E
[
Ŵ

(l′)
γα Ŵ

(l′)
γβ

]
separates because different weights are independent; since µ

is 0 mean, the entire product becomes 0 and this term doesn’t contribute to the sum. This means that the only
nonzero elements of the sum must have γα = γβ everywhere (they already must agree at l and we just found that
they must agree for all l′ ̸= l). This also means that the only nonzero elements must have pα = pβ . This simplifies
our expression for E[Bijl;αβ ] to

E[Bijl;αβ ] =

(
L∏

l′=0

2

n′
l

)
n0∑
p=1

xp;αxp;β

∑
γ∈Γp

γ(l)=i
γ(l−1)=j

E
[(

Ŵ (L+1)
γ

)2]
E
[
ξ(l)γ;αξ

(l)
γ;β

] L∏
l′=1
l′ ̸=l

E
[(

Ŵ (l′)
γ

)2]
E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]

1B for Boris :)
2To see these facts, it suffices to consider the symmetricity of the distribution µ from which the weights are drawn. We can invert any

weight vector (since it is symmetric about 0 and each element is i.i.d.) to flip ξ
(l)
γα;α without changing any other ξ(l

′)
γα;α or any even function

of the weights. The distribution of ξ(l)γα;α given the previous activations is the same as the overall distribution of ξ(l)γα;α, meaning they are
independent. In general, the ability to flip the ξ

(l)
γα;α’s with equal probability without affecting another variable at all proves independence.

We went over this line of reasoning in class, and a similar result is found in Proposition 2 of [3].
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Since these weights are sampled from µ with second moment 1, this equals

E[Bijl;αβ ] =

(
L∏

l′=0

2

n′
l

)
n0∑
p=1

xp;αxp;β

∑
γ∈Γp

γ(l)=i
γ(l−1)=j

E
[
ξ(l)γ;αξ

(l)
γ;β

] L∏
l′=1
l′ ̸=l

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]

=

(
L∏

l′=0

2

n′
l

)
n0∑
p=1

xp;αxp;β

∑
γ∈Γp

γ(l)=i
γ(l−1)=j

L∏
l′=1

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]

Another observation we can make is that the quantity
∏L

l′=1
E
[
ξ
(l′)
γ;αξ

(l′)
γ;β

]
is independent of path γ due to symme-

try of the weights: we can scramble the neurons in any order and, because the weights are i.i.d., the two-point
correlator at each layer remains the same. This yields that

E[Bijl;αβ ] =

(
L∏

l′=0

2

n′
l

)(
L∏

l′=1

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]) n0∑
p=1

xp;αxp;β

∑
γ∈Γp

γ(l)=i
γ(l−1)=j

1

=

(
L∏

l′=0

2

n′
l

)(
L∏

l′=1

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]) n0∑
p=1

xp;αxp;β |{γ ∈ Γp s.t. γ(l) = i and γ(l − 1) = j}|

The last observation to make is that there are n1 · n2 · . . . · nL distinct paths (recall nL+1 = 1) in ΓP ; however the
additional constraint that γ passes through Ŵ

(l)
ij forces us to divide this by nl−1 · nl. So, the cardinality of the set

in the above equation is 1
nl−1nl

∏L
l′=1 nl′ , and therefore

E[Bijl;αβ ] =

(
L∏

l′=0

2

n′
l

)(
L∏

l′=1

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]) n0∑
p=1

xp;αxp;β
1

nl−1nl

L∏
l′=1

nl′

=
2L+1

n0nl−1nl

(
L∏

l′=1

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]) n0∑
p=1

xp;αxp;β

=
2L+1

n0nl−1nl
xα · xβ

L∏
l′=1

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]
Plugging this into our original form

Kαβ =
(
∇⃗θz

(L+1)
α

)T (
∇⃗θz

(L+1)
β

)
=

L+1∑
l=1

nl∑
i=1

nl−1∑
j=1

∂z
(L+1)
α

Ŵ
(l)
ij

∂z
(L+1)
β

Ŵ
(l)
ij

=

L+1∑
l=1

nl∑
i=1

nl−1∑
j=1

Bijl;αβ

yields that

E [Kαβ ] =

L+1∑
l=1

2L+1

n0
xα · xβ

L∏
l′=1

E
[
ξ(l

′)
γ;αξ

(l′)
γ;β

]

= (xα · xβ)
L

n0

(
2L+1

) L∏
l=1

E
[
ξ
(l)
i;αξ

(l)
i;β

]
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as desired.

Corollary 1.1. The expectation of the on-diagonal of the NTK of a ReLU network is

E [Kαα] =
2L∥xα∥2

n0

Proof. We immediately apply Theorem 1.1 with α = β to find that

E[Kαα] = (xα · xα)
L

n0

(
2L+1

) L∏
l=1

E
[
ξ
(l)
i;αξ

(l)
i;α

]
= ∥xα∥2

L

n0

(
2L+1

) L∏
l=1

E
[(

ξ
(l)
i;α

)2]

We note that in all cases,
(
ξ
(l)
i;α

)2
= ξ

(l)
i;α due to the properties of indicator functions, so

E[Kαα] = ∥xα∥2
L

n0

(
2L+1

) L∏
l=1

E[ξ(l)i;α]

= ∥xα∥2
L

n0

(
2L+1

)(1

2

)L

=
2L∥xα∥2

n0
,

which matches the result found in Proposition 3 of [2] up to the difference in architectures of the problems stud-

ied ([2] solves for network with a final layer parameterized by WL+1
ij =

√
1
nL

ŴL+1
ij instead of our WL+1

ij =√
2
nL

ŴL+1
ij , yielding an additional factor of 2 in our result).

2 Towards the Two-Point Correlator E
[
ξ
(l)
i;αξ

(l)
i;β

]
The result of Theorem 1.1 shows that it is of interest to calculate the two-point correlator E

[
ξ
(l)
i;αξ

(l)
i;β

]
at different

depths in the network. In the following sections, we explicitly compute this in the first layer via a geometric
argument and provide bounds for later layers.

2.1 E
[
ξ
(l)
i;αξ

(l)
i;β

]
in Layer l = 1

Consider a neural network in the same setting as in the statement of Theorem 1.1 (ReLU network with output
dimension 1, parameterized in the NTK regime with depth L and input dimension n0, output dimension nL+1 =

1, and layer widths n1, . . . , nL ∈ N arbitrary). However, we now set stricter constraints on the initialization.
Specifically, we initialize the weights

Ŵ
(l)
ij ∼ N (0, 1)

This scheme amounts to the Kaiming initialization of our network in the NTK parameterization, a very reasonable
and practical setting. Recall that vectors of componentwise i.i.d. random normal variables with mean 0 are

6



rotationally invariant. That is, if we constructed a random vector

X⃗ =
[
Xi

]N
i=0

for N arbitrary, and Xi ∼ N (0, 1) i.i.d., then Rot(X⃗) has the same probability distribution as X⃗ for any rotational
transformation Rot. It is a well-known corollary that X⃗ is equally likely to point in any direction. This rotational
symmetry of our randomly initialized weights allows the following result.

Theorem 2.1. Consider the same setting as in Theorem 1.1, except that Ŵ
(l)
ij ∼ N (0, 1). Then the two-point

correlator of the activation indicator for a single neuron in the first hidden layer when passed two data points
xα, xβ satisfies

E
[
ξ
(1)
i;αξ

(1)
i;β

]
=

{
1
2 − J

π
2 −θαβ
n /An, xα · xβ ≥ 0

J
θαβ−π

2
n /An, xα · xβ < 0

where

An =
2π

n
2

Γ
(
n
2

)
is the surface area of an n-sphere,

θαβ = cos−1

(
xα · xβ

∥xα∥∥xβ∥

)
is the angle between xα and xβ , and

Jθ
n =

π
n−1
2

Γ
(
n−1
2

) ∫ π
2

θ

sin(ϕ)n−2I
1− tan2(θ)

tan2(ϕ)

(
n− 2

2
,
1

2

)
dϕ

where Ix(a, b) is the regularized incomplete beta function

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1 dt

Proof. First, we note that the expectation of an indicator is the probability that the indicator is one.

E
[
ξ
(1)
i;αξ

(1)
i;β

]
= P

{
ξ
(1)
i;αξ

(1)
i;β = 1

}
This product equals one if and only if both indicators take the value of 1, yielding

E
[
ξ
(1)
i;αξ

(1)
i;β

]
= P

{
ξ
(1)
i;α = 1 ∧ ξ

(1)
i;β = 1

}
We now rewrite each indicator in terms of its equivalent event,

E
[
ξ
(1)
i;αξ

(1)
i;β

]
= P

{
z
(1)
i;α > 0 ∧ z

(1)
i;β > 0

}
= P

{
xα ·W (1)

i > 0 ∧ xβ ·W (1)
i > 0

}
where W

(1)
i ∈ Rn0 is the vector of weights connecting each input node to the ith neuron in the first layer,

W
(1)
i =

[
W

(1)
ij

]n0

j=1

7



We have that each W
(1)
ij is i.i.d. normal with mean zero. We now consider the unit vector

V
(1)
i =

W
(1)
i

∥W (1)
i ∥

V
(1)
i has the same orientation as W (1)

i because it is defined as the corresponding unit vector. It is known that W (1)
i

is oriented with a uniform distribution in every direction because its PDF is rotationally invariant, and also that
V

(1)
i has unit length. Denote the unit n0-sphere by Sn0 . Then, we may say that V (1)

i is distributed uniformly over
the surface of Sn0 . Therefore,

W
(1)
i · xα > 0 ⇐⇒ V

(1)
i · xα > 0

=⇒ E
[
ξ
(1)
i;αξ

(1)
i;β

]
= P

{
xα · V (1)

i > 0 ∧ xβ · V (1)
i > 0

}
= P

{
V

(1)
i ∈ C

}
where

C = {v ∈ Sn0 : v · xα > 0 ∧ v · xβ > 0}

We can also describe C as the set of vectors on the unit sphere that makes an angle of less than π
2 with both xα and

xβ . This set is the intersection of the two n0-sphere caps that are centered around xα and xβ , with azimuthal angle
π
2 . Since V

(1)
i has uniform distribution over Sn0 , we can say that its probability of being in C ⊆ Sn0 is proportional

to the surface area of C, and we can normalize this probability to find

E
[
ξ
(1)
i;αξ

(1)
i;β

]
=

surface area of C
surface area of Sn0

We denote the surface area of Sn0 by An.

There is a known, closed form expression for the surface area of C, given below. This is derived from a general
result for the surface area of a hypercap intersection [6]; we note that C is the intersection of two hemi-n0-spheres
to get

surface area of C =

{
1
2An − J

π
2 −θαβ
n , xα · xβ ≥ 0

J
θαβ−π

2
n , xα · xβ < 0

,

where θαβ is the angle between xα and xβ . Dividing by An, we recover the claim of this theorem.

Remark. This approach develops some nice geometric intuition for the correlation between a particular neuron’s activations
for different datapoints. We are looking for the surface area of a hypersphere on which a unit vector (the V (l)

i ) has a positive
dot product (is aligned) with both datapoints. The further the datapoints are from each other, the smaller the overlap of this
area, and the less likely the activations are to be correlated. This correlation passes through the neural network, but is warped
by nonlinearities and rectifiers in a way that we will discuss in later sections. Also, if the data points are perfectly aligned,
the intersection C is simply a single hemi-n0-sphere, and so E

[
ξ
(1)
i;αξ

(1)
i;β

]
= 1

2 . This matches Corollary 1.1.

2.2 E
[
ξ
(l)
i;αξ

(l)
i;β

]
in Layers l > 1

For the later layers, we can apply a naive bound to get a closed form bound for the NTK elements. This is
performed in the following theorem.
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Theorem 2.2. There exists an upper bound for the expectation of each matrix element of the NTK. Each entry
satisfies

|E [Kαβ ]| ≤ |xα · xβ |
4L

n0
E
[
ξ
(1)
i;αξ

(1)
i;β

]
Proof. From Theorem 1.1, we have that

E [Kαβ ] = (xα · xβ)
L

n0

(
2L+1

) L∏
l=1

E
[
ξ
(l)
i;αξ

(l)
i;β

]

Consider the following bound of the two-point correlator.

∀l, E
[
ξ
(l)
i;αξ

(l)
i;β

]
= P

{
ξ
(l)
i;α = 1 ∧ ξ

(l)
i;β = 1

}
= P

{
ξ
(l)
i;α = 1|ξ(l)i;β = 1

}
P
{
ξ
(l)
i;β = 1

}
=

1

2
P
{
ξ
(l)
i;α = 1|ξ(l)i;β = 1

}
But all probabilities P {x} ≤ 1, so

∀l, E
[
ξ
(l)
i;αξ

(l)
i;β

]
≤ 1

2

From Theorem 2.1, we have an expression for E
[
ξ
(1)
i;αξ

(1)
i;β

]
. So if L ≥ 2,

|E[Kαβ ]| = |xα · xβ |
L

n0

(
2L+1

) L∏
l=1

E
[
ξ
(l)
i;αξ

(l)
i;β

]
= |xα · xβ |

L

n0

(
2L+1

)
E
[
ξ
(1)
i;αξ

(1)
i;β

] L∏
l=2

E
[
ξ
(l)
i;αξ

(l)
i;β

]
≤ |xα · xβ |

L

n0

(
2L+1

)
E
[
ξ
(1)
i;αξ

(1)
i;β

]
· 2−(L−1)

We simplify and conclude that

|E [Kαβ ]| ≤ |xα · xβ |
4L

n0
E
[
ξ
(1)
i;αξ

(1)
i;β

]
where we have a closed form expression for E

[
ξ
(1)
i;αξ

(1)
i;β

]
in terms of xα and xβ .

Remark. There are certainly tighter bounds to be made on E
[
ξ
(l)
i;αξ

(l)
i;β

]
than the naive 1

2 . We conjecture that the ξ’s for
different inputs become more uncorrelated with increasing width and depth. Intuitively, the more complex the model is, the
harder it is for two different datapoints to yield the same activation pattern, especially deeper in the network. At later layers,
the randomness of the weights should complicate the activations enough that things appear independent; in this setting, we
expect E

[
ξ
(l)
i;αξ

(l)
i;β

]
to approach 1

4 . A rigorous study of the asymptotics of the two-point correlator has eluded us so far during
this research, but would tighten our bounds and allow stronger claims to be made in the regime of wide and deep ReLU nets.

Note that the geometric intuition for when the same neuron is activated by two different inputs in terms of
cap intersection in hyperspace still holds deeper in the network. Things get tricky because the two vectors that
generate the caps in the first layer (i.e. the datapoints) are fixed, but in later layers are governed by random vectors

9



with rectified Gaussian distributions (i.e. the postactivations). In this case there is a nonuniform directional
distribution of these two vectors, with the density functions being more concentrated along the borders of the
positive quadrant as a result of the rectification. This introduces casework and messiness into the hemisphere
intersection argument, but this geometric framework still could be explored in a way that would be informative.
Understanding of the high dimensional geometry of nonlinearly transformed Gaussians is a generally useful area
of study, and perhaps broader results could be attained through the two-point correlator explored in this paper.

3 Conclusion and Future Work

In this work, we have investigated the distribution of all elements of the NTK at initialization in a common prac-
tical architecture (ReLU network with Kaiming initialization). Building on the results of [2] about the distribution
of the on-diagonal elements of the NTK, we derived a general form for the expectations of all elements of the NTK
matrix. This result reveals the importance of studying the two-point correlator E

[
ξ
(l)
γ;αξ

(l)
γ;β

]
and how it evolves

with increasing depth. We found a closed form expression for this correlator in the first layer (allowing us to
write down a closed form expression for the full expected NTK of a 1-hidden-layer network) and developed a
geometric approach and intuition for reasoning about its evolution in later layers.

There are many different directions for future work that we would like to (and likely will) pursue. We enumerate
a few seemingly promising ones below.

1. Given the distributional understanding we have of the NTK on initialization (our results about the expec-
tation and results about the variance of the diagonal from [2]), we can apply results from random matrix
theory to investigate the concentration of the spectrum of the NTK on initialization. With the current under-
standing that the top eigenvalue of the initialized NTK sheds light on how the learning rate governs later
stage training dynamics (see [7]), concentration-style bounds on the top eigenvalue of the NTK at initializa-
tion could have large practical and widespread use. A high level trajectory of a potential approach that we
are currently attempting is described below.

(a) Using our results, we can create concentration bounds on the top eigenvalue of the expected NTK using
the upper bounds granted by the corollaries, matrix norms, and Chebyshev’s Inequality.

(b) With this, we can apply matrix concentration bounds such as the Matrix Chernoff Inequality in order
to bound the tails of the distribution of the top eigenvalue of the NTK [8].

(c) This would loosely grant us knowledge about a data-dependent way to understand some late stage
training dynamics via our study of NTK initialization, which seems attractive.

It would be constructive to investigate the variance of the off diagonal elements as well, as this would allow
a more complete distributional description of the NTK on initialization. Pursuit of this result would look
much like the work done in [2] and would require statistical handling of pairs/quadruples of shared paths.

2. It appears that it would be greatly useful to obtain a more complete description of the dynamics of the
two-point correlator E

[
ξ
(l)
γ;αξ

(l)
γ;β

]
during forward propagation. This is a very rich area of study, as we could

imagine tools from dynamical systems or statistical physics being used to complement our geometric per-
spective. This would grant more power to Theorem 1.1 and also any description of the off-diagonal vari-
ances, which would certainly include this correlator as well.

3. Taking a step back, we can view the product
∏

l E
[
ξ
(l)
γ;αξ

(l)
γ;β

]
that appears in the result of Theorem 1.1 from

a higher-level viewpoint. Since the two-point correlators are independent between layers, this expression is
equivalent to the probability that two inputs xα, xβ result in precisely the same totally-on activation pattern
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in the initialized network. A complete study of this distribution of activation patterns as a function of inputs
could shed interesting light on the theory of the complexity/capacity of ReLU networks on initialization.
Current theory focuses mainly on number of linear regions and number of different activation patterns one
could see with decent probability (see [4], [5]), but an investigation into when two data points activate the
network the same way, facilitated by

∏
l E
[
ξ
(l)
γ;αξ

(l)
γ;β

]
, could have broad implications and use cases.
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