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Preface

The main purpose of this book is to bring together a number of results concern-
ing the embedding of ‘finite-dimensional’ compact sets into Euclidean spaces,
where an ‘embedding’ of a metric space (X, �) into R

n is to be understood as a
homeomorphism from X onto its image. A secondary aim is to present, along-
side such ‘abstract’ embedding theorems, more concrete embedding results
for the finite-dimensional attractors that have been shown to exist in many
infinite-dimensional dynamical systems.

In addition to its summary of embedding results, the book also gives a unified
survey of four major definitions of dimension (Lebesgue covering dimension,
Hausdorff dimension, upper box-counting dimension, and Assouad dimension).
In particular, it provides a more sustained exposition of the properties of the box-
counting dimension than can be found elsewhere; indeed, the abstract results
for sets with finite box-counting dimension are those that are taken further in
the second part of the book, which treats finite-dimensional attractors.

While the various measures of dimension discussed here find a natural
application in the theory of fractals, this is not a book about fractals. An
example to which we will return continually is an orthogonal sequence in an
infinite-dimensional Hilbert space, which is very far from being a ‘fractal’. In
particular, this class of examples can be used to show the sharpness of three of
the embedding theorems that are proved here.

My models have been the classic text of Hurewicz & Wallman (1941) on
the topological dimension, and of course Falconer’s elegant 1985 tract which
concentrates on the Hausdorff dimension (and Hausdorff measure). It is a
pleasure to acknowledge formally my indebtedness to Hunt & Kaloshin’s 1999
paper ‘Regularity of embeddings of infinite-dimensional fractal sets into finite-
dimensional spaces’. It has had a major influence on my own research over the
last ten years, and one could view this book as an extended exploration of the
ramifications of the approach that they adopted there.
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xii Preface

My interest in abstract embedding results is related to the question of whether
one can reproduce the dynamics on a finite-dimensional attractor using a finite-
dimensional system of ordinary differential equations (see Chapter 10 of Eden,
Foias, Nicolaenko, & Temam (1994), or Chapter 16 of Robinson (2001), for
example). However, there are still only partial results in this direction, so this
potential application is not treated here; for an up-to-date discussion see the
paper by Pinto de Moura, Robinson, & Sánchez-Gabites (2010).

I started writing this book while I was a Royal Society University Research
Fellow, and many of the results here derive from work done during that
time. I am currently supported by an EPSRC Leadership Fellowship, Grant
EP/G007470/1. I am extremely grateful to both the Royal Society and to the
EPSRC for their support.

I would like to thank Alexandre Carvalho, Peter Friz, Igor Kukavica, José
Langa, Eric Olson, Eleonora Pinto de Moura, and Alejandro Vidal López, all of
whom have had a hand in material that is presented here. In particular, Eleonora
was working on closely-related problems for her doctoral thesis during most of
the time that I was writing this book, and our frequent discussions have shaped
much of the content and my approach to the material. I had comments on a
draft version of the manuscript from Witold Sadowski, Jaime Sánchez-Gabites,
and Nicholas Sharples: I am extremely grateful for their helpful and perceptive
comments. David Tranah, Clare Dennison, and Emma Walker at Cambridge
University Press have been most patient as one deadline after another was
missed and extended; that one was finally met (nearly) is due in large part to
a kind invitation from Marco Sammartino to Palermo, where I gave a series of
lectures on some of the material in this book in November 2009.

Many thanks to my parents and to my mother-in-law; in addition to all their
other support, their many days with the children have made this work possible.
Finally, of course, thanks to Tania, my wife, and our children Joseph and Kate,
who make it all worthwhile; this book is dedicated to them.



Introduction

Part I of this book treats four different definitions of dimension, and investigates
what being ‘finite dimensional’ implies in terms of embeddings into Euclidean
spaces for each of these definitions.

Whitney (1936) showed that any abstract n-dimensional Cr manifold is Cr -
homeomorphic to an analytic submanifold in R

2n+1. This book treats embed-
dings for much more general sets that need not have such a smooth structure;
one might say ‘fractals’, but we will not be concerned with the fractal nature
of these sets (whatever one takes that to mean).

We will consider four major definitions of dimension:

(i) The (Lebesgue) covering dimension dim(X), based on the maximum
number of simultaneously intersecting sets in refinements of open covers
of X (Chapter 1). This definition is topologically invariant, and is primarily
used in the classical and abstract ‘Dimension Theory’, elegantly developed
in Hurewicz & Wallman’s 1941 text, and subsequently by Engelking
(1978), who updates and extends their treatment.

(ii) The Hausdorff dimension dH(X), the value of d where the ‘d-dimensional
Hausdorff measure’ of X switches from ∞ to zero (Chapter 2). Hausdorff
measures (and hence the Hausdorff dimension) play a large role in geo-
metric measure theory (Federer, 1969), and in the theory of dynamical
systems (see Pesin (1997)); the standard reference is Falconer’s 1985
tract, and subsequent volumes (Falconer, 1990, 1997).

(iii) The (upper) box-counting dimension dB(X), essentially the scaling as
ε → 0 of N (X, ε), the number of ε-balls required to cover X, i.e.
N (X, ε) ∼ ε−dB(X) (Chapter 3). This dimension has mainly found appli-
cation in the field of dynamical systems, see for example Falconer (1990),
Eden et al. (1994), C. Robinson (1995), and Robinson (2001).
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2 Introduction

(iv) The Assouad dimension dA(X), a ‘uniform localised’ version of the box-
counting dimension: if B(x, ρ) denotes the ball of radius ρ centred at
x ∈ X, then N (X ∩ B(x, ρ), r) ∼ (ρ/r)dA(X) for every x ∈ X and every
0 < r < ρ (Chapter 9). This definition appears unfamiliar outside the
area of metric spaces and most results are confined to research papers
(e.g. Assouad (1983), Luukkainen (1998), Olson (2002); but see also
Heinonen (2001, 2003)).

For any compact metric space (X, �) we will see that

dim(X) ≤ dH(X) ≤ dB(X) ≤ dA(X),

and there are examples showing that each of these inequalities can be strict. We
will check that each definition satisfies the natural properties of a dimension:
monotonicity (X ⊆ Y implies that d(X) ≤ d(Y )); stability under finite unions
(d(X ∪ Y ) = max(d(X), d(Y ))); and the dimension of R

n is n (a consistent
way to interpret this so that it makes sense for all the definitions above is that
d(K) = n if K is a compact subset of R

n that contains an open set). We will
also consider how each definition behaves for product sets.

Our main concern will be with the embedding results that are available
for each class of ‘finite-dimensional’ set. The embedding result for sets with
finite covering dimension, due to Menger (1926) and Nöbeling (1931) (given
as Theorem 1.12 here), is in a class of its own. The result guarantees that when
dim(X) ≤ d, a generic set of continuous maps from a compact metric space
(X, �) into R

2d+1 are embeddings.
The results for sets with finite Hausdorff, upper box-counting, and Assouad

dimension are of a different cast. They are expressed in terms of ‘prevalence’
(a version of ‘almost every’ that is applicable to subsets of infinite-dimensional
spaces, introduced independently by Christensen (1973) and Hunt, Sauer, &
Yorke (1992), and the subject of Chapter 5), and treat compact subsets of
Hilbert and Banach spaces. Using techniques introduced by Hunt & Kaloshin
(1999), we show that a ‘prevalent’ set of continuous linear maps L : B → R

k

provide embeddings of X when d(X − X) < k, where

X − X = {x1 − x2 : x1, x2 ∈ X}

and d is one of the above three dimensions (see Figure 1). Note that if one
wishes to show that a linear map provides an embedding, i.e. that Lx = Ly

implies that x = y, this is equivalent to showing that Lz = 0 implies that z = 0
for z ∈ X − X. This is why the natural condition for such results is one on the
‘difference’ set X − X; but while dB(X − X) ≤ 2dB(X), there are examples of



Introduction 3

Figure 1 The linear map L : B → R
k embeds X into R

k . The inverse mapping
L−1 provides a parametrisation of X using k parameters.

sets for which dH(X) = 0 but dH(X − X) = ∞ (and similarly for the Assouad
dimension).

Where the embedding results for these three dimensions differ from one
another is in the smoothness of the parametrisation of X provided by L−1. In the
Hausdorff case this inverse can only be guaranteed to be continuous (Chapter 6);
in the upper box-counting case it will be Hölder (Chapter 8); and in the Assouad
case it will be Lipschitz to within logarithmic corrections (Chapter 9). Simple
examples of orthogonal sequences in �2 (or related examples in c0, the space of
sequences that tend to zero) show that the results we give cannot be improved
when the embedding map L is linear.

Chapter 4 presents an embedding result for subsets X of R
N with box-

counting dimension d < (N − 1)/2. The ideas here form the basis of the results
for subsets of Hilbert and Banach spaces that follow, and justify the development
of the theory of prevalence in Chapter 5 and the definition of various ‘thickness
exponents’ (the thickness exponent itself, the Lipschitz deviation, and the dual
thickness) in Chapter 7.

Part II discusses the attractors that arise in certain infinite-dimensional
dynamical systems, and the implications of the results of Part I for this class of
finite-dimensional sets. In particular, the embedding result for sets with finite
box-counting dimension is used toward a proof of an infinite-dimensional ver-
sion of the Takens time-delay embedding theorem (Chapter 14) and it is shown
that a finite-dimensional set of real analytic functions can be parametrised using
a finite number of point values (Chapter 15).

Chapter 10 gives a very cursory summary of some elements of the theory
of Sobolev spaces and fractional power spaces of linear operators, which are
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required in order to discuss the applications to partial differential equations.
It is shown how the solutions of an abstract semilinear parabolic equation,
and of the two-dimensional Navier–Stokes equations, can be used to generate
an infinite-dimensional dynamical system whose evolution is described by a
nonlinear semigroup.

The global attractor of such a nonlinear semigroup is a compact invariant
set that attracts all bounded subsets of the phase space. A sharp condition
guaranteeing the existence this global attractor is given in Chapter 11, and it is
shown that such an object exists for the semilinear parabolic equation and the
Navier–Stokes equations that were treated in the previous chapter.

Chapter 12 provides a method for bounding the upper box-counting dimen-
sion of attractors in Banach spaces. While there are powerful techniques avail-
able for attractors in Hilbert spaces, these are already presented in a number
of other texts, and outlining the more general Banach space technique is more
in keeping with the overall approach of this book (the Hilbert space method is
covered here in an extended series of exercises). In particular, we show that any
attractor of the abstract semilinear parabolic equation introduced in Chapter 10
will be finite-dimensional.

Before proving the final two ‘concrete’ embedding theorems in Chapters 14
and 15, Chapter 13 provides two results that guarantee that an attractor has zero
‘thickness’: we show first that if the attractor consists of smooth functions then
its thickness exponent is zero, and then that the attractors of a wide variety of
models (which can be written in the abstract semilinear parabolic form) have
zero Lipschitz deviation. This, in part, answers a conjecture of Ott, Hunt, &
Kaloshin (2006).

Most of the chapters end with a number of exercises. Many of these carry
forward portions of the argument that would break the flow of the main text, or
discuss related approaches. Full solutions of the exercises are given at the end
of the book.

All Hilbert and Banach spaces are real, throughout.
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Finite-dimensional sets





1

Lebesgue covering dimension

There are a number of definitions of dimension that are invariant under home-
omorphisms, i.e. that are topological invariants – in particular, the large and
small inductive dimensions, and the Lebesgue covering dimension. Although
different a priori, the large inductive dimension and the Lebesgue covering
dimension are equal in any metric space (Katětov, 1952; Morita, 1954; Chapter
4 of Engelking, 1978), and all three definitions coincide for separable metric
spaces (Proposition III.5 A and Theorem V.8 in Hurewicz & Wallman (1941)).
A beautiful exposition of the theory of ‘topological dimension’ is given in the
classic text by Hurewicz & Wallman (1941), which treats separable spaces
throughout and makes much capital out of the equivalence of these definitions.
Chapter 1 of Engelking (1978) recapitulates these results, while the rest of his
book discusses dimension theory in more general spaces in some detail.

This chapter concentrates on one of these definitions, the Lebesgue covering
dimension, which we will denote by dim(X), and refer to simply as the covering
dimension. Among the three definitions mentioned above, it is the covering
dimension that is most suitable for proving an embedding result: we will show
in Theorem 1.12, the central result of this chapter, that if dim(X) ≤ n then a
generic set of continuous maps from X into R

2n+1 are homeomorphisms, i.e.
provide an embedding of X into R

2n+1.
There is, unsurprisingly, a topological flavour to the arguments involved

here, and consequently they are very different from those in the rest of this
book. However, any survey of embedding results for finite-dimensional sets
would be incomplete without including the ‘fundamental’ embedding theorem
that is available for sets with finite covering dimension.

7



8 Lebesgue covering dimension

1.1 Covering dimension

Let (X, �) be a metric space, and A a subset1 of X. A covering of A ⊆ X is a
finite collection {Uj }rj=1 of open subsets of X such that

A ⊆
r⋃

j=1

Uj .

The order of a covering is the largest integer n such that there are n + 1
members of the covering that have a nonempty intersection. A covering β is a
refinement of a covering α if every member of β is contained in some member
of α.

Definition 1.1 A set A ⊆ X has dim(A) ≤ n if every covering has a refine-
ment of order ≤ n. A set A has dim(A) = n if dim(A) ≤ n but it is not true that
dim(A) ≤ n − 1.

Clearly dim is a topological invariant. We now prove some elementary
properties of the covering dimension, following Munkres (2000) and Edgar
(2008).

Proposition 1.2 Let B ⊆ A ⊆ X, with B closed. If dim(A) = n then
dim(B) ≤ n.

Proof Let α be a covering of B by open subsets {Uj } of X. Cover A by the
sets {Uj }, along with the open set X \ B. Let β be a refinement of this covering
that has order at most n. Then the collection

β ′ := {U ∈ β : U ∩ B �= ∅}
is a refinement of α that covers B and has order at most n. �

The assumption that B is closed makes the proof significantly simpler, but
the result remains true for an arbitrary subset of A, see Theorem 3.2.13 in
Edgar (2008), or Theorem III.1 in Hurewicz & Wallman (1941). However, the
following ‘sum theorem’ is not true unless one of the spaces is closed: in fact,
dim(X) = n if and only if X can be written as the union of n + 1 subsets all
of which have dimension zero (see Theorem III.3 in Hurewicz & Wallman
(1941)).

1 In the context of metric spaces it is somewhat artificial to make the definition in this form, since
(A, �) is a metric space in its own right. But our main focus in what follows will be on subsets
of Hilbert and Banach spaces, where the underlying linear structure of the ambient space will be
significant.
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Proposition 1.3 Let X = X1 ∪ X2, where X1 and X2 are closed subspaces
of X with dim(X1) ≤ n and dim(X2) ≤ n. Then dim(X) ≤ n.

Of course, it follows that if X = X1 ∪ · · · ∪ Xk , each Xj is closed and
dim(Xj ) ≤ n for every j = 1, . . . , k then dim(X) ≤ n. In fact one can extend
this to countable unions of closed sets, see Theorem III.2 in Hurewicz &
Wallman (1941) (and Theorem 3.2.11 in Edgar (2008) for the case n = 1).

Proof We will say that an open covering α of X has order at most n at points
of Y if every point in Y lies in no more than n + 1 elements of α.

First we show that any open covering α of X has a refinement that has order
at most n at points of X1. Any such covering of X provides a covering of X1,
which has a refinement β ′ that has order at most n. For every V ∈ β ′, there
exists an element UV ∈ α such that V ⊂ UV . Then

β = {UV : V ∈ β ′} ∪ {U \ X1 : U ∈ α}
is the required refinement of α. We can repeat this argument starting with the
covering β of X, and obtain a covering γ that refines β and has order at most
n at points of X2.

We now define a further covering of X, which will turn out to be a refinement
of α of order at most n. As a first step in our construction, define a map
f : γ → β by choosing, for each G ∈ γ , an f (G) ∈ β such that G ⊂ f (G)
(this is possible since γ refines β). Now for each B ∈ β, let

d(B) = {G ∈ γ : f (G) = B},
and let δ be the union of all the sets d(B) (over B ∈ β).

Now, δ is a refinement of α, since d(B) ⊂ B for every B ∈ β, and β is a
refinement of α. Also, δ still covers X since γ covers X and every G ∈ γ is
contained in some B ∈ β (as γ refines β). All that remains is to show that δ

has order at most n.
Suppose that x ∈ X with x ∈ d(B1) ∩ · · · ∩ d(Bk), with all the d(Bk) distinct

(thus B1, . . . , Bk are distinct). It follows that for each j = 1, . . . , k, x ∈ Gj

where f (Gj ) = Bj ; since B1, . . . , Bk are distinct, so are G1, . . . , Gk . Thus

x ∈ G1 ∩ · · · ∩ Gk ⊂ d(B1) ∩ · · · ∩ d(Bk) ⊂ B1 ∩ · · · ∩ Bk.

If x ∈ X1 then k ≤ n + 1 because β has order at most n at points of X1; and if
x ∈ X2 then k ≤ n + 1 because γ has order at most n at points of X2. �

We do not prove a result on the covering dimension of products here,
although it is the case that dim(X × Y ) ≤ dim(X) + dim(Y ) (Theorem III.4 in
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Hurewicz & Wallman (1941)): this can be proved as a corollary of a characteri-
sation of the covering dimension in terms of the upper box-counting dimension,
see Exercise 3.4.

1.2 The covering dimension of In

It is by no means trivial to show that the covering dimension of R
n is n. Note

that it suffices to show that dim(In) = n, where In = [− 1
2 , 1

2 ]n denotes the unit
cube in R

n, since as remarked after Proposition 1.3, the covering dimension is
in fact stable under countable unions of closed sets.

We refer to Theorem 50.6 in Munkres (2000) for a direct proof of the upper
bound on dim(In) (see also Exercise 1.2 for compact subsets of R

2). One can
also deduce the upper bound from the general fact that the covering dimension is
bounded by the Hausdorff dimension (Theorem 2.11); it is very simple to show
that the Hausdorff dimension of a subset of R

n is bounded by n (Proposition
2.8(iii)).

While the proof of the upper bound is more notationally awkward than tech-
nically difficult, the proof of the lower bound involves the powerful Brouwer
Fixed Point Theorem (see IV (C) of Hurewicz & Wallman (1941) for a proof).

Theorem 1.4 Any continuous map f : In → In has a fixed point, i.e. there
exists an x0 ∈ In such that f (x0) = x0.

We give a proof of the lower bound (essentially the ‘Lebesgue Covering
Theorem’) adapted from Hurewicz & Wallman’s book, for the two-dimensional
unit cube I2 = [− 1

2 , 1
2 ]2. The general result (for In) is not significantly more

involved, but the argument can be somewhat simplified in this case without
losing its essential flavour. (An alternative proof of a similar two-dimensional
result is given as Theorem 3.3.4 in Edgar (2008).) Before the proof we introduce
some notation.

Given a set U ⊂ (X, �) we define the diameter of U , written |U |, as

|U | = diam(U ) = sup
u1,u2∈U

�(u1, u2).

(We only use the notation diam(U ) when |U | would be ambiguous.) The mesh
size of a covering of A is the largest of the diameters of the elements of the
covering.

For two sets A,B ⊂ X we write

dist(A,B) = sup
a∈A

inf
b∈B

�(a, b)
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for the Hausdorff semidistance between A and B. Note that if B is closed then
dist(A,B) = 0 implies that A ⊆ B.

Theorem 1.5 Let I2 = [− 1
2 , 1

2 ]2 ⊂ R
2. Then dim(I2) ≥ 2.

Proof We want to show that any covering α of I2 with sufficiently small mesh
size contains at least three sets with nonempty intersection. To this end, take
a covering α with mesh size < 1 so that no element of the covering contains
points of opposite faces.

The first step is to construct a refinement α̃ of α consisting of closed, rather
than open, sets. To do this, observe that every x ∈ I2 is contained in some
Ux ∈ α, and we can find an open set Vx such that x ∈ Vx ⊂ V̄x ⊂ Ux . Since I2

is compact and {Vx : x ∈ I2} is an open cover of I2, there is a finite subcover
{Vxj

}. We take α̃ to be the collection of all the closed sets {V̄xj
}. By construction

this is a refinement of α consisting of closed sets.
We now show that α̃ contains at least three sets with nonempty intersection,

from which it is immediate (since α̃ is a refinement of α) that α contains at
least three sets with nonempty intersection.

Let �1 denote the side of I2 with x = − 1
2 , �′

1 the side with x = 1
2 , �2 the

side with y = − 1
2 , and �′

2 the side with y = 1
2 . Let L1 denote the union of

those elements of α̃ that intersect �1; L2 the union of those elements of α̃ that
are not in L1 and intersect �2; and let L3 be the union of all the other elements
of α̃ (those that intersect neither �1 nor �2). See Figure 1.1(a).

If we define K1 = L1 ∩ L3 then K1 separates �1 and �′
1 in I2, i.e. there exist

open sets U1 and U ′
1 such

I2 \ K1 = U1 ∪ U ′
1, U1 ∩ U ′

1 = ∅
and �1 ⊂ U1, �′

1 ⊂ U ′
1. The set K ′

2 = L1 ∩ L2 ∩ L3 separates �2 ∩ K1 from
�′

2 ∩ K1 in K1. One can then find a new closed set K2, with K2 ∩ K1 ⊆ K ′
2,

that separates �2 and �′
2 in I2, i.e. such that there exist open sets U2 and U ′

2

such that

I2 \ K2 = U2 ∪ U ′
2, U2 ∩ U ′

2 = ∅
and �2 ⊂ U2, �′

2 ⊂ U ′
2. These constructions are illustrated in Figure 1.1(b). (If

the ‘proof by diagram’ of this last step is unconvincing, see IV.3 A) in Hurewicz
& Wallman (1941), or Exercise 1.3.)

Now for each x ∈ I2, let v(x) be the 2-vector with components

vi(x) =

⎧⎪⎪⎨
⎪⎪⎩

dist(x,Ki) x ∈ Ui,

0 x ∈ Ki,

−dist(x,Ki) x ∈ U ′
i ,
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Γ1

Γ2

Γ1

Γ2

L1

L2

K1

K2

K2

(a) (b)

Figure 1.1 (a) A covering of I2, divided into sets L1 (lightly shaded), L2 (more
heavily shaded), and L3 (not shaded). (b) K1 (lightly shaded) separates �1 and �′

1
in I2; K ′

2 (a subset of K1, shaded more heavily) separates K1 ∩ �2 and K1 ∩ �′
2 in

K1; K2 (the dark line) separates �2 and �′
2 in I2, with K2 ∩ K1 ⊆ K ′

2.

and set f (x) = x + v(x); note that f (x) ∈ I2, and that f is continuous. It
follows from the Brouwer Fixed Point Theorem (Theorem 1.4) that f has
a fixed point, i.e. there exists an x0 ∈ I2 such that f (x0) = x0. In particu-
lar, this implies that dist(x0,K1) = dist(x0,K2) = 0, i.e. that K1 ∩ K2 ⊂ K ′

2 =
L1 ∩ L2 ∩ L3 is nonempty. Since each of the original elements of α̃ is contained
in only one of the Lj s, there are three elements of α̃ that contain a common
point. �

1.3 Embedding sets with finite covering dimension

We now prove the fundamental embedding result that any space with covering
dimension n can be topologically embedded into R

2n+1; note that this charac-
terises sets of finite covering dimension as homeomorphic images of subsets of
finite-dimensional Euclidean spaces. The embedding result in the compact case
(which we treat here) is due to Menger (1926) and Nöbeling (1931); we follow
the presentation of Hurewicz & Wallman (1941, Theorem V.2) and Munkres
(2000, Theorem 50.5). A similar result is possible in the general (non compact)
case, see Theorem V.3 in Hurewicz & Wallman (1941).

The proof uses the Baire Category Theorem, which we state here for con-
venience. For a proof see Munkres (2000, Theorem 48.2), for example.
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Theorem 1.6 Let (X, �) be a complete metric space, and {Xj }∞j=1 a countable
collection of open and dense subsets of X. Then

∞⋂
j=1

Xj

is a dense subset of X.

We begin with a useful characterisation of the covering dimension of com-
pact sets.

Lemma 1.7 A compact set A ⊆ (X, �) has dim(A) ≤ n if and only if it has
coverings of arbitrarily small mesh size and order ≤ n.

Proof First we show that if α is a covering of A then there is an η > 0
such that every subset of A with diameter less than η is entirely contained
in some member of α (the largest such η is called the ‘Lebesgue number’ of
the covering α). If not, there exists a sequence {Aj }∞j=1 of subsets of A with
diameters tending to zero not wholly contained in any member of α. Choose
xj ∈ Aj ; since A is compact, there exists a subsequence (which we relabel)
such that xj → x∗. Of course, x∗ ∈ U ∈ α. But since U is open, B(x∗, δ) ⊂ U

for some δ > 0, from which it follows that Aj ⊂ U ∈ α for all j sufficiently
large, contradicting our initial assumption.

So now take an initial covering α of A. By assumption there exists a covering
β of A of mesh size < η and of order ≤ n; we have just shown that each element
of this covering β lies entirely within an element of α. It follows that β is a
refinement of α of order ≤ n, and so dim(A) ≤ n.

Now suppose that dim(A) ≤ n. Consider the collection of all open balls
in A of radius ε/2. Since A is compact, there is a covering of A by a finite
collection of these balls. It follows from the fact dim(A) ≤ n that there is a
refinement of this covering (still consisting of sets whose diameter is no larger
than ε) of order ≤ n. �

We say that a continuous map g : X → R
k is an ε-mapping if

diam[g−1(x)] < ε for all x ∈ g(X).

We will show that for each n ∈ N, the set of all 1/n-mappings is open and
dense, and our embedding result will then follow using the Baire Category
Theorem (Theorem 1.6) and the following simple lemma.

Lemma 1.8 If (X, �) is compact then g is a homeomorphism of X into R
k if

and only if g is a 1/n-mapping for each n ∈ N.
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Proof If g is a 1/n-mapping for each n ∈ N then diam[g−1(x)] = 0 for every
x ∈ g(X), i.e. g−1(x) consists of a single point, so that g is one-to-one. But
a one-to-one continuous mapping of a compact set is a homeomorphism, see
Exercise 1.4. The converse is clear. �

Lemma 1.9 Let (X, �) be compact. Then for each ε > 0 the set Fε of all
ε-mappings is open in C(X, R

k).

Proof Suppose that g ∈ C(X, R
k) is an ε-mapping. Since X is compact so is

X × X, and since

{(x, x ′) ∈ X × X with �(x, x ′) ≥ ε}
is a closed subset of X × X, it too is compact. It follows that

η = inf{|g(x) − g(x ′)| : x, x ′ ∈ X with �(x, x ′) ≥ ε} > 0;

if η were zero then g could not be an ε-mapping. If f is any mapping with
�(f, g) < η/2 and f (x) = f (x ′) it follows that |g(x) − g(x ′)| < η, and hence
that �(x, x ′) < ε, i.e. f is also an ε-mapping. �

The density of Fε is much more delicate, and requires the following geo-
metric result, for which we follow the presentation in Munkres (2000). Given a
collection {x1, . . . , xk} of two or more points in R

N , the affine space gen-
erated by {x1, . . . , xk}, A(x1, . . . , xk) is the collection of all points of the
form

k∑
j=1

ajxj with
k∑

j=1

aj = 1.

It is easy to check that this is the same as the affine space through x1 spanned
by {xj − x1}kj=2, i.e. all points of the form

x1 +
k∑

j=2

cj (xj − x1)

for all cj ∈ R (one could also form the same space by taking any xi and
considering all points of the form xi +∑j �=i cj (xj − xi)). We say that the
points {x1, . . . , xn} in R

N are in general position in R
N if no xj lies in the affine

space generated by any subcollection of the {xi} consisting of ≤ N elements
that does not contain xj .

An equivalent and more elegant definition makes use of the following
concept. We say that a set {y1, . . . , yk} of k points in R

N are geometrically
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independent if

k∑
j=1

ajyj = 0 and
k∑

j=1

aj = 0,

then aj = 0 for j = 1, . . . , k. A set of points in R
N are in general position if

any k of these points, k ≤ N + 1, are geometrically independent. Note that if
the points {y1, . . . , yk} are geometrically independent then so are the points
{y1 + z, . . . , yk + z} for any z ∈ R

N .
(For later use we note that the simplex spanned by {x1, . . . , xk} is the convex

hull of {x1, . . . , xk}; or equivalently the affine combinations
∑k

i=1 aixi with∑k
i=1 ai = 1 and ai ≥ 0 for every i = 1, . . . , k. If the {xj }kj=1 are geometrically

independent then the dimension of the simplex is (by definition) k − 1. A
polyhedron is a finite union of simplices in some R

N ; its dimension is (by
definition) the maximum of the dimension of these simplices.)

We now show that near any collection of points in R
N , there is a set of points

that are in general position.

Lemma 1.10 Given points x1, . . . , xn ∈ R
N and δ > 0, there exist points

y1, . . . , yn ∈ R
N such that |xi − yi | < δ and the {y1, . . . , yn} are in general

position in R
N .

Proof We prove this by induction. Suppose that we have a collection of
k − 1 points, {y1, . . . , yk−1}, in general position in R

N . There are a finite
number of subcollections of the yis consisting of ≤ N elements, each of which
generates an affine subspace of dimension ≤ N − 1. The measure of each of
these subspaces is zero; and so is the measure of their union S. So there certainly
exists a yk ∈ B(xk, δ) \ S. The set {y1, . . . , yk} is in general position: indeed,
if we choose ≤ N + 1 of these yj , either none of these is yk in which case
the induction hypothesis guarantees that they are geometrically independent,
or one of them is yk which we have just constructed to ensure geometric
independence. �

Proposition 1.11 Let (X, �) be a compact metric space of dimension ≤ n.
Then for each ε > 0, Fε is dense in C(X, R

2n+1).

Proof Take f ∈ C(X, R
2n+1) and η > 0. We will construct a g ∈ Fε such

that �(f, g) < η.
Since X is compact, f is uniformly continuous and so there exists a δ < ε

such that

�(x, x ′) < δ ⇒ �(f (x), f (x ′)) < η/2. (1.1)



16 Lebesgue covering dimension

Since X is compact and dim(X) ≤ n, there exists a covering {Uj }rj=1 of X of
order ≤ n such that diam(Uj ) < δ for all j . It follows from (1.1) that

diam(f (Uj )) < η/2 (1.2)

for each j .
Now use Lemma 1.10 to select points {pj }rj=1 in R

2n+1 such that

dist(pj , f (Uj )) < η/2 (1.3)

and the {p1, . . . , pr} are in general position in R
2n+1.

For each point x ∈ X and 1 ≤ i ≤ r define

wi(x) = dist(x,X \ Ui).

Clearly wi(x) > 0 if x ∈ Ui and wi(x) = 0 if x /∈ Ui . For each x at least one
of the wi(x) is positive, since X ⊂ ∪jUj ; and no more than n + 1 are positive,
since the covering {Uj } is of order ≤ n. Set

ϕi(x) = wi(x)∑r
j=1 wj (x)

;

as with wi(·), ϕi(x) ≥ 0, since ϕi(x) �= 0 iff x ∈ Ui , for each x ∈ X at least if
and only if one and no more than n + 1 of {ϕj (x)} are nonzero, and

r∑
j=1

ϕj (x) = 1 for every x ∈ X.

We now set2

g(x) =
r∑

i=1

ϕi(x) pi. (1.4)

Since the only nonzero terms in the sum are for values of i for which x ∈ Ui ,
it follows from (1.2) and (1.3) that for such values of i, |pi − f (x)| < η and
hence

|g(x) − f (x)| =
∣∣∣∣∣

r∑
i=1

ϕi(x) (pi − f (x))

∣∣∣∣∣ ≤
r∑

i=1

ϕi(x)|pi − f (x)| < η

for all x ∈ X.

2 In fact g maps X into an n-dimensional polyhedron. Since no more than n + 1 of the ϕks are
nonzero at any one time, for every x ∈ Ui the image g(x) is contained in some fixed simplex
Si of dimension ≤ n. Then g(X) ⊂ ∪r

i=1Si , where the right-hand side defines a polyhedron of
dimension ≤ n. This remark will prove useful later in the proof of Theorem 2.12.
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Now if g(x) = g(x ′) then

g(x) − g(x ′) =
r∑

k=1

[ϕk(x) − ϕk(x ′)]︸ ︷︷ ︸
ck

pk = 0,

i.e.
r∑

k=1

ckpk = 0 with
r∑

k=1

ck =
r∑

k=1

ϕk(x) −
r∑

k=1

ϕk(x ′) = 1 − 1 = 0.

We have a vanishing linear combination of the pks, with coefficients that sum
to zero. Since no more than n + 1 of the ϕks are nonzero for each x ∈ X,
no more than 2n + 2 of the cks are nonzero. Since the {pk} are in general
position in R

2n+1, any subcollection of the {pk} with ≤ 2n + 2 elements
must be geometrically independent: it follows that ϕk(x) = ϕk(x ′) for every
k = 1, . . . , r . In particular, since x ∈ Ui for some i, ϕi(x) > 0; therefore
ϕi(x ′) > 0, and hence x ′ ∈ Ui too.

Thus x, x ′ ∈ Ui ; since diam(Ui) < δ < ε it follows that g ∈ Fε . �
We can now use the Baire Category Theorem to show that a ‘large’ class of

functions in C(X, R
2n+1) are homeomorphisms. In common terminology, we

show that in fact such functions are ‘generic’, meaning that they are a dense
Gδ (a countable intersection of open sets).

Theorem 1.12 Let X be a compact metric space with dim(X) ≤ n. Then
there is a dense Gδ of functions in C(X, R

2n+1) that are homeomorphisms of
X into R

2n+1.

Proof For each j ∈ N, F1/j is open and dense in C(X, R
2n+1). It follows from

the Baire Category Theorem (Theorem 1.6) that ∩jF1/j is a dense Gδ in this
space. But by Lemma 1.8 this is precisely the collection of all homeomorphisms
of X into R

2n+1. �
An example due to Flores (1935) shows that this result cannot be improved:

the collection of all faces of a 2n + 2-dimensional cell (see Section V.9 in
Hurewicz & Wallman (1941)) that have dimension ≤ n form an n-dimensional
space which cannot be embedded into R

2n (see also Exercise 1.11.F in
Engelking (1978)).

1.4 Large and small inductive dimensions

The small inductive dimension, ind(·), is defined as follows, where we use ∂U

to denote the boundary of U:

(i) the empty set has ind(∅) = −1;
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(ii) ind(X) ≤ n if for every point p ∈ X, p has arbitrarily small neighbour-
hoods U with ind(∂U ) ≤ n − 1;

(iii) ind(X) = n if ind(X) ≤ n but it is not true that ind(X) ≤ n + 1.

The argument showing that the small inductive dimension and the covering
dimension are equal in separable metric spaces is outlined in Exercises 1.5–
1.7.

The large inductive dimension, Ind(·), is defined similarly, but with (ii)
replaced by

(ii′) Ind(X) ≤ n if for every closed set A ⊂ X and each open set V ⊂ X that
contains the set A there exists an open set U ⊂ X such that

A ⊂ U ⊂ V and Ind(∂U ) ≤ n − 1.

The large inductive dimension and the covering dimension coincide in any
metric space (in fact, in any metrisable space), see Theorem 4.1.3 in Engelking
(1978); clearly ind(X) ≤ Ind(X) always.

Exercises

1.1 Suppose that for every open cover {U1, . . . , Un+2} of X, there exists a
cover of X by closed sets {F1, . . . , Fn+2}, with Fj ⊆ Uj and ∩n+2

j=1Fj = ∅.
Show that dim(X) ≤ n. [Hint: first show that the assumption implies that
the same is true with the {Fj } open.] (Theorem 3.2.1 in Edgar (2008)
shows that in fact the assumption here and dim(X) ≤ n are equivalent.)

1.2 Find a covering of R
2 of order 3 and mesh size no larger than 1. Deduce that

any compact subset X of R
2 has dim(X) ≤ 2. [Hint: any open covering of

X has a Lebesgue number that is strictly positive, see the proof of Lemma
1.7.]

1.3 Let A1, A2, and B be mutually disjoint subsets of a space X. We say that
B separates A1 and A2 in X if there exist two disjoint sets U1 and U2,
open in X, such that

A1 ⊂ U1, A2 ⊂ U2, and X \ B ⊂ U1 ∪ U2.

Now let A be a closed subset of X, C and C ′ a pair of disjoint closed
subsets of X, and K a closed subset of A that separates A ∩ C and A ∩ C ′

in A. Show that there exists a closed set B that separates C and C ′ in X

and satisfies A ∩ B ⊂ K .
1.4 Show that a one-to-one continuous mapping of a compact set is a homeo-

morphism.
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1.5 Assume that if M is a subspace of (X, �) with ind(M) ≤ 0 then given any
two open sets U1 and U2 that cover M , there exist disjoint open sets V1

and V2 with V1 ⊂ U1 and V2 ⊂ U2 such that V1 and V2 still cover M . Use
induction to show that if {U1, . . . , Ur} is an open cover of M then there
exists an open cover {V1, . . . , Vr} of M such that

Vj ⊂ Uj and Vi ∩ Vj = ∅ for i �= j ;

i.e. that ind(M) ≤ 0 implies that dim(M) = 0.
1.6 As mentioned immediately before the statement of Proposition 1.3, a

fundamental result in the theory of the small inductive dimension is that
a set A ⊆ (X, �) has ind(A) ≤ n if and only if it is the union of n + 1
subspaces of dimension ≤ 0. Use this result along with that of the previous
exercise to show that dim(A) ≤ ind(A).

1.7 Deduce from the following three facts that dim(X) = ind(X) for any sep-
arable metric space (reference is given to the relevant results in Hurewicz
& Wallman (1941)):

(i) any separable metric space X with dim(X) ≤ n can be embedded
into M n

2n+1 ∩ I2n+1, the set of points in I2n+1 at most n of whose
coordinates are rational (Theorem V.5);

(ii) ind(M2n+1) = n (Example IV.1); and
(iii) A ⊆ B implies that ind(A) ≤ ind(B) (Theorem III.1).
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Hausdorff measure and Hausdorff dimension

The Hausdorff dimension, which we denote by dH, is one of the most widely
used definitions. It finds extensive application in geometric measure theory
(see Federer (1969), for example), and in the theory of dynamical systems (see
Pesin (1997), Boichenko, Leonov, & Reitmann (2005)). Much of its power
is due to the fact that it is defined in terms of Hausdorff measures, naturally
linking dimension and measure.

It occupies an intermediate position between the covering dimension and
the box-counting dimension (dB), with dim(X) ≤ dH(X) ≤ dB(X) (Theorem
2.11 and Lemma 3.3(v)). Since dim(X) ≤ dH(X) we can use Theorem 1.12 to
guarantee that any set with finite Hausdorff dimension can be topologically
embedded into a Euclidean space. However, we will see at the beginning of
Chapter 6 that there are examples of sets with finite Hausdorff dimension that
cannot be embedded into a Euclidean space using any map that is linear.

2.1 Hausdorff measure and Lebesgue measure

Although we will ultimately consider subsets of Banach spaces, we begin in a
relatively abstract way by defining the s-dimensional Hausdorff measure H s ,
and the Hausdorff dimension dH, for subsets of a metric space (X, �).

An outer measure μ on X assigns a nonnegative real number to every subset
of X, with the properties

(i) μ(∅) = 0;
(ii) if A ⊆ B then μ(A) ≤ μ(B); and

(iii) if {Aj }∞j=1 are subsets of X then

μ

⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠ ≤

∞∑
j=1

μ(Aj ). (2.1)

20
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We do not distinguish in what follows between ‘outer measures’ and ‘mea-
sures’; strictly speaking a ‘measure’ is only defined on a σ -algebra of mea-
surable sets (sets for which μ(E) = μ(E ∩ A) + μ(E \ A)), but any measure
can be extended to an outer measure, and any outer measure gives rise to a
measure when restricted to the σ -algebra of measurable sets (for more details
see Chapter 1 of Mattila (1995), or of Rogers (1998)). A probability measure
on (X, �) is a measure μ with μ(X) = 1.

We now define an approximation to the s-dimensional Hausdorff measure,
and show that it is an outer measure. For a subset U of X, we recall that
|U | = supx,y∈U �(x, y); for A ⊆ X, s ≥ 0, and δ > 0, we define

H s
δ (A) = inf

{ ∞∑
i=1

|Ui |s : X ⊆ ∪∞
i=1Ui with |Ui | ≤ δ

}
.

Note that any sets {Ui} are allowable in this cover of X (they need not be open).

Lemma 2.1 H s
δ in an outer measure on (X, �) for each δ > 0.

Proof Fix δ > 0. Clearly (i) H s
δ (∅) = 0 and (ii) H (s)

δ (A) ≤ H s
δ (B) when-

ever A ⊆ B. To prove (iii) let {Aj }∞j=1 be a collection of subsets of X. Given

ε > 0 there exists a sequence {B(i)
j }∞i=1 of subsets of X such that

Aj ⊂
∞⋃
i=1

B
(i)
j , |B(i)

j | ≤ δ, and
∞∑
i=1

|B(i)
j |s ≤ H s

δ (Aj ) + ε2−j .

It follows that

∞⋃
j=1

Aj ⊂
∞⋃

i,j=1

B
(i)
j and H s

δ

⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠ ≤

∞∑
i,j=1

|B(i)
j |s ≤ ε +

∞∑
j=1

H s
δ (Aj ).

Since this is valid for any ε > 0, H s
δ

(⋃∞
j=1 Aj

) ≤ ∑∞
j=1 H s

δ (Aj ) as
required. �

One obtains the s-dimensional Hausdorff measure by refining the cover
involved in the definition of H s

δ , i.e. taking the limit as δ → 0:

H s(X) = lim
δ→0

H s
δ (X).

The limit exists (it may be infinity) since H s
δ (X) increases as δ decreases. It

follows immediately from Lemma 2.1 that H s is an outer measure; in fact
more is true.

Theorem 2.2 H s is a metric outer measure, i.e.

H s(A ∪ B) = H s(A) + H s(B) (2.2)
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whenever dist(A,B) > 0.

Proof We have already remarked that H s is an outer measure, so we have
only to prove (2.2). Let A,B be subsets of X such that dist(A,B) > 0 and let
δ < dist(A,B). It is easy to see that

H s
δ (A ∪ B) = H s

δ (A) + H s
δ (B).

Taking δ → 0 yields H s(A ∪ B) = H s(A) + H s(B), as required. �
A set A ⊂ X is said to be H s-measurable if for each E ⊂ X

H s(E) = H s(E ∩ A) + H s(E ∩ Ac).

Since H s is a metric outer measure, it follows (for a proof see Theorem 1.5 in
Falconer (1985)) that every closed subset of X is H s-measurable; and hence
that every Borel subset of X is H s-measurable. In particular, if {Aj } are disjoint
Borel sets then

H s

⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠ =

∞∑
j=1

H s(Aj ),

i.e. equality holds in (2.1).
We end this section with the result that for subsets of R

n, H n is a constant
multiple of n-dimensional Lebesgue measure. We will require the fact that the
volume of any subset of R

n is no larger than the volume of a ball with the same
diameter; for a proof see Section 2.2 in Evans & Gariepy (1992). We use L n

to denote n-dimensional Lebesgue measure.

Theorem 2.3 For any bounded subset A of R
n,

L n(A) ≤ �n

( |A|
2

)n

,

where �n = πn/2/�(n/2 + 1) is the volume of the unit ball in R
n.

Theorem 2.4 If A is a bounded subset of R
n then

H n(A) = 2−n�nL
n(A).

Proof First, given any ε > 0 cover A by sets {Ui} such that∑
i

|Ui |n < H n(A) + ε.

Using Theorem 2.3,

L n(A) ≤
∑

i

L n(Ui) ≤
∑

i

�n

( |Ui |
2

)n

< 2−n �n[H n(A) + ε],
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which implies that L n(A) ≤ 2−n�nH n(A). The lower bound relies on the
Vitali Covering Theorem, and since we only make use of the upper bound in
what follows we refer to Falconer (1985) for both the covering theorem (his
Theorem 1.10) and the proof of the lower bound (his Theorem 1.12). �

2.2 Hausdorff dimension

We now show that there is a ‘critical value’ of s at which the s-dimensional
Hausdorff measure switches (as s is decreased) from being zero to being
infinite – this will be how we define the Hausdorff dimension.

Proposition 2.5 Let A be a subset of (X, �). Take s ′ > s > 0: if H s(A) < ∞
then H s ′

(A) = 0, and if H s ′
(A) > 0 then H s(A) = ∞.

Proof The two statements are equivalent; we prove the first. If H s(A) < ∞
then for any δ > 0 there is a cover of A by sets {Bj } with diameters ≤ δ such
that

∞∑
j=1

|Bj |s ≤ H s(A) + 1.

It follows that for s ′ > s

∞∑
j=1

|Bj |s ′ ≤ δs ′−s

∞∑
j=1

|Bj |s ≤ δs ′−s[H s(A) + 1],

and hence H s ′
(A) = 0. �

We can now define the Hausdorff dimension.

Definition 2.6 For any A ⊆ (X, �), the Hausdorff dimension of A is

dH(A) = inf{d ≥ 0 : H d (A) = 0}.
In the light of this definition, the following simple lemma will be useful.

Lemma 2.7 If A ⊆ X and s > 0 then H s(A) = 0 if and only if for every
ε > 0 there is a countable covering of A, {Uj }∞j=1, such that

∞∑
j=1

|Uj |s < ε. (2.3)

Proof Suppose that H s(A) = 0. Then for any δ > 0 there is a cover of
A by sets {Uj } with |Uj | < δ such that (2.3) holds; in particular one such
cover exists. Conversely, given any δ > 0, choose ε > 0 such that ε1/s < δ,
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and find a covering that satisfies (2.3). Then this must be a covering by sets
with |Uj | < δ that satisfies (2.3), and hence H s(A) < ε for every ε > 0, i.e.
H s(A) = 0. �

We now prove some basic properties of the Hausdorff dimension.

Proposition 2.8
(i) If A,B ⊆ (X, �) and A ⊆ B then dH(A) ≤ dH(B);

(ii) the Hausdorff dimension is stable under countable unions: if Xk ⊆ X

then

dH

( ∞⋃
k=1

Xk

)
= sup

k

dH(Xk); (2.4)

(iii) if U is an open subset of R
n then dH(U ) = n, in particular dH(Rn) = n;

and
(iv) if f : (X, �X) → (Y, �Y ) is Hölder continuous with exponent θ ∈ (0, 1],

�Y (f (x1), f (x2)) ≤ C �X(x1, x2)θ ,

then dH(f (X)) ≤ dH(X)/θ .

Proof (i) The proof is immediate from the definition.
(ii) If supk dH(Xk) = ∞ then it follows from (i) that dH(X) = ∞. So we can

assume that supk dH(Xk) < ∞, and take s > supk dH(Xk): then H s(Xk) = 0
for every k, and since H s is an outer measure (2.1) H s(∪kXk) = 0 and hence
dH(X) < s, from which (2.4) follows.

(iii) By considering U = ∪∞
j=1[U ∩ B(0, j )] and using (ii), it suffices to

show that dH(U ) = n for any bounded open set U . Certainly U is contained
in some cube C with sides of length R. Given δ > 0, choose k ∈ N such that
k > R

√
n/δ, and divide C into kn subcubes with sides of length R/k (and so

with diameters
√

nR/k < δ); then H n
δ (C) ≤ Rnkn(k−1√n)n ≤ Rnnn/2 and it

follows that H n(C) < ∞, whence dH(C) ≤ n. It follows from part (i) that
dH(U ) ≤ n. To show the lower bound, it follows from Theorem 2.4 that
H n(U ) ≥ 2n�−1

n L n(U ) > 0, and hence dH(U ) ≥ n.
(iv) Take s > dH(X). Then for any ε > 0 there exists a cover {Uj } of X with∑

j

|Uj |s < ε.

Then {f (Uj )} is a cover of f (X) and |f (Uj )| ≤ C|Uj |θ , from which it follows
that ∑

j

|f (Uj )|s/θ < Csε.
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Lemma 2.7 guarantees that H s/θ (f (X)) = 0, and hence dH(f (X)) ≤ s/θ . �

Note that it is immediate from (ii) that the Hausdorff dimension of any
countable set is zero. In subsequent chapters we will frequently have recourse
to the example of an orthogonal sequence in a Hilbert space,

{aj ej }∞j=1 ∪ {0}
where |aj | → 0 and {ej }∞j=1 is an orthonormal set. In the light of this remark,
any such set will have zero Hausdorff dimension.

2.3 The Hausdorff dimension of products

It is generally hard to find lower bounds on the Hausdorff dimension, but the
following powerful theorem (‘Frostman’s Lemma’) is very useful for this. We
will only prove the implication in one direction, which is easy. The argument
to prove the converse is very involved, see Mattila (1995, Theorem 8.8; he also
gives a proof, due to Howroyd (1995), valid in compact metric spaces).

Theorem 2.9 Let X be a closed subset of R
n. Then H s(X) > 0 if and only

if there exists a probability measure μ supported on X such that

μ(B(x, r)) ≤ crs for all x ∈ X, r > 0.

Proof We only prove the ‘if’ part. Take any cover {Bri
(xi)} of X with ri ≤ δ;

then

1 = μ(X) = μ

(⋃
i

X ∩ Bri
(xi)

)
≤
∑

μ
(
X ∩ Bri

(xi)
) ≤ c

∑
i

rs
i .

Taking the infimum, it follows that H s(X) ≥ 1/c. �

Using this result we can show that dH(X × Y ) ≥ dH(X) + dH(Y ). While the
result remains true in greater generality, since we use Theorem 2.9 we state
it for subsets of Euclidean spaces. We take the norm on R

n × R
m to be the

standard norm on R
n+m.

Proposition 2.10 Let X ⊂ R
n and Y ⊂ R

m be closed sets. Then

dH(X × Y ) ≥ dH(X) + dH(Y ).

Proof Given s < dH(X) and t < dH(Y ), H s(X) > 0 and H t (Y ) > 0. It fol-
lows from Theorem 2.9 that there exist probability measures μ and ν supported
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on X and Y respectively such that

μ(B(x, r) ∩ X) ≤ c1r
s and ν(B(y, r) ∩ Y ) ≤ c2r

t .

Since B((x, y), r) ⊂ B(x, r) × B(y, r), the measure μ × ν on R
n × R

m satis-
fies (μ × ν)(X × Y ) = μ(X)ν(Y ) = 1 and

(μ × ν)(B((x, y), r) ∩ (X × Y )) ≤ μ(B(x, r) ∩ X)ν(B(y, r) ∩ Y ) ≤ c1c2r
s+t .

It follows that H s+t (X × Y ) > 0, and hence dH(X × Y ) ≥ s. �

The reverse inequality does not hold in general, as the following example
shows (Theorem 5.11 in Falconer (1985)). Let m0 = 1, mk+1 = k

∑k
j=0 mj .

Let X consist of those numbers in [0, 1] that have a zero in the rth decimal
place for mk + 1 ≤ r ≤ mk+1 and k even, and let Y consist of the numbers in
[0, 1] with a zero in the rth decimal place for mk + 1 ≤ r ≤ mk+1 and k odd.

Each of these sets X and Y has Hausdorff dimension zero. For X, consider
the first mk+1 decimal places, with k even; X can be covered by 10nk intervals
{Ij } of length 10−mk+1 , where

nk = (m2 − m1) + (m4 − m3) + · · · + (mk − mk−1).

Then ∑
j

|Ij |1/k ≤ 10nk × 10−mk+1/k ≤ 10
∑k

j=0 mj × 10−∑k
j=0 mj = 1,

by the choice of mk . It follows that dH(X) = 0. A similar argument shows that
dH(Y ) = 0.

However, any z ∈ (0, 1) can be written in the form z = x + y with x ∈ X and
y ∈ Y , and the mapping f : X × Y → R given by (x, y) �→ x + y is Lipschitz.
It follows that

1 = dH(0, 1) ≤ dH(f (X × Y )) ≤ dH(X × Y )

using Proposition 2.8(iv).

2.4 Hausdorff dimension and covering dimension

We are now in a position to show that the Hausdorff dimension bounds the cov-
ering dimension. The proof given here, which works directly with the covering
dimension, rather than the small inductive dimension as in Theorem VII 3 of
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Hurewicz & Wallman (1941), is due to Edgar (2008, Theorem 6.3.11). A sim-
ilar argument, valid in any separable metric space, is given by Charalambous
(1999).

Note that an immediate consequence of this result is that dim(X) ≤ n for
any compact subset of R

n, since Proposition 2.8(iii) shows that dH(Rn) = n,
and dH is monotonic (part (i) of the same proposition), so that dH(X) ≤ n for
any subset of R

n.

Theorem 2.11 Let X be a compact metric space. Then dim(X) ≤ dH(X).

Proof We use the characterisation of covering dimension from Exercise 1.1.
Let n = dim(X), so that it is not true that dim(X) ≤ n − 1. Then there must
exist an open cover {Ui}n+1

i=1 of X such that for any closed sets {Fi} with Fi ⊂ Ui

that still form a cover of X, ∩n+1
i=1 Fi �= ∅.

Now define

δi(x) = dist(x,X \ Ui) i = 1, . . . , n + 1

and δ(x) = δ1(x) + · · · + δn+1(x). Then each δi is Lipschitz continuous, and
hence so is δ:

|δi(x) − δi(y)| ≤ �(x, y) and |δ(x) − δ(y)| ≤ (n + 1)�(x, y).

Since the {Ui} form a cover of X, x ∈ Ui for some i, and so δi(x) > 0; it
follows that δ(x) > 0 for every x ∈ X, and so since X is compact, there exist
b > a > 0 such that a ≤ δ(x) ≤ b for every x ∈ X. Define h : X → R

n+1 by

h(x) =
(

δ1(x)

δ(x)
,
δ2(x)

δ(x)
, · · · ,

δn+1(x)

δ(x)

)
.

The function h is again Lipschitz, since∣∣∣∣δj (x)

δ(x)
− δj (y)

δ(y)

∣∣∣∣ = |δ(y)δj (x) − δ(x)δj (y)|
δ(x)δ(y)

≤ a−2[δ(y)|δj (x) − δj (y)| + δj (y)|δ(y) − δ(x)|]
≤ a−2b(n + 2) �(x, y),

and so

|h(x) − h(y)| ≤ a−2b(n + 2)
√

n �(x, y).

Now, since h is Lipschitz, dH(h(X)) ≤ dH(X) (Proposition 2.8(iv)). The
proof is concluded by showing that h(X) contains the simplex

T = {(t1, . . . , tn+1) ∈ R
n+1 : ti > 0 and

n+1∑
i=1

ti = 1},
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which clearly has dH(T ) ≥ n since it is bi-Lipschitz equivalent to an open
subset of R

n. To this end, take a point t = (t1, . . . , tn+1) ∈ T and consider the
sets

Fi =
{
x ∈ X :

δi(x)

δ(x)
≥ ti

}
.

Each Fi is closed, Fi ⊆ Ui , and the {Fi} form a cover of X since

n+1∑
i=1

[δi(x)/δ(x)] = 1.

Since ∩n+1
i=1 Fi �= ∅, there exists an x ∈ X with δi(x)/δ(x) ≥ ti for each i. But∑

i[δi(x)/δ(x)] = 1 and
∑

i ti = 1, whence it follows that δi(x)/δ(x) = ti , i.e.
that h(x) = t , and so h(X) ⊇ T . �

Of course, this inequality can be strict, since dim(X) is an integer-valued
definition of dimension, and there exist sets for which dH(X) /∈ N. However,
we always have equality for some homeomorphic image of X:

Theorem 2.12 If (X, �) is compact and dim(X) = n then there is a homeo-
morphism h : X → R

2n+1 such that dH(h(X)) = n.

The proof is taken from Hurewicz & Wallman (1941, Theorem VII.4).

Proof Take s > n, and consider the collection Ks of all those functions f ∈
C(X, R

2n+1) for which H s(f (X)) = 0. The condition that H s(f (X)) = 0
means that for each i ∈ N there exists a finite cover {Xj }kj=1 of X such that

k∑
j=1

|f (Xj )|s < 1/i. (2.5)

Let X denote a finite cover {Xj }kj=1 of X, and denote by GX

i,s the set of all
functions f ∈ C(X, R

2n+1) that satisfy (2.5) for this decomposition. Then

Ks =
∞⋂
i=1

⎡
⎣ ⋃

all possible X

GX

i,s

⎤
⎦ .

Since each GX

i,s is an open subset of C(X, R
2n+1), so is the expression in square

brackets for each i. It follows that Ks is a Gδ in C(X, R
2n+1).

Now, as noted during the proof of the embedding theorem for sets with
dim(X) finite, the embedding map g defined in (1.4) maps X into an n-
dimensional polyhedron. Thus the set of maps f ∈ C(X, R

2n+1) that map X
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into such a polyhedron is dense; for any such map,

dH(f (X)) ≤ dH(polyhedron) ≤ n.

Since all such maps must therefore lie in Ks , Ks contains a dense subset of
C(X, R

2n+1), so is itself dense.
We have shown that Ks is a dense Gδ in C(X, R

2n+1), and Theorem 1.12
guarantees that the set of maps EX that are embeddings of X is also a dense
Gδ . It follows from the Baire Category Theorem (Theorem 1.6) that

EX ∩
⋂
j≥1

Kn+(1/j )

is also a dense Gδ . In particular this set is nonempty, so there exists a homeo-
morphism f of X into R

2n+1 such that H s(X) = 0 for all s ≥ n, i.e. for which
dH(f (X)) ≤ n. �

As a corollary, we give what amounts to an alternative definition of the
covering dimension. It is immediate from this definition that dim is a topological
invariant, but in no way clear that dim must be an integer (cf. Prosser, 1970).

Corollary 2.13 If X is a compact space then

dim(X) = inf{dH(X′) : X′ homeomorphic to X}.
Mandelbrot (1982) defined a ‘fractal’ as a set for which dim(X) < dH(X).

Luukkainen (1998) makes the nice comment that the result of this corollary
implies that ‘there is no purely topological reason for X to be fractal’.

Exercises

2.1 Let X be a subset of R
n, and let f : X → R

m satisfy

|f (x1) − f (x2)| ≤ C|x1 − x2|θ ,
with C > 0 and θ ∈ [0, 1]. Show that the Hausdorff dimension of the
graph

G = {(x, f (x)) : x ∈ X} ⊂ R
n+m

is less than or equal to n + (1 − θ )m.
2.2 Show that if Jq are open subsets of [0, 1] such that∑

|Jq | = 1 and
∑

q

|Jq |s < ∞, (2.6)
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then [0, 1] \ ∪Jq has s-dimensional Hausdorff measure zero. (This result
has applications to bounding the set of singular times in weak solutions of
the three-dimensional Navier–Stokes equations, see Scheffer (1976).)

2.3 Define the ‘d-dimensional spherical Hausdorff measure’ of a set X by
S d (X) = limδ→0 S d

δ (X), where

S d
δ (X) = inf

{∑
rd
i : X ⊆

∞⋃
i=1

B(xi, ri) : ri ≤ δ

}
.

Show that dH(X) = inf{d : S d (X) = 0}.
2.4 Suppose that X is a bounded subset of R

n that is covered by a collec-
tion of balls {B(x, r(x))}x∈X. Show that there exists a finite or countably
infinite disjoint subcollection of this cover, {B(xj , r(xj ))}∞j=1, such that
{B(xj , 5r(xj ))}∞j=1 still covers X. [Hint: set M = supx∈X r(x). Define

Xk = {x ∈ X : ( 3
4 )kM < r(x) ≤ ( 3

4 )k−1M},
and given {x1, . . . , xnk

} such that

∪x∈Xk
B(x, r(x)) ⊆

kn⋃
i=1

B(xi, 5r(xi)), (2.7)

find points {xnk+1, . . . , xnk+1} in

X′
k = {x ∈ Xk : B(x, r(x)) ∩

nk−1⋃
i=1

B(xi, r(xi)) = ∅},

such that (2.7) holds with k replaced by k + 1.]
2.5 Suppose that f ∈ L1

loc(Rn). For some 0 ≤ d < n and some δ > 0 define

S =
{
x ∈ R

n : lim sup
r→0

1

rd

∫
B(x,r)

|f (x)| dx > δ

}
.

Use the results of the previous two exercises to show that H d (S) = 0.
[Hint: first show that L n(S) = 0.] (This result forms the final piece in
the proof of the partial regularity of the three-dimensional Navier–Stokes
equations due to Caffarelli, Kohn, & Nirenberg (1982).)
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Box-counting dimension

The study of the box-counting dimension forms the core of Part I of this
book. We concentrate on the upper box-counting dimension (Definition 3.1),
since this is the least restrictive definition of dimension that allows one to
obtain a parametrisation of a ‘finite-dimensional’ set, using a finite number
of parameters, that has a well-defined degree of continuity (Hölder). But it
is also of interest since the upper box-counting dimension of many attractors
arising in the infinite-dimensional dynamical systems is finite. We explore the
implications of this fact in Part II.

As with the topological and Hausdorff dimensions, we give general results
for subsets of metric spaces; but as we switch to particular examples (and then
later embedding results) we specialise to subsets of Hilbert and Banach spaces.

3.1 The definition of the box-counting dimension

Let N (X, ε) denote the minimum number of balls of radius ε (‘ε-balls’) with
centres in X required to cover X. We define the box-counting dimension of X

as

dbox(X) = lim
ε→0

log N (X, ε)

− log ε
; (3.1)

essentially N (X, ε) ∼ ε−dbox(X) as ε → 0.
However, the limit in (3.1) need not exist in general, as the following

example shows (cf. Exercise 3.8 in Falconer (1990)). Form a Cantor-like set
C = ∩∞

j=1Cj , where Cj is the set at the end of stage j of the following con-
struction: at stage 2j − 1 remove the middle half (i.e. the two middle quarters)
2j−1 times, and at stage 2j remove the middle third 2j−1 times. By considering

31
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C2j−1, one can see that C requires

N2j−1 := 22j+2j−1−2 intervals of length ε2j−1 := 4−(2j −1)3−(2j−1−1),

to cover it; by considering C2j , C requires

N2j := 22j+1−2 intervals of length ε2j := 4−(2j−1)3−(2j−1)

for a cover. Thus

log N2j−1

− log ε2j−1
= (2j + 2j−1 − 2) log 2

(2j − 1) log 4 + (2j−1 − 1) log 3
→ 3 log 2

2 log 4 + log 3
,

while

log N2j

− log ε2j

= (2j+1 − 2) log 2

(2j − 1) log 4 + (2j − 1) log 3
→ 2 log 2

log 4 + log 3
.

We therefore make the following two definitions.

Definition 3.1 Let (X, �) be a metric space, and A ⊆ X. Let N (A, ε) denote
the minimum number of closed balls of radius ε with centres in A required to
cover A. The upper box-counting dimension of A is

dB(A) = lim sup
ε→0

log N (A, ε)

− log ε
, (3.2)

and the lower box-counting dimension of A is

dLB(A) = lim inf
ε→0

log N (A, ε)

− log ε
.

The inequality dLB(A) ≤ dB(A) is clear, with the above Cantor-like set show-
ing that it can be strict. The ‘box-counting dimension’ (3.1) only exists when the
lower and upper box-counting dimensions coincide; but since we will (almost)
always be interested in the upper box-counting dimension in what follows, we
will usually refer to the quantity dB(X) defined in (3.2) as the box-counting
dimension.1 (We will see in Section 8.2 that sets with finite lower box-counting
dimension do not enjoy the same embedding properties as sets with finite upper
box-counting dimension.)

It is immediate from the definition that if d > dB(A) then there exists an ε0

such that

N (A, ε) < ε−d for all ε < ε0, (3.3)

1 In much of the dynamical systems literature the upper box-counting dimension is referred to as
the ‘fractal dimension’; although a little inelegant, ‘box-counting dimension’ is to be preferred
for obvious reasons.
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while if d < dB(A) then there exists a sequence εj → 0 such that

N (A, ε) > ε−d
j .

We will often make use of these (particularly (3.3)) in what follows.
Note that we could just as well take a covering by open balls, since any

covering by open balls of radius ε yields a covering by closed balls of the same
radius, and any covering by closed balls of radius ε yields a covering by open
balls of radius 2ε. A number of other alternative, but equivalent, definitions are
discussed in Exercise 3.1.

Sometimes it is useful to be able to calculate the box-counting dimension by
taking the limit (superior) through a sequence {εk} of values of ε, rather than
a continuous limit. The Cantor set example above shows that one cannot do
this without imposing some restrictions on εk , such as those in the following
lemma, whose main application is to the geometric sequence εk = cαk .

Lemma 3.2 If εk is a decreasing sequence tending to zero with εk+1 ≥ αεk

for some α ∈ (0, 1), then

dB(A) = lim sup
k→∞

log N (A, εk)

− log εk

and dLB(A) = lim inf
k→∞

log N (A, εk)

− log εk

. (3.4)

Proof Clearly the right-hand side of (3.4) is bounded by dB(A). Given ε with
0 < ε < 1 let k be such that εk+1 ≤ ε < εk; then

log N (A, ε)

− log ε
≤ log N (A, εk+1)

− log εk

= log N (A, εk+1)

− log εk+1 + log(εk+1/εk)

≤ log N (A, εk+1)

− log εk+1 + log α

and so (3.4) follows. The argument for dLB(A) is similar. �

3.2 Basic properties of the box-counting dimension

We now prove a number of properties of the box-counting dimension. In contrast
to the topological (and to a lesser extent Hausdorff) dimension, the proofs are
very straightforward.

Lemma 3.3 Let (X, �) be a metric space, and A and B subsets of X.

(i) If A ⊆ B then dB(A) ≤ dB(B);
(ii) dB(A) = dB(A), where A denotes the closure of A in (X, �);
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(iii) dB(A ∪ B) ≤ max(dB(A), dB(B));
(iv) if f : (X, �X) → (Y, �Y ) is Hölder continuous with exponent θ ,

�Y (f (x1), f (x2)) ≤ C �X(x1, x2)θ for all x1, x2 ∈ X

then

dB(f (A)) ≤ dB(A)/θ ;

(v) dH(A) ≤ dLB(A) ≤ dB(A); and
(vi) if In = [0, 1]n ⊂ R

n then dLB(In) = dbox(In) = dB(In) = n.

Proof (i) If A ⊆ B then N (A, ε) ≤ N (B, ε) and the result is immediate.
(ii) Any finite cover of A by closed balls must cover A, and hence dB(A) ≤

dB(A). Equality follows using (i), since A ⊆ A.
(iii) Clearly N (A ∪ B, ε) ≤ N (A, ε) + N (B, ε); the result is again immedi-

ate from the definition.
(iv) Given d > dB(A), choose ε0 sufficiently small such that N (A, ε) ≤ ε−d

for all 0 < ε < ε0. Cover A with no more than ε−d balls of radius ε. The image
of this cover under f provides a covering of f (A) by sets (not necessarily
closed) of diameter no larger than C(2ε)θ ; but these are certainly contained in
closed balls of radius 2C(2ε)θ . So

N (f (A), 2C(2ε)θ ) ≤ ε−d ⇒ N (f (A), δ) ≤ 2d (δ/2C)−d/θ = cδ−d/θ ,

and hence dB(f (A)) ≤ dB(A)/θ .
(v) If s > dLB(A) then there is a sequence εj → 0 such that N (A, εj ) < ε−s

j ;
thus

H s
2εj

(A) ≤ N (A, εj )(2εj )s < 2s < ∞,

and hence H s(A) < 2s < ∞, from which it follows that dH(A) ≤ s. So
dH(A) ≤ dLB(A); that dLB(A) ≤ dB(A) is immediate from the definitions.

(vi) In can be covered by kn cubes of side 1/k. The sequence εk = 1/k satis-
fies the requirements of Lemma 3.2, and so dB(In) ≤ n. We have already shown
that dH(In) = n (Proposition 2.8(iii)), and so dB(In) ≥ dLB(In) ≥ dH(In) ≥ n.
It follows that dB(In) = dbox(In) = dLB(In) = n. �

Note that it follows immediately from parts (i) and (vi) of the above lemma
that any compact subset A of R

n has dB(A) ≤ n, and that if this A contains an
open set then in fact dB(A) = n.

In Part II of this book we will be particularly interested in sets X that are
subsets of Banach (or Hilbert) spaces. In this case, one can often view X simul-
taneously as a subset of different spaces. Since the quantity N (X, ε) depends
on the norm in which one chooses the ε-balls, the box-counting dimension will
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vary depending on the space in which one views X as lying. In the final chapter
of this book, the following simple observation will prove useful: if B1 and B2

are two Banach spaces with X ⊂ B1 ⊆ B2, then

‖u‖B2 ≤ c‖u‖B1 ⇒ dB(X; B2) ≤ dB(X; B1) (3.5)

(the proof is immediate since NB2 (X, cε) ≤ NB1 (X, ε)).

3.3 Box-counting dimension of products

In Proposition 2.10 we saw that the Hausdorff dimension obeys2

dH(X × Y ) ≥ dH(X) + dH(Y ),

and showed by example that this inequality could be strict. Here we show that
the lower box-counting dimension behaves similarly, but that for the upper
box-counting dimension the inequality is reversed.

Proposition 3.4 Let (X, �X) and (Y, �Y ) be metric spaces, and X × Y the
product space equipped with the metric

�α((x, y), (ξ, η)) = [�X(x, ξ )α + �Y (y, η)α]1/α (3.6)

for some α ∈ [1,∞), or

�∞((x, y), (ξ, η)) = max(�X(x, ξ ), �Y (y, η)). (3.7)

Then

dB(X × Y ) ≤ dB(X) + dB(Y ) and dLB(X × Y ) ≥ dLB(X) + dLB(Y ).

(3.8)

Consequently, if the box-counting dimensions dbox(X) and dbox(Y ) are both
well defined then so is dbox(X × Y ) and

dbox(X × Y ) = dbox(X) + dbox(Y ). (3.9)

Proof For the upper bound, take δX > dB(X) and δY > dB(Y ); then there
exists an ε0 > 0 such that

N (X, ε) < ε−δX and N (Y, ε) < ε−δY 0 < ε < ε0.

It follows that X × Y can be covered by ε−(δX+δY ) balls of radius 21/αε, and
hence dB(X × Y ) ≤ dB(X) + dB(Y ).

For the lower bound, take s < dLB(X) and t < dLB(Y ). Then there exists an
ε0 > 0 such that for all ε < ε0 there are at least ε−s disjoint balls of radius ε

2 One can obtain an upper bound on the Hausdorff dimension of a product if one is prepared to
involve the upper box-counting dimension: dH(X × Y ) ≤ dH(X) + dB(Y ), see Exercise 3.5.
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with centres in X, and at least ε−t disjoint balls of radius ε with centres in Y .
There are certainly, therefore, more than ε−(s+t) disjoint balls of radius 21/αε

in X × Y , and hence dLB(X × Y ) ≥ dLB(X) + dLB(Y ).
Finally, (3.9) follows immediately from (3.8) if dLB(X) = dB(X) = dB(X)

and dLB(Y ) = dB(Y ) = dB(Y ). �

Both inequalities can be strict. The example at the end of Section 2.3 can be
used to show this for the lower box-counting dimension, since nk/mk+1 → 0 as
k → ∞ implies that dLB(X) = dLB(Y ) = 0, and dLB(X × Y ) ≥ dH(X × Y ) ≥
1 (cf. Edgar, 1998, p. 43). The construction of an example for the upper box-
counting dimension seems to be more delicate: in this case one can take X

and Y to be ‘inhomogeneous’ Cantor sets like the example used in Section
3.1, chosen in such a way that N (X, ε) is large (i.e. ∼ ε−d with d large) when
N (Y, ε) is small and vice versa; see Sharples (2010) for details.

3.4 Orthogonal sequences

Now, following Ben-Artzi, Eden, Foias, and Nicolaenko (1993), we investigate
the box-counting dimension of ‘orthogonal sequences’. In fact we consider a
class of examples that are bona fide orthogonal sequences in the Hilbert space
�2, and behave very much like orthogonal sequences in the sequence spaces �p

with 1 ≤ p ≤ ∞. These examples will be used later to show that the estimates
in various embedding theorems are sharp.

Let {ei}∞i=1 be the standard basis for these spaces, so that
ei = (0, . . . , 0, 1, 0, . . .) is the sequence with 1 in the ith place and 0 in
every other place.3 Let {ai}∞i=1 be a sequence of nonzero real numbers such
that |an| ≥ |an+1| > 0 and limn→∞ |an| = 0. We consider the compact set
A = {α1, α2, . . .} ∪ {0}, where αi = aiei for every i = 1, 2, . . . Since A is
countable, it follows that dH(A) = 0 whatever values are chosen for the ai .

Lemma 3.5 In every �p, 1 ≤ p ≤ ∞, the (upper) box-counting dimension
of A is given by

dB(A) = lim sup
n→∞

log n

− log |an| (3.10)

= inf{d :
∞∑

n=1

|an|d < ∞}. (3.11)

3 This is not in fact a basis for �∞, but only for c0, the subspace of �∞ consisting of sequences
that tend to zero.
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Furthermore,

dLB(A) = lim inf
n→∞

log n

− log |an| . (3.12)

We will use (3.10) and (3.12) immediately to consider some simple exam-
ples. The alternative form of (3.10), (3.11), will be useful later.

Proof First we prove (3.10). Given any ε with 0 < ε < |a1|, let n = n(ε) be
the integer such that

|an| > ε ≥ |an+1|.
The set A can be covered by n + 1 ε-balls, one centred at the origin and the
other n centred at {α1, . . . , αn}. Thus

dB(A) = lim sup
ε→0

log N (X, ε)

− log ε
≤ lim sup

ε→0

log n(ε) + 1

− log |an(ε)| ≤ lim sup
n→∞

log n

− log |an| .

The upper bound in (3.12) follows similarly.
To prove the reverse inequality, for any n large enough that |an| < 1, let n′

denote the integer n′ ≥ n for which

|an| = |an+1| = · · · = |an′ | > |an′+1|,
and set ε(n) = 1

4 (|an′ | + |an′+1|). It follows that any two elements from
{α1, . . . , αn′ } are at least |an′ | > 2ε(n) apart (in any �p norm), and hence
N (A, ε(n)) ≥ n′.

Since n′ ≥ n, |an| = |an′ |, and |an′ | < 4ε(n), it follows that

log n

− log |an| ≤ log n′

− log |an′ | ≤ log N (A, ε(n))

− log(4ε(n))
,

and hence that

lim sup
n→∞

log n

− log |an| ≤ lim sup
n→∞

log N (A, ε(n))

− log(4ε(n))
≤ lim sup

ε→0

log N (A, ε)

− log(4ε)
= dB(A).

Again, the lower bound in (3.12) follows similarly.
We now show that the right-hand sides of (3.10) and (3.11), which we call

d1 and d2 respectively, are equal. Take d > d2, so that
∑∞

n=1 |an|d = M . Then
since |an| is nonincreasing, this implies that n|an|d ≤ M for any n, from which
it is easy to see that d1 ≤ d, and hence d1 ≤ d2. Conversely, if d > d1 then for
all n sufficiently large, log n/(− log |an|) ≤ d, and so |an| ≤ n−1/d . It follows
that for any d ′ > d,

∑∞
n=1 |an|d ′

< ∞. Thus d2 ≤ d ′ for all d ′ > d1, and so
d2 ≤ d1. It follows that d1 = d2. �
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As a simple application of this result, consider the set

Hα = {0} ∪ {n−αen}∞n=1.

Then

dB(Hα) = lim sup
n→∞

log n

α log n
= 1

α
. (3.13)

More strikingly (since all these examples have zero Hausdorff dimension), the
set

Hlog = {0} ∪ {en/ log n}∞n=2

has

dB(Hlog) = lim sup
n→∞

log n

log log n
= +∞.

By combining these two examples, one can obtain a set with dB(Ĥ ) = ∞ but
dLB(Ĥ ) < ∞: the idea is to choose the coefficients {an} such that |an+1| ≤ |an|
and there exist sequences nj → ∞ such that anj

= 1/nj and mj → ∞ such
that amj

= 1/ log mj . In more detail, define

e(x) = �ex�,

where �x� is the greatest integer ≤ x, and then set

a1 = a2 = 1,

a3 = 1/(log 3),

a4 = a5 = · · · = ae(4) = 1/4,

ae(4)+1 = 1/ log(e(4) + 1),

ae(4)+2 = · · · = ae(e(4)) = 1/(e(4) + 2),

ae(e(4))+1 = 1/ log(e(e(4)) + 1),

etc. Then

dB(Ĥ ) = lim sup
n→∞

log n

− log |an| = ∞,

but

dLB(Ĥ ) = lim inf
n→∞

log n

− log |an| = 1.
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Exercises

3.1 Show that

dB(A) = lim sup
ε→0

log M(A, ε)

− log ε
,

if M(A, ε) denotes:
(i) the minimum number of closed balls of radius ε with arbitrary centres

that are required to cover A;
(ii) the largest number of disjoint balls of radius ε with centres in A; or

(iii) for a subset of R
n, the number of boxes of the form

[m1ε, (m1 + 1)ε] × · · · × [mnε, (mn + 1)ε], mj ∈ Z,

that intersect A (hence the name ‘box-counting dimension’).
3.2 Suppose that X is a compact subset of R

n. Define

c(X) = lim inf
ε→0

L n(O(X, ε))

log ε
,

where L n is n-dimensional Lebesgue measure, and

O(X, ε) = {y ∈ R
n : dist(y,X) < ε}.

Show that dB(X) = n − c(X).
3.3 Show that for any compact metric space X with dim(X) ≤ n there exists

a homeomorphism h : X → R
2n+1 such that

dim(X) = dim(h(X)) = dH(h(X)) = dLB(h(X))

and deduce that

dim(X) = inf{dLB(X′) : X′ is homeomorphic to X}. (3.14)

[Hint: let Kn consist of all mappings f ∈ C(X, R
2n+1) such that

dLB(f (X)) ≤ n. Show first that for each k ∈ N the set

Kn,k = {f ∈ C(X, R
2n+1) : No(f (K), ε) ≤ ε−n/k for some ε > 0}

is open, where No(X, ε) is the number of open balls of radius ε that covers
X. Then use the characterisation

dLB(X) = inf{r : for every η > 0 there exists an ε > 0

such that No(X, ε) < ηε−r}
to deduce that Kn is open. Finally follow the argument of Theorem 2.12 to
show that Kn is also dense and conclude the proof as there.] This result is
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due originally to Pontrjagin & Schnirelmann (1932); the relatively simple
proof outlined here is due to Prosser (1970).

3.4 The result of the previous exercise remains true if one replaces the
lower box-counting dimension by the upper box-counting dimension in
(3.14). (Luukkainen (1981) pointed out that the argument of Pontrjagin &
Schnirelmann (1932) can also be used to obtain this result.) Combine this
with Proposition 3.4 to show that dim(X × Y ) ≤ dim(X) + dim(Y ).

3.5 Let (X, �X) and (Y, �Y ) be metric spaces. For A ⊆ X and B ⊆ Y show
that dH(A × B) ≤ dH(A) + dB(B).

3.6 Unlike the Hausdorff dimension, the box-counting dimension is not sta-
ble under countable unions. To try to rectify this, one can introduce the
modified (upper) box-counting dimension,

dMB(X) = inf

{
sup

i

dB(Xi) : X ⊂
∞⋃
i=1

Xi

}
.

Note that dH(X) ≤ dMB(X) since dH(X) ≤ dB(X) and the Hausdorff
dimension is stable under countable unions (2.4). Let X be a compact
subset of a Hilbert space H , and suppose that

dB(X ∩ U ) = dB(X)

for all open subsets U of H that intersect X. Use the Baire Category
Theorem (Theorem 1.6) to show that dMB(X) = dB(X).

3.7 Set

Ps
δ (X) = sup

i

{
∑

i

|Bi |s : {Bi} are disjoint balls with centres in X}

and define

Ps
0(X) = lim

δ→0
Ps

δ (X).

To obtain a measure, define

Ps(X) = inf

{∑
i

Ps
0(Xi) : X ⊂

∞⋃
i=1

Xi

}
,

the s-dimensional packing measure. The packing dimension of X is defined
as

dP(X) = inf{s : Ps(X) = 0}.
(The definition is due to Tricot (1980).) Show that dP(X) = dMB(X) (a
result due to Falconer (1990)). (For more on the packing dimension see
Section 5.9 in Mattila (1995), and Howroyd (1996).)
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An embedding theorem for subsets of R
N in

terms of the upper box-counting dimension

In this chapter we prove an embedding theorem for subsets of R
N in terms

of the upper box-counting dimension: X ⊂ R
N can be ‘nicely’ embedded into

R
k for any integer k > 2dB(X). The proof forms a model for those that follow

for subsets of infinite-dimensional spaces (Theorems 6.2, 8.1, and 9.18), and
motivates the definitions of ‘prevalence’ in Chapter 5 and of various ‘thickness
exponents’ in Chapter 7.

The idea is to show that ‘almost every’ linear map L : R
N → R

k is one-to-
one on X with L−1|LX Hölder continuous. As remarked in the Introduction,
since L is linear, L : X → R

k is one-to-one if and only if Lz = 0 implies that
z = 0 for z ∈ X − X, where X − X is the ‘difference set’

X − X = {x − y : x, y ∈ X}.

Embedding results for linear maps therefore rely essentially on properties
of X − X rather than on properties of X itself. For the upper box-counting
dimension, however, dB(X − X) ≤ 2dB(X). This follows since dB(X × X) ≤
2dB(X) (Proposition 3.4) and X − X is the image of X × X under the Lipschitz
map (x, y) �→ x − y; part (iv) of Lemma 3.3 shows that such mappings cannot
raise the box-counting dimension.

If X and Y are Banach spaces, we denote the space of all bounded linear maps
from X into Y by L (X, Y ), and abbreviate L (X,X) to L (X). We can view
any linear map L ∈ L (RN, R

k) as a collection of k linear maps Lj : R
N → R,

so that

Lx = (L1x, L2x, . . . , Lkx);

and each Lj is equivalent to taking the inner product with some lj ∈ R
N ; we

write l∗j for the linear map from R
N into R given by x �→ (lj , x).

41
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x

Figure 4.1 The shaded region indicates those l ∈ BN with |α + (l · x)| ≤ ε.

We will consider a restricted set E of linear maps, namely those of the form

E = {(l∗1 , . . . , l∗N ) : lj ∈ BN },
where BN = BN (0, 1) is the unit ball in R

N . Note that any L ∈ E has norm at
most

√
N .

Identifying E with (BN )k , we define a probability measure μ on E to be that
induced by choosing each lj according to the uniform probability measure λ on
BN (λ is the Lebesgue measure L N normalised by �N ), i.e. μ is the product
measure ⊗k

j=1λ on (BN )k .
The following estimate lies at the heart of the proof of the embedding

theorem of this chapter (Theorem 4.3).

Lemma 4.1 For any α ∈ R
k and x ∈ R

N ,

μ{L ∈ E : |α + Lx| ≤ ε} ≤ cNk/2

(
ε

|x|
)k

, (4.1)

where c is an absolute constant.

Proof Let α = (α1, . . . , αk). Then

μ{L ∈ E : |α + Lx| ≤ ε} ≤
k∏

j=1

μ{L ∈ E : |αj + Ljx| ≤ ε}

=
k∏

j=1

λ{l ∈ BN : |αj + (l · x)| ≤ ε},

using the product structure of μ. Now,

λ{l ∈ BN : |α + (l · x)| ≤ ε} = �N−1

�N

∫ min(−α/|x|+ε/|x|,1)

max(−α/|x|−ε/|x|,−1)
(1 − r2)(n−1)/2 dr,

see Figure 4.1.
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Since the integrand is bounded by 1 and the range of integration is no larger
than 2ε/|x|,

λ{l ∈ BN : |α + (l · x)| ≤ ε} ≤ �N−1

�N

2ε

|x| .

Since �n = πn/2/�(n/2 + 1) and

�(z) =
√

2π

z

(z

e

)z (
1 + O(z−1)

)
(Stirling’s Formula) one can deduce that

λ{l ∈ BN : |α + (l · x)| ≤ ε} ≤ c′N1/2 ε

|x| , (4.2)

and the inequality (4.1) now follows. �

The other key element of the proof is the Borel–Cantelli Lemma.

Lemma 4.2 (Borel–Cantelli Lemma) Let μ be a probability measure on E,
and suppose that {Qj }∞j=1 are subsets of E such that

∑∞
j=1 μ(Qj ) < ∞. Then

μ-almost every element x of E lies in only finitely many of the Qj , i.e. for each
such x there exists a jx ∈ N such that x /∈ Qj for all j ≥ jx .

Proof Consider

Q = ∩∞
n=1 ∪∞

j=n Qj .

Then Q consists precisely of those x ∈ E for which x ∈ Qj for infinitely many
values of j . Now, for any n we must have μ(Q) ≤ μ(∪∞

j=nQj ) ≤ ∑∞
j=n μ(Qj ).

Since
∑∞

j=1 μ(Qj ) < ∞, it follows that
∑∞

j=n μ(Qj ) → 0 as n → ∞, and
hence μ(Q) = 0. �

We now put these ingredients together. Note that the following theorem only
has any content if dB(X) < (N − 1)/2.

Theorem 4.3 Let X be a compact subset of R
N . If k > 2dB(X) then given

any α with

0 < α < 1 − 2d

k

and any linear map L0 ∈ L (RN, R
k), for μ-almost every linear map L ∈ E

there exists a C = CL such that L′ = L0 + L satisfies

|x − y| ≤ C|L′x − L′y|α for all x, y ∈ X; (4.3)

in particular, L′ is one-to-one on X with a Hölder continuous inverse.
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With L0 = 0 the theorem says that μ-almost every L′ ∈ E satisfies (4.3); but
the slight strengthening here is the key idea in the notion of ‘prevalence’ which
is defined in the next chapter and allows for similar results when X is a subset
of an infinite-dimensional space (Theorem 8.1). We prove a generalised version
of this theorem for subsets of R

N using a wider class of mappings from R
N

into R
k (but without the Hölder continuity of the inverse) in Lemma 14.4. The

proof of the result in this form is due to Hunt & Kaloshin (1999), but earlier
results along these lines, using density instead of prevalence, can be found in
Ben-Artzi et al. (1993) and Eden et al. (1994).

Proof Take a fixed L0 ∈ L (RN, R
k). We try to bound the measure of

linear maps L that are ‘bad’, i.e. do not satisfy |(L0 + L)z| > |z|1/α for
some z ∈ X − X. To do this, we consider a collection of subproblems on
a family of subsets Zn of X − X that are bounded away from the origin:
define

Zn = {z ∈ X − X : |z| ≥ 2−n}

and set

Qn = {L ∈ E : |(L0 + L)z| ≤ 2−n/α for some z ∈ Zn}.

This Qn is essentially the set of ‘bad’ linear maps for which (4.3) (with C = 1)
does not hold for some (x, y) with |x − y| ≥ 2−n.

We now use the fact that dB(X − X) ≤ 2dB(X). Choose and fix d > dB(X);
then Zn ⊂ X − X can be covered by a collection of no more than N := 22nd/α

balls of radius 2−n/α , {B(zj , 2−n/α)}, whose centres zj lie in Zn.
Let Yj = Zn ∩ B(zj , 2−n/α). Now note that if

|(L0 + L)zj | > 2−n/α(1 + 2
√

k + 2‖L0‖)

then

|(L + L0)z| > 2−n/α for every z ∈ Yj .

Define M := 1 + 2
√

k + 2‖L0‖. It follows that if |(L0 + L)z| ≤ 2−n/α , then
L0 + L must map zj close to the origin,

|(L0 + L)zj | ≤ 2−n/αM.

See Figure 4.2.
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n/α
n/α

n/α

Figure 4.2 If |(L0 + L)zj | > 2−n/αM then |(L0 + L)z| > 2−n/α for every z ∈ Y .

Since |zj | ≥ 2−n, it follows using (4.1) that

μ{L ∈ E : |(L0 + L)z| ≤ 2−n/α for some z ∈ Zn ∩ B(zj , 2−n/α)}
≤ μ{L ∈ E : |(L0 + L)zj | ≤ 2−n/αM}
= μ{L ∈ E : |(L0zj ) + Lzj | ≤ 2−n/αM}

≤ CN,k

(
2−n/αM

|zj |
)k

≤ C ′
N,k,L0

(
2−n/α

2−n

)k

= C ′
n,k,L0

2nk(1−(1/α)).

Thus the total measure of Qn, i.e. those maps for which things fail for some
z ∈ Zn, is bounded by

μ(Qn) ≤ 22nd/α · C ′
N,k,L0

2nk(1−(1/α)) = C ′
N,k,L0

· 2[k−(k−2d)/α]n.

To apply the Borel–Cantelli Lemma (Lemma 4.2) we require that∑∞
n=1 μ(Qn) < ∞, and this is ensured if

k − (k − 2d)

α
< 0.

This means that we must take k > 2d, and then α < 1 − (2d/k) as in the
statement of the theorem. Thus μ-almost every L lies in only a finite number
of the Qj : for such an L, there exists a jL such that L /∈ Qj for all j ≥ jL, i.e.

|z| ≥ 2−j ⇒ |(L0 + L)z| ≥ 2−j/α for all j ≥ jL.

Then, if X − X ⊂ B(0, R), for |z| > 2−jL

|(L0 + L)z| ≥ 2−jL/α ≥ 2−jL/α

R1/α
|z|1/α,
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while if 2−(j+1) < |z| ≤ 2−j with j ≥ jL then

|(L0 + L)z| ≥ 2−(j+1)/α ≥ 2−1/α|z|1/α,

from which it follows that

|(L0 + L)z| ≥ max

[
2−1/α,

2−jL/α

R1/α

]
|z|1/α,

which implies (4.3). �
In order to prove a similar result for a subset of an infinite-dimensional

Hilbert space H (in fact we will also cover the case of a general Banach space)
there are a number of ingredients that we need to adapt.

Firstly, we require a notion of what might be meant by ‘almost every’ linear
map from H into R

k . This is provided by the concept of ‘prevalence’, discussed
in the next chapter; essentially we have to find an analogue of the distinguished
space E of linear maps, and define an appropriate probability measure μ on E. A
set S of linear maps is then prevalent if for every L0 ∈ L (H, R

k), L0 + L ∈ S

for μ-almost every L ∈ E.
Secondly, given a suitable space E and measure μ, we will require a version

of the key inequality (4.1),

μ{L ∈ E : |α + Lx| ≤ ε} ≤ cNk/2

(
ε

|x|
)k

, (4.4)

that holds in this more general setting. In a Hilbert space H we can construct
the space E based on a sequence Vj of finite-dimensional subspaces of H , in
such a way that the estimate

μ{L ∈ E : |α + Lx| ≤ ε} ≤ c (dim Vj )k/2

(
ε

‖Pjx‖
)k

(4.5)

holds, where Pj is the orthogonal projection onto Vj . We provide this, and
an equivalent result in Banach spaces, once we have introduced the notion of
prevalence in the following chapter.

Finally, inequality (4.4) was used in the proof of the theorem above with
ε ∼ 2−n/α and |x| ≥ 2−n. To be able to make use of a similar argument using
(4.5), when ‖x‖ ≥ 2−n we would like (ideally) to have ‖Pjx‖ ≥ c2−n. This
is possible if X lies sufficiently close (within 2−n/3, say) to the space Vj .
Since the dimension of Vj occurs in (4.5), we will require some control over
how dim Vj grows as dist(X,Vj ) decreases. This is provided by the thickness
exponent (and variants), which are discussed in Chapter 7.
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Prevalence, probe spaces, and
a crucial inequality

The term ‘prevalence’ was coined by Hunt et al. (1992), for a generalisation of
the notion of ‘almost every’ that is appropriate for infinite-dimensional spaces.
Essentially the same definition was used earlier by Christensen (1973), although
for him a set was prevalent if its complement was a Haar null set; we adopt here
the more recent and more descriptive terminology. A nice review of the theory
of prevalence is given by Ott & Yorke (2005). We only develop the theory here
as far as we will need it in what follows; more details can be found in the above
papers and in Benyamini & Lindenstrauss (2000, Chapter 6).

Once we have introduced prevalence, we show how the idea can be adapted to
treat certain classes of linear maps from infinite-dimensional spaces into finite-
dimensional Euclidean spaces (Section 5.2), and then prove a generalisation of
the inequality (4.1) that is a key element of the subsequent embedding proofs.

5.1 Prevalence

Let V be a normed linear space. First we define what it means for a subset
of V to be ‘shy’, the equivalent in this setting of ‘having measure zero’; the
complement of a shy set is said to be ‘prevalent’.

Definition 5.1 A Borel set S ⊂ V is shy if there exists a compactly supported
probability measure1 μ on V such that

μ(S + v) = 0 for every v ∈ V. (5.1)

More generally, a set is shy if it is contained in a shy Borel set.

1 Hunt et al. (1992) in fact make what initially appears to be a weaker definition: there need only
exist some measure μ such that 0 < μ(U ) < ∞ for some compact set U , for which (5.1) holds.
They then, however, make the observation that given such a measure one can always take instead
an appropriately weighted restriction of μ to U to obtain a compactly supported probability
measure for which (5.1) still holds.
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It is easy to show that in R
n a set is shy if and only if it has measure zero.

Lemma 5.2 If S ⊂ R
n then S is shy if and only if its Lebesgue measure is

zero.

Proof Since subsets of Borel sets with Lebesgue measure zero also have
Lebesgue measure zero, and the same is true of ‘shyness’, we need only consider
Borel sets. If a Borel set S has Lebesgue measure zero then one can take μ to
be Lebesgue measure on the unit ball in R

n (weighted by the inverse of the
volume of the ball), and clearly μ(S + v) = 0 for every v ∈ R

n.
Conversely, let S be a Borel set and suppose that there exists a compactly

supported probability measure μ such that (5.1) holds for every v ∈ R
n; let ν

be Lebesgue measure. Then by the Tonelli Theorem

0 =
∫

Rn

μ(S − y) dν(y) =
∫

Rn

ν(S − x) dμ(x) = ν(S)μ(Rn) = ν(S),

and so S has Lebesgue measure zero. �

A set is prevalent if its complement is shy. For a more intuitive version of
the definition of prevalence, one can think of E = supp(μ) as a ‘probe space’
of allowable perturbations: then S is prevalent if for every v ∈ V , v + e ∈ S

for μ-almost every e ∈ E.
In this form it is clear that if S is prevalent then S is dense: given any ε > 0,

since E is compact it can be covered by a finite number of balls of radius ε.
At least one of these balls, B(x, ε), has positive μ-measure. So for any v ∈ V ,
v + B(0, ε) = v − x + B(x, ε) contains a point of S.

We now show that the union of a finite number of shy sets is shy; this requires
some proof since each set may be ‘shy’ with respect to a different measure.

Lemma 5.3 The union of a finite number of shy sets is shy.

Proof We show that the union of two shy sets is shy, and the result then
follows by induction. To this end, given two shy sets S ′ and T ′, find shy Borel
sets S and T that contain them, with corresponding probability measures μ

and ν.
Let μ × ν be the product measure on V × V , and for a Borel set S ⊂ V

define

S� = {(x, y) ∈ V × V : x + y ∈ S}.
Then S� is a Borel subset of V × V , and we define

μ ∗ ν(S) = (μ × ν)(S�).
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Since

μ ∗ ν(S) =
∫

V

μ(S − y) dν(y) =
∫

V

ν(S − x) dμ(x),

it follows that

μ ∗ ν([S ∪ T ] + v) ≤ μ ∗ ν(S + v) + μ ∗ ν(T )

=
∫

V

μ(S + v − y) dν(y) +
∫

V

ν(T − x) dμ(x) = 0

for all v ∈ V , and so S ∪ T is shy. �

Corollary 5.4 The intersection of a finite number of prevalent sets is preva-
lent.

With a little more work one can show that the countable union of shy sets is
shy, and so the countable intersection of prevalent sets is prevalent. We will not
require this (potentially powerful) result in what follows; a proof can be found
in Hunt et al. (1992, Fact 3′′), Ott & Yorke (2005, Axiom 3), or Benyamini &
Lindenstrauss (2000, Proposition 6.3).

5.2 Measures based on sequences of linear subspaces

In the theorems that follow that give embeddings of finite-dimensional subsets
of infinite-dimensional spaces into Euclidean spaces, the construction of an
appropriate probe space E and the associated measure μ, tailored to the set
(and to the particular definition of dimension being considered) is critical.
While the exact choice will vary, all the constructions we will use fit into the
following general framework, which gives a compactly supported probability
measure on the space L (B, R

k) of all bounded linear maps from some Banach
space B into R

k . The basic construction, along with the proof of Lemma 5.6
and the key ideas behind the proof of Lemma 5.9, is due to Hunt & Kaloshin
(1999).

In the case of a Hilbert space the construction is slightly more straightfor-
ward, and obtaining bounds on the measure of linear maps in E that map a
given x close to the origin is elementary (essentially we have already made the
required estimates in Lemma 4.1). We treat this case first, before considering
the construction in Banach spaces.
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5.2.1 The probe set and its measure in a Hilbert space

Let H be a real Hilbert space, and V = {Vj }∞j=1 a sequence of finite-
dimensional linear subspaces of H . Denote by dj the dimension of Vj , and
let Sj be the unit ball in Vj ; using an orthonormal basis for Vj we can identify
Sj with Bdj

, the unit ball in R
dj .

Given any l ∈ H , we denote by l∗ the element of H ∗ (the dual of H ) given
by l∗(x) = (l, x). For a fixed γ > 0 define the probe space Eγ (V ) (we will call
this space E for short) as the collection of all maps L : H → R

k given by

Eγ (V ) =
{

L = (l1, . . . , lk) : ln =
( ∞∑

i=1

i−γ φn,i

)∗
, φn,i ∈ Si

}
.

Clearly E = Ek
0 , where

E0 =
{( ∞∑

i=1

i−γ φi

)∗
: φi ∈ Si

}
.

The factor i−γ in the expression for ln is there to ensure convergence of the
sum. In general, we need γ > 1 (and convergence then follows using the
triangle inequality), but in the particular case that the spaces Vj are orthogonal
it suffices to take γ > 1/2 (we will only make use of this observation in the
proof of Theorem 9.18, an embedding result involving the Assouad dimension).
It is straightforward to show that E is compact (see Exercise 5.2).

To define a measure on E, we first define a probability measure λi on each
Si by identifying Si with Bdi

, and using the uniform probability measure on
Bdi

. Then each φn,i is chosen at random and independently using the measure
λi on Si . To formalise this, we consider the product space

E = E
k
0 :=

( ∞∏
i=1

Si

)k

,

and define a measure μ on E to be that obtained from k copies of the product
measure

μ0 :=
∞⊗
i=1

λi

defined on E0 (so that μk
0 is defined on E).

Our aim, given f ∈ L (H, R
k) and x ∈ H , is to find a bound on

μ{L ∈ E : |(f + L)(x)| < ε }.
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We have essentially already obtained the following simplified version of
this estimate (from which the bound we require follows fairly easily) in
Lemma 4.1.

Lemma 5.5 If α ∈ R and x ∈ H then

λj {φ ∈ Sj : |α + (φ, x)| < ε} ≤ cd
1/2
j

(
ε

‖Pjx‖
)

, (5.2)

where Pj is the orthogonal projection onto Vj , and c is a constant which does
not depend on α or j .

Proof We identify Vj with R
dj and Sj with Bdj

in the obvious way. Noting
that for v ∈ Sj we have (v, x) = (v, Pjx), the estimate follows immediately
from (4.2). �

Given the result of the previous lemma, the following key estimate is rela-
tively straightforward.

Lemma 5.6 If x ∈ H and f ∈ L (H, R
k) then for every j ,

μ{L ∈ E : |(L + f )(x)| < ε } ≤ c

(
jγ d

1/2
j

ε

‖Pjx‖
)k

, (5.3)

where c is a constant independent of j and f , and Pj is the orthogonal
projection onto Vj .

Proof We wish to bound

μ{L ∈ E : |(f + L)(x)| < ε}
≤ μ{L = (l1, . . . , lk) ∈ E : |(fn + ln)(x)| < ε for each n = 1, . . . , k}

=
k∏

n=1

μ0{l ∈ E0 : |(fn + l)(x)| < ε}.

So we take an f0 ∈ H ∗ and consider[ ∞⊗
i=1

λi

]{
{φi}∞i=1 ∈ E0 :

∣∣∣f0(x) +
∞∑
i=1

i−γ (φi, x)
∣∣∣ < ε

}

=
[ ∞⊗

i=1

λi

]⎧⎨
⎩{φi}∞i=1 ∈ E0 :

∣∣∣[f0(x) +
∞∑
i �=j

i−γ (φi, x)
]
+ j−γ (φj , x)

∣∣∣ < ε

⎫⎬
⎭.

Lemma 5.5 shows that for α = f0(x) +∑∞
i �=j i−γ (φi, x) fixed, the bound on

λj {φ ∈ Sj : |α + j−γ (φ, x)| < ε}
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is independent of α. It follows from the product structure of the measure ⊗∞
j=1λj

that

μ0{l ∈ E0 : |(fn + l)(x)| < ε} ≤ λj {φ ∈ Sj : |j−γ (φ, x)| < ε},
and the inequality (5.3) now follows from the estimate (5.2). �

In the proof of Theorem 9.18 we will require a more refined result. We
specialise to the case in which the {Vj } are mutually orthogonal, and dim(Vj ) ≤
d for every j . Rather than using Sj , the unit ball in Vj , in our construction of
E, we instead use a ‘unit cube’ Cj , where

Cj = {u ∈ Vj : |(u, ej,i)| ≤ 1
2 , i = 1 . . . , j},

with {ej,i}dj

i=1 an orthonormal basis for Vj . The measure on Cj is now induced
by Lebesgue measure on Idj

:= [− 1
2 , 1

2 ]dj . Since any element of Cj has norm
bounded by

√
d , we can use the orthogonality of the {Vj } to allow any γ > 1/2

in the definition of E.
We will require the following result of Ball (1986) about the volume of

(d − 1)-dimensional slices through the unit cube in R
d . The key point is that

the upper bound (which is sharp) does not depend on the dimension d. (Hensley
(1979) proved a similar result but with the upper bound 5.)

Theorem 5.7 Let Id = [− 1
2 , 1

2 ]d be the unit ball in R
d , and let S be a codi-

mension 1 subspace in R
d with unit normal a. Then for any r ∈ R

L d−1((S + ra) ∩ Id ) ≤
√

2.

Given this, we can prove the following bound.

Lemma 5.8 In the situation described above, given any x ∈ H and any
f ∈ L (H, R

k), for any j

μ{L ∈ E : |(L + f )(x)| < ε } ≤ c

(
jγ d1/2 ε

‖�jx‖
)k

, (5.4)

where c is a constant independent of j and f , and �j is the orthogonal
projection onto V1 ⊕ V2 ⊕ · · · ⊕ Vj .

Proof Arguing as in the proof of Lemma 5.6, the left-hand side of (5.4) is
bounded by⎡

⎣ n⊗
j=1

λj

⎤
⎦ {(φ1, . . . , φn) ∈

n∏
j=1

Cj :
∣∣∣ n∑

j=1

j−γ φ∗
j (�jx)

∣∣∣ < ε}.
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As in Lemma 5.3, the estimate now depends on an entirely finite-dimensional
problem. Indeed, each Vj � R

dj , and Cj (the ‘unit cube’ in Vj ) is isomorphic
to Idj

. Set D = ∑n
j=1 dj . The vector (P1x, . . . , Pnx) corresponds to a vector

a = (a1, . . . , an) ∈ R
D; if we set

a′ = (a1, 2−sa2, · · · , n−san) and â = a′/|a′|
and let μ denote the uniform probability measure on ID (i.e. Lebesgue measure),
the problem is to bound, for any y ∈ R,

μ{x ∈ ID : |y + (x · a′)| ≤ ε} = 1

|a′| μ{x ∈ ID : |y + (x · â)| ≤ ε}

≤ ns

|a| μ{x ∈ ID : |y + (x · â)| ≤ ε},

where â = a′/|a′|. The result is now a consequence of Theorem 5.7, since

μ{x ∈ ID : |y + (x · â)| ≤ ε} ≤ 2ε|(Sâ − yâ) ∩ ID| ≤ 2ε
√

2,

where Sâ is the hyperplane through the origin with normal â. �

5.2.2 The probe set and its measure in a Banach space

Kakutani (1939) showed that if there is an linear isometry from the dual of
each finite-dimensional subspace of B onto some linear subspace of B∗, then
B must be a Hilbert space. This means that we cannot extend directly the
construction of the previous section – where we associated elements of Sj to
elements of H ∗ via the Riesz mapping x �→ (x, ·) – to the Banach space case.
In order to circumvent this problem, we can use a similar construction, but one
that begins with a sequence of subspaces of B∗ rather than of B.

So let V = {Vj }∞j=1 be a sequence of finite-dimensional linear subspaces of
B∗, let dj denote the dimension of Vj , and let Sj be the unit ball in Vj . For
a fixed γ > 0 define the probe space Eγ (V ) to be the collection of all maps
L : B → R

k given by

Eγ (V ) =
⎧⎨
⎩L = (L1, . . . , Lk) : Ln =

∞∑
j=1

j−γ φn,j , φn,j ∈ Sj

⎫⎬
⎭ .

To define a measure on E, first choose a basis for Vj , so that by means of
the coordinate representation with respect to this basis one can identify Sj

with a symmetric convex set Uj ⊂ R
dj (recall that dim Vj = dj ). The uni-

form probability measure on Uj (Lebesgue measure normalised by the vol-
ume of Uj ) induces the probability measure λj on Sj ; we now proceed as
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before, choosing each φn,j independently and at random according to the
measure λj .

Of course, one could just as well define the probe space this way in the
Hilbert space setting; in terms of the construction outlined in Section 5.2.1, the
subspaces Vj of H are simply replaced by the subspaces V ∗

j obtained by the
isometry x �→ (x, ·); the unit ball Sj in Vj corresponds to the unit ball in V ∗

j

under the same mapping, and Uj = Bdj
(0, 1).

The proof of the Banach space version of Lemma 5.5 is significantly more
involved than that for the Hilbert space case.

Lemma 5.9 If α ∈ R and x ∈ B then

λj {φ ∈ Sj : |α + φ(x)| < ε} ≤ dj

(
ε

|g(x)|
)

, (5.5)

for any g ∈ Sj .

Proof Write ρ for the left-hand side of (5.5). If g(x) = 0 then the inequality
is trivially true. So assume that g(x) �= 0, and let P be the subspace of B∗ that
annihilates x.

If h is any other element of Sj with h(x) �= 0 then since

[g(x)h − h(x)g](x) = 0,

it follows that g(x)h = h(x)g + p for some p ∈ P . One can therefore write any
element of Sj in the form p + rg for some p ∈ P and r ∈ R. That this expansion
is unique can be seen easily by applying both sides of p1 + r1g = p2 + r2g

to x.
Now, ρ is bounded above by the probability that φ ∈ Sj lies between(

− r

g(x)
− ε

|g(x)|
)

g + P and

(
− r

g(x)
+ ε

|g(x)|
)

g + P.

If P is represented by the hyperplane � in R
dj , and g by the vector γ , then

by definition this is the fraction of the measure of Uj that lies between

(−β − ε|g(x)|−1)γ + � and (−β + ε|g(x)|−1)γ + �.

Now consider the intersections of Uj with translates of �: for s ∈ R set

Uj ∩ (� + sγ ) = Ks. (5.6)

It follows from the Brunn–Minkowski Inequality (see Exercise 5.3) that
L dj−1(Ks) attains its maximal value � when s = 0, i.e. on the ‘slice’ through
the origin.
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Uj

Π

θ

γ

K+

K0
K−

Figure 5.1 The hatched area, between K+ = K−β+(ε/|g(x)|) and K− =
K−β−(ε/|g(x)|) indicates those elements of Uj corresponding to some φ ∈ Sj for
which |α + φ(x)| < ε. The dark line represents K0, the ‘slice’ with maximal
(dj − 1)-volume �. The lightly shaded cone provides a lower bound on the mea-
sure of Uj .

If θ denotes the (smallest) angle that γ makes with � then

ρ L dj (Uj ) ≤ �|γ |
(

2ε

|g(x)|
)

sin θ.

Since Uj is convex it contains the cone with base K0 = Uj ∩ � and vertex γ ,
along with its mirror image (i.e. the cone with base K0 and vertex −γ ). Thus

L dj (Uj ) ≥ 2�|γ | sin θ

dj

,

and so

ρ ≤ dj

(
ε

|g(x)|
)

(5.7)

and (5.5) follows. See Figure 5.1. �

Note that one cannot improve significantly on the argument leading to (5.7),
since the ‘double cone’

U = {(x1, . . . , xn) : |(x1, . . . , xn−1)| ≤ 1 − |xn|, |xn| ≤ 1}
is a convex symmetric subset of R

n whose volume is �n−1/n, and hence the
ratio of the largest (n − 1)-dimensional ‘slice’ through the origin (�n−1) to the
volume is precisely n.

We now follow the argument of Lemma 5.6, using the estimate (5.5), to
obtain the Banach-space version of (5.3).
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Lemma 5.10 If x ∈ B and f ∈ L (B, R
k) then for every j ∈ N

μ{L ∈ E : |(f + L)(x)| < ε } ≤
(

jγ dj

ε

|g(x)|
)k

(5.8)

for any g ∈ Sj .

Exercises

5.1 Show that
∫ 1

0 f (x) dx �= 0 for a prevalent set of functions in f ∈ L1(0, 1).
5.2 Show that Eγ (V ) is a compact subset of L (H, R

k).
5.3 The Brunn–Minkowski Inequality (see Gardner (2002), for example) says

that if L and M are two convex subsets of R
n then

L n((1 − t)L + tM)1/n ≥ (1 − t)L n(L)1/n + tL n(M)1/n

for t ∈ [0, 1]. Use this to show that the map s �→ L dj−1(Ks)1/(dj−1) is
concave, where Ks is defined in (5.6), and deduce that L dj−1(Ks) attains
its maximal value when s = 0.
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Embedding sets with dH(X − X) finite

We now give the first application of the constructions of the previous chapter
to prove a ‘prevalent’ version of a result first due to Mañé (1981). He showed
that if X is a subset of a Banach space B and dH(X − X) < k, then a residual
subset of the space of projections onto any subspace of dimension at least k are
injective on X.

We show here that in general no linear embedding into any R
k is possible

if we only assume that dH(X) is finite (Section 6.1). If we want an embedding
theorem for such sets, we must fall back on Theorem 1.12 which guarantees
the existence of generic embeddings of sets with finite covering dimension (we
can apply this result since dim(X) ≤ dH(X) by Theorem 2.11).

While we prove in Theorem 6.2 the existence of a prevalent set of linear
embeddings into R

k when dH(X − X) < k, we will see that even with this
assumption one cannot guarantee any particular degree of continuity for the
inverse of the linear mapping that provides the embedding (Section 6.3).

In this chapter and those that follow, we will often wish to show that certain
embedding results are sharp, in the sense that the information we obtain on
the modulus of continuity for the inverse of the embedding map cannot be
improved. In this context, the following decomposition lemma, which allows
us to reduce the analysis of general linear maps to the analysis of orthogonal
projections, is extremely useful.

Lemma 6.1 Let H be a Hilbert space and suppose that L : H → R
k is a

linear map with L(H ) = R
k . Then U = (ker L)⊥ has dimension k, and L can

be decomposed uniquely as MP , where P is the orthogonal projection onto U

and M : U → R
k is an invertible linear map.

Proof Let U = (ker L)⊥ and suppose that there exist m > k linearly indepen-
dent elements {xj }mj=1 of U for which Lxj �= 0. Then {Lxj }mj=1 are elements of
R

k; since m > k at least one of the {Lxj } can be written as a linear combination

57
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of the others:

Lxi =
∑
j �=i

cj (Lxj ).

It follows that

L
(
xi −

∑
j �=i

cj xj

)
= 0,

and hence

xi −
∑
j �=i

cj xj ∈ ker L ∩ (ker L)⊥ = {0}.

Thus xi = ∑
j �=i cj xj and the {xj }mj=1 are not linearly independent, which

contradicts the definition of U .
Let P denote the orthogonal projection onto U , and M the restriction of

L to U . Take x ∈ H , and decompose x = u + v, where u ∈ U and v ∈ ker L.
Note that this decomposition is unique. Clearly Lx = Lu = Mu = M(Px). It
remains to show that M is invertible. This is clear since dim U = dim R

k = k

and M is linear. �
We state a Banach space version of this result in Lemma 8.2.

6.1 No linear embedding is possible when dH(X) is finite

It is not possible to prove a result guaranteeing the existence of injective linear
maps (or projections) for sets with finite Hausdorff dimension. Kan (in the
appendix to the paper of Sauer et al. (1991)) gave the following construction
of a compact subset Km of R

m such that no proper projection of R
m is injective

on Km. Once such a set Km is constructed, we will follow Ben-Artzi et al.
(1993) to find a subset K of an infinite-dimensional Hilbert space that has zero
Hausdorff dimension but for which no linear map into any finite-dimensional
Euclidean space can be injective.

For each m, the set Km is formed by the union of two sets A and B, with the
property that the images of A and B under any proper projection of R

m must
intersect.

First, let C be the Cantor set formed of all x whose binary expansion
x = x1x2x3 · · · has xl = 0 for every l ∈ (M2k,M2k+1], or xl = 1 for every
l ∈ (M2k,M2k+1], where the sequence Mk is chosen so that

0 = M0 < M1 < M2 < · · · and lim
k→∞

Mk+1

Mk

= +∞
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(e.g. Mk = 0 and Mk = 2k2
for k ≥ 1). The set C can be covered by 2rk intervals

of length 2−M2k+1 , where

rk = k +
k∑

j=1

(M2j − M2j−1) = k + M2k − 1.

The set A is given as the union of m sets Aj , each lying on a face of the unit
m-cube. Aj consists of points a = (a1, . . . , am) with aj = 0 and ai for i �= j

an element of the Cantor set C constructed above.
Since for i �= j , the one-dimensional orthogonal projection of Aj onto the

ith coordinate axis is precisely C, it follows that Aj can be covered by 2(m−1)rk

cubes whose edges have length 2−M2k+1 . It is easy to see that for any s > 0,

2(m−1)rk [2−M2k+1 ]s → 0

as k → ∞, and hence dH(Aj ) = 0. Since A is a finite union of the {Aj }mj=1,
dH(A) = 0.

We let B be the union of sets Bj , where b = (b1, . . . , bm) ∈ Bj if bj = 1 and
the other components lie in C (bi ∈ C for i �= j ); the argument above shows
that dH(B) = 0, and so Km = A ∪ B also has Hausdorff dimension zero.

Now let P be a projection (not necessarily orthogonal) of rank strictly less
than m. Choose v = (v1, . . . , vm) ∈ ker P with |vi | ≤ 1 for all i and vj = 1 for
some index j ∈ {1, . . . , m}. We show that v = b − a with b ∈ Bj and a ∈ Aj :
it will then follow that

0 = Pv = Pb − Pa ⇒ Pb = Pa,

and so P is not injective. We take for all k ≥ 0

al
i = 0 and bl

i = vl
i l ∈ (M2k,M2k+1],

al
i = (vl

i + 1) mod 2 and bl
i = 1 l ∈ (M2k+1,M2k+2].

Clearly a ∈ Aj , b ∈ Bj , and v = b − a.
Given an infinite-dimensional Hilbert space H , take a countable orthonormal

set {ej }∞j=1, and let K ′
m be the subset of H obtained from Km by identifying the

coordinate axes of R
m with {ej }mj=1. Set

K = {0} ∪
∞⋃

m=1

2−mK ′
m.

Then K is a compact subset of H with dH(K) = 0.
Now suppose that L is a linear map such that L : H → R

k is injective on
K . This provides a linear mapping from R

m into R
k that is injective on Km, and
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using the decomposition lemma (Lemma 6.1) this yields a rank k projection in
R

m that is injective on Km, a contradiction.
In the light of the result of Theorem 6.2, the set K has dH(K) = 0 but

dH(K − K) = ∞.

6.2 Embedding sets with dH(X − X) finite

We now prove that linear embeddings do exist when dH(X − X) is finite.
Mañé showed that under this condition a generic set of projections onto any
subspace of B of dimension greater than dH(X − X) are one-to-one. The result
here provides a version of his result in terms of prevalence, and replaces such
projections by linear maps into R

k . Given that we have already set up the
machinery of prevalence and proved the inequality (5.8), the proof here is
much simpler than Mañé’s.

Theorem 6.2 Let X be a compact subset of a real Banach space B such that
dH(X − X) < k, where k is a positive integer. Then a prevalent set of linear
maps L : B → R

k are one-to-one between X and its image.

We use the notation ‖ · ‖∗ to denote the norm in B∗.

Proof Let Vn be a sequence of linear subspaces of B∗ defined as follows. For
each n, cover the set

Zn = {z ∈ X − X : ‖z‖ ≥ 2−n}

using a collection of balls of radius 2−(n+1) whose centres zj lie in Zn. Since
Zn is compact, there are a finite number of these balls.

Now, using the Hahn–Banach Theorem, there exists a corresponding set ψj

of elements of B∗ such that ψj (zj ) = ‖zj‖ and ‖ψj‖∗ = 1. Observe that for
any z ∈ Zn, there exists a j such that z ∈ B(zj , 2−(n+1)), and hence

|ψj (z)| = |ψj (z − zj ) + ψj (zj )| ≥ ‖zj‖ − ‖z − zj‖ ≥ 2−(n+1).

Let Vn be the subspace of B∗ spanned by the {ψj }, and write dn = dim(Vn).
Let V = {Vn}∞n=1 and for any γ > 1 let E = Eγ (V ) and let μ be the associated
probability measure as defined in Section 5.2.

Now take f ∈ L (B, R
k), and let M be a Lipschitz constant valid for all

{f + L : L ∈ E}. Let

Qn = {L ∈ E : (f + L)(z) = 0 for some z ∈ Zn}
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be the set of all linear maps in E for which f + L fails to be injective for some
pair x, y ∈ X with ‖x − y‖ ≥ 2−n.

We will now show that
∑∞

n=1 μ(Qn) = 0.
Choose δ > 0, and for each n (which is taken to be fixed for this portion of

the argument) cover Zn with a collection of balls B(zj , εj ) such that∑
j

εk
j < 2−nδ

(
dk

nn2k2nk
)−1

, (6.1)

which is possible since dH(Zn) ≤ dH(X − X) < k (see Lemma 2.7).
Let Yj = Zn ∩ B(zj , εj ) and take z0 ∈ Yj . Then

|(f + L)(z0)| > 2Mεj ⇒ |(f + L)(z)| > 0

for all z ∈ Yj . The measure of

Qnj = {L ∈ E : (f + L)(z) = 0 for some z ∈ Yj }

is therefore bounded by the measure of

Q̂nj = {L ∈ E : |(f + L)(z0)| ≤ 2Mεj }.

Now, since z0 ∈ Zn, by construction there exists a ψ ∈ Vn with ‖ψ‖∗ = 1
such that |ψ(z0)| ≥ 2−(n+1), and Lemma 5.10 implies that

μ(Q̂nj ) ≤ c(dnn
22Mεj |ψ(z0)|−1)k,

whence

μ(Qnj ) ≤ c(4M)k dk
nn2k2nkεk

j .

Using (6.1) this implies that

μ(Qn) ≤
∑

j

μ(Qnj ) ≤ c(4M)k2−nδ. (6.2)

Now,

∞⋃
n=1

Zn = (X − X) \ {0},

and so

∞⋃
n=1

Qn = {L ∈ E : (f + L)(z) = 0 for some nonzero z ∈ X − X}
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is the set ‘Ebad’ of all L ∈ E such that f + L is not injective on X. It follows
from (6.2) that

μ(Ebad) ≤
∞∑

n=1

μ(Qn) ≤ c(4M)kδ.

Since δ > 0 is arbitrary, μ(Ebad) = 0 and the theorem is proved. �

6.3 No modulus of continuity is possible for L−1

We now use a particular choice of orthogonal sequence in a Hilbert space (cf.
Section 3.4) to show that dH(X − X) < ∞ is not sufficient to guarantee any
specified functional form of the modulus of continuity of L−1. The argument
is based on that of Ben-Artzi et al. (1993), who considered a similar question
in the context of the upper box-counting dimension (see Section 8.2).

The following lemma is the key to this analysis (we will prove a more
general version of this result later in Lemma 8.3).

Lemma 6.3 Let P be any orthogonal projection in H , and {ej }∞j=1 any
orthonormal subset of H . Then

rank P ≥
∞∑

j=1

‖Pej‖2,

with equality guaranteed if {ej }∞j=1 is a basis for H .

Proof Suppose that P has rank k. Then there exists an orthonormal basis
{u1, . . . , uk} for PH , so that for any x ∈ H ,

Px =
k∑

j=1

(x, uj )uj .

In particular, Pei = ∑k
j=1(ei, uj )uj , so that

‖Pei‖2 = (Pei, P ei) = (Pei, ei) =
k∑

j=1

(ei, uj )(uj , ei) =
k∑

j=1

|(ei, uj )|2.

It follows that
∞∑
i=1

‖Pei‖2 =
∞∑
i=1

k∑
j=1

|(ei, uj )|2 =
k∑

j=1

∞∑
i=1

|(ei, uj )|2 ≤
k∑

j=1

‖uj‖2 = k,

with equality if the {ei}∞i=1 form a basis for H . �
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Given any nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0, we
will show that there exists a compact set X with dH(X − X) = 0 such that the
inequality

‖Pa‖ ≥ εf (‖a‖) for all a ∈ X (6.3)

cannot hold for any ε > 0 and any finite-rank orthogonal projection P .
The set X will be an orthogonal sequence of the form {αnen}∞n=1 ∪ {0},

where {en} is an orthonormal set in H . Note that dH(X − X) = 0, since X − X

is countable.
Suppose that (6.3) does hold. Then

‖P (αjej )‖ = |αj |‖Pej‖ ≥ εf (|αj |) for all j = 1, . . . ,

i.e. ‖Pej‖ ≥ εf (αj )/αj . Using Lemma 6.3 it follows that

rank(P ) ≥
∞∑

j=1

‖Pej‖2 ≥ ε2
∞∑

j=1

(
f (αj )

αj

)2

. (6.4)

Now given any choice of f , set φn = nf (1/n), let Nn be the first integer
greater than or equal to 1/φn, and define Tj = ∑j

n=1 Nn; for Tj ≤ i ≤ Tj+1 set
αi = 1/j . This gives an orthogonal sequence X for which the right-hand side
of (6.4) is infinite, and hence no finite-rank orthogonal projection can satisfy
(6.3).

Since 0 ∈ X, X ⊂ X − X; so there can be no finite-dimensional projection
P for which

‖P (x1 − x2)‖ ≥ εf (‖x1 − x2‖) for all x1, x2 ∈ X,

for any value of ε > 0. It follows from the decomposition lemma (Lemma 6.1)
that if one can rule out such a modulus of continuity for orthogonal projections,
the same follows for more general finite-rank linear maps.

Note that this argument also shows that one cannot prove a better embedding
theorem than Theorem 6.2 if one strengthens the assumption to one on the
modified box-counting dimension introduced in Exercise 3.6: all the above
examples are countable sets, and so have modified box-counting dimension
zero.



7

Thickness exponents

Theorem 4.3 gave an embedding result for subsets of R
N in terms of their

upper box-counting dimension. As remarked at the end of Chapter 4, if we
want to generalise the argument to subsets of infinite-dimensional spaces, we
encounter a possible problem.

The proof of Theorem 4.3 relied on an application of the inequality

μ{L ∈ E : |α + Lx| ≤ ε} ≤ cNk/2

(
ε

|x|
)k

,

with ε = c2−n/α and |x| ≥ 2−n. In Chapter 6 we proved a generalised version
of this inequality for subsets of a Hilbert space H ,

μ{L ∈ E : |α + Lx| ≤ ε} ≤ c (dim Vj )k/2

(
ε

‖Pjx‖
)k

, (7.1)

where Pj is the orthogonal projection onto some subspace Vj of H used in
the construction of E. If ‖x‖ ≥ 2−j then we can ensure that ‖Pjx‖ is bounded
below by (a constant multiple of) 2−j if we choose the space Vj appropriately.
If

dist(X,Vj ) ≤ 2−j /3

then, recalling that in the proof x was an element of the set of differences
X − X, i.e. x = x1 − x2 with x1, x2 ∈ X, it follows that

‖Pjx‖ = ‖Pj (x1 − x2)‖ ≥ ‖x1 − x2‖−‖x1 − Pjx1‖−‖x2 − Pjx2‖ ≥ 2−j /3.

While this gives a lower bound on ‖Pjx‖ of the required form, the dimension
of Vj occurs in the estimate (7.1). In order to carry the argument through
successfully, we will need some control on how the dimension of Vj grows
with j . This is provided by the thickness exponent, τ (X), introduced by Hunt

64
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& Kaloshin (1999), and discussed in Section 7.1. This exponent can be shown
to be zero when the set X consists of C∞ functions, see Lemma 13.1.

A related quantity which can be defined for subsets of Hilbert spaces is the
Lipschitz deviation dev(X), covered in Section 7.2. Introduced by Olson &
Robinson (2010) and refined further by Pinto de Moura & Robinson (2010b),
this can replace the thickness exponent in the generalised (infinite-dimensional)
version of Theorem 4.3, and can be shown to be zero for the attractors arising in
the infinite-dimensional dynamical systems generated by a number of canonical
partial differential equations (Section 13.2).

Finally, in Section 7.3 we define a version of the thickness, the ‘dual thick-
ness’ τ ∗(X), appropriate for subsets of Banach spaces. In a Hilbert space
τ ∗(X) ≤ dev(X) ≤ τ (X); it is not clear how the thickness and dual thickness
are related for subsets of Banach spaces, but one can prove the useful result
that τ (X) = 0 implies that τ ∗(X) = 0 (Proposition 7.10).

7.1 The thickness exponent

The ‘thickness exponent’ (or simply ‘thickness’) was introduced by Hunt &
Kaloshin (1999), although a similar idea was used in the paper by Foias &
Olson (1996) without leading to any formal definition.

Definition 7.1 Let X be a subset of a Banach space B. The thickness
exponent of X in B, τ (X; B) is given by

τ (X; B) = lim sup
ε→0

log dB(X, ε)

− log ε
,

where dB(X, ε) is the dimension of the smallest linear subspace V of B such
that

distB(X,V ) ≤ ε,

i.e. every point in X lies within ε of V (in the norm of B).

We will usually drop the space B from the notation in what follows, pre-
ferring the simpler d(X, ε) and τ (X). But note that, as with the box-counting
dimension, the definition depends on the space in which we consider X. We note
here for use later that if B1 and B2 are two Banach spaces with X ⊂ B1 ⊆ B2,
then

‖u‖B2 ≤ c‖u‖B1 ⇒ τ (X; B2) ≤ τ (X; B1). (7.2)
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As observed by Hunt & Kaloshin, the thickness is always bounded by the
box-counting dimension.

Lemma 7.2 If X is a subset of a Banach space B then τ (X) ≤ dB(X).

Proof Given ε > 0, cover X with N (X, ε) balls of radius ε. Then every point
of X lies within ε of the linear subspace V that is spanned by the centres of
these balls. (This is essentially the way that the idea was used by Foias & Olson
(1996).) Since the dimension of V is no greater than N (X, ε), this implies that
d(X, ε) ≤ N (X, ε) and the lemma follows. �

We now show that for the example of an orthogonal sequence in a Hilbert
space (as considered in Lemma 3.5), the thickness is in fact equal to the box-
counting dimension. To show this we will require the following lemma due to
M. Doré (personal communication).

Lemma 7.3 Let X = {v1, . . . , vn} be an orthogonal set in a Hilbert space H .
Then

d(X, ε) ≥ n(1 − ε2/M2),

where M = min{‖v1‖, . . . , ‖vn‖).

Proof If d(X, ε) = d then there exist v′
i ∈ H such that ‖v′

i − vi‖ < ε, and
such that the space spanned by {v′

1, . . . , v
′
n} has dimension d. Let P be the

orthogonal projection onto U , the n-dimensional space spanned by {v1, . . . , vn}
and let v′′

i = Pv′
i . Since Pvi = vi we still have the inequality ‖v′′

i − vi‖ < ε

and clearly the dimension of the linear span of {v′
1, . . . , v

′
n} is at least that of

the linear span of {v′′
1 , . . . , v′′

n}.
Suppose that the linear span of {v′′

1 , . . . , v′′
n} has dimension n − r . We can

write any element of U in terms of the {v′′
j } and an orthonormal basis for their

r-dimensional orthogonal complement in U , {u1, . . . , ur}. So

nε2 ≥
n∑

i=1

‖v′′
i − vi‖2 ≥

n∑
i=1

r∑
j=1

|(vi, uj )|2

=
r∑

j=1

n∑
i=1

‖vi‖2

∣∣∣∣(uj ,
vi

‖vi‖ )

∣∣∣∣2

≥ M2
r∑

j=1

n∑
i=1

∣∣∣∣(uj ,
vi

‖vi‖ )

∣∣∣∣2 = M2r.

It follows that d(X, ε) ≥ n(1 − ε2/M2) as claimed. �
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We now use this to find an expression for τ (A) when A is an orthogonal
sequence (the proof follows Pinto de Moura & Robinson (2010a)).

Lemma 7.4 Let A = {anen}∞n=1 ∪ {0}, where {ej }∞j=1 is an orthonormal sub-
set of a Hilbert space H , and an → 0 with |an+1| ≤ |an|. Then

τ (A) = lim sup
n→∞

log n

− log |an| . (7.3)

Proof Combining the results of Lemmas 3.5 and 7.2 shows that τ (A) is
bounded by the right-hand side of (7.3).

The argument leading to the reverse inequality is similar to that used for
Lemma 3.5. Choose n large enough that |an| < 1, denote by n′ the unique
integer n′ ≥ n such that

|an| = |an+1| = · · · = |an′ | > |an′+1|,
and set ε2

n = (|an′ |2 + |an′+1|2)/4. Since |an′ |2 > 2ε2
n

1 − ε2
n

|an′ |2 > 1
2 ,

and so Lemma 7.3 implies that

d(A, εn) ≥ n′
(

1 − ε2
n

|an′ |2
)

>
n′

2
.

Combining this inequality with 2εn > |an′ |, n′ ≥ n, and |an| = |an′ |, we obtain

τ (A) ≥ lim sup
n→∞

log d(A, εn)

− log εn

≥ lim sup
n→∞

log(n/2)

log(2/|an|) ≥ lim sup
n→∞

log n

− log |an| . �

Friz & Robinson (1999) showed that if U is a sufficiently regular bounded
domain in R

n and X is a subset of L2(U ) that consists of functions that are
uniformly bounded in the Sobolev space Hs(U ), it follows that τ (X) ≤ n/s, see
Lemma 13.1. In particular this shows that the attractors of partial differential
equations that are ‘smooth’ (bounded in Hs for all s) have thickness exponent
zero.

7.2 Lipschitz deviation

The m-Lipschitz deviation was introduced by Olson & Robinson (2010) as a
first step towards generalising the thickness exponent. Denote by δm(X, ε) the
smallest dimension of a linear subspace U of H such that

dist(X,GU [φ]) < ε
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for some m-Lipschitz function φ : U → U⊥,

‖φ(u) − φ(v)‖ ≤ m‖u − v‖ for all u, v ∈ U,

where U⊥ is the orthogonal complement of U in H and GU [φ] is the graph of
φ over U :

GU [φ] = { u + φ(u) : u ∈ U }.
The m-Lipschitz deviation is given by

devm(X) = lim sup
ε→0

log δm(X, ε)

− log ε
.

The Lipschitz deviation of X (Pinto de Moura & Robinson, 2010b) is

dev(X) = lim
m→∞ devm(X);

since devm(X) is nonincreasing in m the limit clearly exists provided that
devm(X) is finite for some m > 0.

Note that dev(X) is bounded above by τ (X), since devm(X) ≤ τ (X) for
every m > 0 (one can always approximate by the graph of the zero function,
which is m-Lipschitz). We now show, following Pinto de Moura & Robinson
(2010b), that this inequality can be strict.

7.2.1 An example with dev(X) < τ (X).

Let {ej }∞j=1 be an orthonormal set in a Hilbert space H , and consider the set

X =
{

1

n
e1 + 1

n2
en : n ≥ 2

}
∪ {0}.

It is relatively easy to show that X is contained in the graph of a 3-Lipschitz
function of the one-dimensional subspace E1 spanned by e1: define φ on the
discrete set of points {e1/n}n∈N ∪ {0} by

φ(e1/n) = en

n2
n ≥ 2 and φ(0) = 0.

On its domain of definition, φ is Lipschitz: for m > n,

|φ(e1/n) − φ(e1/m)| =
∣∣∣ en

n2
− em

m2

∣∣∣
= n−2 + m−2 ≤ n−2 + (n + 1)−2 <

3

n(n + 1)

and ∣∣∣e1

n
− e1

m

∣∣∣ = ∣∣∣∣1n − 1

m

∣∣∣∣ >

∣∣∣∣1n − 1

n + 1

∣∣∣∣ = 1

n(n + 1)
,
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and so

|φ(e1/n) − φ(e1/m)| ≤ 3
∣∣∣e1

n
− e1

m

∣∣∣ .
The function φ can be extended to a 3-Lipschitz function defined on the whole
of E1 (see Wells & Williams (1975), for example). It follows that dev3(X) = 0,
and so dev(X) = 0.

We now show that τ (X) ≥ 1, following the argument used above to prove
Lemma 7.4. For n ≥ 1 set

an = e1

n + 1
+ en+1

(n + 1)2
;

note that ‖an‖ ≥ ‖an+1‖ and limn→∞ ‖an‖ = 0. Let X = {a1, a2, . . .}. Set ε2
n =

(‖an‖2 + ‖an+1‖2)/4. Since ‖aj‖2 ≥ ‖an‖2 > 2ε2
n for j = 1, . . . , n, it follows

from the above lemma that

d(X, εn) ≥ d({a1, . . . , an}, εn) ≥ n

(
1 − ε2

n

‖an‖2

)
≥ n

2
.

Since (n + 1)−1 < ‖an‖ < 2εn,

τ (X) ≥ lim sup
n→∞

log d(X, εn)

− log εn

≥ lim sup
n→∞

log(n/2)

log 2(n + 1)
= 1.

7.3 Dual thickness

The definition of the Lipschitz deviation requires a splitting of the space into
a finite-dimensional subspace U and its orthogonal complement. In a Banach
space it is not obvious how to perform such a splitting. Instead we define yet
another new quantity, the ‘dual thickness’. We will see that in a Hilbert space
this is bounded by the Lipschitz deviation, so in this setting offers a further
refinement of the thickness exponent.

The definition is based on the construction used in the proof of Theorem
6.2, and encodes precisely the property of ‘approximation’ that is needed in the
argument used to prove the embedding theorem that follows in the next chapter
(Theorem 8.1).

Definition 7.5 Given θ > 0, let nθ (X, ε) denote the lowest dimension of any
linear subspace V of B∗ such that for any x, y ∈ X with ‖x − y‖ ≥ ε there
exists an element ψ ∈ V such that ‖ψ‖∗ = 1 and

|ψ(x − y)| ≥ ε1+θ .
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Set

τ ∗
θ (X) = lim sup

ε→0

log nθ (X, ε)

− log ε
,

and define the dual thickness τ ∗(X) by

τ ∗(X) = lim
θ→0

τθ (X).

It is also useful to introduce the following more straightforward definition.

Definition 7.6 Given θ > 0, let mα(X, ε) denote the lowest dimension of any
linear subspace V of B∗ such that for any x, y ∈ X with ‖x − y‖ ≥ ε there
exists an element ψ ∈ V such that ‖ψ‖∗ = 1 and

|ψ(x − y)| ≥ αε.

Define

σ ∗
α (X) = lim sup

ε→0

log mα(X, ε)

− log ε
.

It would now be natural to define σ ∗(X) = limα→0 σ ∗
α (X); this gives another

possible definition of a ‘dual thickness’, but with the more tortuous definition of
τ ∗ (which is never larger than σ ∗, see below) we can still prove an embedding
theorem, and more importantly we can show that zero thickness (in the sense of
Hunt & Kaloshin’s definition) implies zero dual thickness (Proposition 7.10);
this does not seem to be possible using σ ∗.

The following lemma shows that σ ∗
α (X) provides an upper bound for τ ∗(X)

for any α > 0.

Lemma 7.7 If X is a compact subset of a Banach space B then τ ∗(X) ≤
σ ∗

α (X) for any α > 0.

Proof If V is an n-dimensional subspace of B∗ such that for all x, y ∈ X

with ‖x − y‖ ≥ ε there exists a ψ ∈ V with ‖ψ‖∗ = 1 and |ψ(x − y)| ≥ αε,
then it is clear that

|ψ(x − y)| ≥ ε1+θ

for all ε small enough that εθ < α, and so τ ∗
θ (X) ≤ σ ∗

α (X) for all θ > 0. �

The following simple corollary shows that τ ∗(X) ≤ dB(X), i.e. that the dual
thickness is well adapted for use with sets that have finite box-counting dimen-
sion. Corollary 8.4 shows that there are sets for which this upper bound is
attained, so τ ∗(X) is not always zero (there are possible definitions of ‘thick-
ness exponents’ that one might expect to be useful but which turn out to be
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zero whenever X has finite box-counting dimension, see Exercise 7.2 for one
example).

Corollary 7.8 Let X be a compact subset of a Banach space B; then
τ ∗(X) ≤ dB(X).

Proof Take d > dB(X). Then there exists an ε0 > 0 such that for all ε < ε0,
X can be covered with a collection B(xj , ε/12) of N ≤ ε−d balls, where the
xj are chosen to be linearly independent. To see that this is possible, first cover
X with a collection of balls B(zj , ε/13). This is a finite collection; since B is
infinite-dimensional one can perturb each zj in turn to some xj such that the
resulting collection {x1, . . . , xn} is linearly independent for each n ≤ N . One
can then enlarge slightly the radius of each ball.

Now use the Hahn–Banach Theorem to define a collection of linear func-
tionals ψj with the property

ψj (xi) = δij‖xj‖ and ‖ψj‖∗ = 1,

and let V be the subspace of B∗ spanned by the ψj .
Now, given x, y ∈ X with ‖x − y‖ ≥ ε, there exist xj , xk such that

‖x − xj‖ ≤ ε

12
and ‖y − xk‖ ≤ ε

12
,

and so in particular ‖xj − xk‖ ≥ 5ε/6.
Clearly ψj − ψk ∈ V , and

1 ≤ ‖ψj − ψk‖∗ ≤ 2,

so that (ψj − ψk)/‖ψj − ψk‖∗ is an element of V with norm 1. We have

ψj − ψk

‖ψj − ψk‖∗
(x − y) = ψj − ψk

‖ψj − ψk‖∗
[(x − xj ) + xj − xk + (xk − y)]

≥ − ε

12
+ ‖xj‖ + ‖xk‖

‖ψj − ψk‖∗
− ε

12

≥ ‖xj − xk‖
2

− ε

6

≥ 5ε

12
− ε

6
= ε

4
.

It follows that σ ∗
1/4(X) ≤ d, and since d > dB(X) was arbitrary, τ ∗(X) ≤

σ ∗
1/4(X) ≤ dB(X). �

In a Hilbert space we can do better than this, showing that the dual thickness
is bounded by the Lipschitz deviation (and hence by the thickness).
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Lemma 7.9 If X is a compact subset of a Hilbert space H then τ ∗(X) ≤
dev(X) ≤ τ (X).

Proof In fact the argument here shows that σ ∗
1/6m(X) ≤ devm(X), and the

result as stated is a consequence of Lemma 7.7.
Suppose that X ⊂ H and V is a linear subspace of H such that there exists

an m-Lipschitz function φ : V → V ⊥ with

dist(X,GV [φ]) ≤ ε/6m,

where m ≥ 1. It follows that for each x ∈ X there exists a p ∈ V such that
‖x − (p + φ(p))‖ ≤ ε/6m. Writing P for the orthogonal projection onto V ,
and Q = I − P ,

‖x − (Px + φ(Px))‖ = ‖Qx − φ(Px)‖
≤ ‖Qx − φ(p)‖ + ‖φ(p) − φ(Px)‖
≤ ‖Qx − φ(p)‖ + m‖p − Px‖
≤ 2m‖x − (p + φ(p))‖ ≤ ε/3.

Now, for any u, v ∈ H ,

‖(Pu + φ(Pu)) − (Pv + φ(Pv))‖ ≤ 2m‖Pu − Pv‖
and if u, v ∈ X with ‖u − v‖ ≥ ε, then

‖(Pu+φ(Pu)) − (Pv + φ(Pv)‖
≥ ‖u − v‖ − ‖Qu − φ(Pu)‖ − ‖Qv − φ(Pv)‖
≥ ε/3,

which implies that ‖Pu − Pv‖ ≥ ε/6m.
The subspace V has a natural isometric linear embedding into H ∗ via the

mapping u �→ ϕu, where

ϕu(x) = (x, u).

Given u, v ∈ X with ‖u − v‖ ≥ ε, let d = P (u − v)/‖P (u − v)‖ and ψ = ϕd .
Clearly ‖ψ‖∗ = 1 and |ψ(u − v)| ≥ ε/6m. �

In a Banach space the relationship between the thickness and dual thickness
is not clear in general. Nevertheless, it is possible to show that sets that have
‘zero thickness’ according to Hunt & Kaloshin’s definition also have zero dual
thickness (this is the reason for the slightly torturous definition of the dual
thickness). This will prove particularly useful in Chapter 15.
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Proposition 7.10 Let X be a compact subset of a Banach space B. If
τ (X) = 0 then τ ∗(X) = 0.

Proof Take any τ ∈ (0, 1). It follows from the definition of the thickness
exponent that for any β > 0, for every ε with 0 < ε < 1 there exists a subspace
U of dimension n ≤ cτ ε

−βτ such that dist(X,U ) ≤ εβ .
Let P be a projection onto U with ‖P ‖ ≤ n; the existence of such a projec-

tion is guaranteed by Exercise 7.4. Given any x ∈ B, if dist(x,U ) = δ there
exist u ∈ U and y ∈ B with ‖y‖ = δ such that x = u + y. It follows, since the
norm of Q = I − P is bounded by 1 + n, that

‖x − Px‖ = ‖Qx‖ = ‖Q(u + y)‖ = ‖Qy‖ ≤ ‖Q‖‖y‖ ≤ (1 + n)dist(x,U )

≤ 2cτ ε
−βτ εβ = c′

τ ε
β(1−τ ).

Choosing β = 1/(1 − τ ) it follows that for any ε > 0 there exists a space U of
dimension n ≤ c′′

τ ε
−τ/(1−τ ) and a projection P onto U with ‖P ‖ ≤ n such that

sup
x∈X

‖x − Px‖ ≤ ε/3.

Now let V be the n-dimensional linear subspace of B∗ given by

V = {L ◦ P : L ∈ U ∗},
where, as above, U ∗ is the dual of U , which is also n-dimensional. Given any
x, y ∈ X with ‖x − y‖ ≥ ε, one can find an L ∈ U ∗ such that ‖L‖∗ = 1
and L(P (x − y)) = ‖P (x − y)‖ ≥ ε/3. It follows that there exists a ψ ∈ V ,
namely ψ = L ◦ P , such that

‖ψ‖∗ ≤ n and |ψ(x − y)| ≥ ε/3.

Rescaling ψ by a factor of ‖ψ‖∗ ≤ n ≤ c′′ε−τ/(1−τ ), it follows that there exists
a ψ ∈ V with ‖ψ‖∗ = 1 such that

|ψ(x − y)| ≥ c ε1+(τ/(1−τ )).

Thus

τ ∗
τ/(1−τ )(X) ≤ τ

1 − τ
,

and since τ/(1 − τ ) → 0 as τ → 0, τ ∗(X) = 0 as claimed. �

Exercises

7.1 Let X be a subset of a Banach space B, and denote by ε(X, n) the minimum
distance between X and any n-dimensional linear subspace of B. Show
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that

τ (X) ≤ lim sup
n→∞

log n

− log ε(X, n)
. (7.4)

(One can in fact prove equality here, see Lemma 2 in Kukavica & Robinson
(2004).)

7.2 One could try to define another ‘thickness measure’ for a set X ⊂ H as
follows. For each ε > 0, let dLE(X, ε) be the smallest n such that there
exists a 2-Lipschitz map φ : R

n → H such that dist(X,φ(Rn)) < ε. Define

τLE(X) = lim sup
ε→0

log dbL(X, ε)

− log ε
.

The Johnson–Lindenstrauss Lemma (Johnson & Lindenstrauss, 1984)
guarantees that given a set of m points in a Hilbert space H , and an
n > O(ln m), there is a function f : H → R

n such that

1
2‖u − v‖ ≤ |f (u) − f (v)| ≤ 2‖u − v‖.

Show that τLE(X) = 0 for any set X with dB(X) finite.
7.3 Show that if U is a finite-dimensional Banach space dim(U ) = n then

there exists an ‘Auerbach basis’ for U : a basis {e1, . . . , en} for U and cor-
responding elements {f1, . . . , fn} of U ∗ such that ‖ej‖ = ‖fj‖∗ = 1 for
j = 1, . . . , n and fi(ej ) = δij , i, j = 1 . . . , n. [Hint: by identifying U with
(Rn, ‖ · ‖) one can work in R

n. For x1, . . . , xn ∈ R
n let det(x1, . . . , xn)

denote the determinant of the n × n matrix with columns formed by the
vectors {xj }. Choose {e1, . . . , en} with ‖ej‖ = 1 such that det(e1, . . . , en)
is maximal. Define candidates for the {fj } and check that the fj satisfy
the required properties.]

7.4 Use the result of the previous exercise to show that if U is any n-
dimensional subspace of a Banach space B, there exists a projection
P onto U whose norm is no larger than n, ‖P ‖ ≤ n.
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Embedding sets of finite box-counting
dimension

This chapter provides a proof of an infinite-dimensional version of Theo-
rem 4.3: we prove the existence of linear embeddings into R

k for subsets of
infinite-dimensional (Hilbert or Banach) spaces with finite upper box-counting
dimension, and show that these linear maps have Hölder continuous inverses.
This degree of smoothness allows for interesting corollaries for the attractors
of infinite-dimensional dynamical systems, as discussed in Part II.

8.1 Embedding sets with Hölder continuous parametrisation

We prove a result that makes use of the dual thickness τ ∗(X); note that if the
dual thickness is zero then the Hölder exponent in (8.1) can be made arbitrarily
close to 1 by choosing an embedding space of sufficiently high dimension. In
light of this it is worth recalling from the previous chapter that

τ ∗(X) ≤ dev(X) ≤ τ (X)

in a Hilbert space (Lemma 7.9), and that in a Banach space

τ (X) = 0 ⇒ τ ∗(X) = 0

(Proposition 7.10).

Theorem 8.1 Let X be a compact subset of a real Banach space B, with
dB(X) = d < ∞ and τ ∗(X) = τ . Then for any integer k > 2d and any θ with

0 < θ <
k − 2d

k(1 + ατ )
, (8.1)

where α = 1/2 if B is a Hilbert space and α = 1 if B is a general Banach
space, there exists a prevalent set of bounded linear maps L : B → R

k such

75
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that

‖x − y‖ ≤ CL|Lx − Ly|θ for all x, y ∈ X. (8.2)

In particular, L is injective on X.

Foias & Olson (1996) first proved a result along these lines. They showed
that in a Hilbert space there is a dense set of orthogonal projections that are
injective on X and have a Hölder inverse, but did not give any explicit bound
on the Hölder exponent. The proof of the theorem given here, almost identical
to that of Theorem 4.3, is due essentially to Hunt & Kaloshin (1999), but
incorporates the generalised estimate of Lemma 5.10 and the dual thickness,
following Robinson (2009). Separating the more geometric elements of the
proof (the estimates contained in Section 5.2) serves to clarify the argument.

Proof If θ satisfies (8.1), then there exist β > 0, σ > τ ∗
β (X), and δ > d such

that

0 < θ <
k − 2δ

k(1 + β + ασ )
. (8.3)

Since σ > τ ∗
β (X), there exists a subspace of B∗, Vj , of dimension dj ≤ C12jθσ

such that for any x, y ∈ X with ‖x − y‖ ≥ 2−jθ , one can find a ψ ∈ Vj with

‖ψ‖∗ = 1 and |ψ(x − y)| ≥ 2−jθ(1+β). (8.4)

With V = {Vj }∞j=1, choose γ > 1 and let E = Eγ (V ) and μ the corresponding
probability measure as defined in Section 5.2.

Now let

Zj = {z ∈ X − X : ‖z‖ ≥ 2−θj },
and for a fixed choice of f ∈ L (B, R

k) let Qj be the set of all those linear
maps in E for which (8.2), with L replaced by f + L, fails for some z ∈ Zj ,

Qj = {L ∈ E : |(f + L)(z)| ≤ 2−j for some z ∈ Zj }.
Since dB(X − X) ≤ 2dB(X) < 2δ, X − X can be covered with no more than

C222jδ balls of radius 2−j . Let Y be the intersection of Qj with one of these
balls.

Let M be a Lipschitz constant that is valid for all f + L, L ∈ E. If z, z0 ∈ Y ,
then since ‖z − z0‖ ≤ 2−(j−1),

|(f + L)(z0)| > (2M + 1)2−j ⇒ |(f + L)(z)| > 2−j for all z ∈ Y.

Thus μ(Y ) is bounded by the μ-measure of those L ∈ E for which

|(f + L)(z0)| ≤ (2M + 1)2−j .
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It follows from Lemma 5.10 (in the Banach space case) or Lemma 5.6 (in the
Hilbert space case) that

μ(Y ) ≤ [(2M + 1)2−j j 2Cα
1 2jθσα|g(z0)|−1]k

for any g ∈ Sj (recall that dj ≤ C12jθσ ). Using the definition of the dual
thickness there exists a ψ ∈ Sj such that

|ψ(z0)| ≥ ‖z0‖1+β ≥ 2−θ(1+β)j

(cf. (8.4)), and so

μ(Y ) ≤ [(2M + 1)2−j j 2Cα
1 2jθσα2θ(1+β)j ]k.

Since Qj is covered by no more than C222jδ balls, we obtain

μ(Qj ) ≤ C222jδ[(2M + 1)2−j j 2Cα
1 2jθσα2θ(1+β)j ]k

= C3j
2k2−j [k(1−θ(1+β+σα))−2δ].

The assumption (8.3) implies that

k(1 − θ (1 + β + σα)) − 2δ > 0,

and so the sum
∑∞

j=1 μ(Qj ) is finite. It follows from the Borel–Cantelli Lemma
(Lemma 4.2) that μ-almost every L belongs to only finitely many of the Qj ,
which implies (8.2) for some appropriate constant CL (the argument is identical
to the concluding part of the proof of Theorem 4.3). �

One could try to repeat this proof, replacing the upper box-counting dimen-
sion by the lower box-counting dimension, but the assumption that dLB(X) < ∞
is not enough to show that L−1 is Hölder, as we will now see.

8.2 Sharpness of the Hölder exponent

As the dimension of the embedding space (k) in the above theorem tends
to infinity, one obtains in (8.1) a limiting Hölder exponent 1/(1 + τ ∗) in the
Banach space case, or 1/(1 + (τ ∗/2)) in the Hilbert space case.

Hunt & Kaloshin (1999) provide an example showing that this limiting
Hölder exponent is sharp in terms of the thickness: an involved construction
based on taking particular paths through a binary tree yields a subset of �p for
any 1 ≤ p < ∞, such that dH(X) = dB(X) = d and with the property that if
L : �p → R

N is any bounded linear map then

dH(L(X)) ≤ d

1 + d/q
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with q the conjugate exponent of p. It follows from the behaviour of the
Hausdorff dimension under θ -Hölder maps (Proposition 2.8(iv)) that one must
therefore have θ < 1/(1 + d/q), cf. (8.8).

It is interesting that the ‘sharpness’ of the bound on the Hölder exponent
must always be understood in terms of the quantities that are being used in the
bound: for example, while Hunt & Kaloshin used their example to show that
in a Hilbert space the bound

0 < θ <
k − 2d

k(1 + τ (X)/2)

is sharp in terms of the thickness, we know from Theorem 8.1 that this bound
can be improved in that one can substitute a different quantity for the thickness,
e.g. the Lipschitz deviation or the dual thickness.

Here we show that the ‘orthogonal sequence’ considered in Lemma 3.5
provides a much simpler example that proves the sharpness of the Hölder
exponent (in terms of the dual thickness). In order to do this we require Banach-
space versions of Lemma 6.1 (the decomposition lemma) and Lemma 6.3
(relating the rank of a projection P to the images of an orthonormal set under P ).

The following result can be found in Roman (2007, Theorem 3.5).

Lemma 8.2 Let B be a Banach space. Suppose that L : B → R
k is a

surjective linear map with L(B) = R
k and V is the kernel of L. Then the

quotient space U = B/V has dimension k, and L can be decomposed uniquely
as MP , where P is a projection onto U and M : U → R

k is an invertible linear
map.

The proof of the following version of Lemma 6.3, applicable to projections
in �p, is due to Pinto de Moura (see Pinto de Moura & Robinson (2010a)).

Lemma 8.3 Let P be a finite rank projection in �p (1 < p < ∞) or c0 (in
which case we take p = ∞). Then

rank P ≥
⎧⎨
⎩

∞∑
j=1

‖Pej‖q

�p

⎫⎬
⎭

1/q

,

where {ej }∞j=1 is the canonical basis of �p (or c0), and q is the conjugate
exponent to p.

Note that the estimate of Lemma 6.3 for the Hilbert space case is better
(rank P ≥ ∑∞

j=1 ‖Pej‖2) since one can use orthogonality in the proof, rather
than just the triangle inequality. However, this does not affect the argument in
Corollary 8.4, where we only require the rank of P to be finite.
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Proof Let U be the range of P . Since P is a finite-dimensional projection, U is
a finite-dimensional subspace of �p. By Exercise 7.3, U has an Auerbach basis
{u1, ...un} with corresponding elements {f ∗

1 , ..., f ∗
n } ∈ U ∗, such that ‖ui‖U =

1, ‖fi‖U∗ = 1, and f ∗
i (uk) = δik for 1 ≤ i, k ≤ n. Using the Hahn–Banach

Theorem each fi can be extended to an element φi ∈ �q with ‖φi‖q = 1 and
such that φi(uk) = δik for 1 ≤ i, k ≤ n. Thus for every element x ∈ �p, we can
write

Px =
n∑

i=1

φi(x)ui.

It follows in particular that for each j = 1, 2, . . . ,

P ej =
n∑

i=1

φi(ej )ui.

Now, we can expand φi using the canonical basis {e∗
j }∞j=1 of �q , so that

φi =
∞∑

k=1

λike
∗
k , for every i = 1, 2, . . .

with
∑∞

k=1 |λik|q = 1. Thus for each j = 1, 2, . . .

‖Pej‖�p =
∥∥∥∥ n∑

i=1

φi(ej )ui

∥∥∥∥
�p

≤
n∑

i=1

‖φi(ej )ui‖�p =
n∑

i=1

|φi(ej )|

=
n∑

i=1

∣∣∣∣ ∞∑
k=1

λike
∗
k (ej )

∣∣∣∣ = n∑
i=1

|λij |

≤ n1/p

(
n∑

i=1

|λij |q
)1/q

.

Therefore,
∞∑

j=1

‖Pej‖q

�p ≤ nq−1
∞∑

j=1

n∑
i=1

|λij |q = nq−1
n∑

i=1

( ∞∑
j=1

|λij |q
)

≤ nq.

�
As a corollary, one can show that for the orthogonal sets introduced in

Lemma 3.5, the box-counting dimension and the dual thickness coincide (for
a direct argument that gives this value for the thickness in �2 and does not use
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Theorem 8.1 see Lemma 7.4); from this it follows that the Hölder exponent
in Theorem 8.1 is asymptotically sharp, using �2 (p = q = 2) for the Hilbert
space case and c0 (‘p = ∞’, q = 1) for the Banach space case.

Corollary 8.4 Let A = {ajej }∞j=1 ∪ {0} be an ‘orthogonal’ subset of �p as
in Lemma 3.5. Then τ ∗(A) = dB(A) and if there exists a finite-dimensional
projection P in �p and a θ ∈ (0, 1) such that

‖α‖�p ≤ C‖Pα‖θ
�p , for each α ∈ A, (8.5)

then

θ ≤ 1

1 + (τ ∗(A)/q)
. (8.6)

Proof Since P (aj ej ) = ajP ej , it follows from (8.5) applied to aj ej that

|aj | ≤ C|aj |θ‖Pej‖θ
�p , i.e. ‖Pej‖�p ≥ C−1/θ |aj |(1/θ)−1.

Lemma 8.3 implies that for such a P ,

rank P ≥
⎛
⎝ ∞∑

j=1

‖Pej‖q

�p

⎞
⎠1/q

≥ C−θ

⎛
⎝ ∞∑

j=1

|aj |q[(1/θ)−1]

⎞
⎠1/q

.

In particular, if P is a finite-rank projection then

∞∑
j=1

|aj |q[(1/θ)−1] < ∞. (8.7)

Now, using the expression for the box-counting dimension of these
sequences, (3.11) from Lemma 3.5,

dB(A) = inf{d :
∞∑

n=1

|an|d < ∞},

it follows that

dB(A) ≤ q[(1/θ ) − 1],

which implies that

θ ≤ 1

1 + (dB(A)/q)
. (8.8)

We now deduce that in fact τ ∗(A) = dB(A), which will give (8.6). We know
that in general τ ∗(A) ≤ dB(A) (Lemma 7.8), so suppose that τ = τ ∗(A) <

dB(A). Then the result of the embedding theorem (Theorem 8.1) coupled with
the Decomposition Lemma (Lemma 8.2) implies that for some k sufficiently
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large one can find a projection P of rank k such that (8.5) holds for some
θ > 1/(1 + (dB(A)/q)). But this contradicts (8.8), and so τ ∗(A) = dB(A). �

When p = 2, i.e. in the Hilbert space case, one can deduce that τ ∗(A) =
τ (A) = dev(A) = dB(A) for this particular class of examples.

The same argument shows that one cannot replace the upper box-counting
dimension by the lower box-counting dimension and still obtain a Hölder
inverse. Indeed, the sequence Ĥ defined at the end of Chapter 3 has dLB(Ĥ ) =
1/α but dB(Ĥ ) = ∞. For p = 2 (the Hilbert space case) the condition (8.7)
becomes

∞∑
j=1

|aj |2[(1/θ)−1] < ∞. (8.9)

But the values of the {aj } used to define Ĥ are constant, of order 1/x, for ∼ex

values of j , for ever larger values of x. It follows that whatever the value of θ ,
the sum on the left-hand side of (8.9) diverges.

It is natural to ask how much the requirement of linearity restricts the
regularity of L−1 that can be attained. In particular, one can ask whether it is
possible to find, in general, an embedding (not necessarily linear) of X into some
R

k that is bi-Lipschitz (i.e. L and L−1 are Lipschitz). In the next chapter we
introduce the Assouad dimension, and show that a necessary condition for the
existence of such an embedding is that the Assouad dimension of a set is finite
(this condition is not sufficient, however, see Section 9.4); a simple example
(Lemma 9.9) shows that there are sets with finite box-counting dimension but
infinite Assouad dimension, so that a bi-Lipschitz embedding result for sets
with finite box-counting dimension is not possible. A more involved example
that illustrates the same thing was given by Movahedi-Lankarani (1992); again,
his set is one with infinite Assouad dimension.

Exercises

8.1 Foias & Olson (1996) prove that if P0 and P are orthogonal projections
on a real Hilbert space H of equal (finite) rank and Px = 0 implies that
‖Px‖ ≤ ε‖x‖ for some ε ∈ (0, 1) then ‖P − P0‖ ≤ ε. Use this result
along with Lemma 6.1 to deduce from Theorem 8.1 that if X ⊂ H , kεN

with k > 2dB(X), and θ satisfies (8.1) with α = 1/2 then a dense set of
rank k orthogonal projections in H are injective on X and satisfy

‖x − y‖ < C‖P (x − y)‖θ ,
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for some C > 0. (This is essentially the result of Foias & Olson (1996),
although they do not give an explicit bound on θ .)

8.2 Suppose that {Xn}n∈Z is a family of subsets of B, such that dB(Xn) ≤ d for
each n ∈ Z. Show that if k > 2d then there exists a linear map L : B → R

k

and a θ > 0 such that L is injective on
⋃

j∈Z
Xj , and for each n ∈ N there

exists a Cn > 0 such that

‖x − y‖ ≤ Cn|Lx − Ly|θ for all x, y ∈
⋃
|j |≤n

Xj .

[Hint: use the fact that a countable intersection of prevalent sets is preva-
lent.] (A version of this result is proved in Langa & Robinson (2001) for
the attractors of nonautonomous systems, in Langa & Robinson (2006) for
random dynamical systems, and in Robinson (2008) for general cocycle
dynamical systems.)

8.3 Use Lemma 6.3 (or Lemma 8.3) to show that if X ⊂ H contains a set of
the form {0} ∪ {αj }∞j=1, where the αj are orthogonal, then no linear map
L : H → R

k can be bi-Lipschitz on X. (As discussed above, in the next
chapter we will see examples of sets for which no map, whether linear or
not, can provide a bi-Lipschitz embedding into a Euclidean space.)
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Assouad dimension

9.1 Homogeneous spaces and the Assouad dimension

A long-standing open problem in the theory of metric spaces is to find conditions
guaranteeing that a space (X, �) can be embedded in a bi-Lipschitz way into
some Euclidean space (see Heinonen (2003)). The Assouad dimension was
introduced in this context (Assouad, 1983; see also Bouligand (1928) for an
earlier definition), and is most naturally defined as a concept auxiliary to the
notion of a homogeneous set:

Definition 9.1 A subset A of a metric space (X, �) is said to be (M, s)-
homogeneous (or simply homogeneous) if the intersection of A with any ball
of radius r can be covered by at most M(r/ρ)s balls of smaller radius ρ.

In terms of the notation used in the previous chapters, this says that

N (B(x, r) ∩ A, ρ) ≤ M(r/ρ)s

for every x ∈ A and r > ρ. In the light of this, it is convenient to define

NA(r, ρ) = sup
x∈A

N (B(x, r) ∩ A, ρ).

(Of course, if one takes A = X then the ‘∩A’ is redundant.)

Lemma 9.2 Any subset of R
N is (2N+1, N )-homogeneous.

Proof The cube [−r, r]N in R
N can be covered by [(2r/ρ) + 1]N cubes of

side ρ. Since each cube of side 1/ρ lies within a ball of radius
√

N/ρ, the
sphere of radius r (which lies within [−r, r]N ) can be covered by fewer than

[(2r/ρ) + 1]N ≤ 2N+1(r/ρ)N

balls of radius ρ. Clearly if X is any subset of R
N , X ∩ B(x, r) can be covered

by fewer than 2N+1(r/ρ)N balls of radius ρ. �

83
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Homogeneity is preserved under bi-Lipschitz mappings.

Lemma 9.3 Suppose that (X, �X) is (M, s)-homogeneous and that the map
f : (X, �X) → (Y, �Y ) is bi-Lipschitz:

L−1 �X(x1, x2) ≤ �Y (f (x1), f (x2)) ≤ L�X(x1, x2)

for some L > 0. Then f (X) is an (ML2s , s)-homogeneous subset of Y .

Proof Take y ∈ f (X) and consider BY (y, r) ∩ f (X). Then y = f (x) for some
x ∈ X. Since f −1 is Lipschitz,

f −1[BY (y, r) ∩ f (X)] ⊆ BX(x, Lr) ∩ X.

Since X is (M, s)-homogeneous, BX(x, Lr) ∩ X can be covered by N ≤
M(Lr/(ρ/L))s balls of radius ρ/L,

BX(x, Lr) ∩ X ⊆
N⋃

j=1

BX(xj , ρ/L).

Since f is Lipschitz, f (BX(xj , ρ/L)) ⊆ BY (f (xj ), ρ), whence

BY (y, r) ∩ f (X) ⊆
N⋃

j=1

f (BX(x, Lr) ∩ X) ⊆
N⋃

j=1

BY (f (xj ), ρ).

Hence f (X) is (ML2s , s)-homogeneous. �

It follows from these two elementary observations (Lemmas 9.2 and 9.3) that
A ⊆ (X, �) must be homogeneous if it is to admit a bi-Lipschitz embedding into
some R

N . However, as we will see below, there are examples of homogeneous
spaces that cannot be bi-Lipschitz embedded into any Euclidean space, so
homogeneity is not sufficient for the existence of such an embedding.

A more pleasing, but equivalent, definition is that of a ‘doubling’ set: A ⊆
(X, �) is said to be doubling if the intersection with A of any ball of radius r

can be covered by at most K balls of radius r/2, where K is independent of r

(see Luukkainen (1998)).

Lemma 9.4 A set A ⊆ (X, �) is homogeneous iff it is doubling.

Proof That a homogeneous set is doubling is immediate. To show the con-
verse, suppose that NA(r, r/2) ≤ K . Given 0 < ρ < r , choose n such that
r/2n ≤ ρ < r/2n−1; then

NA(r, ρ) ≤ NA(r, r/2)NA(r/2, r/4) · · ·NA(r/2n−1, r/2n) ≤ Kn
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and since n − 1 ≤ log2(r/ρ) it follows that

NA(r, ρ) ≤ K(Kn−1) ≤ K(r/ρ)log2 K. �
We now define the Assouad dimension.

Definition 9.5 The Assouad dimension of X, dA(X), is the infimum of all s

such that (X, �) is (M, s)-homogeneous for some M ≥ 1.

The following lemma gives some elementary properties of this definition.
Observe that with (iv) we have now shown that for any compact set X,

dim(X) ≤ dH(X) ≤ dLB(X) ≤ dB(X) ≤ dA(X). (9.1)

Lemma 9.6
(i) if A,B ⊆ (X, �) and A ⊆ B then dA(A) ≤ dA(B);

(ii) if A,B ⊂ (X, �) then dA(A ∪ B) = max(dA(A), dA(B));
(iii) if X is an open subset of R

N then dA(X) = N ;
(iv) if X is compact then dB(X) ≤ dA(X); and
(v) dA is invariant under bi-Lipschitz mappings.

Proof (i) and (ii) are obvious and (v) follows from Lemma 9.3. For (iii), clearly
dA(X) ≤ N , since any subset of R

N is (2N+1, N)-homogeneous (Lemma 9.2).
If X is an open subset of R

N then it contains an open ball B = B(x, r). Suppose
that dA(X) < N ; then dA(B) < N , so that B is (M, s)-homogeneous for some
s < N . It follows that B can be covered by M(r/ρ)s balls of radius ρ, and so

μ(B) ≤ M(r/ρ)s�NρN .

Since ρ > 0 is arbitrary and s < N , this implies that μ(B) = 0. So dA(X) = N

as claimed.
For (iv), since X is compact, X ⊂ B(0, R) for some R > 0; thus for any

s > dA(X),

N (X, ρ) = N (X ∩ B(0, R), ρ) ≤ M(R/ρ)s = [MRs]ρ−s ,

and hence dB(X) ≤ dA(X). �
In line with the characterisation of the covering dimension in terms of the

Hausdorff dimension (Corollary 2.13), and the lower and upper box-counting
dimensions (Exercises 3.3 and 3.4), Luukkainen (1998) proved that

dim(X) = inf{dA(X′) : X′ homeomorphic to X}.
Given (9.1), this shows in particular that any set X has a homeomorphic image
X′ such that

dim(X′) = dH(X′) = dLB(X′) = dB(X′) = dA(X′). (9.2)
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We again repeat Luukkainen’s remark that ‘there is no purely topological reason
for X to be fractal’, which is given considerably more force by (9.2).

9.2 Assouad dimension and products

The Assouad dimension behaves like the upper box-counting dimension under
the operation of taking products.

Lemma 9.7 If (X, �X) and (Y, �Y ) are metric spaces then

dA(X × Y ) ≤ dA(X) + dA(Y ),

where X × Y is equipped with any of the product metrics ρα , 1 ≤ α ≤ ∞,
defined in (3.6) and (3.7).

Proof We use the metric

�∞((x1, y1), (x2, y2)) = max(�X(x1, x2), �Y (y1, y2))

on X × Y in the proof. Since this is equivalent to any of the ρα metrics (for
1 ≤ α < ∞) and the Assouad dimension is invariant under bi-Lipschitz map-
pings (Lemma 9.6(v)) this will sufficient to prove the lemma.

If dA(X) < α and dA(Y ) < β, there exist MX and MY such that

NX(r, ρ) < MX

(
r

ρ

)α

and NY (r, ρ) < MY

(
r

ρ

)β

.

Let B be a ball of radius r in X × Y . Then B = U × V , where U and V are
balls of radius r in X and Y , respectively. Cover U by balls Ui of radius ρ, and
the ball V by balls Vi of radius ρ. Then the products Ui × Vj form a cover of
B by balls in X × Y of radius ρ, and at most

MXMY

(
r

ρ

)α+β

are required. It follows that dA(X × Y ) ≤ dA(X) + dA(Y ). �
The inequality here can be strict, as the following example due to Larman

(1967) shows. For each m ∈ N, divide the interval

(2−2m+1
, 2−2m

)

into 22m − 1 intervals, each of length 2−2m+1
. Let Km denote the collection of

the 222m

endpoints of these intervals. Set

A = {0} ∪
∞⋃

m=1

K4m and B = {0} ∪
∞⋃

m=1

K4m+2.
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Lemma 9.8 For the sets A and B defined above,

dA(A) = dA(B) = dA(A × B) = 1.

Proof Clearly dA(A) ≤ 1 and dA(B) ≤ 1. Let rn = 2−24n

, and consider

(−rn, rn) ∩ A = {0} ∪
∞⋃

j=n

K4j .

Then, since this contains K4n, it requires at least 224n − 1 intervals of length
ρn = 2−24n+1

to cover it. So

NA(rn, ρn) ≥ 224n − 1

and

rn

ρn

= 2−24n

2−24n+1 = 224n

.

So A cannot be (M, s)-homogeneous for any s < 1. It follows that dA(A) = 1,
and similarly dA(B) = 1.

Now consider A × B. Since A × B contains a copy of A, dA(A × B) ≥ 1.
Take r = 2−22m

; this is the smallest value of r such that

B(0, r) ∩ [A × B] =
⎡
⎣{0} ∪

∞⋃
j=0

K2m+4j

⎤
⎦×

⎡
⎣{0} ∪

∞⋃
j=0

K2(m+1)+4j

⎤
⎦ .

The number of balls required in a cover by ρ-balls is essentially determined
by the value of t for which B(0, ρ) ⊃ Kt . So choose ρ = 2−22n+1

; the largest
value of ρ such that Kt is in B(0, ρ) for every t > 2n but not for t = 2n.

Then the number of balls required to cover B(0, r) ∩ [A × B] is bounded
by

N ≤ (n − m + 1)2 × 222n × 222n−2
,

while

r

ρ
= 222n+1−22m

.

It follows that N ≤ (r/ρ)s , where

s ≤ 2 log2(n − m + 1) + 22n + 22n−2

22n+1 − 22m
≤ 1. �
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9.3 Orthogonal sequences

We now investigate further some surprising properties of the Assouad dimen-
sion, following Olson (2002). We have used the example of orthogonal
sequences in a Hilbert space in previous chapters, and again this simple class
of examples is illuminating.

Lemma 9.9 Let X = {n−αen} ∪ {0}, where {en}∞n=1 is an orthonormal subset
of a Hilbert space H . Then dA(X) = ∞.

(Recall that dH(X) = 0 and that dB(X) = 1/α, see (3.13).)

Proof Let rm = m−α , and consider

B(0, rm) ∩ X = {n−αen : n ≥ m} ∪ {0}.
Now cover B(0, rm) ∩ X by balls of radius rm/2; each point in this set of norm
more than rm/2 will require its own ball, and since

n−α > rm/2 ⇒ n < (2/rm)1/α = m21/α

it follows that N (B(0, rm) ∩ X, rm/2) ≥ m21/α − m − 1. Since the right-hand
side tends to infinity as m → ∞, X cannot be doubling. �

As remarked at the end of the previous chapter, this gives a simple example
of a compact set with finite box-counting dimension that cannot be bi-Lipschitz
embedded into any R

k .
However, a geometric sequence has zero Assouad dimension, as the next

(more general) result shows.

Lemma 9.10 Let {en}∞n=1 be the canonical basis of �p, 1 ≤ p < ∞, or of c0,
and consider the set X = {anen}∞n=1 ∪ {0}. Suppose that there exist K and α

with K > 0 and 0 < α < 1 such that

K−1αn ≤ an ≤ Kαn.

Then dA(X) = 0, where the dimension is taken in �p (1 ≤ p < ∞) or c0.

Proof Take 0 < ρ < r . Consider a ball of radius r centred at the origin; then

B(0, r) ∩ X = {anen : an < r} ∪ {0}
⊆ {anen : Kαn < r} ∪ {0}
= {anen : n > (log r − log K)/ log α} ∪ {0}
⊆ {anen : n ≥ [(log r − log K)/ log α] − 1} ∪ {0}.
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A cover of B(0, r) ∩ X by balls of radius ρ will require a separate ball for each
point of norm greater than ρ; since

K−1αn > ρ ⇒ an > ρ,

it follows that an > ρ for n < (log ρ + log K)/ log α, so certainly the same is
true for n ≤ [(log ρ + log K)/ log α] + 1. Thus

N (B(0, r) ∩ X, ρ) ≤ log ρ + log K

log α
− log r − log K

log α
+ 2

= 1

− log α
log

(
r

ρ

)
+ 2 log K

log α
+ 2.

So X is (M, s)-homogeneous for any s > 0, i.e. dA(X) = 0. �
The lower bound in this result is necessary:

Lemma 9.11 There are sequences an converging arbitrarily fast to zero for
which

X = {anen}∞n=1 ∪ {0}
has dA(X) = ∞.

Proof Let bj be a sequence that converges to zero. Let an = bj for 2j−1 ≤
n ≤ 2j − 1. Now let r = bj + ε and consider

B(0, r) ∩ X = {anen : n ≥ 2j−1}.
The number of balls of radius r/2 required to cover B(0, r) ∩ X is larger than
2j − 2j−1, which is unbounded as j → 0. So X is not doubling. Since bj can
converge arbitrarily fast to zero, so can an. �

Assumptions on the set of differences X − X are the key to proving embed-
ding results that use linear maps. We have seen that while for the box-counting
dimension dB(X − X) ≤ 2dB(X), one can have sets with zero Hausdorff dimen-
sion for which dH(X − X) = ∞. Unfortunately the same is true of the Assouad
dimension.

Lemma 9.12 There exists a set X with dA(X) = 0 and dA(X − X) = ∞.

Proof Let {xj } be an orthogonal sequence of the type constructed in the previ-
ous lemma, with ‖xj‖ ≤ 4−j . Suppose that the complement of the linear span
of the {xj } is infinite-dimensional, and choose a second orthogonal sequence
{yj } in this complement with ‖yj‖ = 4−j .

Let X be the closure of the set {aj }, where

a2j = yj and a2j+1 = xj + yj .
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Clearly X − X contains {xj }, and so dA(X − X) = ∞. However, Lemma 9.10
implies that dA(X) = 0: for k = 2j ,

‖ak‖ = ‖yj‖ = 4−j = 2−k,

while for k = 2j + 1,

‖ak‖ ≤ ‖xj‖ + ‖yj‖ ≤ 4−j + 4−j = 2(4−(k−1)/2) = 4 × 2−k

and

‖ak‖ ≥ ‖yj‖ = 2 × 2−k. �

Note that in a very roundabout way we have shown that the Assouad
dimension can increase under Lipschitz continuous transformations, since
dA(X × X) ≤ 2dA(X), and X − X is the image of X × X under the Lipschitz
mapping (x, y) �→ x − y.

The following result, again due to Olson (see Olson & Robinson (2010)) is
more positive, and will be useful below.

Lemma 9.13 Let X = { xj }∞j=1 be an orthogonal sequence in H . If dA(X) <

∞ then dA(X − X) ≤ 2dA(X).

Proof Suppose that X is (M, s)-homogeneous. Set BX(r, x) = X ∩ B(r, x),
and consider a ball B = BX−X(r, x − y) ⊆ X − X of radius r that is centred
at x − y ∈ X − X. Since B ⊆ BX−X(ρ, 0) ∪ (B \ {0}), we need only cover
B \ {0}.

Suppose that x = y, so that B = BX−X(r, 0). Let a − b ∈ B \ {0}. Then
a �= b and therefore a is orthogonal to b. It follows that∥∥(a − b) − (x − y)

∥∥2 = ‖a‖2 + ‖b‖2 < r2.

Hence a, b ∈ BX(r, 0), and consequently

B \ {0} ⊆ BX(r, 0) − BX(r, 0).

Cover BX(r, 0) with M(2r/ρ)s balls BX(ρ/2, ai) of radius ρ/2 centred at
ai ∈ X. Then⋃

i,j

BX−X(ρ, ai − aj ) ⊇
⋃

i

BX(ρ/2, ai) −
⋃
j

BX(ρ/2, aj )

⊇ BX(r, 0) − BX(r, 0) ⊇ BX−X(r, 0) \ {0}.

It follows that B is covered by 1 + M2(2r/ρ)2s balls of radius ρ.
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Now suppose that x �= y. Let a − b ∈ B\{0}. Again a �= b and therefore a

is orthogonal to b. Therefore

‖(a − b) − (x − y)‖2 =
⎧⎨
⎩

‖a − x‖2 + ‖b − y‖2

‖a + y‖2 + ‖2x‖2

‖2y‖2 + ‖b + x‖2
if

a �= y, b �= x

a �= y, b = x

a = y, b �= x

,

and so

a ∈ BX(r, x) b ∈ BX(r, y)
a ∈ BX(r,−y) b ∈ BX(r, x)
a ∈ BX(r, y) b ∈ BX(r,−x)
a ∈ BX(r, y) b ∈ BX(r, x)

⎫⎪⎪⎬
⎪⎪⎭ if

⎧⎪⎪⎨
⎪⎪⎩

a �= y, b �= x

a �= y, b = x

a = y, b �= x

a = y, b = x

.

Therefore

B \ {0} ⊆ (
BX(r, x) − BX(r, y)

) ∪ (BX(r,−y) − BX(r, x)
)

∪(BX(r, y) − BX(r,−x)
) ∪ (BX(r, y) − BX(r, x)

)
.

Cover each of BX(r, x), BX(r,−x), BX(r, y), and BX(r,−y) by M(2r/ρ)s balls
of radius ρ/2. An argument similar to that used before yields a cover of B by
1 + 4M2(2r/ρ)2s balls of radius r/2.

Since NX−X(r, ρ) ≤ 1 + 4M2(2r/ρ)2s it follows that dA(X − X) ≤ 2s. �

9.4 Homogeneity is not sufficient for a
bi-Lipschitz embedding

We have already remarked that any set that can be bi-Lipschitz embedded into
R

k must be homogeneous, but the following example, due to Lang & Plaut
(2001; after Laakso (2002)) shows that this is not sufficient.

The construction yields a metric space that is doubling but cannot be bi-
Lipschitz embedded into any Hilbert space (finite- or infinite-dimensional). This
example is somewhat simpler than the ‘classical’ example of the Heisenberg
group equipped with the Carnot–Carathéodory metric (see Semmes (1996), for
example).

Let X0 be [0, 1] with the standard Euclidean distance. To construct Xi+1

from Xi , take six copies of Xi and rescale by a factor of 1
4 . Arrange four in a

‘square’ by identifying pairs of endpoints, and then attach the remaining two
copies at ‘opposite’ points, see Figure 9.1.

At every step Xi has diameter 1, has two endpoints, and consists of 6i

edges each of which has length 4−i . The metric �i(x, y) on Xi is the geodesic
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X0

X1

X2

Figure 9.1 The first steps of the construction of the geodesic metric space (X, �).
At each stage the bold subset is isometric to X0.

distance: the shortest distance that one needs to travel on the graph from x

to y. For every j > i, (Xj, �j ) contains an isometric copy of (Xi, �i), and
dist(Xj,Xi) < (1/4)i+1 (see Figure 9.1) and so {(Xi, �i)}∞i=1 forms a Cauchy
sequence in the Gromov–Hausdorff metric1 (see Chapter 3 of Gromov (1999),
or Heinonen (2003)). It follows that this sequence converges to some limiting
compact metric space (X, �); there remain isometric copies of (Xi, �i) in (X, �).
The exact details of this limiting argument are not necessary here, the key point
is that this process leads to such a limit set containing isometric copies of every
(Xi, �i).

Lemma 9.14 The space (X, �) is doubling with doubling constant 6, and if
H is a Hilbert space and f : Xi → H satisfies ‖f (x) − f (y)‖ ≥ �(x, y) then
the Lipschitz constant of f is bounded below by (1 + (i/4))1/2. In particular,
there is no bi-Lipschitz embedding of X into a Hilbert space.

Proof Take x ∈ X and r with 0 < r ≤ 1
2 . Choose i with

r

2
≤
(

1

4

)i

< 2r,

1 First, given two subsets A, B of a metric space (X, �), define the symmetric Hausdorff distance
distH(A, B) = max(dist(A, B), dist(B, A)). The Gromov–Hausdorff distance between two met-
ric spaces A and B is defined as

dGH(A, B) = inf
A′,B ′∈M

distH(A′, B ′),

where the infimum is taken over all isometric images A′ and B ′ of A and B as subsets of �∞ (at
least one such isometry always exists, see Exercise 9.2).
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and let h : Xi → X be an isometric embedding of Xi into X with x = h(x ′)
for some x ′ ∈ Xi . Let

Z = ∂B(x ′, r) ∪ (B(x ′, r) ∩ {p, q}),
where p and q are the endpoints of Xi . Then since r ≤ 2(4−i), Z certainly
contains no more than six points, and the closed balls in Xi of radius r centred
at the points of Z cover B(x ′, 2r). Then the closed balls of radius r centred at
the points of h(Z) also cover B(x, 2r), because the edge cycles generated after
the ith step have length no larger than 4(4−(i+1)) < 2r: if z lies on such a cycle,
B(z, r) covers the whole cycle. It follows that X is doubling with constant 6.

We show by induction that for any f : Xi → H as in the statement of the
lemma, there exist two consecutive vertices x and x ′ such that

‖f (x) − f (x ′)‖2 ≥
(

1 + i

4

)
�
(
x, x ′)2

.

This is certainly true for i = 0. Take i = k ≥ 1 and assume that the result is
true for i = k − 1. Since Xk contains an isometric copy of Xk−1, there exist
points x0, x2 ∈ Xk corresponding to two adjacent vertices of Xk−1 such that

‖f (x0) − f (x2)‖2 ≥
(

1 + k − 1

4

)
�(x0, x2)2. (9.3)

Let x1 and x3 be the two midpoints between x0 and x2; then �(x1, x3) =
1
2�(x0, x2). Setting x4 = x0 we have

‖f (x0) − f (x2)‖2 + ‖f (x1) − f (x3)‖2 ≤
3∑

j=0

‖f (xj ) − f (xj+1)‖2,

this ‘quadrilateral inequality’ holding in any inner product space, see Exercise
9.1. Since

‖f (x0) −f (x2)‖2 + ‖f (x1) − f (x3)‖2 ≥
(

1 + k − 1

4

)
�(x0, x2)2 + �(x1, x3)2

=
(

1 + k

4

)
�(x0, x2)2,

it follows that for some j ∈ {0, . . . , 3}

‖f (xj ) − f (xj+1)‖2 ≥ 1

4

(
1 + i

4

)
�(x0, x2)2 =

(
1 + k

4

)
�(xj , xj+1)2.

Now take x = xj and x ′ to be one of the midpoints between xj and xj+1 to
obtain (9.3) for i = k.
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Now suppose that f : X → H is an embedding of X into H with

L−1�(x, y) ≤ ‖f (x) − f (y)‖ ≤ L�(x, y).

Setting g(x) = Lf (x) gives a g : (X, �) → H such that

�(x, y) ≤ ‖g(x) − g(y)‖ ≤ L2�(x, y).

But X contains an isometric copy of every Xi , which implies that Lip(g) ≥
1 + (i/4) for all i, a contradiction. �

The strongest result for sets with finite Assouad dimension is due to Assouad
(1983), who showed that any metric space with dA(X) < ∞ can be mapped via
φ : X → R

k into some finite-dimensional Euclidean space in a bi-Hölder way,

1

c
�(s, t)α ≤ |φ(s) − φ(t)| ≤ c �(s, t)α

for all 0 < α < 1; and that this characterises sets with finite Assouad dimension.
Olson & Robinson (2010) showed that such sets can be mapped in an almost
bi-Lipschitz way into an infinite-dimensional Hilbert space: for every γ > 1

2
there exists a map f : (X, �) → H such that for some L > 0

1

L

�(x, y)

(slog �(x, y))γ
≤ ‖f (x) − f (y)‖ ≤ L�(x, y),

where slog(x) = log(x + x−1) (cf. Proposition 7.18 in Benyamini & Linden-
strauss (2000)).

We will show in the next section that if X − X is a homogeneous compact
subset of a Banach space, then one can find an almost bi-Lipschitz embedding
into some Euclidean space, i.e. an embedding that is bi-Lipschitz to within
logarithmic corrections.

9.5 Almost bi-Lipschitz embeddings

As with the embedding theorems for the Hausdorff and box-counting dimen-
sion, we construct a probe space that is tailored to the particular set (and notion
of dimension) that we are considering. The following simple results (Lemmas
9.15 and 9.16) are the key to the argument used to prove Theorem 9.18.

Lemma 9.15 Suppose that Z is a compact homogeneous subset of a Banach
space B. Then there exists an M ′ > 0 and a sequence of linear subspaces
{Vj }∞j=0 of B∗ with dim Vj ≤ M ′ for every j , such that for any z ∈ Z with
2−(n+1) ≤ ‖z‖ ≤ 2−n, there exists an element ψ ∈ Vn such that

‖ψ‖∗ = 1 and |ψ(z)| ≥ 2−(n+3). (9.4)
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Proof Write

�j = {z ∈ Z : 2−(j+1) ≤ ‖z‖ ≤ 2−j }.
Since �j ⊂ B(0, 2−j ) it can be covered by Mj balls of radius 2−(j+3), with the

centres {u(j )
i }Mj

i=1 of these balls satisfying ‖u(j )
i ‖ ≥ 2−(j+2), where

Mj = NX(2−j , 2−(j+3)) ≤ 8sM = M ′.

For each of the points u
(j )
i , use the Hahn–Banach Theorem to find a norm 1

element φ
(j )
i of B∗ such that

φ
(j )
i (u(j )

i ) = ‖u(j )
i ‖.

For each n ≥ 0 let Vj be the subspace of B∗ spanned by {φ(j )
1 , φ

(j )
2 , . . . , φ

(j )
Mj

}.
By the above, dim Vj ≤ M ′ for all j ≥ 0.

For any z ∈ �n there exists a u = u
(n)
i such that

‖z − u‖ < 2−(n+3).

Writing φ for φ
(n)
i ∈ Vn,

|φ(x)| = |φ(u) − φ(u − z)| ≥ ‖u‖ − ‖u − z‖
≥ 2−(n+2) − 2−(n+3) = 2−(n+3),

and the lemma follows. �
In a Hilbert space it is more helpful to use the following result; note that

the spaces Vj are now mutually orthogonal, but that the space Vn alone is not
sufficiently ‘rich’ to obtain (9.5) (cf. (9.4), where ψ ∈ Vn is enough).

Lemma 9.16 Suppose that Z is a compact homogeneous subset of a Hilbert
space H . Then there exists an M ′ > 0 and a sequence {Vj }∞j=0 of mutually
orthogonal linear subspaces of H , with dim Vj ≤ M ′ for every j , such that for
any z ∈ Z with 2−(j+1) ≤ ‖z‖ ≤ 2−j ,

‖�jz‖ ≥ 2−(j+2), (9.5)

where �j is the orthogonal projection onto ⊕j

i=1Vi .

Proof Write

Zj = {z ∈ Z : 2−(j+1) ≤ ‖z‖ ≤ 2−j }.
Since Zj ⊂ B(0, 2−j ) it can be covered by Mj balls of radius 2−(j+2), with

centres {u(j )
i }Mj

i=1, where

Mj = N (2−j , 2−(j+2)) ≤ 4sM = M ′.
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Let Uj be the space spanned by {u(j )
i }Mj

i=1; clearly dim(Uj ) ≤ M ′, and if Pj

denotes the projection onto Uj ,

‖Pjz‖ ≥ ‖z‖ − ‖z − Pjz‖ ≥ 2−(j+1) − 2−(j+2) = 2−(j+2).

Finally, define mutually orthogonal subspaces Vj such that

n⊕
j=1

Vj =
n⊕

j=1

Uj

and the result follows since ‖�nz‖ ≥ ‖Pnz‖. �
The spaces whose existence is guaranteed by these two Lemmas with Z =

X − X form the basis of the construction of the ‘probe space’ with respect to
which it will be shown that linear embeddings with log-Lipschitz inverses are
prevalent.

We now construct the probe space E and the associated measure μ: in
the Banach space case we take γ > 1 and follow the standard construction of
Section 5.2.2, but in the Hilbert space case we follow the alternative construction
outlined at the end of Section 5.2.1, capitalising on the fact that the spaces {Vj }
are mutually orthogonal so that we can take γ > 1/2, and that dim Vj ≤ M ′

for all j so that we can build our probe space from products of cubes rather
than products of spheres.

The following bound, a consequence of the estimates in Section 5.2, is
central to the proof. (Note that in the Banach space case we only require
Lemma 5.10, but in the Hilbert space case we need the somewhat more subtle
result of Lemma 5.8.)

Lemma 9.17 If z ∈ Z with 2−(j+1) ≤ ‖z‖ ≤ 2−j then for any f ∈
L (B, R

N ),

μ{L ∈ E : |(f + L)z| < ε2−j } ≤ CεNjsN , (9.6)

where C = C(N ).

Proof In the Banach space case, Lemma 5.10 guarantees that for any ψ ∈ Sj ,

μ{L ∈ E : |(f + L)z| < ε} ≤ (
j sdj ε|ψ(z)|−1

)N
.

In the case considered here, dj = dim(Vj ) ≤ M ′, and using Lemma 9.15 there
exists a ψ ∈ Sj with ‖ψ‖∗ = 1 such that ψ(z) ≥ 2−(j+3), from which (9.6)
follows immediately. In the Hilbert space case, Lemma 5.8 ensures that

μ{L ∈ E : |(L + f )(x)| < ε } ≤ c

(
j s(M ′)1/2 ε

‖�jx‖
)k

,
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where �j is the orthogonal projection onto V1 ⊕ V2 ⊕ · · · ⊕ Vj , and (9.6)
follows using Lemma 9.16. �

Olson (2002) proved a version of the following theorem for subsets of R
N ,

and Olson & Robinson (2010) gave a proof for subsets of a Hilbert space that
yields γ > 3/2 as N → ∞. Robinson (2009) used the probe space construction
of Section 5.2.2 to prove the result for subsets of a Banach space with γ > 2.
The reduction to the optimal exponents here, whose possibility was strongly
suggested by the analysis in Pinto de Moura & Robinson (2010a) – see Section
9.6 – is due to Robinson (2010).

Theorem 9.18 Let X be a compact subset of a real Banach space B such
that dA(X − X) < s < N , where N ∈ N. If

γ >
αN + 1

N − s
, (9.7)

where α = 1/2 if B is a Hilbert space and α = 1 if B is a general Banach
space, then a prevalent set of linear maps L : B → R

N are injective on X and,
in particular, γ -almost bi-Lipschitz: for some constant cL > 0 and ρL > 0

1

cL

‖x − y‖
| log ‖x − y‖ |γ ≤ |Lx − Ly| ≤ cL‖x − y‖ (9.8)

for all x, y ∈ X with ‖x − y‖ < ρL.

Proof Choose ζ > α small enough to ensure that

γ >
ζN + 1

N − s
. (9.9)

Let V = {Vn}∞n=1, where Vn are the spaces whose existence is guaranteed by
Lemma 9.15, and set E = Eζ (V ) and μ = μζ (V ) following the construction
of Section 5.2.

Denote by S1 the set of all those L ∈ L (B, R
N ) for which (9.8) holds for

all x, y ∈ X with ‖x − y‖ < ρL for some ρL > 0. First we show that S1 is
prevalent, and then combine this with the result of Theorem 8.1 to deduce the
result as stated.

Given f ∈ L (B, R
N ), let K be a Lipschitz constant valid for all f + L

with L ∈ E. Define a sequence of layers of X − X,

Zj = {z ∈ X − X : 2−(j+1) ≤ ‖z‖ ≤ 2−j }
and the corresponding set of maps that fail to satisfy the almost bi-Lipschitz
property for some z ∈ Zj ,

Qj = {L ∈ Q : |(f + L)(z)| ≤ j−γ 2−j for some z ∈ Zj }.
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By assumption dA(X − X) < s, and so Zj ⊂ B(0, 2−j ) can be covered by
Nj ≤ Mjγs balls of radius j−γ 2−j . Let the centres of these balls be z

(j )
i ∈ Zj

where i = 1, . . . , Nj . Given any z ∈ Zj there is z
(j )
i such that

‖z − z
(j )
i ‖ ≤ j−γ 2−j .

Thus

|(f + L)(z)| ≥ |(f + L)(z(j )
i )| − |(f + L)(z − z

(j )
i )|

≥ |(f + L)(z(j )
i )| − Kj−γ 2−j ,

which implies, using Lemma 9.17, that

μ(Qj ) ≤
Nj∑
i=1

μ{L ∈ Q : |(f + L)(z(j )
i )| ≤ (1 + K)j−γ 2−j }

≤ Nj

(
dα

j j ζ (1 + K)j−γ 2−j |ψ(z(j )
i )|−1)N

for any ψ ∈ Vj .
Lemma 9.15 implies that there exits a ψ ∈ Vj such that |ψ(z(j )

i )| ≥ 2−(j+3),
and since Nj ≤ Mjγs and dj ≤ M ′,

μ(Qj ) ≤ c jγ s
(
(M ′)α j ζ j−γ

)N = c jγ s+N(ζ−γ ).

Since (9.9) implies that γ s + N (ζ − γ ) < −1, it follows that

∞∑
j=1

μ(Qj ) < ∞.

Using the Borel–Cantelli Lemma (Lemma 4.2), μ-almost every L is contained
in only a finite number of the Qj : thus for μ-almost every L there exists a jL

such that for all j ≥ jL,

2−(j+1) ≤ ‖z‖ ≤ 2−j ⇒ |(f + L)(z)| ≥ j−γ 2−j ,

so for ‖z‖ ≤ 2−jL ,

|(f + L)(z)| ≥ 2−(1+γ ) ‖z‖
| log ‖z‖ |γ . (9.10)

So the set S1 is prevalent as claimed.
Now, since τ ∗(X) ≤ dB(X) ≤ dB(X − X) ≤ dA(X − X) we can apply The-

orem 8.1 to obtain a prevalent set S2 of linear functions f : B → R
N that are

injective on X. Since the intersection of prevalent sets is prevalent (Corollary
5.4), there exists a prevalent set of linear maps that are injective on X and
satisfy (9.10). �
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9.6 Sharpness of the logarithmic exponent

We can once more use an appropriate choice of orthogonal sequence to show,
following Pinto de Moura & Robinson (2010a), that the bound on the logarith-
mic exponent in Theorem 9.18 is asymptotically sharp: as N → ∞, we obtain
from (9.7) that it is possible to embed into some R

N with any logarithmic
exponent γ > 1 in the Banach space case and γ > 1/2 in the Hilbert space
case.

We consider the ‘orthogonal set’ A = {e−nen}∞n=1 ∪ {0}, where {en} is the
canonical basis of �p (1 ≤ p < ∞) or c0. Lemma 9.10 guarantees that as
a subset of �p (1 ≤ p < ∞) and c0 this set has zero Assouad dimension.
Lemma 9.13, which extends to subsets of �p of this form, guarantees that
dA(A − A) = 0.

Suppose that there exists a linear map L : �p → R
N and a ρL > 0 such that

for every x, y ∈ A with ‖x − y‖ < ρL,

1

cL

‖x − y‖
| log ‖x − y‖ |γ ≤ |Lx − Ly| ≤ cL‖x − y‖ (9.11)

for some cL > 0. Then the Decomposition Lemma (Lemma 8.2) ensures that
there exists a rank N projection P that satisfies a lower bound of the same
form,

‖Px − Py‖ ≥ c
‖x − y‖

| log ‖x − y‖ |γ
for all x, y ∈ A with ‖x − y‖ < ρL.

In particular, since 0 ∈ A, one must have

‖Px‖ ≥ c
‖x‖

| log ‖x‖ |γ

for every x ∈ A with ‖x‖ < ρL: for x = e−j ej this gives

e−j‖Pej‖ ≥ c
e−j‖ej‖

jγ
⇒ ‖Pej‖ ≥ cj−γ .

Using Lemma 8.3 it follows that

N ≥
⎛
⎝ ∞∑

j=1

‖Pej‖q

⎞
⎠1/q

≥ c

⎛
⎝ ∞∑

j=1

j−qγ

⎞
⎠1/q

.

Thus to allow the existence of a finite-rank linear map satisfying (9.11) we
need the sum on the right-hand side to converge, i.e. we must have γ > 1/q. In
the Hilbert space case (p = 2) this shows that we cannot improve on γ > 1/2,
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while in the Banach space case (taking ‘p = ∞’, i.e. c0) we cannot improve
on γ > 1.

9.7 Consequences for embedding compact metric spaces

A result valid for Banach spaces can be converted into a result for metric spaces
via the Kuratowski isometric embedding of (X, �) into L∞(X):

Lemma 9.19 Let (X, �) be a compact metric space. Then the mapping
F : (X, �) → L∞(X) given by x �→ �(x, ·) is an isometry.

If X is not compact one can obtain the same result by choosing any a ∈ X and
considering x �→ �(x, ·) − �(a, ·).
Proof Since (X, �) is compact it is bounded, so |�(x, y)| ≤ diam(X) for
every x, y ∈ X, i.e. ‖Fx‖∞ ≤ diam(X), so Fx ∈ L∞(X). To show that F is
an isometry, note that by the triangle inequality

|(Fx1)(y) − (Fx2)(y)| = |�(x1, y) − �(x2, y)| ≤ �(x1, x2)

and

|(Fx1)(x1) − (Fx2)(x1)| = �(x1, x2),

and so

‖Fx1 − Fx2‖∞ = �(x1, x2). �
In this way one can interpret ‘X − X’ for an arbitrary metric space (X, �),

i.e.

X − X = {f ∈ L∞(X) : f = �(x, ·) − �(y, ·), x, y ∈ X}. (9.12)

The following result is then an immediate corollary of Theorem 9.18.

Theorem 9.20 Let (X, �) be a compact metric space such that X − X as
defined in (9.12) is a homogeneous subset of L∞(X). Then for some N ∈ N

there exists an injective almost bi-Lipschitz map f : (X, �) → R
N .

Exercises

9.1 Show that if x, y, z are elements of any inner product space then∥∥∥∥x − y + z

2

∥∥∥∥2

≤ 1

2
‖x − y‖2 + 1

2
‖x − z‖2 − 1

4
‖y − z‖2, (9.13)
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and deduce that

‖x0 − x2‖2 + ‖x1 − x3‖2 ≤
3∑

j=0

‖xj − xj+1‖2 (9.14)

where x4 = x0. [Hint: consider the triples {x0, x1, x3} and {x2, x1, x3}.]
9.2 Let (X, �) be a separable metric space. If {xj }∞j=0 is a countable dense

subset of X, show that the map x �→ s(x) with

sj (x) = �(x, xj ) − �(xj , x0) j = 1, 2, . . .

provides an isometric embedding of (X, �) into �∞. (Unlike the result of
Lemma 9.19 this gives an embedding into a space that does not depend
on X.)
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Finite-dimensional attractors





10

Partial differential equations and
nonlinear semigroups

The second part of this book concentrates on the implications of Theorem 8.1
(embedding into R

k for sets with finite upper box-counting dimension) for the
attractors of infinite-dimensional dynamical systems.

10.1 Nonlinear semigroups and attractors

We will consider (for the most part) abstract dynamical systems defined on a
real Banach space B with the dynamics given by a nonlinear semigroup of
solution operators, S(t) : B → B defined for t ≥ 0, that satisfy

(i) S(0) = id,
(ii) S(t)S(s) = S(t + s) for all t, s ≥ 0, and

(iii) S(t)x continuous in t and x.

Such semigroups can be generated by the solutions of partial differential equa-
tions, as we will outline in Sections 10.3 and 10.4. (At other points it will be
useful to consider instead a dynamical system that arises from iterating a fixed
function S : B → B; such a map could be derived from a continuous time
system by setting S = S(T ) for some fixed T > 0.) An attractor for S(·) is a
compact invariant set that attracts all bounded sets.

The general theory of such semigroups and their attractors is covered in
detail in Chepyzhov & Vishik (2002), Chueshov (2002), Hale (1988), Robinson
(2001), Sell & You (2002), and Temam (1988); we give a brief overview of
the existence theory for attractors in Chapter 11, and discuss a very general
method for showing that an attractor has finite upper box-counting dimension
in Chapter 12.

An attractor A has two properties that distinguish it from the more abstract
sets we have considered in Part I: if the semigroup S(t) arises from a partial

105
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differential equation then A consists of functions (defined on some domain U ),
usually with specific smoothness properties; and there are dynamics associated
with the attractor.

We will show that the smoothness of functions that make up A can be
used to obtain a bound on the thickness of A (Lemma 13.1), and that more
dynamical properties can be used for many examples to show that the Lipschitz
deviation of A is in fact zero (Theorem 13.3).

New questions also arise given the two properties above: it is natural to ask
whether one can find an embedding consisting of point values of the functions
that make up the attractor, and whether there is any ‘dynamical embedding’.
These questions are answered positively here in Chapters 14 and 15, under
the assumption that the attractor has finite upper box-counting dimension (the
result in terms of point values also requires the attractor to consist of real
analytic functions).

10.2 Sobolev spaces and fractional power spaces

Since throughout Part II we will be primarily concerned with properties of
semigroups generated by the solutions of partial differential equations, from
time to time we will require some of the modern language used in the study
of partial differential equations, in particular Sobolev spaces and a little of the
theory of linear operators. We give a very cursory summary here; more detail
can be found in Evans (1998) or Robinson (2001), for example.

Let � ⊂ R
n be an open set with a smooth boundary. The basic space of

functions upon which everything else is built is L2(�), the space of (Lebesgue)
square integrable functions with norm

‖f ‖2
L2 =

∫
�

|f (x)|2 dx.

A function f has weak derivative Dif = g (we abbreviate ∂/∂xi , the partial
derivative in the ith coordinate direction, to Di) if g ∈ L1

loc(�) and∫
�

f (x)(Diϕ)(x) dx = −
∫

�

g(x)ϕ(x) dx

for every ϕ ∈ C∞
c (�) (infinitely differentiable functions with compact support

in �).
We use the standard notation Hs(�) for the Sobolev space of functions that,

together with their (weak) partial derivatives of order ≤ s, are square integrable
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on � ⊂ R
n; this space is a Hilbert space when equipped with the Hs-norm,

‖f ‖2
Hs (�) =

∑
|α|≤s

‖Dαf ‖2
L2(�),

where α = (α1, . . . , αn) is a multi-index, |α| = α1 + · · · + αn, and

Dαf = D
α1
1 · · ·Dαn

n f = ∂ |α|

∂x
α1
1 · · · ∂x

αn
n

f.

We will require little of the detailed theory of Sobolev spaces, but will regularly
make use of the embedding result1

Hs(�) ⊂ Cr (�) with ‖u‖Cr ≤ Cr,s‖u‖Hs (10.1)

whenever s > r + (n/2); see Exercise 10.1 for a simple proof when n = s = 1
and r = 0.

It is often useful to move between Sobolev spaces and fractional power
spaces of certain linear operators (e.g. the Laplacian), since norms of fractional
powers can be easier to manipulate.

Let H be a Hilbert space with norm ‖ · ‖ and inner product (·, ·), and
let A be an unbounded positive linear operator with compact inverse that
acts on H . The Hilbert–Schmidt Theorem applied to A−1 guarantees that A

has a set of orthonormal eigenfunctions {wj }∞j=1 with corresponding positive
eigenvalues λj , Awj = λjwj , which form a basis for H (see Theorem 3.18
and Corollary 3.26 in Robinson (2001), for example), and are such that

Au =
∞∑

j=1

λj (u,wj )wj for all u ∈ H.

In this setting it is straightforward to define the fractional powers of A, Aα , by

Aαu =
∞∑

j=1

λα
j (u,wj )wj for all u ∈ H, (10.2)

and if we denote by D(Aα) the domain in H of Aα , (i.e. u ∈ H such that
Aαu ∈ H ) it follows that

D(Aα) =
⎧⎨
⎩

∞∑
j=1

cjwj :
∞∑

j=1

λ2α
j |cj |2 < ∞

⎫⎬
⎭ .

This space is a Hilbert space when equipped with the norm

‖u‖α = ‖Aαu‖.
1 This result needs to be understood in the sense that any f ∈ Hs (�) with s > r + (n/2) is equal

almost everywhere to a function in Cr (�).
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We now recall some basic properties of these fractional power spaces:

(i) If β > α then D(Aβ) is a subset of D(Aα), and the embedding is com-
pact, i.e. a bounded subset of D(Aβ) is a compact subset of D(Aα) (see
Exercise 10.2).

(ii) If A is a second order linear elliptic operator with constant coefficients
then there exist constants Cs and C ′

s such that

Cs‖As/2u‖ ≤ ‖u‖Hs ≤ C ′
s‖As/2u‖ for all u ∈ D(As/2). (10.3)

(The first of these is straightforward, the second relies on the theory of ellip-
tic regularity; see Evans (1998), Gilbarg & Trudinger (1983), or Proposition
6.18 in Robinson (2001) for a proof when A = −� with Dirichlet boundary
conditions.)

(iii) On a periodic domain �, if (a) A = −� along with the condition that∫
�

= 0, or if (b) A = I − �, then D(As/2) = Hs(�) (see Section 6.3 in
Robinson (2001)).

10.3 Abstract semilinear parabolic equations

Throughout Part II we will use two illustrative examples. The first is an abstract
semilinear parabolic equation, a framework into which many particular models
fit. We follow Henry (1981), but with some simplifications since we will take
A to be an unbounded positive linear operator with compact inverse that acts
on a Hilbert space H (as above), rather than a more general ‘sectorial operator’
(see Henry (1981) for details). We consider semilinear parabolic equations of
the form

du/dt = −Au + g(u) u(0) = u0 ∈ D(Aα), (10.4)

where g(u) is locally Lipschitz from D(Aα) into H ,

‖g(u) − g(v)‖ ≤ L(R)‖u − v‖α whenever ‖u‖α, ‖v‖α ≤ R, (10.5)

for some α ∈ [0, 1). Given any u0 ∈ D(Aα), there exists a unique solution
u(t ; u0) : [0, T ) → D(Aα), where T depends on ‖u0‖α , and this solution is
given by the variation of constants formula

u(t ; u0) = e−Atu0 +
∫ t

0
e−A(t−s)g(u(s)) ds, (10.6)
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where

e−Atu =
∞∑

j=1

e−λj t (u,wj )wj

(see Henry (1981, Lemma 3.3.2 and Theorem 3.3.3)). Solutions are continu-
ous from [0, T ) into D(Aα) and depend continuously on the initial condition
(Henry’s Theorem 3.4.1).

If we assume that unique solutions of (10.4) exist for all t ≥ 0 (this usually
requires an equation-by-equation approach tailored to the particular model
under consideration), then the solutions generate a semigroup on D(Aα) via
the definition S(t)u0 = u(t ; u0). Properties (i) and (iii) are immediate from the
above results, and property (ii), S(t + s) = S(t)(s) for all t, s ≥ 0, follows from
the uniqueness of solutions.

The following estimates for the action of e−At between different fractional
power spaces are extremely useful:

‖e−At‖L (H,D(Aγ )) = ‖Aγ e−At‖L (H ) ≤
{

γ γ e−γ t−γ 0 < t < γ/λ1,

λ
γ

1 e−λ1t t ≥ γ /λ1,
(10.7)

and consequently

∫ ∞

0
‖Aγ e−At‖L (H ) dt ≤ Iγ := e−γ λ

−(1−γ )
1

1 − γ
if γ ∈ [0, 1), (10.8)

see Exercise 10.3. Sometimes it is convenient to rewrite (10.7) as

‖Aγ e−At‖L (H ) ≤ cδt
−γ e−δt , (10.9)

where 0 < δ < λ1 and

cδ = γ γ e−γ max(eδγ /λ1 , (λ1 − δ)−γ ). (10.10)

10.4 The two-dimensional Navier–Stokes equations

Our other example will be the two-dimensional Navier–Stokes equations. The
existence of unique solutions for all t ≥ 0 in the three-dimensional case is a
well-known unsolved problem (and is one of the Clay Foundation’s Million
Dollar Millennium Prize Problems); the dynamical systems theory has therefore
concentrated mainly on the two-dimensional case, for which suitable existence
and uniqueness results are available. We will do the same here.
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Classically, these are equations for the two-component velocity u(x, t) and
the scalar pressure p(t),

∂u

∂t
− �u + (u · ∇)u + ∇p = f (x) ∇ · u = 0, (10.11)

where we have set the kinematic viscosity (the coefficient of the Laplacian term)
equal to 1. The right-hand side f represents a body forcing that maintains the
motion (with f = 0 every solution decays to zero and the attractor is trivial,
see Exercise 10.5).

For mathematical simplicity we will concentrate on the periodic case, when
x ∈ � = [0, 2π ]2 and

u(x + 2πei, t) = u(x, t), i = 1, 2, (10.12)

where e1 and e2 are orthonormal vectors in R
2. It is also convenient to assume

the zero-average conditions∫
�

f (x) dx = 0 and
∫

�

u0(x) dx = 0; (10.13)

the condition on f ensures that the zero average of u(x, t) is preserved under
the time evolution.

The natural phase space for the problem we will denote2 by H : it is the
completion in the [L2(�)]2-norm of

H = {u ∈ [C∞
per(�)]2 : ∇ · u = 0 and

∫
�

u(x) dx = 0}, (10.14)

where C∞
per(�) is the space of all C∞ functions that are periodic as in (10.12);

we equip H with the L2 norm. (Roughly speaking H consists of all functions
in [L2(�)]2 with zero average and (generalised) divergence zero.)

Given f ∈ H and u0 ∈ H , for all t ≥ 0 there exists a unique solution which
we denote by u(t) = u(t ; u0) (suppressing the x dependence) that is continuous
from [0,∞) into H , and depends continuously (in the H -norm) on u0 (see
Constantin & Foias (1988), Robinson (2001), or Temam (1977)). As with the
abstract semilinear equation in the previous section, we can use the solution to
define a semigroup on H by setting S(t)u0 = u(t).

It is a standard approach (particularly in the literature that views the two-
dimensional equations as a dynamical system) to reformulate (10.11) in ‘func-
tional form’, essentially as an ordinary differential equation on an appropriate
space. This reformulation is one way to eliminate the pressure from the equa-
tions, capitalising on the observation that the pressure term ∇p is orthogonal

2 Whenever we are dealing with the Navier–Stokes equations our ‘primary’ Hilbert space will be
H , so this should not cause any confusion with more general abstract considerations.
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(in L2) to functions that are divergence free (∇ · u = 0):∫
�

u · ∇p dx = −
∫

�

p(∇ · u) dx = 0. (10.15)

To recast the equation in this form, let V denote the completion of H in
the [H 1(�)]2 norm, and let V ∗ denote the dual of V . Taking the inner product
of (10.11) with v ∈ V , after some integrations by parts (in particular using
(10.15)) we obtain3

d

dt
(u, v) + (Du,Dv) + ((u · ∇)u, v) = (f, v) for all v ∈ V.

Now define a linear operator A : V → V ∗ by

〈Au, v〉 = (Du,Dv) for all u, v ∈ V,

where 〈·, ·〉 denotes the pairing between V ∗ and V , and define a bilinear form
B : V × V → V ∗ by

〈B(u, u), v〉 = ((u · ∇)u, v) for all u, v ∈ V.

Then we can rewrite the Navier–Stokes equations as an ordinary differential
equation in the space V ∗:

du

dt
+ Au + B(u, u) = f.

The operator A is the ‘Stokes operator’, and is given by A = −��, where
� is the orthogonal projection in [L2(�)]2 onto H (divergence-free vector
fields). In the periodic case, A = −� on its domain of definition, and so (see
property (iii) of fractional power spaces) the Sobolev spaces Hs(�) coincide
with the fractional power spaces D(As/2) with

cs‖As/2u‖ ≤ ‖u‖Hs ≤ Cs‖As/2u‖
for some cs, Cs .

In the analysis that follows we will only require the following properties of
A and B:

(Au, u) = ‖Du‖2 for all u ∈ V, (10.16)

which follows immediately from the definition of A, and two orthogonality
relations for the nonlinear term,

(B(u, v), v) = 0 for all u, v ∈ V (10.17)

3 The notation (Du, Dv) denotes
∑2

i,j=1(Diuj , Divj ); in particular ‖Du‖2 = ∑2
i,j=1 ‖Diuj‖2.
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(this follows from an integration by parts, and remains true for other boundary
conditions and in the three-dimensional case), and

(B(u, u), Au) = 0 for all u ∈ D(A), (10.18)

which is only true in the two-dimensional periodic case (the proof relies on
expanding the expression ((u · ∇)u,�u), then using the divergence-free con-
dition repeatedly in many pairwise cancellations). We will also make use of the
Poincaré inequality,

‖u‖ ≤ ‖Du‖ for all u ∈ V, (10.19)

which follows making use of the zero-average condition (10.13), and is easy to
see using the Fourier expansion of u (see Exercise 10.6).

Finally we note that the Navier–Stokes equations can be recast in the abstract
form (10.4), where A is the Stokes operator and

g(u) = f − B(u, u).

In this case g(u) is locally Lipschitz from D(Aα) into H for any α > 1/2:

‖g(u) − g(v)‖L2 = ‖B(u, u) − B(v, v)‖L2

= ‖B(u, u − v) + B(u − v, v)‖L2

≤ ‖B(u, u − v)‖L2 + ‖B(u − v, v)‖L2 .

For the first term we have (since ‖u‖∞ ≤ c‖u‖H 2α as α > 1/2)

‖B(u, u − v)‖L2 ≤ ‖u‖∞‖D(u − v)‖L2

≤ c‖u‖H 2α‖u − v‖H 1

≤ c‖u‖α‖u − v‖1/2,

while for the second term we use Hölder’s inequality to write

‖B(u − v, v)‖L2 ≤ ‖u − v‖L2/(2α−1)‖Dv‖L1/(1−α) .

For the first and final time we use the two-dimensional Sobolev embedding
result (see Evans (1998), for example)

Hs ⊂ L2/(1−s) with ‖u‖L2/(1−s) ≤ cs‖u‖Hs

(which in particular shows that any Lp norm is bounded by the H 1 norm) with
s = 2α − 1 and obtain

‖B(u − v, v)‖ ≤ c‖u − v‖H 1‖v‖H 2α ≤ c‖u − v‖1/2‖v‖α.
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It follows that

‖g(u) − g(v)‖L2 ≤ c[‖u‖α + ‖v‖α]‖u − v‖1/2, (10.20)

and in general g is locally Lipschitz from D(Aα) into H .
One could therefore could treat the two-dimensional Navier–Stokes equa-

tions within the abstract framework of Section 10.3. However, this would
require us to take an initial condition in D(Aα) with α > 1/2, and to consider
the dynamical system generated on this space. Instead, it is more useful to
obtain the existence of a solution via other methods (above we stated that a
unique solution exists for any u0 ∈ H ), and then use the more abstract setting
when it makes the analysis more convenient.

We will adopt this approach in Section 13.2, in which we investigate the
Lipschitz deviation of attractors. There, the following observation will be cen-
tral: it follows from (10.20) that if we restrict our attention to a set X that is
bounded in D(Aα) with α > 1

2 then g is Lipschitz from D(A1/2) into H :

‖g(u) − g(v)‖L2 ≤ C‖u − v‖1/2 for all u, v ∈ X.

Exercises

10.1 If f (x) = ∑
k∈Z

ckeikx then f ∈ H 1(0, 2π ) provided that

‖f ‖2
H 1 =

∑
(1 + |k|2)|ck|2 < ∞.

Show that ‖f ‖∞ ≤ c‖f ‖H 1 , and deduce that f ∈ C0([0, 2π ]).
10.2 Show that D(Aβ) is compactly embedded in if f εH 1|0, 2π ) then D(Aα)

if β > α.
10.3 If u = ∑∞

j=1 cjwj then

‖Aγ e−Atu‖2 =
∞∑

j=1

λ
2γ

j e−2λj t |cj |2.

Derive the bounds in (10.7) and (10.8).
10.4 Suppose that a solution u(t) ∈ D(Aα) of (10.4) exists on [0, T ). Use

the variation of constants formula (10.6) and the estimates in (10.7) and
(10.9) to show that u(t) ∈ D(Aβ) for all β < 1.

10.5 Consider the two-dimensional Navier–Stokes equations in functional
form with zero forcing:

du/dt + Au + B(u, u) = 0.

Show that ‖u(t)‖L2 → 0 as t → ∞.
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10.6 For u ∈ V (recall that V is the completion of H , defined in (10.14), in
the [H 1(�)]2 norm) prove the Poincaré inequality ‖u‖ ≤ ‖Du‖ using
the Fourier expansion

u =
∑
k∈Ż2

ckeik·x,

where Ż
2 = Z

2 \ {0, 0} (there is no k = 0 term since
∫
�

u = 0 for u ∈ V ).
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Attracting sets in infinite-dimensional systems

11.1 Global attractors

In this chapter we give a basic existence result for attractors (Theorem 11.3),
and show in Proposition 11.4 that the attractor can be characterised in an
‘analytical’ way that is independent of the dynamical definition that is the
primary one here. Sections 11.3 and 11.4 prove the existence of attractors for
the models introduced in the previous chapter.

A set X ⊂ B is said to be invariant if S(t)X = X for all t ≥ 0, and is said
to attract B ⊂ B if

dist(S(t)B,X) → 0 as t → ∞.

A set X ⊂ B is said to be attracting if it attracts all bounded subsets of B.
A set A ⊂ B is said to be the global attractor if it is compact, invariant,

and attracting. If it exists then the global attractor is unique: suppose that A1

and A2 are two global attractors. Then, since A2 is bounded, it is attracted by
A1,

dist(S(t)A2,A1) → 0 as t → ∞.

But A2 is invariant, S(t)A2 = A2, and so dist(A2,A1) = 0. The argument is
symmetric, so dist(A1,A2) = 0, from which it follows that A1 = A2.

Two alternative characterisations of the attractor follow from a similar argu-
ment: A is the maximal compact invariant set, and the minimal closed set that
attracts all bounded sets, see Exercise 11.1.

11.2 Existence of the global attractor

In this section we will use the following simple lemma repeatedly.

115
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Lemma 11.1 Let K be a compact subset of B, and xn ∈ B a sequence with
limn→∞ dist(xn,K) = 0. Then {xn} has a convergent subsequence, whose limit
lies in K .

Proof Write xn = kn + zn, where kn ∈ K and ‖zn‖ → 0 as n → ∞. Then
there is a subsequence such that knj

→ k∗ ∈ K , so xnj
→ k∗ too. �

We will in fact form the attractor as the union of the omega-limit sets (defined
in the following lemma) of all possible bounded sets. We begin by proving some
properties of these limit sets.

Proposition 11.2 Suppose that there exists a compact attracting set K . Then
for any bounded set B, the set

ω(B) =
⋂
t≥0

⋃
s≥t

S(s)B (11.1)

= {x ∈ B : x = lim
n→∞ S(tn)bn for some tn → ∞, bn ∈ B} (11.2)

is a nonempty compact subset of K that is invariant and attracts B.

For the equivalence of (11.1) and (11.2) see Exercise 11.2.

Proof Since there is a compact attracting set, Lemma 11.1 combined with
(11.2) shows that ω(B) ⊆ K; that ω(B) is nonempty follows similarly, taking
any initial sequences {bn} ∈ B and tn → ∞. Using (11.1), ω(B) is a decreasing
sequence of closed sets, and so is a closed subset of the compact set K; thus
ω(B) is compact.

Now suppose that x ∈ ω(B). Then there exist sequences {tn} with tn → ∞
and {bn} with bn ∈ B such that x = limn→∞ S(tn)bn. Then, since S(t) is con-
tinuous,

S(t)x = S(t)
(

lim
n→∞ S(tn)bn

)
= lim

n→∞ S(t + tn)bn,

and so S(t)x ∈ ω(B), i.e. S(t)ω(B) ⊆ ω(B).
Now, if y ∈ ω(B) then y = limn→∞ S(tn)bn. For any fixed t , once tn ≥ t ,

we can write S(tn)bn = S(t)[S(tn − t)bn]. Using Lemma 11.1, we know that
S(tn − t)bn has a convergent subsequence, which converges to some β ∈ ω(B).
Taking the limit through this subsequence, it follows that y = S(t)β with
β ∈ ω(B), so ω(B) ⊆ S(t)ω(B), and hence S(t)ω(B) = ω(B).

We now show that ω(B) attracts B. If not, then there exist a δ > 0, and
tn → ∞, bn ∈ B such that

dist(S(tn)bn, ω(B)) > δ.
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But (by Lemma 11.1) {S(tn)bn} has a convergent subsequence, whose limit
must lie in ω(B), a contradiction. �

The existence theorem for global attractors is essentially an immediate
corollary of the above.

Theorem 11.3 There exists a global attractor A if and only if there exists a
compact attracting set K , in which case A = ω(K).

Proof If A is an attractor then it is a compact attracting set; since S(t)A = A

for all t ≥ 0 we have ω(A ) = A . Conversely, if K is a compact attracting set
then Proposition 11.2 shows that for every bounded set B, the omega-limit set
ω(B) is compact, invariant, and attracts B. Define

A =
⋃

B bounded

ω(B). (11.3)

The set A is clearly compact (since each ω(B) is contained in the compact
set K), invariant, and attracts every bounded set B, so is the global attractor.
It only remains to show that A = ω(K). It is immediate from (11.3) that
A ⊇ ω(K), while since A is the minimal closed set that attracts bounded sets
(Exercise 11.1) we must have A ⊆ K , and hence A = ω(A ) ⊆ ω(K). �

In many cases we can show something stronger than the existence of a
compact attracting set, namely the existence of a compact absorbing set. We
say that a set X ⊂ B is absorbing if for every bounded subset B ⊂ B there
exists a time tB such that

S(t)B ⊆ X for all t ≥ tB,

i.e. the orbits of all bounded sets eventually enter and do not leave X. Clearly
the existence of a compact absorbing set implies the existence of a compact
attracting set, which we know implies the existence of a global attractor. In Sec-
tion 11.3 we prove that the existence of a bounded absorbing set for an abstract
semilinear parabolic equation implies the existence of a compact absorbing set,
and hence of the global attractor; in Section 11.4 we will prove the existence of
a global attractor for the two-dimensional Navier–Stokes equations by showing
directly the existence of a compact absorbing set.

Finally we give an alternative, more analytical characterisation of attractors
in terms of complete bounded orbits. This shows that while these objects have
a definition in terms of dynamics, they are of interest independent of their
dynamical interpretation.
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Proposition 11.4 The global attractor is given by

A = {u0 ∈ B : there exists a solution u(t) defined for all t ∈ R with

u(0) = u0 such that ‖u(t)‖ ≤ M ∀ t ∈ R, for some M > 0}.
Proof Suppose that there is a globally bounded solution through u0, i.e.
that u0 is an element of the set on the right-hand side of the identity in the
proposition. Then for every t ≥ 0, u0 = S(t)u(−t) with ‖u(−t)‖ ≤ M , i.e.
u(−t) ∈ B(0,M). Then

dist(u0,A ) = dist(S(t)u(−t),A ) ≤ dist(S(t)B(0,M),A ) → 0 as t → ∞,

and so u0 ∈ A . To prove the opposite inclusion, given u0 ∈ A it is clear that
‖S(t)u0‖ is bounded for all t ≥ 0, since S(t)u0 ∈ A . To extend the solution
backwards in time, first find u(−1) ∈ A such that S(1)u(−1) = u0 (this is
possible since S(1)A = A ), and let

u(−1 + t) = S(t)u(−1) for t ∈ [0, 1).

Continue inductively: choose u(−(n + 1)) such that u(−n) = S(1)u(−(n + 1))
and define

u(−(n + 1) + t) = S(t)u(−(n + 1)) for t ∈ [0, 1).

The semigroup property ensures that this gives a solution, and since the solution
lies within A for all t ∈ R it is bounded. �

11.3 Example 1: semilinear parabolic equations

First we consider the semilinear parabolic equation of the form

du/dt = −Au + g(u) u(0) = u0 ∈ D(Aα), (11.4)

where g is locally Lipschitz from D(Aα) into H ,

‖g(u) − g(v)‖ ≤ L(R)‖u − v‖α whenever ‖u‖α, ‖v‖α ≤ R, (11.5)

as introduced above in Section 10.3. Recall that the solution u(t) of (11.4) is
given by the variation of constants formula

u(t ; u0) = e−Atu0 +
∫ t

0
e−A(t−s)g(u(s)) ds.

Assume that there is a bounded absorbing set in D(Aα): i.e. that for any R0

there exists a t0(R0) such that

‖u(t)‖α ≤ M for all t ≥ t0(R0)
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(for particular equations such an estimate is usually proved using model-specific
techniques, rather than appealing to a general result for (11.4)). Given this
bounded absorbing set in D(Aα), one can use the variation of constants formula
to obtain a compact absorbing set, as we now show.

Note that the Lipschitz property of g in (11.5) implies that

|g(u)| ≤ M ′ := |f (0)| + L(M)M when ‖u‖α ≤ M.

Therefore, choosing ε > 0 such that α + ε < 1,

‖u(t)‖α+ε = ‖Aα+εu(t)‖

=
∥∥∥∥Aα+εe−A(t−t0)u(t0) +

∫ t

t0

Aα+εe−A(t−s)g(u(s)) ds

∥∥∥∥
≤ ‖Aεe−A(t−t0)‖L (H )‖u(t0)‖α +

∫ t

t0

‖Aα+εe−A(t−s)‖L (H )M
′ ds,

and using the estimates

‖Aγ e−At‖L (H ) ≤ ct−γ e−δt and
∫ ∞

0
‖Aγ e−As‖L (H ) ds ≤ Iγ < ∞

from (10.9) and (10.8), one can obtain

‖u(t)‖α+ε ≤ c(t − t0)−εe−δ(t−t0)‖u0‖α + Iα+εM
′.

In particular, for all t ≥ t0(R0) + 1,

‖u(t)‖α+ε ≤ cM + Iα+εM
′,

and so there is a bounded absorbing set in D(Aα+ε). Since D(Aα+ε) is compactly
embedded in D(Aα) (see property (i) at the end of Section 10.2), there is a
compact absorbing set in D(Aα), and hence a global attractor for the semigroup
defined on D(Aα).

11.4 Example 2: the two-dimensional
Navier–Stokes equations

We consider the two-dimensional Navier–Stokes equations written in their
functional form

du

dt
+ Au + B(u, u) = f, f ∈ H, (11.6)

see Section 10.4, and prove the existence of a compact absorbing set in H ,
by showing the existence of a bounded absorbing set in V (recall that V is
compactly embedded in H ).
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First, if one takes the inner product (in H ) of (11.6) with u, since (Au, u) =
‖Du‖2 (10.16) and (B(u, u), u) = 0 (10.17) one obtains

1

2

d

dt
‖u‖2 + ‖Du‖2 = (f, u) ≤ ‖f ‖‖u‖. (11.7)

Using the Poincaré inequality ‖u‖ ≤ ‖Du‖ (10.19) on the left-hand side, and
Young’s inequality (2ab ≤ a2 + b2) on the right-hand side, one obtains the
differential inequality

d

dt
‖u‖2 + ‖u‖2 ≤ ‖f ‖2.

This can be readily integrated (using the integrating factor et ) to deduce that

‖u(t)‖2 ≤ ‖u0‖2e−t + ‖f ‖2(1 − e−t ),

and so ‖u(t)‖2 ≤ 2‖f ‖2 for all t ≥ t0(‖u0‖). This provides a bounded absorbing
set in H . To obtain a compact absorbing set, we will show that there is a bounded
absorbing set in H 1, i.e. that ‖Du(t)‖2 is asymptotically bounded, uniformly
in terms of the L2 norm of the initial condition.

We first require a subsidiary estimate. Dealing with (11.7) differently, one
can use the Poincaré inequality and Young’s inequality on the right-hand side
to obtain

d

dt
‖u‖2 + ‖Du‖2 ≤ ‖f ‖2.

Integrating this differential inequality from t to t + 1 gives

‖u(t + 1)‖2 +
∫ t+1

t

‖Du(s)‖2 ds ≤ ‖f ‖2 + ‖u(t)‖2.

In particular, therefore, since ‖u(t)‖2 ≤ 2‖f ‖2 for t ≥ t0(‖u0‖),∫ t+1

t

‖Du(s)‖2 ds ≤ 3‖f ‖2 for all t ≥ t0(‖u0‖). (11.8)

Now take the inner product of (11.6) with Au, and use the special two-
dimensional periodic orthogonality relation (10.18) to obtain

1

2

d

dt
‖Du‖2 + ‖Au‖2 = (f,Au) ≤ ‖f ‖‖Au‖ ≤ 1

2
‖f ‖2 + 1

2
‖Au‖2. (11.9)

Absorbing the ‖Au‖2 from the right-hand side into the same term on the left-
hand side, and dropping the resulting + 1

2‖Au‖2, we obtain

d

dt
‖Du‖2 ≤ ‖f ‖2. (11.10)
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Take t ≥ t0(‖u0‖), and integrate (11.10) from s to t + 1, where t ≤ s ≤ t + 1:

‖Du(t + 1)‖2 ≤ ‖f ‖2 + ‖Du(s)‖2.

Now integrate once more, but this time with respect to s between t and t + 1,
which yields

‖Du(t + 1)‖2 ≤ ‖f ‖2 +
∫ t+1

t

‖Du(s)‖2 ≤ 4‖f ‖2,

using (11.8). Since this is valid for all t ≥ t0(‖u0‖), it follows that

‖Du(t)‖2 ≤ 6‖f ‖2 for all t ≥ t0(‖u0‖) + 1.

(This ‘double integration’ trick can be formalised as the ‘Uniform Gronwall
Lemma’, see Exercise 11.5.)

This implies the existence of a bounded absorbing set in H 1, and since H 1

is compactly embedded in L2, this gives a compact absorbing set in H and
guarantees the existence of a global attractor A for the semigroup on H . With
a little further work one can show that the global attractor is a bounded subset
of D(A) (and hence of H 2), see Exercise 11.6.

Exercises

11.1 Show that the global attractor is the maximal compact invariant set, and
the minimal closed set that attracts all bounded sets.

11.2 Show that (11.1) and (11.2) are equivalent.
11.3 Show that A is connected whenever B is connected. [Hint: argue by

contradiction.]
11.4 If X is an invariant set, the unstable set of X is defined by

U (X) := {u0 ∈ B : there exists a globally defined solution u(t) with

u(0) = u0 and dist(u(t), X) → 0 as t → −∞}.
Show that U (X) ⊂ A for any invariant set X.

11.5 Use the double integration method used in Section 11.4 to prove the
‘Uniform Gronwall Lemma’: if x, a, and b are positive functions such
that

dx/dt ≤ ax + b

with∫ t+r

t

x(s) ds ≤ X,

∫ t+r

t

a(s), ds ≤ A, and
∫ t+r

t

b(s) ds ≤ B



122 Attracting sets in infinite-dimensional systems

for some r > 0 and all t ≥ t0, then

x(t) ≤
(

X

r
+ B

)
eA

for all t ≥ t0 + r . [Hint: use the integrating factor exp(− ∫ t

s
a(τ ) dτ ) with

t0 ≤ t ≤ s ≤ t + r .]
11.6 This exercise provides a proof that if f ∈ H then the attractor for the

two-dimensional Navier–Stokes equations is a bounded subset of D(A).
Fix u0 ∈ A and let u(t) = S(t)u0 be the solution with initial condition
u0. It follows from the invariance of A that u(t) ∈ A for all t ≥ 0, and
hence that ‖u(t)‖2 ≤ 2‖f ‖2 and ‖Du(t)‖2 ≤ 6‖f ‖2 for all t ≥ 0.

(i) Starting from (11.9) show that∫ 1

0
‖Au(s)‖2 ds ≤ 7‖f ‖2 for all t ≥ 0.

(ii) Given the inequality

‖B(u, u)‖ ≤ c1‖u‖1/2‖Du‖ ‖Au‖1/2,

use (11.6) to deduce that∫ 1

0
‖ut (s)‖2 ds ≤ It for all t ≥ 0,

where ut = du/dt and It depends only on c1 and ‖f ‖.
(iii) Differentiate (11.6) with respect to t , and then use the estimate

|(B(u, v), u)| ≤ c2‖u‖ ‖Du‖ ‖Dv‖ (11.11)

along with the uniform Gronwall (double integration) ‘trick’ to
show that

‖ut (1)‖ ≤ ρt

(where ρt depends only on c1, c2, and ‖f ‖).
(iv) Deduce via (11.6) that ‖Au(1)‖ ≤ ρA (depending only on c1, c2, and

‖f ‖) and use the invariance of A to conclude that A is bounded
in D(A).

(This method is essentially due to Heywood & Rannacher (1982).)
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Bounding the box-counting
dimension of attractors

Powerful techniques are available for bounding the box-counting dimension of
attractors in Hilbert spaces, the case most often encountered in applications.
The most widely-used method was developed for finite-dimensional dynamical
systems by Douady & Oesterlé (1980), and was extended to treat subsets
of infinite-dimensional Hilbert spaces by Constantin & Foias (1985). Much
effort has also been expended in refining the resulting estimates for particular
models, in particular for the two-dimensional Navier–Stokes equations (for a
nice overview see Doering & Gibbon (1995)).

However, general results providing bounds on the dimension of compact
invariant sets go back to Mallet-Paret (1976), who showed that if K is a com-
pact subset of a Hilbert space H , f : H → H is continuously differentiable,
f (K) ⊇ K (‘K is negatively invariant’), and the derivative of f is everywhere
equal to the sum of a compact map and a contraction, then the upper box-
counting dimension of K is finite. Mañé (1981) generalised this argument
to treat subsets of Banach spaces (this was in the same paper in which he
proved a ‘generic’ embedding theorem for sets with dH(X − X) finite, cf. our
Theorem 6.2).

The Hilbert space method is already cleanly and clearly presented in a
number of texts that concentrate more specifically on estimating the dimension
of attractors (e.g. Chepyzhov & Vishik, 2002; Robinson, 2001; Temam, 1988),
and a general technique that covers the Banach space case seems more in
keeping with the rest of this book. We therefore give here a simplified proof of
Mañé’s result, due to Carvalho et al. (2010); the Hilbert space theory is covered
in Exercises 12.4–12.8.

Throughout this chapter we will use the notation BZ(0, r) to denote the ball
of radius r , centred at zero, in the space Z; we will continue to use the simpler
notation B(0, r) for the r-ball in the Banach space B.
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All of the arguments that provide bounds on the dimension of attractors
follow similar lines, which we first sketch and then make formal in a lemma.
For the majority of this chapter we treat a compact set K that is invariant under
the action of a map f : B → B; f could be derived from a semigroup S(·) by
setting f = S(T ) for some suitable T .

Suppose that K can be covered by N0 balls of radius ε, {B(xj , ε)}N0
j=1.

Then since f (K) = K , it follows that K can be covered by the images
{f (B(xj , ε))}N0

j=1. If ε is sufficiently small,

f (B(xj , ε)) � f (xj ) + εDf (xj )[B(0, 1)],

where Df (xj ) is the derivative of f at xj . If we can find an efficient covering
of Df [B(0, 1)] by balls of a smaller radius α < 1, say

N (Df (x)[B(0, 1)], α) ≤ M for all x ∈ K,

then we have a new cover of K by MN balls of radius αε. Iterating this
procedure will give a cover of K by MkN balls of radius αkε, from which the
bound dB(K) ≤ log M/(− log α) follows.

We now make this precise.

Lemma 12.1 Let K be a compact subset of a Banach space B that is
invariant for the map f : B → B, i.e. f (K) = K . Suppose in addition that f

is continuously differentiable on a neighbourhood of K , and that there exist α,
0 < α < 1, and M ≥ 1 such that for any x ∈ K ,

N (Df (x)[B(0, 1)], α) ≤ M. (12.1)

Then 1

dB(K) ≤ log M

− log α
. (12.2)

Proof First, we ensure that (12.1) is sufficient to provide a bound on the
number of balls required to cover f (B(x, r)) when r is small enough. Since f

is continuously differentiable and K is compact, for any η > 0 there exists an
r0 = r0(η) such that for any 0 < r < r0 and any x ∈ K ,

f (B(x, r)) ⊆ f (x) + Df (x)[B(0, r)] + B(0, ηr),

where A + B is used to denote the set {a + b : a ∈ A, b ∈ B}. It follows that

N (f (B(x, r)), (α + η)r) ≤ M (12.3)

for all r ≤ r0(η).

1 Alternatively, dB(K) ≤ γ whenever θγ M < 1. This formulation will be useful in Exercise 12.5.
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Now fix η with 0 < η < 1 − α, and let r0 = r0(η). Cover K with N (K, r0)
balls of radius r0, {B(xj , r0)}Nj=1, with centres xj ∈ K . Apply f to every
element of this cover. Since f (K) = K , this provides a new cover of K ,
{f (B(xj , r0))}Nj=1. It follows from (12.3) that each of these images can be
covered by M balls of radius (α + η)r0, ensuring that

N (K, (α + η)r0) ≤ MN (K, r0).

Applying this argument k times implies that

N (K, (α + η)kr0) ≤ Mk(K, r0),

which via Lemma 3.2 (on taking the lim sup through a geometric sequence)
yields

dB(K) ≤ log M

− log(α + η)
.

Since η > 0 was arbitrary we obtain (12.2). �

The key to applying this approach is to be able to prove (12.1), i.e. to
find a way of estimating the number of balls of radius α required to cover
Df (x)B(0, 1). When Df (x) is the sum of a compact map and a contraction,
we reduce the problem of covering Df (x)[B(0, 1)] to the problem of covering
Df (x)[BZ(0, 1)], where Z is some finite-dimensional subspace of B. We then
prove a covering result for balls in finite-dimensional subspaces. If Df (x) is
the sum of a compact map and a contraction for every x ∈ K in some suitably
uniform way we can then obtain (12.1) with the same α and M for every
x ∈ K .

12.1 Coverings of T [B(0, 1)] via finite-dimensional
approximations

We want to cover the image of a ball under a linear map using balls of smaller
radius. In order to do this we show that, given a linear map T that is the sum
of a compact map and a contraction, T [B(0, 1)] can be well approximated by
T [BZ(0, 1)], where Z is some finite-dimensional subspace of B.

We denote by L (B) the space of bounded linear transformations from B

into itself, by K(B) the closed subspace of L (B) consisting of all compact
linear transformations from B into itself, and define

Lλ(B) = {T ∈ L (B) : T = L + C, with C ∈ K(B) and ‖L‖L (B) < λ}.
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The result of the following lemma allows us to define a quantity νλ(T ), which
measures the ‘effective dimension’ of the range of T if we allow approximation
to within a distance λ. Note that if T has finite rank n then νλ(T ) = n for all
λ > 0.

Lemma 12.2 Let B be a Banach space and T ∈ Lλ/2(B). Then there exists
a finite-dimensional subspace Z of B such that

dist(T [B(0, 1)], T [BZ(0, 1)]) < λ. (12.4)

We denote by νλ(T ) the minimum n ∈ N such that (12.4) holds for some n-
dimensional subspace of B.

Proof Write T = L + C, where C ∈ K(B) and L ∈ L (B) is chosen such
that ‖L‖L (B) < λ/2. We show first that for any ε > 0 there is a finite-
dimensional subspace Z such that

dist(C[B(0, 1)], C[BZ(0, 1)]) < ε.

Suppose that this is not the case. Choose some x1 ∈ B with ‖x1‖ = 1, and let
Z1 = span{x1}. Then

dist(C[B(0, 1)], C[BZ1 (0, 1)]) ≥ ε,

and so there exists an x2 ∈ B with ‖x2‖ = 1 such that

‖Cx2 − Cx1‖ ≥ ε.

With Z2 = span{x1, x2}, one can find an x3 with ‖x3‖ = 1 such that

‖Cx3 − Cx1‖ ≥ ε and ‖Cx3 − Cx2‖ ≥ ε.

Continuing inductively one can construct in this way a sequence {xj } with
‖xj‖ = 1 such that

‖Cxi − Cxj‖ ≥ ε i �= j,

contradicting the compactness of C.
Now let λ̃ < λ be such that 2‖L‖L (B) < λ̃ < λ, and choose Z using the

above argument so that

dist(C[B(0, 1)], C[BZ(0, 1)]) < λ − λ̃.

If x ∈ B(0, 1) and z ∈ BZ(0, 1), then

‖T x − T z‖ ≤ ‖L(x − z)‖ + ‖Cx − Cz‖ ≤ λ̃ + ‖Cx − Cz‖.
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Hence,

dist(T [B(0, 1)], T [BZ(0, 1)]) ≤ λ̃ + dist(C[B(0, 1)], C[BZ(0, 1)])

< λ,

and this completes the proof. �

We now need to be able to cover T [BZ(0, 1)] with B-balls of a smaller
radius. Since

T [BZ(0, 1)] ⊆ BT (Z)(0, ‖T ‖),

we consider coverings of a ball in a general finite-dimensional subspace U of
B with B-balls of a smaller radius.

It is easy to estimate the number of balls required to cover a ball in R
n
∞ (Rn

equipped with the �∞ norm) with balls of smaller radius, so we find a linear
isomorphism between R

n
∞ and U which allows us to translate a covering in

R
n
∞ to a covering in U .

Lemma 12.3 If U is an n-dimensional subspace of a real Banach space X,
then

N (BU (0, r), ρ) ≤ (n + 1)n
(

r

ρ

)n

0 < ρ ≤ r,

where the balls in the cover can be taken to have centres in U .

Proof First we find a linear isomorphism J : R
n
∞ → U such that

‖J‖L (Rn∞,U ) ≤ n and ‖J−1‖L (U,Rn∞) ≤ 1. (12.5)

Let {x1, . . . , xn} be an Auerbach basis for U , and {f1, . . . , fn} the correspond-
ing basis for U ∗, i.e. ‖xi‖U = ‖fi‖U∗ = 1 for i = 1, . . . , n and fi(xj ) = δij ,
i, j = 1, . . . , n (for the existence of such a basis see Exercise 7.3). Define a
map J : R

n
∞ → U by setting

J (z) =
n∑

j=1

zjxj ,

where z = (z1, . . . , zn). Then

‖J (z)‖U =
∥∥∥∥∥∥

n∑
j=1

zjxj

∥∥∥∥∥∥
U

≤
n∑

j=1

|zj | ≤ n‖z‖∞,
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which gives the first inequality in (12.5). On the other hand, if x ∈ U with
x = ∑n

j=1 zjxj and ‖x‖U ≤ 1 then since zj = fj (x),

‖J−1(x)‖∞ = ‖z‖∞ = max
j=1,...,n

|zj | = max
j=1,...,n

|fj (x)| ≤ ‖x‖U ,

which yields the second inequality in (12.5).
Now since

BU (0, r) = JJ−1(BU (0, r)) ⊆ J (BRn∞(0, ‖J−1‖r)),

and BRn∞(0, ‖J−1‖ r) can be covered by(
1 + ‖J−1‖r

ρ/‖J‖
)n

=
(

1 + ‖J‖‖J−1‖ r

ρ

)n

≤
(

1 + n
r

ρ

)n

≤ (n + 1)n
(

r

ρ

)n

balls in R
n
∞ of radius ρ/‖J‖ with centres in U , it follows that BU (0, r) can be

covered by the same number of U -balls of radius ρ. �
Combining these two results we obtain the following corollary.

Corollary 12.4 If B is a Banach space and T ∈ Lλ/2(B) then

N (T [B(0, 1)], 2λ) ≤
[

(n + 1)
‖T ‖
λ

]n

,

where n = νλ(T ).

Proof Using Lemma 12.2 there is an n-dimensional subspace Z of B such
that

dist(T [B(0, 1)], T [BZ(0, 1)]) < λ. (12.6)

Noting that T (Z) is also an at most n-dimensional subspace of B, one can
use Lemma 12.3 to cover the ball BT (Z)(0, ‖T ‖) with balls B(yi, λ), 1 ≤ i ≤ k,
such that yi ∈ B(0, ‖T ‖) for each i and

k ≤
[

(n + 1)
‖T ‖
λ

]n

.

Thus

T [BZ(0, 1)] ⊆ BT (Z)(0, ‖T ‖) ⊆
k⋃

i=1

B(yi, λ). (12.7)

We complete the proof by showing that

k⋃
i=1

B(yi, 2λ) ⊇ T [B(0, 1)].
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If x ∈ B(0, 1), it follows from (12.6) that there is a y ∈ T [BZ(0, 1)] such
that ‖T x − y‖ < λ. Since y ∈ T [BZ(0, 1)], it follows from (12.7) that
‖y − yi‖ ≤ λ for some i ∈ {1, . . . , k}, and so

‖T x − yi‖ ≤ ‖T x − y‖ + ‖y − yi‖ < 2λ,

i.e. T x ∈ B(yi, 2λ). �

12.2 A dimension bound when Df ∈ Lλ/2(B), λ < 1
2

We now show, following Mañé (1981), that if Df (x) ∈ Lλ/2 for every x ∈ K for
some λ with 0 < λ < 1

2 then we have sufficient control to bound the dimension
of K .

Theorem 12.5 Let B be a Banach space, U ⊂ B an open set, and let
f : U → B be a continuously differentiable map. Suppose that K ⊂ U is
a compact set and assume that for some λ with 0 < λ < 1

2 ,

Df (x) ∈ Lλ/2(B) for all x ∈ K.

Then n = supx∈K νλ(Df (x)) and D = supx∈K ‖Df (x)‖ are finite, and

dB(K) ≤ n

{
log((n + 1)D/λ)

− log(2λ)

}
.

Proof First we show that n = supx∈K νλ(Df (x)) is finite. For each x ∈ K ,
there exists a finite-dimensional linear subspace Zx such that

dist(Df (x)[B(0, 1)], Df (x)[BZx
(0, 1)]) < λ.

Since Df (·) is continuous, it follows that there exists a δx > 0 such that

dist(Df (y)[B(0, 1)], Df (y)[BZx
(0, 1)]) < λ

for all y ∈ B(x, δx), i.e. νλ(y) ≤ νλ(x) for all such y. The open cover of K

formed by the union of B(x, δx) over x has a finite subcover, whence it follows
that n < ∞.

Now, since n = supx∈K νλ(Df (x)) < ∞, we can use Corollary 12.4 to
deduce that

N (Df (x)[B(0, 1)], 2λ) ≤
[

(n + 1)
D

λ

]n

for all x ∈ K.

The bound on the dimension now follows using Lemma 12.1. �
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12.3 Finite dimension when Df ∈ L1(X)

The following corollary can be found in Hale, Magalhães, & Oliva (2002):

Corollary 12.6 Suppose that B is a Banach space, U ⊂ B an open set,
and f : U → B a continuously differentiable map. Suppose that K ⊂ U is
a compact set such that f (K) = K , and that Df (x) ∈ L1(B) for all x ∈ K .
Then dB(K) < ∞.

Proof It follows from an argument similar to that used in the proof of
Theorem 12.5 to show that n < ∞ that in fact there exists α < 1 such that
Df (x) ∈ Lα(B) for all x ∈ K . Note that

D[f p] = Df (f p−1(x)) ◦ · · · ◦ Df (x),

and that if Ci ∈ K(B) and Li ∈ L (B), i = 1, 2, then

(C1 + L1) ◦ (C2 + L2) = [C1 ◦ C2 + C1 ◦ L2 + L1 ◦ C2]︸ ︷︷ ︸
∈ K(B)

+L1 ◦ L2.

It follows that if Df (x) ∈ Lα(B) with α < 1 then [D(f p)](x) ∈ Lαp (B). Thus
for p large enough, D(f p)(x) ∈ Lλ for some λ < 1/4, for every x ∈ K . One
can now apply Theorem 12.5 to f p in place of f (noting that f p(K) = K) to
deduce that dB(K) < ∞. �

12.4 Semilinear parabolic equations in Hilbert spaces

We now prove a general result for the abstract semilinear parabolic equations
we considered in Section 10.3.

Corollary 12.7 Consider the semilinear parabolic equation

du/dt = −Au + g(u) with u(0) = u0 ∈ D(Aα), (12.8)

where α < 1 and g : D(Aα) → H is continuously differentiable. If this equa-
tion has a global attractor A that is bounded in D(Aα), then dB(A ) is finite,
where the dimension is measured in D(Aα).

With a little more work one can obtain an explicit bound on the dimension
of A , see Exercise 12.3.

Proof For u0 ∈ A , S(t)u0 is given by the variation of constants formula
(10.6),

S(t)u0 = e−Atu0 +
∫ t

0
e−A(t−s)g(S(s)u0) ds;
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the derivative of S(t) with respect to u at u0, DS(t ; u0), is an element of
L (D(Aα)) and satisfies

DS(t ; u0) = e−At +
∫ t

0
e−A(t−s)Dg(S(s)u0)DS(s; u0) ds

(see Henry (1981, Theorem 3.4.4)). Using the bound on ‖Aγ e−At‖L (H ) in
(10.9) we obtain

‖DS(t ; u0)‖L (D(Aα)) ≤ ‖e−At‖L (D(Aα))

+
∫ t

0
‖Aαe−A(t−s)‖L (H )‖Dg(S(s(u0)))‖L (D(Aα),H )‖DS(s; u0)‖L (D(Aα ))

≤ 1 + cM

∫ t

0
(t − s)−α‖DS(s; u0)‖L (D(Aα)) ds,

where

M = sup{‖Dg(x)‖L (D(Aα),H ) : x ∈ A }. (12.9)

It follows from this inequality, using the result of Exercise 12.2, that

‖DS(t ; u0)‖L (D(Aα)) ≤ K := 2e[2cM�(1−α)]1/(1−α)
for all t ∈ [0, 1].

(12.10)
Now choose ε > 0 such that α + ε < 1. Taking advantage of (12.10) one

can use very similar estimates to those above to show that

‖DS(t)‖L (D(Aα),D(Aα+ε )) ≤ ct−ε + cMK

∫ t

0
(t − s)−(α+ε) ds.

Since D(Aα+ε) is compactly embedded in D(Aα), this shows that DS(t) is
compact for any t > 0. That dB(A ) is finite now follows immediately from
Corollary 12.6 applied with B = D(Aα). �

This approach is also applicable to the two-dimensional Navier–Stokes equa-
tions. We saw in Section 10.4 that the Navier–Stokes equations can be cast in
the form (12.8) with g locally Lipschitz from D(Aα) into H provided that
α > 1/2, and Exercise 11.6 guarantees that if f ∈ H then the attractor is
bounded in D(A), so A is certainly bounded in D(A3/4) (to choose some fixed
α with 1/2 < α < 1). Corollary 12.7 then implies that the dimension of A

measured in D(A3/4) is finite; so certainly the dimension of A measured in H

is finite (see (3.5)).
As remarked at the beginning of this chapter, obtaining good bounds on the

dimension of the Navier–Stokes attractor has been an active area of research.
Of course, such bounds use the Hilbert space theory rather than the Banach
space approach developed above. In the periodic case, Constantin, Foias, &
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Temam (1988) showed that

dB(A ) ≤ c‖f ‖2/3(1 + log ‖f ‖)1/3;

there are example forcing functions f for which the dimension is bounded
below by c′‖f ‖2/3 (Liu, 1993), so this bound is essentially sharp. For a simpli-
fied proof and further discussion, see Doering & Gibbon (1995).

Exercises

12.1 Let B be a Banach space and assume that f ∈ C1(X), that K is a compact
set such that f (K) = K , and that for every x ∈ K the derivative Df (x)
has finite rank ν(x) with supx∈K ν(x) := ν < ∞. Show that dB(K) ≤ ν.

12.2 Suppose that X(t) satisfies

X(t) ≤ a + b

∫ t

0
(t − s)−αX(s) ds.

With K = (2b�(1 − α))1/(1−α) show that Y (t) = 2aeKt satisfies

Ẏ ≥ a + b

∫ t

0
(t − s)−αY (s) ds,

and hence that X(t) ≤ 2aeKt .
12.3 Recalling that �(z) = ∫∞

0 t z−1e−t dt , take up the argument of Corollary
12.7 immediately after (12.10), and show that

‖QnDS(1; u0)‖L (D(Aα)) ≤ e−λn+1 + cKM�(1 − α)

(λn+1 − 1)1−α
, (12.11)

where Pn is the orthogonal projection onto the space spanned by the first
n eigenfunctions of A and Qn = I − Pn is its orthogonal complement.
(Choosing n large enough that the right-hand side is strictly less than
1/8, one can then apply Theorem 12.5 with B = D(Aα) and λ = 1/4 to
deduce that

dB(A ) ≤ n
log[4K(n + 1)]

log 2
.

Dropping the first term in (12.11) we require λ1−α
n+1 � cKM , which

using the estimate on K in (12.10) becomes λn+1 � cMαecMα with
Mα = M1/(1−α). Assuming that λn ∼ nγ , this yields n � M

1/γ
α ecMα , and

hence dB(A ) � M
1+(1/γ )
α ecMα .)
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The remainder of the exercises in this chapter outline the more refined theory
that is available to estimate the dimension of attractors in the Hilbert space case.
Exercise 12.4 provides a good estimate on coverings of T [B(0, 1)] in terms
of the singular values of T . Exercise 12.5 converts this into a bound on the
dimension via Lemma 12.1, and the remaining exercises give an indication of
how to apply this method efficiently in applications (which usually arise from
continuous time systems).

The covering argument of Exercise 12.4 requires the following two results.
The proof of the first is essentially the same as that of Lemma 14.2, below,
and the proof of the second can be found in Chepyzhov & Vishik (2002,
Lemma 2.2).

Lemma 12.8 Let T : H → H be a compact linear map, and denote by T ∗ the
Hilbert adjoint of T , i.e. the unique T ∗ ∈ L (H ) such that (T x, y) = (x, T ∗y)
for every x, y ∈ H . Then T [B(0, 1)] is an ellipsoid whose semiaxes are {T ej },
and ‖T ej‖ = αj , where {ej } are the eigenvectors of T ∗T corresponding to its
non-zero eigenvalues α2

j .

Lemma 12.9 Let E be an ellipsoid in H with semiaxes α1 ≥ α2 ≥ α3 ≥ · · · .
Then for any r < α1, the number of balls of radius

√
2r required to cover E is

less than 4jωj/rj , where ωj = α1 · · ·αj and j is the largest integer such that
r ≤ αj .

Now for a given compact T : H → H , let αj (T ) denote the square roots of
the eigenvalues of T ∗T listed in decreasing order,

α1(T ) ≥ α2(T ) ≥ α3(T ) ≥ · · · ,

and set ωn(T ) = α1(T )α2(T ) · · ·αn(T ).

12.4 Let U ⊂ H be an open set, f : U → H a continuously differentiable
map, and K a compact subset of U that is invariant under f . Suppose
that

αn(Df (x)) ≤ ᾱn and ωn(Df (x)) ≤ ω̄n for all x ∈ K,

where ᾱ1 ≥ ᾱ2 ≥ · · · and ᾱn
n ≤ ω̄n. Show that, for any choice of d ∈ N,

N (Df (u)[B(0, 1)], θ ) ≤ M for all u ∈ K,

where

θ =
√

2ω̄
1/d

d and M = max
1≤j≤d

4j ω̄j

ω̄
j/d

d

.
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[Hint: for each u ∈ K , consider the two cases ω̄
1/d

d < α1(Df (u)) and
ω̄

1/d

d ≥ α1(Df (u)) separately.]
12.5 Under the same conditions as in the previous exercise, use Lemma 12.1

to show that if

ω̄d < 1 and ω̄
γ

d max
1≤j≤d

ω̄d
j

ω̄
j

d

< 1, (12.12)

then dB(K) ≤ γ . [Hint: consider f k rather than f , for some k chosen
sufficiently large. You may assume that ωj (T S) ≤ ωj (T )ωj (S); the proof
of this uses the abstract theory of multilinear operators on Hilbert spaces,
see Chapter V of Temam (1988), for example.]

12.6 Write q̄j = log ω̄j , and assume that q̄j ≤ qj , where qj is a concave func-
tion of j . Show that qn < 0 implies that dB(K) ≤ n. (This observation is
due to Chepyzhov & Ilyin (2004).)

Constantin & Foias (1985) showed that if S(·) is a semigroup on H arising
from the differential equation du/dt = F (u), such that DS(t ; u0) is the solution
of dU/dt = F ′(S(t)u0)U with U (0) = id, then

qn(DS(t ; u0)) ≤
∫ t

0
Trn(F ′(u(s))) ds, (12.13)

where

Trn(L) = sup

⎧⎨
⎩

n∑
j=1

(ψj ,Lψj ) : {ψj }nj=1 are orthonormal in H

⎫⎬
⎭ .

12.7 Let A be an unbounded self-adjoint positive operator with compact
inverse, with eigenvalues {λj }∞j=1 arranged in nondecreasing order. Show
that for any choice of n orthonormal elements {φj }nj=1 in H ,

n∑
j=1

‖A1/2φj‖2 =
n∑

j=1

(φj ,Aφj ) ≥
n∑

j=1

λj .

12.8 Consider a semigroup S(·) defined on H that arises from the semilinear
evolution equation

du/dt = −Au + g(u), (12.14)

where A is as in the previous exercise, 0 ≤ α ≤ 1
2 , and g : D(Aα) → H

is continuously differentiable. Assuming that DS(t ; u0) is the solution of

dU/dt = −AU + Dg(u(t))U with U (0) = id,
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show that dB(A ) ≤ n provided that

1

n

n∑
j=1

λj > M1/(1−α), (12.15)

where M is defined in (12.9). (If we assume that λn ∼ nγ , then we have∑n
j=1 λn ∼ n1+γ and dB(A ) � M

1/γ
α ; compare this with the bound from

Exercise 12.3 (using the Banach space method), which was exponential
in Mα . However, note that here we have made the additional assumption
that (12.14) makes sense for u0 ∈ H .)
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Thickness exponents of attractors

Ott, Hunt, & Kaloshin (2006) conjectured that ‘many of the attractors associated
with the evolution equations of mathematical physics have thickness exponent
zero’.

In this chapter we give two results in this direction. The first, due to Friz &
Robinson (1999), shows that in some sense the thickness exponent is ‘inversely
proportional to smoothness’: if U ⊂ R

m and A is a subset of L2(U ) that is
bounded in the Sobolev space Hs(U ) then τ (A ) ≤ m/s, where the thickness
of A is measured in L2(U ). So if an attractor is ‘smooth’ (i.e. is bounded in
Hs(�) for every s) then it has zero thickness exponent.

The second result, due to Pinto de Moura & Robinson (2010c), is closer in
spirit to the above conjecture. This shows that the attractors of equations that
can be written as semilinear parabolic equations

du/dt = −Au + g(u) (13.1)

have zero Lipschitz deviation. The argument is related to a backwards
uniqueness property for solutions of (13.1), whose proof is due to Kukavica
(2007).

13.1 Zero thickness

We begin with an ‘analytical’ result which does not rely on the dynamics
associated with the set X or the form of the underlying equations, but only
makes assumptions on the smoothness of functions that make up X.

136
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Lemma 13.1 Let U ⊂ R
m be a smooth bounded domain. Let X be a compact

subset of [L2(U )]n such that

sup
u∈X

‖u‖[Hs (U )]n < ∞

for some s ≥ 1. Then τ (X) ≤ m/s.

We will use a similar argument to what follows for Lemma 15.5. The proof
is due to Friz & Robinson (1999), see also Robinson (2008).

Proof A proof for the case n = 1 is sufficient; if n > 1 the argument can
be applied to each component of the functions in X. Let U ′, U ′′ be smooth
bounded domains such that

U ⊂ U ′ and U ′ ⊂ U ′′

with both inclusions strict. Let E : Hs(U ) → Hs(U ′′) be a bounded extension
operator such that for all u ∈ Hs(U ),

‖E[u]‖Hs (U ′′) ≤ C‖u‖Hs (U ) (13.2)

and the support of E[u] is contained in U ′ (e.g. Theorem 7.25 in Gilbarg &
Trudinger (1983)).

Let A denote the Laplacian operator on U ′′, with Dirichlet boundary con-
ditions (u = 0 on ∂U ′′). The Laplacian on such a domain has a sequence
{wj } of eigenfunctions with corresponding eigenvalues λj (Awj = λjwj )
which, if ordered so that λj+1 ≥ λj , satisfy λj ∼ j 2/m (see Davies (1995), for
example).

Since, for any u ∈ X, the support of E[u] is contained in U ′, E[u] ∈
D(As/2). It follows from (13.2) and the inequality

‖As/2v‖L2(U ′′) ≤ ‖v‖Hs (U ′′) for all v ∈ D(As/2)

that E[X] (= ⋃
u∈X E[u]) is uniformly bounded in D(As/2).

Now define the orthogonal projection Pk onto the space spanned by the first
k eigenfunctions of A,

Pkv =
k∑

j=1

(v,wj )wj,

and its orthogonal complement Qk = I − Pk . Note that ‖QkA
−su‖ ≤ λ−s

k+1‖u‖.
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Consider the approximation of u in the k-dimensional subspace spanned by
{wj |U }kj=1 given by (PkE[u])|U :

‖u − (PkE[u])|U‖L2(U ) ≤ ‖E[u] − PkE[u]‖L2(U ′′)

= ‖QkE[u]‖L2(U ′′)

= ‖QkA
−s/2As/2E[u]‖L2(U ′′)

≤ ‖QkA
−s/2‖L (H )‖As/2E[u]‖L2(U ′′)

≤ λ
−s/2
k+1 ‖E[u]‖Hs (U ′′)

≤ Cλ
−s/2
k+1 ‖u‖Hs (U )

≤ K‖u‖Hs (U )k
−s/m,

for some constant K , and so τ (X) ≤ m/s using Exercise 7.1. �

Clearly if an attractor is ‘smooth’, i.e. bounded in Hs(�) for every s, then
its thickness is zero. For the two-dimensional Navier–Stokes equations this can
be translated to an assumption on the smoothness of the forcing term f .

Corollary 13.2 The attractor of the two-dimensional Navier–Stokes equa-
tions has zero thickness if f ∈ C∞(�).

Proof Guillopé (1982) showed that if f ∈ C∞(�) then the attractor is
bounded in Hk(�) for every k ∈ N, and the result follows immediately from
Lemma 13.1. �

13.2 Zero Lipschitz deviation

While there are currently no examples of attractors of natural models that have
been proved to have nonzero thickness, there is no proof available that ‘many
attractors’ do have zero thickness exponent.

We now show that the Lipschitz deviation of a large class of attractors is
zero. We work with semilinear parabolic equations of the form

du/dt = −Au + g(u) (13.3)

with g Lipschitz from D(Aα) into H when restricted to A :

‖g(u) − g(v)‖ ≤ L‖u − v‖α whenever u, v ∈ A , (13.4)

cf. Section 10.3. We make the additional assumption that 0 ≤ α ≤ 1
2 .

Abstract existence and uniqueness results for (13.3) under the condition that
g is Lipschitz from D(Aα) into H require the initial condition to be in D(Aα),



13.2 Zero Lipschitz deviation 139

and generate a dynamical system on D(Aα). However, here we consider the
attractor A as a subset of H , and show that the Lipschitz deviation of A

as measured in H is zero. As remarked in Section 10.4, which treated the
particular example of the two-dimensional Navier–Stokes equations, one can
often obtain existence and uniqueness results in larger spaces (like H ) using
equation-specific methods, and then employ the abstract formulation to deduce
further properties of these solutions (since for t > 0 they will be smooth enough
for the abstract theory to apply, i.e. u(t) ∈ D(Aα)); this is the approach we adopt
here.

Theorem 13.3 Take α ∈ [0, 1
2 ], and suppose that (13.3) has an attractor A

that is bounded in D(Aα). Pick M0 such that A ⊂ BH (0,M0/8).
(i) There exists a constant C > 0 such that

‖A1/2(u − v)‖2

‖u − v‖2 log(M2
0 /‖u − v‖2)

< C for all u, v ∈ A .

(ii) For each n ∈ N there exists a 1-Lipschitz function �n : PnH → QnH ,
Qn = I − Pn,

‖�n(p) − �n(p̄)‖ ≤ ‖p − p̄‖ for all p, p̄ ∈ PnH,

such that

dist(A ,GPnH [�n]) ≤ M2
0 e−λn+1/2C. (13.5)

(iii) If in addition

lim
n→∞

λn

log n
= ∞ (13.6)

then dev(A ) = 0 (where the Lipschitz deviation is measured in H).

The proof of (i) is due to Kukavica (2007); Pinto de Moura & Robinson
(2010c) show that (ii) is a consequence of (i) (using an argument of Foias,
Manley, & Temam (1988)) and observe that (iii) follows from (ii) (see also
Pinto de Moura & Robinson (2010b).)

The condition (13.6) will be satisfied in most interesting examples, since for
an elliptic operator of order 2p defined in � ⊂ R

m, λn ∼ n2p/m (see Davies
(1995), for example).

Proof (i) Let w(t) = u(t) − v(t), L(t) = log(M2
0 /‖w(t)‖2) (so in particular

L ≥ 1), and set

Q(t) = ‖A1/2w‖2

‖w‖2
and Q̃(t) = Q(t)

L(t)
.
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With h(t) = g(u(t)) − g(v(t)), w satisfies

dw

dt
= −Aw + h(t). (13.7)

Then (cf. Constantin, Foias, Nicolaenko, and Temam (1989), or Lemma III 6.1
in Temam (1988))

1

2

dQ

dt
= (A1/2wt,A

1/2w)

‖w‖2
− (w,wt )‖A1/2w‖2

‖w‖4

= (−Aw + h,Aw)

‖w‖2
− (w,−Aw + h)

Q(t)

‖w‖2

= −‖Aŵ‖2 + Q(t)2 +
(

h

‖w‖ , (A − Q(t)I )ŵ

)
,

where ŵ = w/‖w‖. Noting that

‖(A − Q(t)I )ŵ‖2 = ‖Aŵ‖2 − 2Q(t)(Aŵ, ŵ) + Q(t)2‖ŵ‖2

= ‖Aŵ‖2 − Q(t)2,

it follows that

1

2

d

dt
Q + ‖(A − Q(t)I )ŵ‖2 =

(
h

‖w‖ , (A − Q(t)I )ŵ

)
.

Since

dQ̃

dt
= L−1 dQ

dt
− QL−2 dL

dt

and

dL

dt
= 2Q(t) − 2

(h,w)

‖w‖2
,

we can obtain

1

2

dQ̃

dt
+ Q̃2 + ‖(A − QI )ŵ‖2

L
= (h, (A − QI )û)

‖w‖L + (h,w)Q̃

‖w‖2L
.

The right-hand side is bounded by

‖h‖‖(A − QI )ŵ‖
‖w‖L + ‖h‖Q̃

‖w‖L
≤ 1

2

‖h‖2

‖w‖2L
+ 1

2

‖(A − QI )ŵ‖2

Lk
+ 1

2
Q̃2 + 1

2

k‖h‖2

‖w‖2L2
;

since L ≥ 1, we obtain

dQ̃

dt
+ Q̃2 + ‖(A − QI )ŵ‖2

L
≤ 2‖h‖2

‖w‖2L
. (13.8)
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Now we use the fact that g is locally Lipschitz (10.5) and that A is bounded
in D(Aα) to deduce that

‖h(t)‖ = ‖g(u(t)) − g(v(t))‖ ≤ K‖u(t) − v(t)‖α = K‖w(t)‖α

for some K > 0; combine this with the interpolation inequality ‖w‖α ≤
‖w‖1−2α‖w‖2α

1/2 (see Exercise 13.4) to bound the right-hand side:

2‖h‖2

‖w‖2L
≤ 2K‖w‖2

α

‖w‖2L
≤ 2K‖w‖4α

1/2

‖w‖4αL
= 2K

L1−2α
Q̃2α ≤ 2KQ̃2α (13.9)

since L ≥ 1 and α ∈ [0, 1
2 ]. Dropping the third term on the left-hand side of

(13.8) and using Young’s inequality (2KQ̃2α ≤ 1
2Q̃2 + K ′),

dQ̃

dt
+ 1

2
Q̃2 ≤ K ′. (13.10)

Finally the result of Exercise 13.2 guarantees that whatever the value of Q̃(0),
(13.10) implies that

Q̃(1) ≤ 2 + (2K ′)1/2.

Since A is invariant, given u, v ∈ A there exist u0, v0 ∈ A such that
u = S(1)u0 and v = S(1)v0. It follows that

‖A1/2(u − v)‖2

‖u − v‖2 log(M2
0 /‖u − v‖2)

≤ C (13.11)

for all u, v ∈ A .
(ii) Take u, v ∈ A and set w = u − v. Writing w = Pnw + Qnw, observe

that

‖A1/2w‖2 = ‖A1/2(Pnw + Qnw)‖2
L2

= ‖A1/2Pnw‖2 + ‖A1/2Qnw‖2

≥ λn+1‖Qnw‖2.

It follows from (13.11) that

‖A1/2w‖2 ≤ C
(‖Pnw‖2 + ‖Qnw‖2) log

(
M2

0 /‖Qnw‖2). (13.12)

Now consider a subset X of A that is maximal for the relation

‖Qn(u − v)‖ ≤ ‖Pn(u − v)‖ for all u, v ∈ X. (13.13)

For every p ∈ PnX with p = Pnu, u ∈ X, define φn(p) = Qnu; (13.13) shows
that this is well defined, and that

‖φn(p) − φn(p̄)‖ ≤ ‖p − p̄‖ for all p, p̄ ∈ PnX.
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Since X is a closed subset of the compact set A , PnX is closed, and so
φn : PnX → QnH can be extended to a function �n : PnH → QnH (i.e. one
defined on the whole of PnX) with the same Lipschitz constant (see Wells &
Williams (1975)).

If u ∈ A but u /∈ X then there is a v ∈ X ⊂ A such that

‖Qn(u − v)‖ > ‖Pn(u − v)‖. (13.14)

Since λn+1‖Qnw‖2 ≤ ‖A1/2w‖2 it follows from (13.12) that

λn+1‖Qnw‖2 ≤ 2C‖Qnw‖2 log(M2
0 /‖Qnw‖2),

and hence

‖Qnw‖2 ≤ M2
0 e−λn+1/2C.

The inequality (13.5) now follows using (13.14).
(iii) We want to apply the definition of the Lipschitz deviation, using

δ1(A , εn) ≤ n with εn = M2
0 e−λn+1/2C

from (13.5). Following an argument similar to that used in Lemma 3.2, take
ε > 0 with εn+1 ≤ ε < εn, and then

log δ1(A , ε)

− log ε
≤ log δ1(A , εn+1)

− log εn

≤ log(n + 1)

(λn+1/2C) − 2 log M0
.

Then dev(A ) ≤ dev1(A ) = 0 provided that (13.6) holds. �

The increased power of this result over that of Lemma 13.1 is clearly
demonstrated by the following consequence for the two-dimensional Navier–
Stokes equations (recall that H is essentially the space L2 of square integrable
functions).

Corollary 13.4 The attractor of the two-dimensional Navier–Stokes equa-
tions has zero Lipschitz deviation if f ∈ H .

Proof We saw in Section 10.4 that the Navier–Stokes equations can be written
in the form (13.3) where g satisfies

‖g(u) − g(v)‖ ≤ cα[‖u‖α + ‖v‖α]‖u − v‖1/2

for any α > 1/2 (this was (10.20)). For f ∈ H the attractor is bounded in D(A)
(see Exercise 11.6) and so it follows that ‖u‖β is bounded for all u ∈ A , for
any 0 ≤ β ≤ 1. Hence

‖g(u) − g(v)‖ ≤ C‖u − v‖1/2 for all u, v ∈ A ,
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i.e. g satisfies (13.4) with α = 1/2. One can therefore apply Theorem 13.3,
since the eigenvalues of the Stokes operator on a two-dimensional periodic
domain satisfy λn ∼ cn (see Exercise 13.3). �

A first version of the result of part (iii) of Theorem 13.3 was proved in Pinto
de Moura & Robinson (2010a), using the dynamical ‘squeezing property’ due
to Eden et al. (1994), see Exercise 13.5. One could also appeal more directly to
results on families of approximate inertial manifolds of exponential order due
to Debussche & Temam (1994) and Rosa (1995).

Exercises

13.1 Suppose that Aβ is Lipschitz on A for some β > 0:

‖Aβ(u − v)‖ ≤ L‖u − v‖ for all u, v ∈ A .

Show that for n sufficiently large

‖Qn(u − v)‖ ≤ ‖Pn(u − v)‖ for all u, v ∈ A ,

and hence that A is contained in the graph of a 1-Lipschitz function over
PnH . (This immediately provides a bi-Lipschitz embedding of A into
R

n.)
13.2 Show that if y ≥ 0 and ẏ + γy2 ≤ δ with γ > 0, δ ≥ 0, then

y(t) ≤
(

δ

γ

)1/2

+ 1

γ t
(13.15)

for all t ≥ 0. [Hint: consider y(t) = z(t) + (δ/γ )1/2 for t ∈ [0, t0] with
t0 chosen so that z(t) ≥ 0.] A more general version of this result, due to
Ghidaglia, can be found as Lemma III.5.1 in Temam (1988).

13.3 The eigenvalues of the Stokes operator on a two-dimensional periodic
domain [0, 2π ]2 are the sums of two square integers. If {λn} are these
eigenvalues arranged in nondecreasing order, show that 1

2n ≤ λn ≤ 2n.
13.4 Use Hölder’s inequality and the definition of the fractional powers of A

in (10.2) to show that if u ∈ D(Aβ) then for any α < β

‖Aαu‖ ≤ ‖u‖1−(α/β)‖Aβu‖α/β .

13.5 Let S(t) be the semigroup generated by (10.4), and assume the existence
of a global attractor A ⊂ BH (0,M). Eden et al. (1994) show that there
exists a time t∗ and an n0 such that for all n ≥ n0 there exists an orthogonal
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projection Pn of rank n such that for every u, v ∈ A either

‖Qn(S(t∗)u − S(t∗)v)‖ ≤ ‖Pn(S(t∗)u − S(t∗)v)‖ (13.16)

(where Qn = I − Pn) or

‖S(t∗)u − S(t∗)v‖ ≤ δn‖u − v‖, (13.17)

with

δn ≤ c0e−σλn+1 ,

where c0 and σ are constants depending only on L and α in (10.5). Use
an argument similar to that employed above to prove part (ii) of Theorem
13.3 to show that for each n ≥ n0, A lies within a 4Mδn neighbourhood
of a 1-Lipschitz graph over an n-dimensional subspace of H . (As in
Theorem 13.3 it then follows that dev(A ) = 0.) This result, the source
of the argument for part (ii) of Theorem 13.3, can be found in Foias et al.
(1988) and Robinson (2001, Proposition 14.2).

13.6 Find an f ∈ L2 such that the attractor of the two-dimensional Navier–
Stokes equations

du/dt + Au + B(u, u) = f

is not bounded in H 3.
13.7 Show that part (i) of Theorem 13.3 implies that if u(T ) = v(T ) then

u(t) = v(t) for all t ∈ [0, T ], i.e. that solutions have the ‘backwards
uniqueness property’. [Hint: assume that ‖w(0)‖ �= 0 and show that
‖w(t)‖ �= 0 for any t ≥ 0. Take the inner product of (13.7) with w and
divide by L(t)‖w‖2; then use (13.9) and the fact that Q̃(t) is bounded.]
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The Takens Time-Delay Embedding Theorem

In his 1981 paper, ‘Detecting strange attractors in turbulence’, Takens showed
that for a generic smooth system x(t) evolving on a smooth d-dimensional
manifold M , the dynamics of solutions can be followed faithfully by taking k

time-delayed copies of a ‘generic measurement’ h : M → R

h(x), h(x(T )), . . . , h(x(kT )),

with k ≥ 2d. More formally, he showed that for such an h, the mapping M →
R

k+1 given by

x �→ (h(x), h(x(T )), . . . , h(x(kT )))

is a diffeomorphism.
Although the conclusions of his theorem are strong, so are its assumptions,

which are hard to verify in general and may in fact fail in a number of practical
applications. The requirement that the dynamics takes place on a compact finite-
dimensional manifold is very restrictive, and excludes any direct application
of the result to the attractors of infinite-dimensional dynamical systems. This
means that in the form above this result provides no rigorous justification for
the use of time-delay reconstruction for data from experiments in spatially
extended systems.

In this chapter we show first how the result can be extended to the attractors
of dynamical systems in R

N (following Sauer, Yorke, & Casdagli, (1991)),
and then to the attractors of dynamical systems in infinite-dimensional spaces
(following Robinson (2005)).

14.1 The finite-dimensional case

Sauer et al. (1991) replaced the manifold M with an invariant subset of R
N of

(upper) box-counting dimension d and allowed dynamical systems that are only

145
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Lipschitz continuous rather than smooth. In this section we give a generalised
version of their argument that is valid for certain classes of Hölder continuous
maps. We use this result in the next section to prove a version of the theorem
valid for finite-dimensional invariant subsets of an infinite-dimensional space.

First we need to recall the definition of the singular values of a matrix and
some of their properties. Let M : R

m → R
n be a linear map, and consider

the m × m symmetric matrix MT M . This matrix has a set of orthonormal
eigenvectors {ej }mj=1 with corresponding eigenvalues λj , i.e. MT Mej = λjej .

Lemma 14.1 Each λj is nonnegative, and at most n of them are non-zero.
The singular values of M are {αj }nj=1, where λj = α2

j . The vectors {Mej }kj=1

corresponding to the nonzero values of λj are orthogonal in R
n, with |Mej | =

αj .

Proof Note that

λj = (λjej , ej ) = (MT Mej , ej ) = (Mej ,Mej ) = |Mej |2 ≥ 0,

so that each eigenvalue is nonnegative. Next,

(Mei,Mej ) = (MT Mei, ej ) = λj (ei, ej ) = λjδij ,

so the {Mei} are orthogonal. Since there can be at most n mutually orthogo-
nal vectors in R

n, it follows that there are at most n nonzero eigenvalues of
MT M . �

We now use these singular values to describe the image of a ball in R
m under

M . We write Bm(r) for the ball in R
m of radius r , centred at the origin, and

Bm = Bm(1).

Lemma 14.2 The image of the unit ball in R
m under a linear map M is an

ellipse in R
n whose semiaxes are {Mej }kj=1, where M has k non-zero singular

values.

Proof (After Section V 1.3 in Temam (1988).) We have already shown that
the {Mej } are orthogonal in R

n and that |Mej | = αj . Now take some x ∈ Bm;
we can write

x =
k∑

j=1

xj ej + y

k∑
j=1

|xj |2 + |y|2 ≤ 1,

where y is orthogonal to the {xj }. Then

Mx =
k∑

j=1

xj (Mej ) =
∞∑

j=1

(xjαj )
Mej

αj

.
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This expresses Mx as
∑

j ξj êj where the {êj } are orthonormal vectors in the
directions of Mej ; clearly

∑
j

(
ξj

αj

)2

≤ 1,

and so the image MBm is an ellipse as stated. �

We now prove a simple lemma (after Lemma 4.2 of Sauer et al. (1991)),
which provides the ‘key inequality’ for the finite-dimensional time-delay theo-
rem, just as Lemma 4.1 provided the key inequality for the finite-dimensional
Hölder embedding result of Theorem 4.3.

Lemma 14.3 Let M : R
m → R

n be a linear map. For a positive integer r

(1 ≤ r ≤ n), let αr > 0 be the rth largest singular value of M . Then for any
b ∈ R

n,

Vol {x ∈ Bm(ρ) : |Mx + b| < δ}
Vol(Bm(ρ))

≤ Cm,n

(
δ

αrρ

)r

. (14.1)

Proof We have just shown that the image of Bm(ρ) under M , MBm(ρ), is
an ellipse, whose semiaxes are {ραi}, where the αi are the singular values of
M (Lemma 14.2). It follows that decreasing the size of any of the singular
values of M can only shrink the size of the image, and so increase the value
of the left-hand side of (14.1). So we can assume that α1 = · · · = αr > 0, and
αr+1 = · · · = αn = 0, which means that MBm(ρ) is an r-dimensional ball of
radius ραr . It is clear that the intersection MBm(ρ) + b with Bn(δ) is maximised
when b = 0, and hence

Vol{x ∈ Bm(ρ) : |Mx + b| < δ} ≤ �r�m−r

(
δ

αr

)r

ρm−r .

Since Vol Bm(ρ) = �mρm and 1 ≤ r ≤ n, the left-hand side of (14.1) is
bounded by (

max
1≤r≤n

�r�m−r

�m

)(
δ

αrρ

)r

≤ Cm,n

(
δ

αrρ

)r

. �

We now use this bound to prove the following lemma, which is the main
component of the proof of the Takens time-delay theorem; it is a version of
Lemma 4.6 from Sauer et al. (1991), but valid for Hölder continuous maps
{Fj }. In some sense it is a generalised version of Theorem 4.3, but without
the Hölder continuity of the inverse; the embedding part of that theorem is an
immediate corollary if one takes F0, . . . , Fm to be a basis for the linear maps
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from R
k into R

n (so that θ = 1), and notes that in this case M(x,y) always has
rank k (see Exercise 14.2).

Lemma 14.4 Let A be a compact subset of R
N , and let {F0, F1, . . . , Fm} be

θ -Hölder maps from A into R
k . Let Sr be the set of pairs x �= y in A for which

the k × m matrix

M(x,y) = (F1(x) − F1(y) · · · Fm(x) − Fm(y))

has rank at least r , and suppose that S0 = ∅ and dB(Sr ) < rθ for 1 ≤ r ≤ k.
Then for almost every α ∈ R

m the map Fα : X → R
k given by

Fα = F0 +
m∑

j=1

αjFj

is one-to-one on A.

We follow Sauer et al. (1991) and say that ‘Gα has property � with prob-
ability p’ if the Lebesgue measure of the set of α ∈ Bm(R) for which Gα has
property � is p times the measure of Bm(R).

Proof For j = 0, . . . , m set Gj (x, y) = Fj (x) − Fj (y), and let Gα be the
map given by

Gα(x, y) = G0(x, y) +
m∑

j=1

αjGj (x, y),

so that by assumption for each z = (x, y) ∈ Sr the k × m matrix

Mz = (G1(z) · · · Gm(z))

has rank at least r .
Fix R > 0, and consider the set

Sr,j = {z ∈ Sr : rth largest singular value of Mz > 1/j}.
Since the rank of Mz is at least r for every z ∈ Sr , the rth largest singular value
is always positive, and so Sr = ∪∞

j=1Sr,j .
Note that

Gα(z) = G0(z) + Mzα,

and so Lemma 14.3 implies that for z ∈ Sr,j the probability that |Gα(z)| < δ is
no larger than Cm,n(jδ/R)r .

Now fix r and j , and choose d with dB(Sr ) < d < rθ . Since d > dB(Sr )
there exists an ε0 > 0 such for any 0 < ε < ε0, Sr,j can be covered by no more
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than ε−d balls of radius ε, {B(zk, ε)}. Set

Yk = Sr,j ∩ B(zk, ε).

Since |Gα(x) − Gα(y)| ≤ K|x − y|θ ,

|Gα(zk)| > Kεθ ⇒ |Gα(z)| > 0 for all z ∈ Yk;

so to have Gα(z) = 0 for some z ∈ Yk requires |Gα(zk)| ≤ Kεθ .
For each fixed zk , Lemma 14.3 guarantees that the probability that

|Gα(zk)| = |G0(zk) + Mzk
α| ≤ Kεθ

is at most Ct,n(jKεθ/R)r . Since there are no more than ε−d of the {zk}, it
follows that the probability that Gα(z) = 0 for some z ∈ Sr,j is bounded by

ε−d × Cm,n(jK/R)rεθr = Cm,n,j,R,rε
θr−d .

Since d < θr and ε is arbitrary, it follows that Gα(z) �= 0 for all z ∈ Sr,j with
probability one.

Thus Gα(z) �= 0 for all z ∈ Sr with probability 1, and since A = ∪k
r=1Sr , it

follows that Gα(z) �= 0 for all z ∈ A with probability 1, i.e. for almost every
α ∈ Bm(R). Since R > 0 was arbitrary, Gα(z) �= 0 for all z ∈ A for almost
every α ∈ R

m. �
We now prove a finite-dimensional version of the Takens Theorem, after

Theorem 4.13 of Sauer et al. (1991). However, this version works for certain
Hölder continuous maps, namely maps g for which all iterates gr have the same
Hölder exponent. This condition that g and its iterates have the same Hölder
exponent does not appear a natural one (in general, if g is θ -Hölder then gp will
be θp-Hölder). However, it is satisfied automatically if g is Lipschitz (θ = 1),
and will in particular be satisfied by the class of maps we consider in the next
section, namely maps of the form

g(x) = L−1 ◦ � ◦ L(x),

defined on X = LA , where L : B → R
k is linear, � : B → B is Lipschitz,

and L−1 : X → A is θ -Hölder, since for such maps

gp(x) = L−1 ◦ �p ◦ L(x).

The statement of the theorem makes explicit the sense in which the set
of Hölder functions h : R

N → R such that Fk[h, g] is one-to-one on X is
‘prevalent’.

Theorem 14.5 Let X be a compact subset of R
N with dB(X) = d, and let

g : X → X be such that gr is a θ -Hölder function for any r ∈ N. Take k > 2d/θ
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(k ∈ N), and assume that the set Xp of p-periodic points of g (i.e. x ∈ X such
that gp(x) = x) satisfies dB(Xp) < pθ2/2 for all p = 1, . . . , k.

Let h1, . . . , hm be a basis for the polynomials in N variables of degree at
most 2k, and given any θ -Hölder function h0 : R

N → R define

hα = h0 +
m∑

j=1

αjhj .

Then for almost every α ∈ R
m the k-fold observation map Fk : X → R

N

defined by

Fk[hα, g](x) = (
hα(x), hα(g(x)), . . . , hα(gk−1(x))

)T
is one-to-one on X.

(The condition that iterates of g be θ -Hölder is in fact only required for
g, . . . , gk .)

Proof For i = 0, 1, . . . , m define

Fi(x) =

⎛
⎜⎜⎜⎝

hi(x)
hi(g(x))

...
hi(gk−1(x))

⎞
⎟⎟⎟⎠ ,

so that by definition

Fk(hα, g) = F0 +
m∑

j=1

αjFj .

In order to apply Lemma 14.4 we need to check, for each x �= y, the rank of
the matrix

M (x,y) = (F1(x) − F1(y) · · · Fm(x) − Fm(y))

=

⎛
⎜⎝

h1(x) − h1(y) · · · hm(x) − hm(y)
...

. . .
...

h1(gk−1(x)) − h1(gk−1(y)) · · · hm(gk−1(x)) − hm(gk−1(y))

⎞
⎟⎠ .

In order to analyse this, it is helpful to write M in the form M = JH , where

H(x,y) =

⎛
⎜⎝

h1(z1) · · · hm(z1)
...

. . .
...

h1(zq) · · · hm(zq)

⎞
⎟⎠ ,
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with all of the z1, . . . , zq distinct (we have q ≤ 2k), and where J(x,y) is a
k × q matrix each of whose rows consists of zeros except for one 1 and one
−1. Given any ξ ∈ R

q , we can find1 a set of coefficients {αj }mj=1 such that∑
j αjhj (zl) = ξl , i.e. such that H(x,y)α = ξ . This implies that the rank of H is

q; since J : R
q → R

k , we only need to check the rank of J .
We split the set {(x, y) : x, y ∈ X, x �= y} into three disjoint sets of pairs

(x, y), and show that Fα(x) �= Fα(y) for almost every α on each of these sets.
It then follows that Fα(x) �= Fα(y) for almost every α, for any x, y ∈ X with
x �= y.

Case 1: x and y are not both periodic of period ≤ k. In this case with-
out loss of generality {x, g(x), . . . , gk−1(x)} consists of k discrete points and
{y, . . . , gk−1(y)} consists of r ≥ 1 points distinct from the iterates of x. So

J(x,y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0 −1 0 · · · · · · 0
0 1 · · · · · · 0 0 −1 · · · · · · 0

0 0
. . . · · · 0 0 0

... · · · 0
...

...
...

. . . 0
...

...
...

...
...

0 0 · · · 0 1 0 · · · −1 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where the left block is k × k and the right block is r × k (with the top r × r

entries being minus the identity).
It follows that the rank of J : R

k+r → R
k is k, and so is the rank of F = JH .

Since the set of pairs x �= y has box-counting dimension at most 2d, and we
have just shown that rank M(x,y) = k > 2d/θ by assumption, the conditions of
Lemma 14.4 are met for this choice of (x, y), i.e. for all such (x, y), Fα(x) �=
Fα(y) for almost every α.

Case 2: x and y lie in distinct periodic orbits of period ≤ k. Suppose that
p and q are the minimal integers such that gp(x) = x and gq(y) = y, without
loss of generality 1 ≤ q ≤ p ≤ k. Then J has rank at least p (its top left p × p

entries are the p × p identity matrix). So rank M(x,y) ≥ p in this case, while
by assumption the set of pairs of periodic points of period ≤ p has dimension
< p/θ . So once more we can apply Lemma 14.4.

Case 3: x and y lie on the same periodic orbit of period ≤ k. Suppose that
p and q are the minimal integers such that gp(x) = x and gq(x) = y, with
1 ≤ q < p ≤ k. As an illustrative example, if p = 7 and q = 4, then J is of

1 One can make a linear change of coordinates so that the first components of z1, . . . , zq are
distinct, and then simply interpolate in one variable.



152 The Takens Time-Delay Embedding Theorem

the form

J(x,y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1 0 0
0 1 0 0 0 −1 0
0 0 1 0 0 0 −1

−1 0 0 1 0 0 0
0 −1 0 0 1 0 0
0 0 −1 0 0 1 0
0 0 0 −1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rank of such a matrix is at least p/2, and hence rank M(x,y) ≥ p/2 in
this case. The box-counting dimension of the set of pairs that lie on the same
periodic orbit is bounded by dB(Ap)/θ , since any such (x, y) is contained in
the image of Ap under one of the mappings x �→ (x, gj (x)) for some j =
1, . . . , k. �

14.2 Periodic orbits and the Lipschitz constant for ordinary
differential equations

If we recast Theorem 14.5 in terms of a continuous flow generated by a Lipschitz
ordinary differential equation (so g = S(T ) for some T > 0 and θ = 1) then
observe that there can be no embedding result if there are periodic orbits
of period T or even 2T . This follows from the statement of the theorem
(since in this case the dimension of X1 and X2 is at least 1, and the condition
dim(Xp) < p/2 cannot be satisfied for p = 1, 2), but this is not simply an
artefact of the proof, as the following arguments from Sauer et al. (1991) show.

If there is a periodic orbit � of period T this is a topological circle. But
under the time-delay mapping, any point on � maps onto a line in R

k . One
cannot map a circle onto a line using any continuous one-to-one mapping, so
the theorem must fail in this case.

Such an embedding is also impossible if there is a periodic orbit � of period
2. Consider the map x �→ h̃(x) = h(g(x)) − h(x). Then either h̃(x) ≡ 0 on �,
or there is some x0 ∈ � such that h̃(x0) �= 0. In the latter case,

h̃(g(x0)) = h(g2(x0)) − h(g(x0)) = h(x0) − h(g(x0)) = −h̃(x0),

so that there must be some x∗ ∈ � with h̃(x∗) = 0. But this implies that h(x∗) =
h(g(x∗)), so that x∗ and g(x∗) (which are distinct points) are mapped to the
same point in R

k whatever the value of k.
So it is interesting if we can find a T sufficiently small that there are no

periodic orbits of any period ≤ T . Yorke (1969) showed that if the ordinary
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differential equation

ẋ = f (x) with |f (x) − f (y)| ≤ L|x − y|
has a periodic orbit of period T , then one must have T ≥ 2π/L. (Yorke also
gives an example to show that the factor of 2π is sharp.) We give a version
of this result here, following ideas in Kukavica (1994); the result is no longer
sharp (we only obtain T ≥ 1/L), but this sacrifice seems worthwhile given the
simplicity of the proof, which also provides a model for the proof of a similar
infinite-dimensional result (Theorem 14.8).

Theorem 14.6 Any periodic orbit of the equation ẋ = f (x), where f has
Lipschitz constant L, has period T ≥ 1/L.

Proof Fix τ > 0 and set v(t) = x(t) − x(t − τ ). Then

v(t) − v(s) =
∫ t

s

v̇(r) dr.

Integrating both sides with respect to s from 0 to T gives

T v(t) =
∫ T

0

(∫ t

s

v̇(r) dr

)
ds

since
∫ T

0 v(s) ds = 0 because x is T -periodic. Thus

T |v(t)| ≤
∫ T

0

∫ T

0
|v̇(r)| dr ds ≤ T

∫ T

0
|v̇(r)| dr,

i.e.

|x(t) − x(t − τ )| ≤
∫ T

0
|v̇(s)| ds =

∫ T

0
|f (x(s)) − f (x(s − τ ))| ds

≤ L

∫ T

0
|x(s) − x(s − τ )| ds.

Therefore ∫ T

0
|x(t) − x(t − τ )| dt ≤ LT

∫ T

0
|x(s) − x(s − τ )| ds,

and it follows that if LT < 1 then∫ T

0
|x(t) − x(t − τ )| dt = 0.

Thus x(t) = x(t − τ ) for all τ > 0, i.e. x(t) is constant. �
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14.3 The infinite-dimensional case

We now prove an infinite-dimensional version of the Takens Theorem: we use
the Hölder embedding theorem for sets with finite box-counting dimension
(Theorem 8.1) to produce a finite-dimensional system to which we can apply
the finite-dimensional result of Theorem 14.5.

Theorem 14.7 Let A be a compact subset of a Banach space B with
upper box-counting dimension dB(A ) = d and dual thickness τ ∗(A ) = τ . Set
α = 1/2 if B is a Hilbert space; otherwise take α = 1.

Suppose that A is an invariant set for a Lipschitz map � : B → B; choose
an integer k > 2(1 + ατ )d, and suppose further that the set Ap of p-periodic
points of � satisfies (1 + ατ )2dB(Ap) < p/2 for p = 1, . . . , k − 1. Then a
prevalent set of Lipschitz maps f : B → R make the k-fold observation map
Dk[f,�] : B → R

k defined by

Dk[f,�](u) = (
f (u), f (�(u)), . . . , f (�k−1(u))

)
one-to-one on A .

Proof Given k > 2(1 + ατ )d, first choose N large enough that

k >
2N (1 + ατ )

N − 2d
d and dB(Ap) <

[
N − 2d

N (1 + ατ )

]2
p

2

for p = 1, . . . , k, and then pick α < (N − 2d)/[N (1 + ατ )] such that
k > 2d/α and dB(Ap) > α2p/2 for p = 1, . . . , k.

Use Theorem 8.1 to find a bounded linear function L : B → R
N that is

one-to-one on A and satisfies

‖x − y‖ ≤ c|Lx − Ly|α for all x, y ∈ A .

The set X = LA ⊂ R
N is an invariant set for the induced mapping g : X → X

defined by

g(ξ ) = L�(L−1ξ ).

Since

gn(ξ ) = L�n(L−1ξ )

all the iterates of g are α-Hölder:

|gn(ξ ) − gn(η)| = |L�n(L−1ξ ) − L�n(L−1η)|
≤ ‖L‖|�n(L−1ξ ) − �n(L−1η)|
≤ ln�‖L‖|L−1ξ − L−1η|
≤ c ln�‖L‖|ξ − η|α,
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where ‖L‖ is the operator norm of L : B → R
N and l� is the Lipschitz constant

of � : B → B.
Observe that if x is a fixed point of �j then ξ = Lx is a fixed point of

gj , and vice versa. It follows that Xp, the set of all points of X that are p-
periodic for g, is given simply by Xp = LAp. Since L is Lipschitz and the
box-counting dimension does not increase under the action of Lipschitz maps
(Lemma 3.3(iv)), dB(Xp) = dB(LAp) ≤ dB(Ap) < p/2(1 + ατ )2. Similarly,
dB(X) ≤ dB(A ).

Given a Lipschitz map f0 : A → R, define the α-Hölder map h0 : X → R

by

h0(ξ ) = f0(L−1ξ ) for all ξ ∈ X.

With {hj }mj=1 a basis for the polynomials in N variables of degree at most
2k, all the conditions of Theorem 14.5 are satisfied, and hence for almost every
α ∈ R

m, the k-fold observation map on R
N given by

Fk[hα, g](ξ ) = (
hα(ξ ), hα(g(ξ )), . . . , hα(gk−1(ξ ))

)T
,

where

hα(x) = h0(x) +
m∑

j=1

αjhj (x),

is one-to-one on X.
Now consider the k-fold observation map on A given by

Fk[hα, g](Lx) = (
hα(Lx), hα(L�(x)), · · · , hα(L�k−1(x))

)T
.

Since L is one-to-one between A and X, and Fk[h, α, g] is one-to-one between
X and its image, it follows that Fk ◦ L is one-to-one between A and its image.

If we define fj (x) = hj (Lx), then each fj is a Lipschitz map from A into
R

k , and we can write

Fk[hα, g](Lx) = Dk[fα,�](x) = (
fα(x), fα(�(x)), . . . , fα(�k−1(x))

)T
,

where

fα = f0 +
M∑

j=1

αjfj .

Then if we take

E =
⎧⎨
⎩

M∑
j=1

αjfj : (α1, . . . , αM ) ∈ BM (0, 1)

⎫⎬
⎭
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and equip E with the measure induced by the uniform measure on BM (0, 1), it
follows that a prevalent set of Lipschitz f : A → R

k make the map Dk[f,�]
one-to-one on A . �

Note that the condition on the number of delay coordinates required increases
with the dual thickness of the set A . In the case when A has zero dual
thickness (so, for example, if A is ‘smooth’ so that Lemma 13.1 guarantees
that its thickness is zero, or if the equation is in the right form that Theorem
13.3 shows that the Lipschitz deviation of A is zero) then the condition on
k reduces to the k > 2d one would obtain in the finite-dimensional Lipschitz
case (Theorem 14.5 with θ = 1).

14.4 Periodic orbits and the Lipschitz constant for
semilinear parabolic equations

As before, when � = S(T ) (the time T map of some underlying continuous
time flow) the condition dB(Ap) < p/2(1 + ατ ) precludes the existence of
periodic orbits of periods pT for all integers p such that p ≤ 2 + ατ . The fol-
lowing infinite-dimensional generalisation of Theorem 14.6, due to Robinson
& Vidal-López (2006), is therefore useful.

The result treats the abstract semilinear parabolic equation

du/dt = −Au + g(u) (14.2)

as considered in Section 13.2; the argument relies crucially on the fact that the
solution u(t) is given by the variation of constants formula

u(t) = e−Atu0 +
∫ t

0
e−A(t−s)g(u(s)) ds.

Theorem 14.8 For each α with 0 ≤ α ≤ 1/2 there exists a constant Kα such
that if

‖g(u) − g(v)‖ ≤ L‖Aα(u − v)‖ for all u, v ∈ D(Aα)

then any periodic orbit of (14.2) must have period at least KαL−1/(1−α).

While we assume that g is uniformly Lipschitz, this uniformity need only
hold for u, v contained in the (necessarily bounded) periodic orbit.

Proof On a periodic orbit of period T we have

u(t) = u(t + T ) = e−AT u(t) +
∫ T

0
e−A(T −s)g(u(s + t)) ds,
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and so

(I − e−AT )u(t) =
∫ T

0
e−A(T −s)g(u(s + t)) ds.

It follows that

u(t) − u(t + τ )

= (I − e−AT )−1
∫ T

0
e−A(T −s)[g(u(t + s)) − g(u(t + τ + s))] ds.

Since u is T -periodic,∫ T

0
g(u(s + t)) ds =

∫ T

0
g(u(s + t + τ )) ds,

and so in fact for any constant c

(I − e−AT ) (u(t) − u(t + τ ))

=
∫ T

0
(e−A(T −s) − cI )(g(u(s + t)) − g(u(s + t + τ ))) ds.

Therefore

u(t) − u(t + τ )

=
∫ T

0

[
(I − e−AT )−1(e−A(T −s) − cI )

]
(g(u(s + t)) − g(u(s + t + τ ))) ds.

For ease of notation we now write

D(t) = u(t) − u(t + τ ) and G(t) = g(u(t)) − g(u(t + τ )).

Then since the eigenfunctions of A are also the eigenfunctions of

(I − e−AT )−1(e−A(T −s) − cI ),

we have, for each k ∈ N,

(AαD(t), wk) =
∫ T

0
λα

k

e−λk (T −s) − c

1 − e−λkT
(G(t + s), wk) ds,

and so

|(AαD(t), wk)|

≤ λα
k

1 − e−λkT

(∫ T

0
(e−λks − c)2 ds

)1/2 (∫ T

0
(G(t + s), wk)2 ds

)1/2

.
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We now choose c = (1 − e−λkT )/λkT in order to minimise the first integral,
for which we then obtain∫ T

0
(e−λks − c)2 ds = T

[
1 − e−2λkT

2λkT
− (1 − e−λkT )2

(λkT )2

]
.

Therefore

|(AαD(t), wk)| ≤ T 1/2−α �(λkT )

(∫ T

0
(G(t + s), wk)2 ds

)1/2

,

where

�(μ) := μα

1 − e−μ

[
1 − e−2μ

2μ
− (1 − e−μ)2

μ2

]1/2

.

Now, �(μ) is bounded on [0,∞) by some constant Cα: it is clear that �(μ) ∼
μα−1/2/

√
2 as μ → ∞, while a careful Taylor expansion shows that �(μ) ∼

μα/2
√

3 as μ → 0 (see Exercise 14.4).
It follows that for each k ∈ N

|(AαD(t), wk)|2 ≤ C2
α T 1−2α

∫ T

0
|(G(t + s), wk)|2 ds.

Summing both sides over all k we obtain

|AαD(t)|2 ≤ C2
α T 1−2α

∫ T

0
|G(t + s)|2 ds ≤ C2

α T 1−2αL2
∫ T

0
|AαD(s)|2 ds.

Now integrate the left- and right-hand sides of this expression with respect to
t between t = 0 and t = T to obtain∫ T

0
|AαD(t)|2 dt ≤ C2

α T 2−2αL2
∫ T

0
|AαD(s)|2 ds.

Therefore if CαT 1−αL < 1 we must have∫ T

0
|Aα(u(t) − u(t + τ ))|2 dt = 0.

It follows that u(t) = u(t + τ ) for all t ∈ [0, T ], and since this holds for any
τ > 0, u(t) must be a constant orbit. Therefore any periodic orbit must have
period at least KαL−1/(1−α). �

Exercises

14.1 Show that the nonzero singular values of M are also the square roots of
the eigenvalues of MMT .
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14.2 Choose some L ∈ L (RN, R
k), and let {eα}Nα=1 be a basis for R

N , and
{êj }kj=1 be a basis for R

k . Write L in the form

L =
∑
α,j

cα,jLα,j ,

where Lα,j is the linear map from R
N into R

k given by

Lα,j (z) = (z, eα)êj α = 1, . . . , N ; j = 1, . . . , k

(i.e. Lα,j is the linear map that sends eα to êj ). Write Lz = Mzc for some
transformation Mz from R

Nk into R
k and c ∈ R

Nk , and show that Mz has
k nonzero singular values, all of which are |z|. [Hint: use the result of the
previous exercise to find the singular values of Mz.]

14.3 Let E be the set of linear maps L : R
N → R

k of the form

L = (l∗1 , l∗2 , · · · , l∗N ),

with
∑N

α=1 |lα|2 ≤ 1; this is equivalent to taking {lα,j } in BNk , the unit
ball in R

Nk . Equip E with a probability measure μ, equal to Lebesgue
measure on BNk , normalised so that the total measure of E is equal to
one. Use Lemma 14.3 combined with the result of the previous exercise
to show that for any x ∈ R

N and any ε > 0,

μ{L ∈ E : |Lx| < ε} ≤ c

(
ε

|x|
)k

,

where c depends on k and N (cf. Lemma 4.1).
14.4 Perform a Taylor expansion of

�(μ) = μα

1 − e−μ

[
1 − e−2μ

2μ
− (1 − e−μ)2

μ2

]1/2

.

about μ = 0 to show that �(μ) ∼ μα/2
√

3 as μ → 0.
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Parametrisation of attractors via point values

The aim of this final chapter is to show that if the attractor A consists of
real analytic functions defined on some domain � then one can parametrise
the attractor using a sufficient number of point values. We will show that if k

is large enough (proportional to the box-counting dimension of A ) then for
almost every choice of k points {xj } in � the mapping

u �→ (u(x1), . . . , u(xk))

is an embedding of A into R
kd .

More precisely, we will give a proof of the following theorem, first proved
(in a slightly different form) by Friz & Robinson (2001). The proof makes use
of a number of the ideas that have already been discussed: both the Hausdorff
and box-counting dimensions, the thickness and dual thickness, and, of course,
the embedding result of Theorem 8.1. (For a related result in the context of
purely analytic systems see Sontag (2002).)

Theorem 15.1 Let A be a compact subset of L2
per(�, R

d ) with dB(A )
finite. Suppose also that A consists of real analytic functions. Then, for
k ≥ 16dB(A ) + 1 almost every set x = (x1, . . . , xk) of k points in � makes
the map Ex, defined by

Ex[u] = (u(x1), . . . , u(xk))

one-to-one between X and its image.

In the statement of the theorem, we set � = ∏m
j=1[0, Lj ], and denote by

L2
per(�, R

d ) those functions in L2
loc(Rm, R

d ) that are periodic with period
Lj > 0 in the {ej } direction,

u(x + Ljej ) = u(x) for all j = 1, . . . , m.

‘Almost every’ is with respect to Lebesgue measure on �k .

160
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Although we give the result for attractors that consist of periodic functions,
with a little additional work essentially the same techniques can be used to
prove a more general result, valid (for example) on bounded domains with
Dirichlet boundary conditions, see Kukavica & Robinson (2004).

Before starting the proof proper, we give an idea of why the analyticity
condition is required. Suppose that we have chosen (x1, . . . , xk), and that these
are in fact a ‘bad’ set of points, which means that there are u, v ∈ A with
u �= v such that

u(xj ) = v(xj ) for every j = 1, . . . , k.

Looking instead at the set of differences X = A − A , our chosen points are
‘bad’ if there exists some nonzero w ∈ X such that

w(xj ) = 0 for every j = 1, . . . , k.

In other words, a collection of points is ‘bad’ if there is a nonzero element of
X that is simultaneously zero at all these points. We use the analyticity of w to
limit the size of its set of zeros (Theorem 15.4).

One can readily find (albeit artificial) examples of families of functions that
are not real analytic for which a similar result fails. For example, if

u(x; ε) =
{

0 −1 ≤ x = 0,

e−ε/x2
0 < x ≤ 1

and ε ∈ [1, 2] then no number of point observations within [−1, 0] will serve
to distinguish different members of this family.

15.1 Real analytic functions and the order of vanishing

15.1.1 Real analytic functions

We give here a very brief treatment of real analytic functions, following John
(1982, Chapter 3.3), with proofs relegated to the exercises. Given a multi-index
α = (α1, . . . , αm), we write α! = α1! · · ·αm! and xα = x

α1
1 · · · xαm

m . A function
f : R

m → R is real analytic at x if there exists an ε > 0 such that for some
real coefficients {cα}α≥0 the equality

f (y) =
∑
α≥0

cα(y − x)α (15.1)

holds for all y with |y − x| ≤ ε. A function f : R
m → R is real analytic

in �, written f ∈ Cω(�), if f is real analytic at each x ∈ �. A function
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f : R
m → R

d is real analytic if each of its components is real analytic. The
following theorem is a consequence of the results of Exercises 15.2 and 15.3.

Theorem 15.2 If f = (f1, . . . , fd ) is real analytic on an open set � then for
any compact subset K ⊂ � there exist positive constants ε, M , and τ , such
that for every x ∈ K ,

f (y) =
∑
α≥0

1

α!
Dαf (x)(y − x)α for all y ∈ � with |y − x| < ε, (15.2)

and

|Dβfk(x)| ≤ M|β|!τ−|β| for all k = 1, . . . , d. (15.3)

15.1.2 Order of vanishing

The order of vanishing of a C∞ function f : U → R at a point x is the smallest
integer k such that Dαf (x) �= 0 for some multi-index α with |α| = k. We say
that f has finite order of vanishing in U if the order of vanishing of u is finite
at every x ∈ U .

Lemma 15.3 If U is a connected open subset of R
n and f ∈ Cω(U ) then f

has finite order of vanishing in U .

Proof We show that f is determined uniquely by its derivatives at any single
point x ∈ U ; then if f does not have finite order of vanishing in U , Dαf (x) = 0
for every α ≥ 0 for some x ∈ U , from which it follows that f ≡ 0.

Fix some x ∈ U , and take f, g ∈ Cω(U ) with Dαf (x) = Dαg(x) for every
α ≥ 0. Let h = f − g, and define

U1 = {x ∈ U : Dαh(x) = 0 for all α ≥ 0},
U2 = {x ∈ U : Dαh(x) = 0 for some α ≥ 0}.

The set U2 is open because Dαh is continuous for every α ≥ 0, and U1 is also
open, since if Dαh(x) = 0 for every α ≥ 0, h(y) = 0 in a neighbourhood of x

using (15.2). Since x ∈ U1, it follows from the connectedness of U that U2 is
empty. �

In fact if f has finite order of vanishing in U , then its order of vanishing is
uniformly bounded on any compact subset K ⊂ U . Arguing by contradiction,
suppose not; then there is a sequence xj ∈ K with the order of vanishing of u at
xj at least j . Since K is compact, xj has a subsequence that converges to some
x∗ ∈ K; it follows that u vanishes to infinite order at x∗, a contradiction. In
particular, when we are dealing with real analytic periodic functions, the order
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of vanishing will be uniformly bounded, since we can restrict our attention to
the fundamental compact domain � = ∏m

j=1[0, Lj ].
The following theorem, whose proof can be found in Kukavica & Robinson

(2004), serves to limit the set of possible zeros of parametrised families of such
functions.

Theorem 15.4 Let K be a compact connected subset of R
m. Suppose that

for every fixed p ∈ � ⊂ R
N the function w = w(x; p),

w : K × � → R
d ,

has order of vanishing at most j < ∞, and is such that ∂αw(x; p) depends on
p in a θ -Hölder way for all |α| ≤ j . Then the zero set of w(x; p), i.e.

{(x, p) : w(x, p) = 0},
viewed as a subset of K × � ⊂ R

m × R
N , is contained in a countable union

of manifolds of the form

(xi(x
′, p), x ′; p),

where x ′ = (x1, . . . , xi−1, xi+1, xm) and xi is a θ -Hölder function of its argu-
ments.

15.2 Dimension and thickness of A in Cr(�, R
d)

We now show that A is a countable union of sets, all of which have box-
counting dimension in Cr (B, R

d ) (for any r ∈ N) bounded by the box-counting
dimension of A in L2(�, R

d ) and all of which have thickness exponent zero
in Cr (B, R

d ) (for any r ∈ N).
Since A consists of real analytic functions, and � is compact, for every

element u ∈ A there exist M > 0 and τ > 0 such that

|Dαu(x)| ≤ M|α|!τ−|α| for all x ∈ �, (15.4)

see (15.3). For j ∈ N, we set

Aj = {u ∈ A : u satisfies (15.4) with M = j, and τ = 1/j}; (15.5)

clearly Aj+1 ⊇ Aj , and A = ∪∞
j=1Aj .

Lemma 15.5 For any j ∈ N, for every r ∈ N the box-counting dimension
of Aj in Cr (�, R

d ) is less than or equal to that of A in L2(�, R
d ), and the

thickness exponent of Aj in Cr (�, R
d ) is zero.
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Proof Standard Sobolev embedding results (see (10.1)) guarantee that

‖u‖Cr (�,Rd ) ≤ C‖u‖Hr+(d/2)+1(�,Rd ),

and if A = −� + I , where � is the d-component Laplacian on �,

‖u‖Hr+(d/2)+1 ≤ c‖A(r+(d/2)+1)/2u‖,
(see (10.3)), whence

‖u‖Cr (�,Rd ) ≤ c‖A(r+(d/2)+1)/2u‖.
Thus, using the simple results of (3.5) and (7.2) (on box-counting dimension
and thickness for sets considered as subsets of different spaces) it is sufficient to
prove the lemma with Cr (�, R

d ) replaced by D(Ar ). We note here that since
functions in Aj enjoy uniform bounds on their derivatives, Aj is uniformly
bounded in D(Ar ) for each r ∈ N,

‖Aru‖ ≤ Rr for all u ∈ Aj . (15.6)

We start with the box-counting dimension. If s > r , then for any u ∈ D(As)
we have the interpolation inequality

‖Aru‖ ≤ ‖u‖1−(r/s)‖Asu‖r/s

(see Exercise 13.4). It follows from (15.6) that the identity map from Aj onto
itself is Hölder continuous as a map from L2(�, R

d ) into D(Ar ) with Hölder
exponent as close to 1 as we wish. That the box-counting dimension of Aj in
the space D(Ar ) is bounded by dB(Aj ; L2) ≤ dB(A ; L2) is a consequence of
part (iv) of Lemma 3.3.

In order to show that the thickness exponent is zero, let Pn denote the
projection onto the space spanned by the first n eigenfunctions of A,

Pnu =
n∑

j=1

(u,wj )wj

and set Qn = I − Pn. Recall that the nth eigenvalue of A satisfies λn ∼ n2/d

(see e.g. Davies (1995)). For any k ∈ N we have

|ArQnu| = |A−kQn(Ak+ru)| ≤ ‖A−kQn‖L (H )|Ak+ru| ≤ λ−k
n+1Rk+r

≤ C(n + 1)−2k/dRk+r ≤ Cn−2k/dRk+r .

Therefore,

distD(Ar )
(
Aj , PnD(Ar )

) ≤ CRk+r

n2k/d
,
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and hence, using Exercise 7.1,

τ (Aj ; D(Ar )) ≤ d

2k
.

Since this holds for any k, τ (Aj ; D(Ar )) = 0 and the result follows. �

15.3 Proof of Theorem 15.1

We now give the proof of Theorem 15.1: recall that we have to show that almost
every choice of k points x = (x1, . . . , xk) from � makes the map

Ex[u] = (u(x1), . . . , u(xk))

one-to-one between A and its image.

Proof Suppose that almost every collection of k points makes Ex one-to-one
on Aj (as defined in (15.5)) for each j . Then almost every collection of points
is one-to-one on every Aj , and hence on A itself: if

Ex(u) = Ex(v)

for some u, v ∈ A (u �= v), then u, v ∈ Aj for some j , and hence u = v. So
we can fix j and concentrate on showing that almost every collection of k points
makes Ex one-to-one on Aj .

Let Wj = (Aj − Aj )\{0}. If Ex is to be one-to-one on Aj then it should be
nonzero on Wj . Since Wj consists of real analytic periodic functions, the order
of vanishing of each w ∈ Wj is uniformly bounded on �. Let

Wj,r = {w ∈ Wj : the order of vanishing of w is at most r}.
As above, if almost every x makes Ex one-to-one on Wj,r for every r ∈ N, then
almost every x makes Ex one-to-one on Wj .

Lemma 15.5 implies that, for a fixed j and r ,

dB(Wj,r ; Cr (�, R
d )) ≤ 2dB(A ; L2) and τ (Wj,r ; Cr (�, R

d )) = 0.

Thus, using Proposition 7.10 (zero thickness implies zero dual thickness),
τ ∗(Wj,r ; Cr (�, R

d )) = 0, and hence Theorem 8.1 (embedding with Hölder
continuous inverse) guarantees that for any

N > 4dB(A ) and θ < 1 − (4dB(A )/N ) (15.7)

there is a parametrisation w(x; p) of Wj,r in terms of N coordinates
p ∈ � ⊂ RN which is θ -Hölder into Cr (�, R

d ). It follows that all the
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derivatives of w (with respect to x) up to order r depend in a θ -Hölder way on
the parameter p.

Now, suppose that x = (x1, . . . , xk) is a set of k points in � for which Ex is
zero somewhere on Wj,r . Then there must exist a p ∈ � such that

w(xi ; p) = 0 for all i = 1, . . . , k.

Theorem 15.4 guarantees that the zeros of w, considered as a subset of
� × �, are contained in a countable collection of sets, each of which is the
graph of a θ -Hölder function,

(x ′, xj (x ′; ε); ε),

where x ′ = (x1, xj−1, xj+1, xm). Each of these manifolds has (m − 1) + N free
parameters.

It follows that collections of k such zeros (considered as a subset of �k × �)
are contained in the product of k such manifolds. Since the coordinate p is
common to each of these, they are the graphs of θ -Hölder functions from a
subset of R

N+(m−1)k into R
k . The result of Exercise 2.1 shows that each of these

sets has Hausdorff dimension at most

N + (m − 1)k + k(1 − θ ),

and using the fact that the Hausdorff dimension is stable under countable unions
(Proposition 2.8(iii)) the same goes for the whole countable collection.

The projection of this collection onto �k enjoys the same bound on its
dimension (since Lipschitz maps do not increase the Hausdorff dimension,
Proposition 2.8(iv)), and so to make sure that these ‘bad choices’ do not cover
�k ⊂ R

mk we need

N + (m − 1)k + k(1 − θ ) < mk.

This is certainly true if

k >
N

θ

and since the exponent θ can be chosen arbitrarily close to 1 − (4dB(A )/N )
(see (15.7)), it follows that

k >
N2

N − 4dB(A )

will suffice. Choosing the integer value of N with 8dB(A ) − 1
2 ≤ N <

8dB(A ) + 1
2 shows that k ≥ 16dB(A ) + 1 is sufficient.
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Since under this condition the collection of ‘bad choices’ is a subset of
R

km with Hausdorff dimension less than km it follows from the fact that km-
dimensional Hausdorff measure and Lebesgue measure on R

km are proportional
(Theorem 2.4) that almost every choice of x (with respect to Lebesgue measure
on �k) makes Ex nonzero on Wj,r . �

15.4 Applications

15.4.1 Determining nodes

The theorem provides an instantaneous version of the ‘determining nodes’ intro-
duced by Foias & Temam (1984): they called a collection of points {x1, . . . , xk}
in � (asymptotically) ‘determining’ if for two solutions u(x, t) and v(x, t),

max
j=1,...,k

|u(xj , t) − v(xj , t)| → 0 as t → ∞ (15.8)

implies that

sup
x∈�

|u(x, t) − v(x, t)| → 0 as t → ∞.

Foias & Temam showed that for the two-dimensional Navier–Stokes equations
there exists a δ such that if for every x ∈ �

|x − xj | < δ for some j ∈ {1, . . . , k}
then the collection of nodes is determining.1 Under a mild additional condition
our ‘instantaneous determining nodes’ are also asymptotically determining.

Lemma 15.6 Suppose that the conditions of Theorem 15.1 hold, and that the
attractor A attracts solutions in the norm of L∞(�). Then almost every set of
k nodes {x1, . . . , xk} in � is asymptotically determining.

Proof Since A is a compact subset of L∞, the map E−1
x : R

kd → L∞(�) is
continuous. Thus given any ε > 0 there exists a δ, 0 < δ < ε, such that for
u, v ∈ A ,

max
j=1,...,k

|u(xj ) − v(xj )| < δ ⇒ ‖u − v‖∞ <
ε

3
.

Now let u(t) and v(t) be two solutions that agree asymptotically on the nodes
x1, . . . , xk as in (15.8). Since A attracts in L∞(�), there exists a time T > 0

1 In the same paper they conjectured that for solutions on the attractor coincidence of the values
of u and v at k points (for k large enough) should imply coincidence of u and v; our theorem
proves this conjecture when the attractor consists of real analytic functions. A proof for systems
that possess an inertial manifold was given by Foias & Titi (1991).
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such that for all t ≥ T

distL∞ (u(x, t),A ) <
δ

3
, distL∞(v(x, t),A ) <

δ

3
, (15.9)

and also

max
j=1,...,k

|u(xj , t) − v(xj , t)| <
δ

3
.

It follows that there exist functions u∗(t), v∗(t) ∈ A such that

‖u∗(t) − u(t)‖L∞ <
δ

3
and ‖v∗(t) − v(t)‖L∞ <

δ

3
,

and consequently

max
j=1,...,k

|u∗(xj , t) − v∗(xj , t)| < δ.

It follows that ‖u∗(t) − v∗(t)‖L∞ < ε/3, which combined with (15.9) shows
that ‖u(t) − v(t)‖L∞ ≤ ε for all t ≥ T . �

15.4.2 Degrees of freedom in turbulent flows

Foias & Temam (1989) showed that if the forcing function f in the two-
dimensional Navier–Stokes equations is real analytic then the attractor consists
of real analytic functions. This means that as well as its interest as an abstract
result, this theorem has application in the theory of turbulence (and more
generally in any spatially extended system), allowing a rigorous connection
between the attractor dimension and the ‘number of degrees of freedom’.

Using dimensional analysis, Landau & Lifshitz (1959) introduced a heuristic
notion of the ‘number of degrees of freedom’ in a turbulent fluid flow which
has since been extensively applied. The result of their argument is that if l is
‘the minimum significant length scale of the flow’ (a quantity also arrived at
via dimensional analysis), then the number of degrees of freedom of the flow
is the number of boxes of side l needed to fill the domain � that contains the
fluid, i.e. the ‘number of degrees of freedom’ in the flow should be defined as

L n(�)

ln
,

where � ⊂ R
n – i.e. the number of ‘little boxes of size l’ that will fit into �.

If we identify ‘the number of degrees of freedom of the flow’ with the
dimension of the global attractor (cf. Doering & Gibbon (1995)), then this
suggests that the ‘smallest significant length’ will be given by

l ∼ [dB(A )]−1/n.
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Theorem 15.1 allows the points {x1, . . . , xk} to be placed anywhere in the
domain �, there just have to be a sufficient number k ∼ dB(A) of them. But if
we decide to divide the space into equal boxes and place one node in each box,
then the side of the box would have length l ∼ dB(A)−1/d . In this way Theorem
15.1 gives a rigorous derivation of Landau–Lifshitz heuristic.

It is particularly interesting to note that in the case of the two-dimensional
Navier–Stokes equations with periodic boundary conditions, this gives an
estimate for l that agrees with the results from the heuristic theory of two-
dimensional turbulence due to Kraichnan (1976) which is the analogue of
Kolmogorov’s celebrated theory of three-dimensional turbulence. For more on
the applications of these results to fluid dynamics see Robinson (2007).

Exercises

15.1 Let α, β be n-component multi-indices, and x ∈ R
n with |xi | < 1 for all

i = 1, . . . , n. Show that∑
α: α≥β

α!

(α − β)!
xα−β = β!

(1 − x)1+β
, (15.10)

where 1 = (1, . . . , 1) (n times). [Hint: the left-hand side is Dβ 1
(1−x)1 .]

15.2 Suppose that f : R
n → R is real analytic at x with

f (y) =
∑
α≥0

cα(y − x)α (15.11)

for all |y − x| ≤ ε. Fix q ∈ (0, 1). Show that for any multi-index β ≥ 0,
for |y − x| ≤ qε, the derivative Dβf (y) can be obtained from term-by-
term differentiation of (15.11), and

|Dβf (y)| ≤ M|β|!τ−|β|,

where

M = μ

(1 − q)n
and τ = (1 − q)ε.

Deduce that cα = (1/α!)Dαf (x).
15.3 Suppose that f ∈ Cω(�). Show that for any compact subset K ⊂ � there

exist positive constants M and τ such that

|Dβf (x)| ≤ M|β|!τ−β

for every x ∈ K .



Solutions to exercises

1.1 The closed set F1 is contained in the open set U1 ∩ (X \ ∩n+2
i=2 Fi), and so

there exists an open set V1 with

F1 ⊆ V1 ⊆ V1 ⊆ U1 ∩ (X \ ∩n+2
i=2 Fi).

So V1 ⊂ U1 and V1 ∩⋂n+2
i=2 Fi = ∅. Now, there exists an open set V2 with

F2 ⊆ V2 ⊆ V2 ⊆ U2 ∩
(

X \
(

V1 ∩
n+2⋂
i=3

Fi

))
,

and so V2 ⊆ U2 and V1 ∩ V2 ∩⋂n+2
i=3 Fi = ∅. Continuing in this way shows

that one can take the {Fi} open in the original assumption.
Now let {U1, . . . , Uk} be an open cover of X. If k ≤ n + 1 then this cover

already has order ≤ n, so we can assume that k ≥ n + 2. Set Vj = Uj for
j = 1, . . . , n + 1, and

Vj+2 =
k⋃

i=n+2

Ui.

These sets cover X, and so there exist open sets {Fi}n+2
i=1 such that Fi ⊆ Vi ,

X ⊆ ∪n+2
i=1 Fi , and ∩n+2

i=1 Fi = ∅. Let Wi = Fi for i ≤ n + 1 and Wi = Fn+2 ∩ Ui

for i ≥ n + 2. Then for every i, Wi ⊆ Ui ,

X ⊆
k⋃

i=1

Wi, and
n+2⋂
i=1

Wi = ∅.

One can perform the same construction for every subset of {1, . . . , k} consisting
of n + 2 elements, to deduce that every intersection of n + 2 of the {Wi} is
empty, and hence that dim(X) ≤ n.

170
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1.2 Let α2 consist of all open unit squares in R
2 of the form

(n, n + 1) × (m,m + 1) n,m ∈ Z;

all the elements of A2 are disjoint. Let α1 consist of all the open edges of these
squares,

{n} × (m,m + 1) or (n, n + 1) × {m},
but expanded to open subsets of R

2, such that the resulting sets are pairwise
disjoint. Let α0 be the collection of all open balls of radius 1

2 about the points
(n,m) of the integer lattice. Then α = α0 ∪ α1 ∪ α2 is a cover of R

2 of mesh
size 1 and of order 3, see the figure below.

α2 α1 α0

The three sets α0, α1, and α2 that provide a cover of R
2 of order 3.

If X is a compact subset of R
2 then any covering β of X has Lebesgue

number δ > 0. Rescale the covering α by a factor of δ/3, which produces a
new covering of R

2 of mesh size δ/3 and order 3. The collection of all elements
of this covering that intersect X forms a refinement of α of order 3, and so
dim(X) ≤ 2.

1.3 Since K separates A ∩ C and A ∩ C ′ in A, there exist disjoint open sets
U and U ′ such that

A \ K ⊂ U ∪ U ′, A ∩ C ⊂ U, and A ∩ C ′ ⊂ U ′.

Note that since U and U ′ are open and disjoint, Ū ∩ U ′ = ∅.
Since C, C ′, and K are disjoint closed sets, there are open sets OC , OC ′ , and

OK that contain C, C ′, and K respectively and whose closures are disjoint. (Let
X1, X2, and X3 be closed subsets of X. Then there exist: (i) open sets U1 and
U2 such that X1 ∪ X2 ⊂ U1, X3 ⊂ U2, and Ū1 ∩ Ū2 = ∅; (ii) open sets V1 and
V2 such that X1 ∪ X3 ⊂ V1, X2 ⊂ V2, and V̄1 ∩ V̄2 = ∅; (iii) open sets W1

and W2 such that X1 ⊂ W1, X2 ∪ X3 ⊂ W2, and W̄1 ∩ W̄ = ∅. We set O1 =
U1 ∩ V1 ∩ W1, O2 = U1 ∩ V2 ∩ W1, and O3 = U2 ∩ V1 ∩ W2. Then each Oj
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is open, Xj ⊂ Oj , and Ōi ∩ Ōj = ∅ if i �= j .) Set W = OC ∪ U ; clearly C ∪
U ⊂ W , and since W̄ = ŌC ∪ Ū , W̄ ∩ [C ′ ∪ U ′] = ∅.

Now let B = ∂W . It follows that B separates C and C ′ in X; while if
x ∈ W̄ \ W then x ∈ W̄ , so x /∈ U ′, and x /∈ W , so x /∈ U . Thus if x ∈ B ∩ A

it follows that x ∈ K .

1.4 Suppose that X is compact, f : X → Y is continuous and one-to-one, but
f −1 : f (X) → X is not continuous. Then there exists an ε > 0, a y ∈ f (X),
and a sequence {yn} ∈ f (X) such that yn → y but

|f −1(yn) − f −1(y)| > ε. (S.1)

However, f −1(yn) is a sequence in the compact set, so it has a subsequence
(which we relabel) such that f −1(yn) → x ∈ X. Since f is continuous, it fol-
lows that yn → f (x), so that y = f (x). But then x = f −1(y), which contradicts
(S.1).

1.5 The proof proceeds by induction on r; the result is clear if r = 1. So
assume that the proposition holds for r = k; we wish to prove that it holds for
r = k + 1. Take an open cover {U1, . . . , Uk+1} of M , and let U ′

k = Uk ∪ Uk+1.
Then {U1, . . . , Uk−1, U

′
k} is an open cover of M by k sets, and so by the

induction hypothesis there exists an open covering {V1, . . . , Vk−1, Vk′ } of M

such that

V1 ⊂ U1, V2 ⊂ U2, · · · Vk−1 ⊂ Uk−1, V ′
k ⊂ U ′

k

and the sets {V1, . . . , Vk−1, V
′
k} are mutually disjoint.

Now, V ′
k ∩ M has dimension ≤ 0, and Uk and Uk+1 cover V ′

k ∩ M . Thus there
exist disjoint open sets Vk and Vk+1 with Vk ⊂ Uk , Vk+1 ⊂ Uk+1, and V ′

k ∩ M ⊆
Vk ∪ Vk+1. It follows that {V1, . . . , Vk+1} is a refinement of {U1, . . . , Uk+1}
consisting of disjoint open sets.

1.6 Write X = ∪n+1
i=1 Xi where ind(Xi) ≤ 0. If α is a cover of X then α is a

cover of Xi for each i. Since ind(Xi) ≤ 0 we can find a refinement of α, βi ,
that covers Xi and consists of disjoint sets.

Now, β = ∪iβi is a refinement of α that covers X. Any collection of more
than n + 2 elements of β must contain two elements from one of the βi , and
hence there intersection is empty. So β is a refinement of order ≤ n + 1.

1.7 Since the result of the previous exercise shows that dim(A) ≤ ind(A),
we only have to prove the reverse inequality. Take A with dim(A) ≤ n. Then
by (i) A has a homeomorphic image that is a subset of M n

2n+1 ∩ I2n+1. By
(ii) ind(M n

2n+1) = n, and so by (iii) ind(M n
2n+1 ∩ I2n+1) ≤ n. Since ind(·) is a

topological invariant, it follows that ind(A) ≤ n.
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2.1 Let ε > 0. Since dH(X) ≤ n, we can cover X by a collection
{
B(xi, ri)

}
i∈I

of balls with centres xi ∈ X such that∑
i∈I

rn+ε
i < ∞.

It follows that G is covered by the collection{
B(xi, ri) × B(f (xi), Crθ

i )
}

i∈I
.

Since B(f (xi), Crθ
i ) is a subset of R

m, we can cover it by mi balls B(yij , ri),
where mi ≤ K(Crθ−1

i )m + 1 with K depending only on m. We therefore
obtain

G ⊆
⋃
i∈I

mi⋃
j=1

B
(
(f (xi), yij ), 2ri

)
.

Since

∑
i∈I

mi∑
j=1

(2ri)
n+(1−θ)m+ε = 2n+(1−θ)m+ε

∑
i∈I

mir
n+(1−θ)m+ε
i

≤ K2n+(1−θ)m+εCm
∑
i∈I

rn+ε
i +

∑
i∈I

r
n+(1−θ)m+ε
i < ∞,

we have dH(G) ≤ n + (1 − θ )m + ε, and since ε > 0 is arbitrary the result
follows.

2.2 Denote by K1, . . . , Km the closed intervals that make up

�n := [0,∞) \ (J0 ∪ · · · ∪ Jn).

Clearly �n ⊃ �. The integers {n + 1, n2, . . .} can be partitioned into sets of
indices I1, . . . , Im such that

Kj =
⎛
⎝⋃

q∈Ij

Jq

⎞
⎠ ∪ (KJ ∩ �).

Since the Lebesgue measure of � is zero, Kj ∩ � cannot contribute to the
length of the interval Kj , and so, as the Jq , are disjoint, we must have

|Kj | =
∑
q∈Ij

|Jq | ≤ ε, (S.2)

using the first inequality in (2.6).
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Now, �n, and so � itself, can be covered by the intervals K1, . . . , Km. Using
(S.2) it follows that

m∑
i=1

|Ki |1/2 =
m∑

i=1

⎛
⎝∑

q∈Ii

|Jq |
⎞
⎠1/2

≤
m∑

i=1

∑
q∈Ii

|Jq |1/2 =
∞∑

q=n+1

|Jq |1/2 ≤ ε

using the second inequality in (2.6). Thus H 1/2(�) = 0 as claimed.

2.3 Clearly H d
δ (X) ≤ 2dS d

δ (X), since any cover by balls of radius δ provides
a 2δ-cover of X. Also, if {Ui} is a δ-cover of X then any Ui is contained in some
ball of radius δ, so that S d

δ (X) ≤ H d
δ (X). It follows that S d (X) ≤ H d (X) ≤

2dS d (X), and so the value of d at which S d (X) jumps from ∞ to 0 is the
same as that at which H d (X) makes the same jump.

2.4 Let M = sup{r(x) : x ∈ X} and A1 = {x ∈ A : 3M/4 < r(x) ≤ M}.
Choose some x1 ∈ A1, and then inductively

xk+1 ∈ A1 \
k⋃

i=1

B(xi, 3r(xi)) (S.3)

while the right-hand side of (S.3) is non-empty. The balls {B(xi), r(xi)} are
disjoint by definition, and lie in a compact subset of X, so there can be only a
finite number of them, say k1. Thus

A1 ⊆
k1⋃

i=1

B(xi, r(xi)).

Since r(x) ≤ 2r(xi) for x ∈ A1 and i = 1 . . . , k1, this implies that

⋃
x∈A1

B(x, r(x)) ⊆
k1⋃

i=1

B(xi, 5r(xi)).

Now let

A2 = {x ∈ X : ( 3
4 )2M < r(x) ≤ 3

4M}
and

A′
2 = {x ∈ A2 : B(x, r(x)) ∩

k1⋃
i=1

B(xi, r(xi)) = ∅}.

If x /∈ A2 \ A′
2 there is an i ∈ {1, . . . , k1} such that B(x, r(x)) ∩ B(xi, r(xi)) �=

∅, and so

|x − xi | ≤ r(x) + r(xi) ≤ 3r(xi).
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Thus

A2 \ A′
2 ⊆

k1⋃
i=1

B(xi, 3r(xi)). (S.4)

Now pick xk1+1 ∈ A′
2, and then choose inductively

xk+1 ∈ A′
2 \

k⋃
i=k1+1

B(xi, 3r(xi)).

As above, there exists a k2 such that the balls B(xi, r(xi)), i = 1, . . . , k2 are
disjoint and

A′
2 ⊆

k2⋃
i=k1+1

B(xi, 3r(xi)).

Arguing as above, now using (S.4), we obtain

⋃
x∈A2

B(x, r(x)) ⊆
k2⋃

i=1

B(xi, 5r(xi)).

Continuing this process gives the required disjoint subfamily.

2.5 Let V be any neighbourhood of S, and choose δ > 0. For each x ∈ S,
choose a ball Br (x) such that Br (x) ⊂ V , r < δ, and

1

rd

∫∫
Br (x)

|f | > δ.

Now, using the result of the previous exercise, find a disjoint subcollection of
these balls {Bri

(xi)} such that S is still covered by {B5ri
(xi)}. Since these balls

are disjoint, ∫∫
V

|f | ≥
∑

i

∫∫
Bri

(xi )
|f | ≥ δ

∑
i

rd
i .

Since f ∈ L1
loc(�), the left-hand side is finite, so

∑
i r

d
i ≤ C. Since S is con-

tained in the union of {B5ri
(xi)}, and ri < δ for every i, we must have

L n(S) ≤ c
∑

(5ri)
n ≤ cδn−d

∑
ri

d ≤ Kδn−d .

Since δ > 0 was arbitrary, it follows that L n(S) = 0.
Since |f | is integrable and V is an arbitrary neighbourhood of S (which has

zero measure), we can make

1

δ

∫∫
V

|f |
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as small as we wish by choosing V suitably. The above construction then
furnishes a cover with

∑
i r

d
i arbitrarily small, and so H d (S) = 0 as claimed.

3.1 In each case it suffices to show that there exist constants c1, c2 > 0 and
α1 ≥ 1, α2 ≤ 1 such that

c1M(A, α1ε) ≤ N (A, ε) ≤ c2M(A, α2ε), (S.5)

since it follows from this that

lim sup
ε→0

log M(A, ε)

− log ε
= lim sup

ε→0

log N (A, ε)

− log ε

(and similarly for the lim inf).

(i) It is clear that N (A, ε) ≤ M(A, ε). In order to prove the lower inequality
in (S.5) consider a cover of A by N (A, ε) balls of radius ε, B(xi, ε).
Discarding any unnecessary balls from this cover, each ball B(xi, ε) must
contain a point yi ∈ A. Since

B(yi, 2ε) ⊃ B(xi, ε)

it follows that M(A, 2ε) ≤ N (A, ε).
(ii) Let Bj , j = 1, . . . , M(A, ε), be disjoint balls of radius ε with centres in

A. Any x ∈ A lies within ε of one of these balls, otherwise B(x, ε) would
be an additional ball disjoint from the Bj , so N (A, 2ε) ≤ M(A, ε).

Conversely, given such a collection of disjoint balls and another col-
lection B ′

j of ε/2-balls (not necessarily disjoint) that covers A, the centre
of each Bj lies in one of the B ′

j , and hence each Bj contains at least one
of the ε/2-balls, whence M(A, ε) ≤ N (A, ε/2).

(iii) In R
n any ε-ball is contained in at most 3n boxes of side 2ε, while if X

contains a point x in some ε-box, the whole box is contained in a ball of
radius

√
nε centred at x, from which it follows that

3−nM(X, 2ε) ≤ N (X, ε) ≤ M(X, ε/
√

n).

3.2 Take d > dB(X). Then for ε sufficiently small X can be covered by ε−d

balls of radius ε centred in X. It follows that O(X, ε) can be covered by ε−d balls
of radius 2ε, and so L n(O(X, ε)) ≤ ε−d (2ε)n�n, from whence c(X) ≤ n − d.
For the opposite inequality, if d < dB(X) then there is a sequence εj → 0 such
that there are at least ε−d

j disjoint balls of radius εj with centres in X: then

L n(O(X, εj )) ≥ ε−d
j �nε

n
j , and c(X) ≥ n − d.

3.3 Let n = dim(X), and let Kn consist of all mappings f ∈ C(X, R
2n+1)

such that dB(f (X)) ≤ n. Now, by the characterisation of dLB given in the hint,
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dLB(K) ≤ n if and only if for every k ∈ N, there exists a ε > 0 such that
No(K, ε) ≤ ε−n/k. Let Kn,k be the class of all mappings f such that this
inequality holds for some ε > 0. Clearly Kn,k is open, and

Kn =
∞⋂

k=1

Kn,k.

Now, as noted during the proof of the embedding theorem for sets with
dim(X) finite, the embedding map g defined in (1.4) maps X into an n-
dimensional polyhedron. Thus the set of maps f ∈ C(X, R

2n+1) that map X

into such a polyhedron is dense; for any such map,

dLB(f (X)) ≤ dLB(polyhedron) ≤ n.

Kn therefore contains a dense subset of C(X, R
2n+1), so is itself dense.

We have shown that Kn is a dense Gδ in C(X, R
2n+1), and Theorem 1.12

guarantees that the set of maps EX that are embeddings of X is also a dense
Gδ . It follows from the Baire Category Theorem that Kn ∩ EX is also a dense
Gδ , and in particular nonempty.

3.4 Find a set X′ homeomorphic to X such that dim(X′) = dB(X′), and a
set homeomorphic to Y such that dim(Y ′) = dB(Y ′). Then by Proposition 3.4,
dB(X′ × Y ′) ≤ dB(X′) + dB(Y ′). Since X′ × Y ′ is homeomorphic to X × Y and
dim is a topological invariant,

dim(X × Y ) = dim(X′ × Y ′) ≤ dB(X′) + dB(Y ′)

= dim(X′) + dim(Y ′) = dim(X) + dim(Y ).

3.5 Choose s > dH(X) and t > dB(Y ). Then there exists a δ0 > 0 such that
N (Y, δ) ≤ δ−t for all δ ≤ δ0. Let {B(xi, ri)} be a cover of X such that

∑
i

rs
i < 1,

which is possible since H s(X) = 0 for s > dH(X). Now for each i cover Y

with Ni := N (Y, ri) balls of radius ri , {B(yi,j , ri)}Ni

j=1. Thus

X × Y ⊂
⋃

i

⋃
j

B(xi, ri) × B(yj , ri).
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Thus

H s+t
2δ (X × Y ) ≤

∑
i

∑
j

(2ri)
s+t

≤
∑

i

N (y, ri)2
s+t rs+t

i

≤ 2s+t
∑

i

r−t
i rs+t

i < 2s+t .

It follows that H s+t (X × Y ) < ∞, and hence that dH(X × Y ) ≤ s + t . Since
s > dH(X) and t > dB(Y ) were arbitrary, this completes the proof.

3.6 Let X ⊆ ∪∞
i=1Xi with each Xi closed. Then using the Baire Category

Theorem there is an index j and an open set U ⊂ R
n such that X ∩ U ⊂ Xj .

So dB(X) = dB(Xj ). It follows using the definition that dMB(X) ≥ dB(X), and
we already have the reverse inequality.

3.7 If X ⊆ ∪iXi then

dP(X) ≤ sup
i

dP(Xi) ≤ sup
i

dB(Xi).

It follows from the definition of dMB that dP(X) ≤ dMB(X). Conversely, suppose
that s > dimP(X). Then Ps(X) = 0, and so we can find a collection of sets Xi

such that X ⊂ ∪iXi with Ps
0(Xi) < ∞ for each i. In particular, Nδ(Xi)δs is

bounded as δ → 0 for each i, from which it follows that dB(Xi) ≤ s for each
i, and hence dMB(X) ≤ s.

5.1 Take a probe space E of constant functions

E = {gc ∈ L1(0, 1) : gc(x) = c for all x ∈ [0, 1], 0 ≤ c ≤ 1},
i.e. a set isometric to [0, 1], equipped with Lebesgue measure. Then∫

f (x) + gc(x) dx =
∫

f (x) dx + c,

which is zero for at most one c ∈ [0, 1]. Thus
∫

f + g �= 0 for almost every
gc ∈ E.

5.2 To show that E is compact it suffices to consider only one ‘component’
of L, i.e. to prove the compactness of E0. Given a sequence l(n) ∈ E0 with

l(n) =
∞∑

j=1

j−γ [φ(n)
j ]∗, φ

(n)
j ∈ Sj ,

since each Sj is compact one can extract successive subsequences and then use
a diagonal argument to find a subsequence (which we relabel) such that for
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every j , φ
(n)
j → φj as n → ∞. It is then straightforward to show that

l(n) → l =
∞∑

j=1

j−γ φ∗
j ,

where clearly l ∈ E0.

5.3 Note that for each s one can view Ks as a subset of R
dj−1, and that the

set (1 − t)Ka + tKb is precisely the intersection of the convex hull of Ka and
Kb with � + ((1 − t)a + tb)γ , and so in particular is a subset of K(1−t)a+b. It
follows from the Brunn–Minkowski inequality that

L dj−1(K(1−t)a+b)1/(dj−1) ≥ (1 − t)L dj−1(Ka)1/(dj−1) + tL dj−1(Kb)1/(dj−1),

i.e. that the map s �→ L dj−1(Ks)1/(dj−1) is concave. Since Uj is symmetric this
map is also symmetric, and hence it attains its maximum value when s = 0.

7.1 Denote the right-hand side of (7.4) by τ̃ . Taking any σ ∈ (0, τ (X)), there
is a sequence εj ∈ (0, 1) converging to 0 such that

d(X, εj ) > ε−σ
j ≥

⌊
ε−σ
j

⌋
= nj ,

where �x� denotes the integer part of x. Since ε(X, nj ) ≥ εj ,

log nj

− log ε(X, nj )
≥ log�ε−σ

j �
log(1/εj )

≥ log(ε−σ
j − 1)

log(1/εj )
,

which shows that τ̃ ≥ σ . Since σ < τ was arbitrary, one can conclude that
τ (X) ≤ τ .

7.2 For any d > dB(X), there exists an ε0 such that for any ε < ε0 one can
cover X by no more than Nε = ε−d balls of radius ε, with centres {xj }Nε

j=1.
Use the Johnson–Lindenstrauss Lemma to find a function f : H → R

n, where
n = O(ln Nε), such that

1

2
‖xi − xj‖ ≤ |f (xi) − f (xj )| ≤ 2‖xi − xj‖ for all i, j = 1, . . . , Nε.

The mapping f −1|{f (x1),...,f (xN )} is 2-Lipschitz onto {x1, . . . , xN }. In particular,
it can be extended to a 2-Lipschitz map from R

n into H . Since any x ∈ X lies
within ε of one of the {xj }, this shows that there exists a 2-Lipschitz mapping
ϕ : R

n → H such that

dist(X,ϕ(Rn)) ≤ ε.

Since n = O(ln Nε) = O(−d ln ε), it follows that τLE(X) = 0.
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7.3 Let μ = det(e1, . . . , en), and define fj : R
n → R for 1 ≤ j ≤ n by

fj (x) = 1

μ
det(e1, . . . , ej−1, x, ej+1, . . . , en).

Clearly fj (ek) = δjk , fj is linear, and hence, by the choice of (e1, . . . , en),
‖fj‖∗ ≤ 1. Since fj (ej ) = 1, it follows that ‖fj‖∗ = 1.

7.4 Let {e1, . . . , en} be an Auerbach basis for U , and {f1, . . . , fn} the asso-
ciated elements of U ∗ such that ‖fi‖U∗ = 1 and fi(ej ) = δij . Extend each fi

to an element φi ∈ B∗ with ‖φi‖B∗ = 1, and define

Pu =
n∑

j=1

φj (u)ej .

Then P is a projection onto U with

‖Pu‖ ≤
n∑

j=1

‖φj (u)ej‖ ≤
n∑

j=1

|φj (u)|‖ej‖ ≤
n∑

j=1

‖u‖ = n‖u‖,

i.e. ‖P ‖ ≤ n. (A significantly more involved argument due to Kadec & Snobar
(1971) provides a projection whose norm is no larger than (dim(U ))1/2, see
also Proposition 12.14 in Meise & Vogt, 1997).

8.1 Given any rank k orthogonal projection P0, choose an orthonormal basis
{e1, . . . , ek} for P0H and by identifying x ∈ P0H with the coefficients of x in
its expansion in terms of this basis define a linear map M0 : P0H → R

k; note
that for u ∈ P0H , |M0u| = ‖u‖. Set L0 = M0P0 so that L0 ∈ L (H, R

k). Since
prevalence implies density (see comment after Lemma 5.2), given any ε > 0
there exists a linear map L ∈ E with ‖L‖ < ε such that L0 + L is injective on
X and satisfies

‖x − y‖ ≤ C‖(L0 + L)(x − y)‖θ for all x, y ∈ X.

Using Lemma 6.1, L0 + L = MP , where P is an orthogonal projection of rank
k. If Pu = 0 then

‖P0u‖ = ‖M0P0u‖ = ‖L0u‖ = ‖MPu − Lu‖ = ‖Lu‖ ≤ ε‖u‖,
and so it follows that ‖P − P0‖ < ε.

8.2 For each n ∈ N the set

Xn =
⋃
|j |≤n

Xj
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has dB(Xn) ≤ d, and hence τ ∗(Xn) ≤ d (Lemma 7.9). It follows from Theorem
8.1 that if k > 2d and

0 < θ <
k − 2d

k(1 + d)

there is a prevalent set of maps L : B → R
k that are injective on Xn and satisfy

‖x − y‖ ≤ CL,n|Lx − Ly|θ for all x, y ∈ Xn. (S.6)

Since the countable intersection of prevalent sets is prevalent, there is a prevalent
set of mappings L : B → R

k that satisfy (S.6) for every n ∈ N. In particular,
these mappings are injective on

⋃
j Xj , since if x, y ∈ ⋃j Xj , then x, y ∈ Xn

for some n, and L is injective on Xn.

8.3 Let αj = aj ej , where the {ej } are orthonormal. If L is bi-Lipschitz on X

there exists a C > 0 such that

‖L(aj ej ) − L(0)‖ = |aj |‖Lej‖ ≥ C‖αj‖ = C|aj |,
i.e. ‖Lej‖ ≥ C. Using Lemma 6.1 one can write any L : H → R

k as L = MP ,
with P an orthogonal projection of rank k. It follows that ‖Pej‖ ≥ C ′, and so
using Lemma 6.3,

rank(P ) ≥
∞∑

j=1

C ′ = ∞.

9.1 Expanding the norms as inner products yields

‖x‖2 − (x, y) − (x, z) + 1

4
‖y‖2 + 1

4
‖z‖2 + 1

2
(y, z)

≤ 1

2
‖x‖2 + 1

2
‖y‖2 − (x, y) + 1

2
‖x‖2

+ 1

2
‖z‖2 − (x, z) + 1

4
(‖y‖2 + ‖z‖2 − 2(y, z));

on cancelling terms

0 ≤ 1

2
(‖y‖2 + ‖z‖2 − 2(y, z)).

Applying (9.13) to {x0, x1, x3} and {x2, x1, x3} we obtain∥∥∥∥x0 − x1 + x3

2

∥∥∥∥2

≤ 1

2
‖x0 − x1‖2 + 1

2
‖x0 − x3‖2 − 1

4
‖x1 − x3‖2,∥∥∥∥x2 − x1 + x3

2

∥∥∥∥2

≤ 1

2
‖x2 − x1‖2 + 1

2
‖x2 − x3‖2 − 1

4
‖x1 − x3‖2,
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and adding these gives∥∥∥∥x0 − x3 + x1

2

∥∥∥∥2

+
∥∥∥∥x2 − x3 + x1

2

∥∥∥∥2

+ 1

2
‖x1 − x3‖2 ≤ 1

2

3∑
j=0

‖xj − xj+1‖2;

and (9.14) follows using the triangle inequality. (In fact this inequality holds in
any CAT(0) space, see Sato (2009).)

9.2 First note that

|sj (x)| = |�(x, xj ) − �(xj , x0)| ≤ �(x, x0),

and so s(x) ∈ �∞. Then

|sj (x) − sj (y)| = |�(x, xj ) − �(y, xj )|,
from which it follows immediately that ‖s(x) − s(y)‖�∞ ≤ �(x, y). The lower
bound ‖s(x) − s(y)‖�∞ ≥ �(x, y) follows using the fact that {xj } is dense:
in particular for any ε > 0 there exists a j ∈ N such that �(y, xj ) < ε, and
hence

|sj (x) − sj (y)| ≥ �(x, y) − 2�(y, xj ) > �(x, y) − 2ε.

10.1 Since f (x) = ∑
k ckeikx it follows that

|f (x)| ≤
∑

k

|ck| ≤
∑ 1

1 + |k|2
1/2

(1 + |k|2)1/2|ck|

≤
(∑

k

1

1 + |k|2
)1/2 (∑

k

(1 + |k|2)|ck|2
)1/2

≤ C‖u‖2
H 1 .

Since
∑

|k|≤n ckeikx is continuous for each n, f is the uniform limit of continuous
functions, so continuous.

10.2 Take a sequence {un}∞n=1 with un bounded in D(Aβ). Let

un =
∞∑

j=1

cn,jwj , so that ‖Aβun‖2 =
n∑

j=1

λ
2β

j |cn,j |2 ≤ M

for some M > 0. It follows that for each j , {cn,j }∞n=1 is a bounded sequence
of real numbers, one can find a succession of subsequences and then use the
standard diagonal method to find a subsequence (which we relabel) such that
for every n,

cn,j → c∗
n as j → ∞.
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Let u = ∑∞
n=1 c∗

nwn; note that
∑

n λ
2β
n |c∗

n|2 ≤ M . Now,

‖Aα(un − u)‖2 =
∞∑

n=1

λ2α
j |cn,j − c∗

n|2

≤
m∑

n=1

λ2α
j |cn,j − c∗

n|2 + λ
−2(β−α)
m+1

∞∑
n=m+1

λ
2β

j |cn,j − c∗
n|2

≤
m∑

n=1

λ2α
j |cn,j − c∗

n|2 + 2Mλ
−2(β−α)
m+1 .

Given ε > 0, choose m sufficiently large that the second term is ≤ ε/2; one
can then choose j large enough to ensure that the first term (with involves only
a finite number of coefficients) is also ≤ ε/2.

10.3 Since

d

dλ
(λγ e−λt ) = γ λγ−1e−λt − tλγ e−λt = λγ e−λt [γ λ−1 − t],

λγ e−λt attains its maximum when λ = γ /t . Thus

max
λ≥λ1

λγ e−λt =
{

γ γ e−γ t−γ 0 < t < γ/λ1

λ
γ

1 e−λ1t t ≥ γ /λ1,

from which (10.7) follows. Now

∫ ∞

0
‖Aγ e−At‖L (H ) dt ≤

∫ γ /λ1

0
γ γ e−γ t−γ dt +

∫ ∞

γ /λ1

λ
γ

1 e−λ1t dt

≤ γ γ e−γ 1

1 − γ

(
γ

λ1

)1−γ

+ λ
γ−1
1 e−γ

= λ
γ−1
1

e−γ

1 − γ
.

10.4 From the variation of constants formula

u(t) = e−Atu0 +
∫ t

0
e−A(t−s)g(u(s)) ds,

and so

Aβu(t) = Aβe−Atu0 +
∫ t

0
Aβe−A(t−s)g(u(s)) ds.
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Using (10.7) and (10.8)

‖Aβu(t)‖ ≤ ‖Aβ−αe−At‖L (H )‖Aαu0‖ +
∫ t

0
‖Aβe−A(t−s)‖L (H )‖Aαu(s)‖ ds

≤ tα−β‖Aαu0‖ + Iβ sup
0≤s≤t

‖Aαu(s)‖ < ∞.

10.5 Taking the inner product of du/dt + Au + B(u, u) = 0 with u yields

1

2

d

dt
‖u‖2 + ‖Du‖2 = 0,

using (Au, u) = ‖Du‖2 (10.16) and (B(u, u), u) = 0 (10.17). Now use the
Poincaré inequality (10.19) ‖u‖ ≤ ‖Du‖, so that

1

2

d

dt
‖u‖2 = −‖Du‖2 ≤ −‖u‖2.

It follows that

‖u(t)‖2 ≤ ‖u0‖2e−2t ,

and so ‖u(t)‖ → 0 as t → ∞.

10.6 Given u = ∑
k∈Ż2 ckeik·x ,

Dju =
∑
k∈Ż2

ikj ckeik·x implies that ‖Dju‖2 =
∑
k∈Ż2

|kj |2|ck|2.

Thus

‖Du‖2 =
2∑

j=1

‖Dju‖2 =
∑
k∈Ż2

|k|2|ck|2 ≥
∑
k∈Ż2

|ck|2 = ‖u‖2.

11.1 Let X be compact and invariant. Since X is compact it is bounded, so it
is attracted to A . Therefore

dist(S(t)X,A ) = dist(X,A ) → 0 as t → ∞,

i.e. dist(X,A ) = 0 so X ⊆ A . Similarly, if Y attracts all bounded sets then Y

attracts A , and so

dist(S(t)A , Y ) = dist(A , Y ) → 0 as t → ∞,

i.e. dist(A , Y ) = 0 so that A ⊆ Y .

11.2 Clearly if x = limn→∞ S(tn)bn, tn → ∞, and bn ∈ B then

x ∈
⋃
s≥t

S(s)B
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for all t ≥ 0, since the right-hand side is closed. Conversely, if

x ∈
⋂
t≥0

⋃
s≥t

S(s)B

then for any sequence tn → ∞

x ∈
⋃
s≥tn

S(s)B.

For any n such that x ∈ ⋃s≥tn
S(s)B, there exists a τn and bn such that x =

S(τn)bn. Otherwise

x = lim
j→∞

S(sj )bj

for some sequences sj and bj ∈ B. If sj is unbounded then we are done; if sj

is bounded then one can find a τn and bn ∈ B such that ‖x − S(τn)bn‖ < 1/n.

11.3 Suppose that A is not connected. Then there exist open sets O1 and O2

such that O1 ∩ A �= ∅ and O2 ∩ A �= ∅,

O1 ∪ O2 ⊃ A , and O1 ∩ O2 = ∅.

Since the compact attracting set K ⊂ B(0, R) for some R > 0, and a ball in
B is connected, it follows that S(t)B(0, R), the continuous image of B(0, R),
is connected. Since A attracts B(0, R), for t sufficiently large, S(t)B(0, R)
is contained either wholly in O1 or wholly in O2. Since B(0, R) ⊃ K ,
ω(B(0, R)) ⊃ ω(K) and hence A = ω(B(0, R)) is contained in either O1 or
O2, contradicting our initial assumption.

11.4 For any u0 ∈ U (X), u0 = S(t)u(−t); since u(t) → X as t → −∞, it
follows that γ− = ∪t≤0u(t) is bounded. Thus

dist(u0,A ) = dist(S(t)u(−t),A ) ≤ dist(S(t)γ−, X) → 0

as t → ∞, and hence u0 ∈ A .

11.5 Rearrange the governing inequality and multiply by the integrating factor
exp(− ∫ t

s
a(u) du):

d

dt

(
e− ∫ t

s
a(u) dux(t)

)
≤ b(t)e− ∫ t

s
a(u) du ≤ b(t).

Integrate this inequality from s to t + r , so that

e− ∫ t+r

s
a(u) dux(t + r) ≤ x(s) +

∫ t+r

s

b(u) du ≤ x(s) + B,
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i.e.

x(t + r) ≤ e
∫ t+r

s
a(u) du[x(s) + B] ≤ eA[x(s) + B].

Now integrate again from t to t + r with respect to s to obtain

rx(t + r) ≤ eA[X + rB],

and hence x(t + r) ≤ eA[B + (X/r)].

11.6 (i) Returning to (11.9), we retain the term in ‖Au‖2 to give

d

dt
‖Du‖2 + ‖Au‖2 ≤ ‖f ‖2.

Integrating from 0 to 1 then yields

‖Du(1)‖2 +
∫ 1

0
‖Au(s)‖2 ds ≤ ‖f ‖2 + ‖Du0‖2 ≤ 7‖f ‖2.

(ii) Using the triangle inequality on (11.6),

‖ut‖ ≤ ‖Au‖ + ‖B(u, u)‖ + ‖f ‖
≤ ‖Au‖ + c1‖u‖1/2‖Du‖‖Au‖1/2 + ‖f ‖

≤ 3

2
‖Au‖ + c2

1

2
‖u‖‖Du‖2 + ‖f ‖,

whence

‖ut‖2 ≤ 9

2
‖Au‖2 + c4

1

2
‖u‖2‖Du‖4 + 2‖f ‖2

≤ 9

2
‖Au‖2 + 36c4

1‖f ‖6 + 2‖f ‖2.

It follows that∫ 1

0
‖ut (s)‖2 ds ≤ 9

2
(7‖f ‖2) + (36c4

1‖f ‖6 + 2‖f ‖2
) =: It (c1, ‖f ‖).

(iii) Differentiating (11.6) with respect to t we obtain

dut

dt
+ Aut + B(u, ut ) + B(ut , u) = 0.

Taking the inner product of this with ut yields

1

2

d

dt
‖ut‖2 + ‖Dut‖2 = −(B(ut , u), ut )

≤ c2‖ut‖‖Dut‖‖Du‖

≤ 1

2
‖Dut‖2 + c2

2

2
‖ut‖2‖Du‖2,
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using the orthogonality property (10.17) and the inequality (11.11). Since
‖Du(t)‖2 ≤ 6‖f ‖2 it follows that

d

dt
‖ut‖2 + ‖Dut‖2 ≤ c2

2‖ut‖2‖Du‖2 ≤ 6c2
2‖f ‖2‖ut‖2.

Dropping the ‖Dut‖2 and integrating with respect to t from s to 1 yields

‖ut (1)‖2 ≤ ‖ut (s)‖2 + 6c2
2‖f ‖2

∫ 1

s

‖ut (r)‖2 dr,

and integrating once more from 0 to 1 with respect to s we obtain

‖ut (1)‖2 ≤ (1 + 6c2
2‖f ‖2)

∫ 1

0
‖ut (s)‖2 ds ≤ (1 + 6c2

2‖f ‖2)It =: ρ2
t .

(iv) Once again we use the triangle inequality on (11.6), this time to obtain

‖Au‖ ≤ ‖ut‖ + ‖B(u, u)‖ + ‖f ‖
≤ ‖ut‖ + c1‖u‖1/2‖Du‖‖Au‖1/2 + ‖f ‖

≤ ‖ut‖ + c2
1

2
‖u‖‖Du‖2 + 1

2
‖Au‖ + 2‖f ‖,

whence

‖Au(1)‖ ≤ 2‖ut (1)‖ + c2
1‖u(1)‖‖Du(1)‖2 + 2‖f ‖

≤
[
2ρt + 6

√
2c2

1‖f ‖3 + ‖f ‖
]

=: ρA.

Since A is invariant, if u1 ∈ A there exists u0 ∈ A such that u1 = S(1)u0,
and hence ‖Au1‖ = ‖AS(1)u0‖ ≤ ρA for every u1 ∈ A .

12.1 Clearly, for each λ > 0 and x ∈ K , Df (x) ∈ Lλ/2(X) for all λ > 0 and
νλ(Df (x)) = ν(x). Consequently, for each 0 < λ < 1

2 ,

dB(K) ≤ ν
log
(
(ν + 1)D

λ

)
log(1/2λ)

.

Taking the limit as λ → 0 we obtain dB(K) ≤ ν.

12.2 For Y (t) to be a supersolution of ẏ = a + b
∫ t

0 (t − s)αy(s) ds we require

2aeKt ≥ a + 2ab

∫ t

0
(t − s)−αeKs ds,

i.e.

2 ≥ e−Kt + 2b

∫ t

0
(t − s)−αe−K(t−s) ds = e−Kt + 2bK−(1−α)

∫ t

0
u−αe−u du.
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Since �(z) = ∫∞
0 t z−1e−t dt , this is certainly ensured if

2 ≥ e−Kt + 2b�(1 − α)

K1−α
.

So it suffices to choose K = (2b�(1 − α))1/(1−α). (In the case considered in this
exercise, this argument, due to Robinson (1997), offers a significantly simpler
proof than that due to Henry (1981, Lemma 7.1.1); while Henry’s result is
sharper, the bound here is often sufficient in applications.)

12.3 Using the bounds on ‖Aαe−At‖ in (10.9) and (10.10), there exists a
constant c > 0 such that

‖Aαe−AtQn‖ ≤ ct−αe−(λn+1−1)t for all t ≥ 0.

Therefore

‖QnDS(t ; u0)‖L (D(Aα ))

≤ e−λn+1t + cM

∫ t

0
(t − s)−αe−(λn+1−1)(t−s)‖DS(s; u0)‖L (D(Aα)) ds.

Using (12.10), for all 0 ≤ t ≤ 1,

‖QnDS(t ; u0)‖L (D(Aα)) ≤ e−λn+1t + cKM

∫ t

0
(t − s)−αe−(λn+1−1)(t−s) ds

≤ e−λn+1t + cKM

∫ t

0
u−αe−(λn+1−1)u du,

and since �(z) = ∫∞
0 t z−1e−t dt ,

‖QnDS(1; u0)‖L (D(Aα)) ≤ e−λn+1 + cKM�(1 − α)

(λn+1 − 1)1−α
. (S.7)

12.4 If ω̄
1/d

d < α1(Df (u)) then, using Lemmas 12.8 and 12.9, the number of
balls of radius

√
2ω̄

1/d

d needed to cover Df (u)[B(0, 1)] is bounded by

4jωj (Df (u))

ω̄
j/d

d

,

where j is the largest integer such that ω̄
j/d

d ≤ αj . Since ω̄
1/d

d ≥ ᾱd , it follows
that j ≤ d. So no more than

max
1≤j≤d

4jωj (Df (uj ))

ω̄
j/d

d

≤ max
1≤j≤d

4j ω̄j

ω̄
j/d

d

=: M

balls of radius
√

2ω̄
1/d

d are required to cover Df (u)[B(0, 1)].
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Alternatively, if ω̄
1/d

d ≥ α1(Df (u)) then

Df (u)[B(0, 1)] ⊆ B(0, α1(Df (u))) ⊆ B(0, ω̄
1/d

d ),

and it requires only one ball of radius
√

2ω̄
1/d

d to cover Df (u)[B(0, 1)] in this
case.

Thus Df (u)[B(0, 1)] can always be covered by M balls of radius 2ω̄
1/d

d .

12.5 We need to have θ < 1 in order to apply Lemma 12.1. Using the hint
repeatedly, note that for each u ∈ K

ωj (D[f k](u)) ≤ ωj (Df (f k−1(u))) · · ·ωj (Df (u)) ≤ ω̄k
j ;

if we consider f k rather than f we can replace ω̄j by �̄j := ω̄k
j . Thus given d

and γ such that (12.12) holds, we can find a k sufficiently large such that

2�̄
1/d

d = 2ω̄
k/d

d < 1

and

(2�̄
1/d

d )γ max
1≤j≤d

4j �̄j

�̄
j/d

d

= (2ω̄
k/d

d )γ max
1≤j≤d

4j
ω̄k

j

ω̄
kj/d

d

≤ 2γ 4d

[
ω̄

γ

d max
1≤j≤d

ω̄d
j

ω̄
j

d

]k/d

< 1. (S.8)

We now apply Lemma 12.1, making use of the observation in the footnote.

12.6 Since qj is concave, there exist α, β such that qj ≤ −αj + β: choose
α and β such that 0 < qn−1 = −α(n − 1) + β and 0 > qn = −αn + β. In
particular it follows that β/α < n. The argument above leading to the lower
bound on γ uses only upper bounds on the q̄j s, so dB(A ) ≤ γ provided that

γ > max
1≤j≤d

j (−αd + β) − d(−αj + β)

−αd + β
= max

1≤j≤d

β(d − j )

αd − β
≤ βd

αd − β
.

Since d is arbitrary, one can let d → ∞ and show that dB(A ) ≤ γ provided
that γ > β/α. But β/α < n, so dB(A ) ≤ n.

12.7 Denote by wj the eigenfunction corresponding to λj , and expand each
φj in terms of the eigenbasis {wj } to obtain

n∑
j=1

‖A1/2φj‖2 =
n∑

j=1

∞∑
k=1

λk|(φj ,wk)|2 =
∞∑

k=1

λk

( n∑
j=1

|(φj ,wk)|2
)

.

Since ‖φj‖ = 1 we have
∑n

j=1

∑∞
k=1 |(wk, φj )|2 = n, and since the {φj } are

orthonormal we have
∑n

j=1 |(wk, φj )|2 ≤ 1, from which the result follows.



190 Solutions to exercises

12.8 Given a set {φj }nj=1 that is orthonormal in H , for any u ∈ A we have

n∑
j=1

(φj ,−Aφj + Dg(u)φj ) ≤ −
n∑

j=1

‖A1/2φj‖2 + M

n∑
j=1

‖Aαφj‖‖φj‖

≤ −
n∑

j=1

‖A1/2φj‖2 + M

n∑
j=1

‖A1/2φj‖2α‖φj‖2−2α

≤ −
n∑

j=1

‖A1/2φj‖2
1/2+M

⎛
⎝ n∑

j=1

‖A1/2φj‖2

⎞
⎠α

n1−α

≤ (1 − α)

⎡
⎣−

n∑
j=1

‖A1/2φj‖2 + M1/(1−α)n

⎤
⎦

≤ (1 − α)

⎡
⎣−

n∑
j=1

λj + M1/(1−α)n

⎤
⎦ .

It follows from (12.13) that the final line provides an upper bound for
qn(DS(1; u0)) which is uniform over all u0 ∈ A . Since this bound is a con-
cave function of n, it follows from Exercise 12.6 that dB(A ) ≤ n once the
right-hand side is negative, which gives (12.15).

13.1 Write w = u − v. Then

‖Aβw‖2 = ‖Aβ(Pnw + Qnw)‖2 = ‖AβPnw‖2+‖AβQnw‖2 ≥ λ
2β

n+1‖Qnw‖2

and

L2‖w‖2 = L2‖Pnw‖2 + L2‖Qnw‖2.

Whence

(λ2β

n+1 − L2)‖Qnw‖2 ≤ L2‖Pnw‖2.

If n is large enough that λ
2β

n+1 > 2L2 then

‖Qn(u − v)‖ ≤ ‖Pn(u − v)‖ for all u, v ∈ A . (S.9)

Now define φ : PnA → QnH by φ(Pnu) = Qnu for all u ∈ A . The inequality
(S.9) shows that this is well defined and 1-Lipschitz where defined; as in the
proof of Theorem 13.3 this function can be extended to a 1-Lipschitz function
� : PnH → QnH .
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13.2 If y(0) ≤ (δ/γ )1/2 then clearly y(t) ≤ (δ/γ )1/2 for all t ≥ 0. If y(0) ≥
(δ/γ )1/2 then there exists t0 ∈ (0,∞) such that

y(t) ≥ (δ/γ )1/2 for 0 ≤ t ≤ t0

and

y(t) ≤ (δ/γ )1/2 for t ≥ t0.

For t ∈ [0, t0] consider z(t) = y(t) − (δ/γ )1/2 ≥ 0; then

y2 = (z + (δ/γ )1/2)2 ≥ z2 + (δ/γ ),

and so

ż + γ z2 ≤ ẏ + γ

(
y2 − δ

γ

)
≤ 0.

Integrating ż + γ z2 ≤ 0 yields

z(t) ≤ 1

z−1
0 + γ t

≤ 1

γ t
.

This implies (13.15) for t ∈ [0, t0], and since y(t) ≤ (δ/γ )1/2 for all t ≥ t0 the
result follows.

13.3 The eigenvalues are the sums of two square integers (positive and
negative); so we will have reached 2k2 once we have taken [2(k − 1)]2 + 1
combinations of integers with modulus ≤ k. So if 4(k − 1)2 < n ≤ 4k2

then

2k2 ≤ λn < 2(k + 1)2;

since k − 1 ≤ (n/4)1/2 ≤ k,

1
2n1/2 ≤ k < k + 1 < n1/2,

and so 1
2n ≤ λn < 2n.
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13.4 Put u = ∑∞
j=1 cjwj . Then

‖Aαu‖2 =
∞∑

j=1

λ2α
j |(u,wj )|2

=
∞∑

j=1

λ2α
j |cj |2α/β |cj |2(1−(α/β))

≤
⎛
⎝ ∞∑

j=1

λ
2β

j |cj |2
⎞
⎠β/α ⎛⎝ ∞∑

j=1

|cj |2
⎞
⎠1−(α/β)

= ‖Aβu‖α/β‖u‖1−(α/β),

using Hölder’s inequality with exponents (α/β, 1/(1 − α/β)).

13.5 Fix an n ≥ n0, and let X be a subset of A that is maximal for the relation

‖Qn(u − v)‖α ≤ ‖Pn(u − v)‖α for all u, v ∈ X.

As in the proof of Theorem 13.3(ii), it follows that there exists a 1-Lipschitz
function �n : PnH → QnH such that X ⊂ GPnH [�n].

If u ∈ A but u /∈ X then there is a v ∈ X such that

‖Qn(u − v)‖α ≥ ‖Pn(u − v)‖α. (S.10)

Since S(t∗)A = A (because A is invariant) there exist ū, v̄ ∈ A such that
u = S(t∗)ū and v = S(t∗)v̄; since (S.10) implies that (13.16) cannot hold, it
follows from (13.17) that

‖u − v‖ ≤ δn‖ū − v̄‖ ≤ 2Mδn.

Since v ∈ GPnH [�n] this implies that A lies within a 4Mδn neighbourhood of
GPnH [�n] as claimed.

13.6 Given a u∗ ∈ H 2 \ H 3, set f = Au∗ + B(u∗, u∗). Then f ∈ L2 and u∗

is a stationary solution of the equations. The attractor must contain u∗, and
hence cannot be bounded in H 3.

13.7 Assume that ‖w(0)‖ �= 0; we will show that ‖w(t)‖ �= 0 for any t ≥ 0.
Taking the inner product of (13.7) with w yields

1

2

d

dt
‖w‖2 + ‖A1/2w‖2 = (w, h(t)).

Dividing by L(t)‖w‖2 we obtain

1

2L(t)‖w‖2

d

dt
‖w‖2 + Q̃(t) = (w, h(t))

L(t)‖w‖2
≥ − 1

L(t)
− ‖h‖2

L(t)‖w‖2
,
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and using (13.9) this gives

1

2L(t)‖w‖2

d

dt
‖w‖2 + Q̃(t) ≥ −1 − 2KQ̃2α ≥ −1 − 2αQ̃ − (1 − 2α),

using Young’s inequality (ab ≤ (ap/p) + (bq/q) when p−1 + q−1 = 1). Thus

1

2L(t)‖w‖2

d

dt
‖w‖2 + cQ̃(t) ≥ −c′.

Since Q̃ is bounded, this inequality is simply

1

2

d

dt
(− log L(t)) ≥ −C,

and so

− log L(t) + log L(0) ≥ −2Ct.

Thus log L(t) ≤ 2Kt + log L(0), and hence ‖w(t)‖ �= 0.

14.1 If MT Me = λe then

MMT (Me) = M[MT Me] = M[λe] = λ[Me]

and if MMT ê = λê then

MT [MMT ê] = MT M[MT ê] = MT [λê] = λ[MT ê].

14.2 For any z ∈ R
N , write

Lz =
∑
α,j

cα,j (z, eα)êj = Mzc,

where c ∈ R
Nk with components cα,j , and Mz is a transformation from R

Nk

into R
k with components

[Mz]i,{α,j} = (z, eα)δij α = 1, . . . , N ; i, j = 1, . . . , k.

In order to apply Lemma 14.3 we need to find the singular values of Mz. We
calculate these by considering MzM

T
z rather than MT

z Mz, since

[MzM
T
z ]r,s =

∑
α,j

[Mz]r,{α,j}[Mz]s,{α,j}

= (z, eα)δsj (z, eα)δrj = |z|2δrs :

MMT has k nonzero singular values, all of which are |z|.
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14.3 Given x ∈ R
N and L ∈ E, write Lx = Mxc with Mx as in Exercise 14.2

and c ∈ R
Nk depending on L. Lemma 14.3 shows that

Vol{c ∈ BNk) : |Mxc| < δ}
Vol(BNk)

≤ CNk,k

(
δ

|x|
)k

,

since the kth largest singular value of Mx is k, using the result of the previous
exercise.

14.4 We have

�(μ) ∼ μα

μ − · · ·

[
2μ − 2μ2 + 4

3μ3 − · · ·
2μ

− (μ − 1
2μ2 + 1

6μ3 − · · · )2

μ2

]1/2

= μα

μ − · · ·
[
(1 − μ + 2

3μ2 − · · · ) − (1 − 1
2μ + 1

6μ2)2
]1/2

= μα

μ − · · ·
[
(1 − μ + 2

3μ2 − · · · ) − (1 − μ + 1
4μ2 + 1

3μ2 + . . .)
]1/2

= μα

μ − · · · [
1
12μ2 + · · · ]1/2 ∼ μα

2
√

3
.

15.1 Using the series expansion of (1 − ξ )−1 for ξ ∈ R repeatedly,

1

(1 − x)1
=

n∏
i=1

∑
j≥0

xj
n =

∑
α≥0

xα.

Applying Dβ to both sides yields (15.10).

15.2 Since
∑

α≥0 cα(y − x)α converges for |y − x| ≤ ε, it follows that

μ :=
∑
α≥0

|cα|ε|α| < ∞,

and in particular |cα|ε|α| ≤ μ for every α ≥ 0.
Now take q with 0 < q < 1. Then for any y with |y − x| ≤ qε,

∑
α≥0

|Dβcαxα| ≤
∑
α≥β

α!

(α − β)!
|cα| q |α−β|ε|α−β|

≤ μ

ε|β|
∑
α≥β

α!

(α − β)!
qα−β

= μ

ε|β|
β!

(1 − q)n+|β| ,
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using (15.10). It follows that for |y − x| ≤ qε, Dβf (y) is continuous and given
by

Dβf (y) =
∑
α≥β

α!

(α − β)!
cα(y − x)α−β.

In particular, for any multi-index β,

|Dβf (y)| ≤ M|β|!τ−|β|,

where

M = μ

(1 − q)n
and τ = (1 − q)ε.

Finally, differentiating (15.1) at y = x shows that cα = (1/α!)Dαf (x).

15.3 For every x ∈ � there are positive numbers M(x), τ (x), and ε(x) > 0
such that

|Dβf (y)| ≤ M(x)|β|!τ (x)−|β| for all |y − x| < ε(x).

If K is a compact subset of �, a finite number of the balls {B(x, ε(x))} covers
K , say {B(xj , ε(xj )}Nj=1. Then for every x ∈ K ,

|Dβf (x)| ≤ M|β|!τ−|β|,

where M = maxj M(xj ) and τ = minj τ (xj ).
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absorbing set, 117
almost bi-Lipschitz embeddings into

Euclidean spaces, 97
for metric spaces, 100

analytic function, see real analytic function
approximate inertial manifold, 143
Assouad dimension, 81, 83, 85

almost bi-Lipschitz embeddings into Hilbert
spaces, 94

bi-Hölder embeddings into Euclidean
spaces, 94

bounds upper box-counting dimension, 85
embedding into Euclidean spaces when

dA(X − X) < ∞, 97
ill-behaved for difference sets, 89
monotonicity, 85
not sufficient for bi-Lipschitz embeddings

into Euclidean spaces, 92
of orthogonal sequences, 88–91
of products, 86
of R

n, 85
of unions, 85

attracting set, 115
attractor, see global attractor
Auerbach basis, 79, 127

existence, 74

BN = BN (0, 1) (unit ball in R
N ), 42

BZ(0, r) (r-ball in the space Z), 123
backwards uniqueness, 136, 144
Baire Category Theorem, 13, 17, 177
ball, image under a linear map, 133, 146
bi-Lipschitz embedding

finite Assouad dimension not sufficient, 92
finite box-counting dimension not sufficient,

81

bi-Lipschitz mapping, 84
Borel–Cantelli Lemma, 43, 45, 77, 98
bounded linear maps, 41

decomposition in: Banach spaces, 78;
Hilbert spaces, 57

box-counting dimension, 31
lower, see lower box-counting dimension
non-existence in general, 31
of products, 35
upper, see upper box-counting dimension

Brouwer Fixed Point Theorem, 10, 12
Brunn–Minkowski inequality, 54, 56

C∞
c (�) (C∞ functions with compact support

in �), 106
Cantor set, 31, 58
CAT(0) space, 182
covering, 8

Lebesgue number, 13, 18
mesh size, 10
order, 8
refinement, 8

covering dimension, 7, 8
bounded by Hausdorff dimension, 27
characterised in terms of: Assouad

dimension, 85; box-counting dimension,
39; Hausdorff dimension, 29

embedding into Euclidean spaces, 17
monotonicity, 8
of compact sets, 13
of products, 9, 40
of unions, 9

covering lemma, 30

dA, see Assouad dimension
dB, see upper box-counting dimension
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dH, see Hausdorff dimension
dLB, see lower box-counting dimension
decomposition of bounded linear maps

Banach spaces, 78
Hilbert spaces, 57

degrees of freedom, 168
density of prevalent sets, 48
determining nodes, 167
diameter of a set, 10
difference set, 41, 161

for metric spaces, 100
ill-behaved with Assouad dimension, 89

differential inequality
a version of Henry’s Lemma 7.1.1, 132
Ghidaglia’s Lemma, 143
Uniform Gronwall Lemma, 121

dim, see covering dimension
dist (Hausdorff semi-distance), 10
doubling space, 84

if and only if homogeneous space, 84
dual thickness, 65, 69

bounded by Lipschitz deviation in a Hilbert
space, 72

bounded by the upper box-counting
dimension, 71

is zero when thickness exponent is zero, 73

ε-mapping, 13
eigenvalues, asymptotics, 137, 139, 143, 164
embedding into Euclidean spaces

for metric spaces, 100
when dA(X − X) is finite, 97
when dB(X) is finite, 43, 75
when dH(X − X) is finite, 60
when dim(X) is finite, 17

Euclidean space, see R
n

fractal, 29
fractional power spaces, 107

and Sobolev spaces, 108
compact embeddings, 108, 113
interpolation inequality, 141, 143, 164

Frostman’s Lemma, 25

Gδ (countable intersection of open sets), 17
general position, 14
generic, 17
geometric independence, 15
global attractor, 105, 115

bound on upper box-counting dimension:
for semilinear parabolic equations, 130;

general method, 124; when Df has finite
rank, 132; when Df ∈ L1, 130; when
Df ∈ Ls , s < t 1

4 , 129
contains unstable sets, 121
dimension and degrees of freedom, 168
existence for: Navier–Stokes equations,

119; semilinear parabolic equations, 118;
necessary and sufficient condition, 117

is connected, 121
is the maximal compact invariant set, 115,

121
is the minimal closed attracting set, 115, 121
is union of all globally bounded solutions,

118
of Navier–Stokes equations: has zero

Lipschitz deviation when f ∈ L2, 142;
is bounded in D(A) when f ∈ H , 122;
is real analytic when f is real analytic,
168

parametrised by point values, 160
uniqueness, 115

graph of a function, Hausdorff dimension, 29
Gromov–Hausdorff metric, 92

Hs (�), see Sobolev spaces
Haar null, 47
Hahn–Banach Theorem, 60, 71, 79, 95
Hausdorff dimension, 23

bounded by box-counting dimensions, 34
bounds covering dimension, 27
embedding into Euclidean spaces when

dH(X − X) < ∞, 60
impossibility of general linear embedding,

58
Mañé’s embedding result, 57
monotonicity, 24
of a graph, 29
of products, 25, 35, 40
under Hölder continuous maps, 24

Hausdorff measure, 21
and Lebesgue measure, 22
spherical, 30

Hausdorff semi-distance, 10
Heisenberg group, 91
Hölder continuity, 24, 34, 43, 149
Hölder continuous inverse

of linear embedding map, 75
homogeneity, 83

if and only if doubling, 84
of subsets of Euclidean spaces, 83
under bi-Lipschitz maps, 84
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In (unit cube in R
n), 10

inductive dimensions, 7, 17, 18
equal to covering dimension in a separable

metric space, 19
inertial manifold, 167
interpolation inequality in fractional power

spaces, 141, 143, 164
invariant set, 115
isometric embedding of metric spaces

�∞, 101
L∞(X), 100

Johnson–Lindenstrauss Lemma, 74

K(B) (compact linear maps from B into B),
125

Kuratowski embedding, 100

L2
per(�, R

d ) (periodic functions in

L2(�, R
d )), 160

Lλ (sums of compact maps and contractions),
125

L n (n-dimensional Lebesgue measure), 22
Lebesgue covering dimension, see covering

dimension
Lebesgue Covering Theorem, 10
Lebesgue number of a covering, 13, 18, 171
linear operator

fractional powers, 107
Lipschitz deviation, 65, 68

bounded by the thickness exponent, 68
bounds the dual thickness in a Hilbert space,

72
is zero for the attractors of certain

semilinear parabolic equations, 139
lower box-counting dimension, 32, 77

bounded by upper box-counting dimension,
32

bounds Hausdorff dimension, 34
in general no embeddings with Hölder

inverse, 81
of orthogonal sequences, 36
of products, 35

L (X) (space of bounded linear maps from X

into X), 41
L (X, Y ) (space of bounded linear maps from

X into Y ), 41

measurable set, 21, 22
measure, 21
mesh size, 10

metric outer measure, 21
modified upper box-counting dimension, 40,

63
equal to packing dimension, 40

multi-index, 107, 161, 169

Navier–Stokes equations, 30, 109–113, 139,
144

as a semilinear parabolic equation, 113
attractor: existence, 119; has zero Lipschitz

deviation when f ∈ L2, 142; has zero
thickness when f is smooth, 138; is
‘smooth’ when f is smooth, 138; is
bounded in D(A) when f ∈ H , 122; is
real analytic when f is real analytic, 168

determining nodes, 167
generate a semigroup, 110
heuristic theories of turbulence, 169
in functional form, 111
orthogonality properties of nonlinear term,

111
negatively invariant set, 123
nonlinear semigroup, see semigroup

�n (volume of unit ball in R
n), 22

omega limit set, 116, 121
order of a covering, 8
order of vanishing, 162

and zero set, 163
orthogonal projection, 81

rank, 62
orthogonal sequence, 25, 63, 78, 82, 99

Assouad dimension, 88–91
box-counting dimensions, 36
dual thickness, 80
thickness exponent, 67

outer measure, 20

packing dimension, 40
equal to modified upper box-counting

dimension, 40
periodic orbit

minimal period: for ODEs, 153; for
semilinear parabolic equations, 156

obstruction to the Takens Time-Delay
Theorem, 152

periodic point, 150
Poincaré inequality, 112, 114, 120
polyhedron, 15
prevalence, 46, 47, 48

implies density, 48
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preserved under: countable unions, 49; finite
unions, 49

probability measure, 21
probe space, 48
products of sets

Assouad dimension of, 86
box-counting dimensions of, 35
covering dimension of, 9, 40
Hausdorff dimension of, 25, 35, 40

projection, see also orthogonal projection
rank in �p , 78

quadrilateral inequality, 93, 100

rank
of orthogonal projection, 62
of projection in �p , 78

real analytic function, 160, 161
bounds on derivatives, 169
has finite order of vanishing, 162
zero set, 163

refinement of a covering, 8

semigroup, 105
generated by: a semilinear parabolic

equation, 109; the Navier–Stokes
equations, 110

semilinear parabolic equation, 108
existence of global attractor, 118
finite-dimensional attractor, 130
generates a semigroup, 109
minimal period of periodic orbits, 156

shyness, 47
for subsets of R

n, 48
preserved under finite unions, 48

simplex, 15
singular values of a matrix, 146, 158
Sobolev spaces, 106

and continuous functions, 107, 113
and fractional power spaces, 108

spherical Hausdorff measure, 30
squeezing property, 143
Stokes operator, 111

eigenvalues on [0, 2π ]2, 143

Takens Time-Delay Embedding Theorem
in R

N , 149
in a Banach space, 154
obstruction from existence of periodic

orbits, 152
τ (X), see thickness exponent

thickness exponent, 46, 64, 65
alternative definition, 73
bounded by the upper box-counting

dimension, 66
bounds the Lipschitz deviation, 68
in two spaces, 65
of an orthogonal sequence, 67
of set of real analytic functions, 163
related to bounds in Sobolev spaces, 137
zero for: ‘smooth’ sets, 67, 137; the

Navier–Stokes attractor when f is
smooth, 138

zero implies zero dual thickness, 73
zero thickness implies zero dual thickness,

70
turbulence, 169

Uniform Gronwall Lemma, 121
unit ball, volume, 22
unit cube, hyperplane slices of, 52
unstable set, 121

contained in global attractor, 121
upper box-counting dimension, 32

alternative definitions, 39
bounded by Assouad dimension, 85
bounds: Hausdorff dimension, 34; the dual

thickness, 71; the thickness exponent, 66
can be calculated through a geometric

sequence, 33
embedding into: R

k for subsets of R
N , 43;

Euclidean spaces, 75
finite for attractors of semilinear parabolic

equations, 130
impossibility of bi-Lipschitz embeddings in

general, 81
in two spaces, 35
modified, see modified upper box-counting

dimension
monotonicity, 33
of an invariant set, 124
of orthogonal sequences, 36
of products, 35
of set of real analytic functions, 163
of unions, 33
of unit cube in R

n, 34
under Hölder continuous maps, 34

variation of constants formula, 108, 113, 130,
156

Vitali Covering Theorem, 23

weak derivative, 106
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