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1 - Locality

Hef:

The operator AcB(1(29@CV) is called local iff

log(llAx() > o

↑
abs

,
vol if N=I

,

any matrix now for Ns

This happens iff 5Gme(O,
d) st

. llAxyll = Ce-Mllx-y1

Expe: (disserte Laplacian)

Wedetthedetehi a
-A = 2d +
-&(Rj + R;*)

With the normalization
, o(-1) = Ja

.
c.

( - 1) = [0
,

4 d]·

Note that -A is
local sire [Aby = 0 for Ix-ylk1.

1. 2 - Block Decomposition & Forie Series

Defi Em,
ma

the d-turns

The Four transform is a mp F: (29) + [CH) vi

(F4)(k) = Ene (4 ke
and extended to all of l via BLT.

It has inverse

(F+4) +
=a Se eik~(k)dk

nd

With His
,

diagonalizes part isunity
(Parents t. The ve ist e



Def :

-

AcB(E(29) is periodic off Axy = Axz yez
(x

, 3,
ze29)

Di

For a : N
*
- bdd

. a . e
,

we have the multiplication operator
MacB(l"(i) via

(MaY) (k) = a(k)Y(k) (FEE<N
,

ke +9)

Lemma:

-

If AcBleYE9)) is periodic, t Fa : N
*
-@s.

t.

① FAF *
= Ma

② a(k)
=&d
-A

,

③ o(A) = 0c
. c .

(A) = im (a)

We call a the symbol associated to A.

&roof: see notes
I

Expe

· The right shift operators ER;3 defined by
J

(Ri4)y = Yy-es (ye2 ,
4 + e (29)

is perodie with symbol

ri(k)=Ed (Riox : (Sode)= kee

· The discrete Laplim -A is periodic with symbol
d

E(k) = 2 d - 2
,
Ecos(ki)



· The positionapectors Ex defined by Axi4hy=bsty gets repped to

FX; F
*

= itk
,

· If A is periodic
multiplication by the dam

th symbol a then [x
,
A] gets mapped to

F [X
,
A]F

*
= : Maja

· If Mr is a multiplication operator on rel space by r :29t1R
,

then if

is mapped to the convolution operator

FM
,
f

*
= C

Fu

#how: (Riman-Lebesger)

It holds that&

A

isload
and perod a : 4 + & &

with analytic in an annchy

More generally,

A ispobrovia-lo de a
is

and CP in an annulus



#

Recall the generic Hibet space

H := l (2 + e) V with standed besig 36x0e;3 xed
jel ...,

N
S

and bounded
,

S
.
A. Hamiltaion H = H*EB(7)

·

Reall that H is local iff JC
, MCO st

.

1) Hryll = Ce-ellt-yll - loal integral Kernel

1
.
3 : Conseques of Locality

* Lieb-Robinson

Note that for the continue Laplacian
,

o(-1) = [0
,
0) is unbanded

-

with dispersion E(k) = 1/k/12
.

Compare withaHe lattice Laplcia
,

O(-1) = Co
, id] is bonded

-

with E(k)= Usin(k) -&

So
, locality-boundedness is necessary. Here's what it gets us :

has to be

Theore (Lieb-Robinson
,

I particle)
on the "may" velocity

↓ lattice
↓

Let H = H * EB(7) be local + bdd .

Then
, JV > 0 st . JDc0 St.

IP partumstudyatobexitDeEM(v-ut
toon !3

tv

3

#out: We start in state 5004 for some YeK? Time-evolving the

system,
at time + we have eitH/S004) · The probability of

us ending in some state SxQYET is 18+ 04
,

e
=+4604))"

fo xeBer(o), Ye? Thus,
take Sup own

↓
4

,
T

↑ particle stating at origin exits E 1) <6
,

ei+HS021123 Ber(O2a) after time - 3
x B

+
(0)

We may
bord powers of H via



11(1l* Il zatz · Haz ...Hall el
translaten

inemen

" GEMalyl &
-Emullallyn n-1

2 thingle mea

I zerd
2

&
- CDeMallx-all

-citam(z)
So

, we my estimate the propagate

Il e
=+ (0

,
x))) = 11(5_

,

e- 18
. )11: 11 (47

..

Il

n- 1D -
=Mull

= ye(Dt
- =my((x1)

So
, ipSparticle starting at onlin exits3 Elleith (0, x)/12B

+(02a) after time t x E B
+r

(0)

(2(Dt - un 11x()
= Ee ↑

split r etMa
11x1)
.

-Emil
- since Ill aut

D + B
+r

(0) Furt

= elZGDt-Emavt) E e-EM((x1)
+ = By(0)-

=
Rt-krt)

= D

D

= ↓
& etr(v

D

We see that locality -> stuck inside a ball i 5 max. velocity.
Nexts me will see that the holonouphc functional calculus preserves locality.

Hm: (Holungris Bound)

Let AzB(1) and 34:3; an ONB for T . The,

II All =m Sp[KY: ,

14
;)

Boat see notes.
D



Theorem (Combes - Thomas Estimate) :
X

Workeicontra

Let H = H
*
EB (1) be local. Then,

1) R(z)
+y() = Ee - mS((x -3)(x

, y zzzep(H))
for some 30

,

whe S : = dist(z
,
0 (H)

.

Af: Let f:
29 + IR be bod

. and L-lipschitz for some LTBD.
-deformation

Befre
H : = 2 f(x) He -

f(x) (not S
.
A.) => CHabey = ef'Hagef(s) = ef(x) -f()Hx

=> My(z)xy = (He-z1)in = [e -f((n -z1)
+ et() = ef(x) -f()R(z)

+
x3

So IIR(z) -yll = let ()
-+

(x)) (I Ro(z)+y() : (af() -+ (37) /IRa(z)Il
We

my
boud op, nor of Rf(z) via

revesetruya

1) (Ha - z1)41) = 11((- x) + (H = -H)Y)) =1- 4)4(1 - 11(n-
- 1)41)

↳
SupBy Holger's Bound

,
1) Hf-Hll ! me xe ,

d E a
ll(H=

- H)
+/)

Z yt2

=
mex Sup

xe ,
d E ↓

(x -f()
- 1) (lH+/)

X()] Z d
yt2

2 elf(x) -f())
- 1

[ mex

invariance ↑ Ed (e-1 (e-ma - 2

translation
of Ily -xII

= EY

Seed
EnemMallyl(e(((y) - 1)

all -1 ZaeZallel
= 2) 2nEn e(m
-

Letting Le mustu , u 3, me see 1IHA-HIl 15. trundland
Thus

,

1) (Ha-z1)41) = 311411 - El4 = 11 Ho-zill = = 11 RezII : 5 .

So,

1) R(z)
+y ll = =e

- 1 f(x) -f())
-

FREN define ful :) : = LminGk , llo-yll3 => no she hou the hope

So, 1) R(z)
+all e

-En 611x-yl)
as desired.

D

Corollay :
-

Let H = H*EB(1) be local
.

Then
,

the holomephic furctural calculus localitypresences

i the sense that f:R +I malambre uples f(M)= GR(z)flzldz is local



-

Remark : Holo fal ack. persons locat
- Often, The auster of whtamtondefines a motel on an insulator boils

fral calc. on H preserves

1
.
4 - Types of Motion

Ballistic] superconductor
We would like to separate X

motion -> diffusive ] conductor

Y localized J insultan

Def "Second moment of
"

-

position operator
We define the transport coefficient of M by

Mij(t) = = (e- i +

+So
,
X: Xje

" ++20)er(2d+ e)
We are interested in the large-time asyuptotics.

Mij(t) - +" Et ballistic motion Mij()' +

EX(t)

M.j(H) - + # diffusive motions this is the scaling f
Brunie motion

Mij (H) ~ 0(1) E localized motion

Pi

Periodic Hamilting have ballistic motion
.

of: In momentum speck, ↑So = (k + 1). By periodicity
(i . e. F diegalizes H,

F itHy*

= y
-
it =H+t - i+Mn

=2

whe h : N + Here (1) is His symbol .
Thus,

M.(
*(FS

,
Feith

*

FX:

*

FX For e**** S
. )

=Sdk eith : Litjeith(k)-(h)(h)-it(wh
= (S(:n> h) + i th) "Blockeletesdo

,a
-

v2
D
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isotropic,

Note that if our Haultarian is reflection-symmetric (xitI
them

Mij(H) =

d Xix; (e
+0,x) E

This is true for isotropic Hauttorians such as -A.

So
, perhaps the interesting quantity is

M(t) == za ((x11 (e -
+

(0
,
x)1

Example (tuvial localization) :

If H is diagonal writ position,

then MijCH = 0 Fi5 .
We are interested My Lie potat noKinet,a

in

the presence of Kinetic energy.

↓descthataa
2 M(x,+) = - BA

=
M(x

,
+) (EIR9750) DoO difirsion cost

diffreiveThe

Le xixh(x, +) = [xix (h(x,+) = &xx(-Den)(x ,
+)

= Dad (-1xxixi)U(x,
+) = 20Sis M(x,+)

I .

B .
P

., ever

onthelatea

So
,

since (Xi
, xi)n = [xix; n(x,t) => b+ (xi, xj)n

= 2DSij
& n(x

,
+)

Thus
,

(Xi, +
,)y-2tDd j

+ C = h til =Dis

From this
,

we defe
D :=



Spectral Types & Dynamics (from Tesch1)

edepo d parodyto thetre mea

D (4) = E Go t (4,
eithe-itH4) for initial state 4

and

D (E) = D (wave packet about E) for EER

The big open problem is to find reasonable systems for which De(0
,

0).
It's tough/unknown how to do this directly via second moments.

We can get a bit of milee through functional analysis.

Reall the spectral measure associated with H
,

4 :

Mn, = (Y
,

X
.
(H)4)

By Lebesque decomposition (w
.
r

.

t. Lebesque on IR) spits into 3 parts :

① pure point leigenvalues
,

has mass)
② abs cont. Chas density writ

. Lebesque
3& singular cont. (continuous but

no mass on desity want. Lebesque

Thus
, One of

evectors
~

f(n) = [f(2)4: 04 + Sri pd
- EIR
--

P. P.
a .

C. S
.
C.

We will see the following connections

① pure point it localization > bound states

② abs · cart.
It delocalization > scattering states

③ sing , cont. It ??

So looks at specttype c answe is it loat,a

Lets look closen at the above connections. If we look only of pp,

Suppose Yel? is st. H4 = 14 => EitH4 = cithy

=> 14, 42/ < 14
,
41 = cast,

in fire !



Theore: (Wiene)

Let
In be a finte

, complex Bowl measure on It with

Formie transfor

n(t) : = Seidu
The the Cesaro any

of i obeys-

I id=(E)T7 o

i
.

e. it only picks up He
p. p . part

#. Ind+=Sedule Sede) de
-S du(E) -E
-

-> X sozlE-Elcheck this

·

STEER) du(E) : En Inles) 12
I

Reall the decaposition ofI into

H = App(4) Hac (1) Hs (H)
,

with HA(H) : = SUeTt : Man is #3

We have Mr, 4
is #Yein (P(1) and [H

, Pe(H)] = 0.

The
, by polarization

,

the complex measures Mr
,

4,4
are # for all I provided

that May is #
.

So for
,
the above gives

& If Ye Ha (H) = HacCHi@HscCH) # to# (in
,
u(H)Md+ = 0

② If 4- Haa(t) , the bas /Mu(t)) = 0 by Reon-Lebesque

The same holds for theofficial complex measures. Since

1 in
, 4, y

(+)) = (Y
,
e-itHy))

we see that ac rectors get more arthogand to themselves over fire.
This is why a

.
s

.
+ scattering.



there isawesi ebanded
Theorem: of

A,
K

Y

Let A be S
A
A

.
and bod. Let KeBI) be bonded

and compact. The ↓ Ye It,-

① S
.

llke-itAP(A) Mild+ = o

② Mo Ilke-itAPa
.c .

(A) 41 = 0

&at Let YeHCH)
,
#eSc

,
a

.
2 .
3 to avoid writing projective competes

.

K =LinBy
in now

,
with F= 4: 4:* with ER3 Owis of in (Fn).

So,

1Fe It K4: eity)/
Yi=-

↑A
, 4:,

4 (+))2

Takin IIK-Fullth
,

1l ke-"+A4//"= 211 Ene-itA PIR+ E 114/1
.

Take -0 vie Wine/Riman-Lebesque, the take n + +.

D

Theorem : (RAGE ()Muelle
,
Amen

,
Georgeser, Enss))]

- versitf
Let H = H

*
c &(1+) and Ek3n a sequence of compact operators

st. Slinke = H
.

The
-

(H) = [4e: d /Ike = 03 ent yarn
e

e

#
pp
(1) = 54= 1 : Un Supll(1-k)eu =3 ever at large times,

you don't leave the box

- localized !

Remark: forempthe-

Conditione for ac spectrum that we will cover :

① Limiting absorptra principle : 124, (H-z4)"4)) (Herglotz !)

② Mourre theory iCH
, B] = O

③ Index theory : inde (141+11) 70forsomep.
a



18- When do we
have spectrum?a.

C

Stabilitya
For A-B(t)

,

we define the essential spectumfudholm
Jess(A) = Ezek : (A -= 1) F(z)}

Theorem :

Jess(A) = Jess(Atk) for all K compact.

#ut zess(a) e A-z4ef(t) et A+k-24ef(1+) zzess(A+k)
B

Theorem : I-trae
class

,

tr(IT)-
-

↓

bot A= A*EBMA) and T=T* 5
,
(t). Th

0
.
(A) = 0

,
(A+ T)

We see that dess is stable under (717) and

Jac is statte under 5
.

(1)
.

This makes sense since JacEJess and 5
.
k+) < (5(H)

·

Limiting Absorption Principle /Jaksia 2006
, "What

is as spection ? ")
Lemma:

Let
i be a finite Bol measure -

Define its

Bonel transform via f(z) : = Sear E dele). Imm,

① So
not

# ImEf(Etis)] exists for Lebesgue-a. e .

EElR
.

② SEER : ImEf(Eriot? = 3 = spt(Msing)
SEER : ImEf(E+iotYe (0,03 = spt(Mac)

SEEIR : & Im [f(E+<(3c03 = spt (Msing)

af Jalgic : D



these
this

Prop: (Yafaer) all work for
- also unbandet

↓

Let H = H * EBIH)
·

Assume that DCH duse st .

so 14 ,
RCEtia)4)) < 0 Chest #

EE[a, b]
*

EE(0, 1)
(H - (E+ is)1)

+

Then O(H) 1[a
,
b] = Jac (H) 1 [a

,
b] purely .

- Herglotz fu
-

# From
,

un kar [S5(4,Me
fo Some ps1 -

For
ana <5

,
Stoves forma gives

E ((4 ,
X

(5
.57 (H)4) + <4, x(5

·
5) (H)4))

T
= 23(2

,
M(E+a)4)3dE

=> (4
,
x+
(14) = #3 (4

,
REFi24LY de . 1

Hold So, (SC .. 79) · 111
I-t

=> (U ,
X

.
(He) /[a , b] 2 Labesque

B

Defu :

m

We
Say H has the limiting absorptio principle (LAP) at EER

iff & Yeah sufficiently nice (for 13(29)
,

take compact spt
,

otherwise Sobolev?)
a Fozo

,
J((o) (0

,
a) sit .

Sup IMCEria)Yl((o) in
where 1141 us := Ila with :

Claimi Any 1 obying LAP FEECa
,b] has pure ac spectum on [a

,
b].

-



Scattering Theory & Wave Operators (R & S #)

Bein:

For A
,
BeB(17) S

.
A

.,
define (when they exist) the mave operators

RF (A
,B) : = sem e-itAcitB Pale) ,

HF:=m(rF)
t- 10

: D If Y is an eigenator at B ur eigenvale
4
,

e-itAit-it it
does not carrage unless U is eventur of A too.

So
, we needed to project on to the continuous part of B

② Often
, A is the openter of interest and B is know /-S, fre thor)

Prop-

If RF(A
,
B) exist

,
then :

D MF(A ,
B) are partial isoratives with initial space

Pac() It and fivel space
HI ↑

↓

her (MA,
B)

② #F are invaient spaces for A :

2
=
(A

,
B) ((B) = 8 (A) and

ArF(A
,B) =M

=
(A

,
B) = B

③ H*
<im (Pac(A)

&f : ① Cleb
,
(PacCiict) = Ker(RF(A

,
B))

. Counsely
,
of HePac(B)7t, the

unitary

1) MF(A,
B) 411 = Am 11 e-itAci+Byl) = 11411

② Note that sire Leis
,
PacIB)] = 0

,

for any fixed s we see

take a

devinte&
F

= e
- Ar= eisB = c

=Ar= =r
+ei

=> Ar=
= r

= B

To see that HE is imant for A: YeH =
= J4 : y =1=

4

=> Ay = Al+ Y = r
=

BY EHE

③ Alte is unitarily equielnt to BIPBTH via MF

B



Theoremi
-

Let A
,
B = B(1+) be S

.
A

. and assume shim gitteit exists.

Then t+o

-

Jac (B) & Jac (A).

Pf: Comes from ⑤ in abou
prop.

D

Kaim: (Chan Rule

If A
,
B

,
C an SA

.
and MF(A,

C)
,

RECC
,
B) exist

,
the

r
= (A

,
B) = M

=(A
,
c)e=(2

,
B)

De: (Completeness)

We say A
,
is are complete iff

~ (A
,
B) exist and Ht = 1 = Pac (A) 14

If
,

in additive
, Osig(t) = 0 (on equiantly H= H

=

= Ppp(A)+ +)
,

they have asymptotic completeness.

Ep :

MF(A
,B) and RF(B

,
A) => A

,
B are complete

exist
canie

I
↳f : (=) Pas(A) = RF(A

,
A) = r(A,

B)r=(B
,
A)

=> Pac(A) 1 HF
.

Reese inclusion was seen earlier.

(E) ?
B

How do
we know when F east? Cook's method!



#eorn: (Cook's method)

Let A
,
B S

.
A .. Assume

① JD E8/B) 1 in(Pac() s .
t

. D is dense in im (PacCA)

② JTcO st
. FItIsT

,
FeeD

,

① e-i
+Bu = S(t)

· Sat (ll(B-A) e-i +Br1 + 11 (D-A) ei+Bull) -

#en
,
rF(A

,
B) exist.

Pat: Defin 3(t) := eitte-itBy for fixed YeD
.

V +T
,

e-i+BueD(A)nD(B). Also, y (t) = - iei
+A(B-A)e-

itBu

By FTOC
, 3(H) - y(s) = 95 z = 113(t) - y(s)/) : Ss *

/ICB-Abe-in is well du
By our integubility assumption , ECTe is Cavely FUED.

By a density agment, 2 exists. Repert for 1
D

therefore,Examples: equality

# If B-Act
,
(1)

,
the Jaclis) Oc(A)

.

This is stability of
ac

# B = -A (desoete) Laplacian and A = -S + V(E)
The, Jac(A)20 (B) if V is "sufficiently nice"
-

①v hascpt . Spt.

OR

② V has fast enough day at o

or

& v has "spaget spt : (spt(v)nBr()) Rd-1
(Krishnan 92)



213-

We will stuc the formula for Da conductivity &
e8 the will

read to the integer avonte Hall effect and furmake for the dregora
elevents of the conductivity matrixo

Perturbation Theory

Consider Ohris Law V = IR = I/O
.

So
,
for some perturbatio V to the Hamiltaia,

we are interested in the coefficient ofIs liner response.

Recall Rayleigh-Schrodege perturbation theory (i .e. analytic petrs. they) from Griffiths,
whee we write H= H + EV and compute

AEj = <(4j, Vaj) S Byj=...

teThis stuff only works for discer and finitely-degenerate spectrum of H.

So, we must do soretly ele - the Kubo liner response theor .

Bef (Mixed states a density matress

Reall pre status Yest
,

when the expectation of an observable A : A*EB(74)
is given by <4,

14) Enter (404
*A) =: tr (PyA)

namelized

It we
have some distribution our pure state &H* wo . Ep3 So,

1] st
. EP= 1,

we may
defie := p::U and comim

① (y
,14) = %0 : (4:,

41=0 = 120
② tr(e) = &p : /Y:/ = 1 => +(b) = 1

So
,

we define a density metix as any BeBK) S i
t.

①10 ② stY,
③ +(1) : 1

With this
,

expectating are now t(A).



Many-Bod QM Intuition

For M distinguishable particles, withIt as the single-partic Albert space,

the total state spece is -①
j=1

Note that LEE* = [2(EE) ,

and so we
my

vie marefection

basedan their symetres under swapping argments to 4 (i . e. Yha
,
an) = = Ylan

,
a

.)

14 tersur products
of spaces

For M indistinguishable particles -
Hemors Canti-syretic j= / ] of Cantitsymetre fas,↑-
busang (symmetric) medge

or eauty neeentewith
out

& We may
lift operations on I to ones an 141m

vie the 2nd quartzed lift of HEBIT) vin

(H)=1 H111
...

14
-

j times m -j- 1

① If sea? is ONB of It
,
the

Se
,
1 ... 12 m3 n

, ..., ne
ONB of Him

# If YEH12 the expectation value is (4
, dM(A)4

for single-particle observable A = A*EB(11)
/

I 4= 4
,
1

... 14m the (P
,
dr(A)Y) =

. ..
= (4

>,
B4; )

At zero temp
,

m Forens will occupy
the M lowest ground states,

and so (if H is discute ~ 34;3; OND with
energes <;) the the

may-body ground state is 4
. 1... 14m (Slate determint) with energy 1 , +... + Ym.

We have expectating
[4

,
1

... 14m
,
di(A) Y

,
1

...
14n) = +- ((4, 04;*)A)

u

desty mater 1= X3]
, . . .,

x m3 (A) = *
(0, 7m](A)

All Hgoeto showhtghada zwot grandt afilled

energies. In total,

Many-body zero-temp ground state expectation
of a single-particle observable A =A* EB(ut) is

(A) = +r(pt) with PE = X 10
,
E
(A)



Kubo Formula

The Kubo formula is a perturbation theory for tw/AB) for density
matures A.

# We need a regrinization : we gradually furn o
~ pert CH)

the perturbation wi Some An fy(t) s .
t

.- desired

fs(t) + 1 as Sto (i .e. f (t) = eSt)
. st

So
,

we start evoking frem

① So
,

we have the partured Hamiltarian t= -x and are perfused when =o

equilibrium.

H(f) = n +Ef(+)A wait time

erohe
-

& We are also give an intul state So : [H
,
Do] = 0

Note that if Do = PF the tr(po) =0
.

So
,

we must

restrict ourselves to B = B*EB/) St
. SoBeY,

& We let 5) be the firevolved state (v/HH) and

seek + (p(0) B) = tr(s. B)+ EXA + o(at)
↑ first anden ins after Sto is take

Theore (Kcbo) : pert initiate
↓ f

*
Da

= - i S. tr (e- i +Bei [1
, 1.
]) de

#of: The correct fire evolution for dusty motices is I = -i[H,
x]

7(sine 1 = 404
*

and Ju =-iHY is = My* -ipi* = My0y
*

- 404TH = (n
,1))

So
, I' must satisfy the ODF with b . c . 5) =So :

i j(x) = (HIH
,

s (H)] = [1 + 2 f(t)A
,

5 C)] = (H + sf(x)A, So + 19,
(t)]

= g[H
, p ,
(H) + 2 f (t)(A

,
po) + 0(g))

So
, looking atP . EPo ,

un se

i p ,

(t) = [H
, 1 ,
(t)] + f(+)(A

, so] wit b.c . p. ( d) = 0

Define the Superspector H= [H
,
·] on Blut), zielding ODE

ip,
(t) = x*s ,

(H) + A(H) ATSo v.
b

. c . A,
( -x) = 0

We make the ansatz 1.E-ifftedt = At t

Clearly
,
Ans(-o = 0 v.

B(1+)

We confirm

As(t) = -id
+ 2. -if()*so - if

*

dt f(+ )e-
i(+-+) ++
1Atso

-

== if(t)A*o - iH
* An(t)

these counte by
fal calc-

=> iAig(H) = f(t)[A
, do] + [H, AusCH]v

Good ansatz ! Now
, phyging in too and taking Sto,

s- () = 10 + c)- if eit(A, 10]d+)



#Temp D2 Conductivity

We will produce foelas rule two different assupties

① Time-reversal
=>Oj(Er):hmLil60;El

invariance (TRI]

② NO TRI = Plea = +r(p[(1 ..9] ,
[12

,+]])
butI spectul gap

For interpretation of DC bies
,

me defie a velocity op , in the jE dreater
as the current

· := i (H ,Ej] sine J (i) = (iCh
,]e

· C = eith-itH for notethem

Taking a perturbation A = - EoAj S
we would have by kabo that

St
X dij(Ef) = XBA = - ihm Sate to (E) [*.9)Sto

This is no good, since F(-t) [ ,
1] isn't generally trace class !

i

The first makeand will be to replace to with tree per it volume

De
he defin the tree per not value of A vie we

won't just
Y why this limit exists

,

F(A) :=10 Find [Sx
,
ASx) hehe

zd

Theorem (ish) :

If H has TRI die . May : Fox)
,
#he

O()= En(1(o;E]Lf

where (S
.,
R(z)Sx) = : G(0

,
x; z)

&rout
(ish)

:st
=2(e)

,
integration by parts on the bo be walda

Oj(E)=bride = + 4)
=F (v (j(+)

, s])
= I d eE((,]



da Pure Jdz ,
dan eit(-2) f (v dQ(x

,) [vj
,
s]dQ(x)

of H
3

,, 42 EIR

Letting 1 = Xc
.0

, E
(H) be the Ferri proj

,
give &Q is His PVM we have

=: &Mij (2, 22)
x

: = X( x, a) -

=Imidd eit(f-f Ed alla

Since et-1 : zed > Code-i-iig ,

we swap integrals
to get

& (E) =Ei (f-fdM
For reasonable gilRtIR, we know l glads : emg(s), a

I
&:j(er) = Mixe (7 1 - m-=((f(x2) - f(x) dMi , (2, 4)

S

We apply the knames-knowing relation between distributions Candy principal value
=

as
distributive,

E
Ans

In ↓ Ex P()
,

whe P(*- = ImSd
210 XiE 51 0

(y
,

- u)u(U
, a

I Ei5+
↑ even fu of X

since LHS and S

are

TRI gives that dMij(, ) = &Mij 112,
7.)· Integeting His even be are add

measure will teo it out
,
and so we can igne the PCE) port.

=> disa) = in9 5(4
,
-ie) (flin)-f(x,) &Mij (2, >2)

&, zEIR

5= = in (ft-f()dMij(+-Et -f(x)
part

&Mi
= inf(x)dMij( = if 6)dhcontinuous

↑,ER

= in 9 S(1
,
-Er) Staz-Er) dMij (1, ]2)

3,,72

Ga(x) := India= in Gal-ESalx-EdMi

undo the dQ's = So F (v: S
,
(H - e) [ S

,
(n - E

=)
Since Im [R(z3 = E=

(R(z)- M(z(*)R(z) -M(E) Im 373 R(z) R(z)

=> OjE) = en(RE RE-i) RE-i)RCE
R(z)(H

,
AYR(E)

-
...

- - [R(z)
, 1) = C (,(,]



We will new look at ergodic ,

random opectus MCWIANEBI)
,
for which

we may use Birkhoff's engade theorem relating space ang with ang . over

randomness :

E (a)= E(S
,A

=> O:j(Ef) = RuEn()6o ,
CRCE + in),] [MuCEx-ia) ] So]]

Tergodia nerdem

Hamilton

:6 = 0

=m Er((So,
ReCetia) Ru(E-ia) do)]

not 1=S= En(10;E]
D



1220-
Recell last time : for T=O and an electic feld in 5-direction,

we measure current J : &E in the i-direction to get

O(Er) = P Ex ;El
-

G(x
, y ; z) = (x

,
(4 - z +)

+

y)

We are intrested in when O = O
,

since the would pre its on insulator.

&upid example : (M diagonal writ position

H= V(E) (i.e. - Kinetic ess => G digon => 0= 0
.

Enter-example: (periodic ops)

H
+y

= Hx+a
, y +

Yx
, y ,

a =2 = OjEF) = - if Efeoln).
Nobel prize

war

His, die it two dears
for ~ from Jadein 343 look at Aizaman-Warzel
dan Anderson Model & Random Operators d textbook !

We start from assuming that real materials have impurities
So, translation invecience (E periodicity) is not a reasonable

Y -- &

assumption. ⑧ A ⑧

· (-1950s) Wigne used radom matrices to study atonic/molecular
leneb

· (-1960s) Anderson : 78 coupling strength
H = -1 + 1Va(=) Vr(x) = WX randem seque

-

W : -3 stochastic processdisaste Laphem S
o (-b) = [ -2 d

,
2d] ↑ think of this

as time index

This is a nardem Schrodinger operator .
Anderson worked intially

under the ii .
d

.
assumption (we

, we whe independently)

· (1970s) Made Anderson model vigorous
,
promed

Kouz-Sorilland
p . p . spectrum ofiid model

super hand
↓ perturbative

· (1982) Foolish-Spencer perford multiscale are lysis /KAM in meth) to show

16 (x, y; z)) = (a-mlx
-3)

whp

· (1983) Aizen-Molchanan mated fractional moment method to show

E(16(x,ziz)(s] = Ce-el-yl for large &
,

small enoch s9



Random Operators

We work in prob . Space (ot
,
F

, IP).

Def :

-

① A mp
T: R +& is measure-preserving if

P(s] = IP[T" (s]] ESef
tim-evolution

① For a group GY actionan (1
,
F

,
1), and

a group morphin T : G-Autle) (i . e . Tgm = TgoTn]
/

we call (5)
,
F

,
/P

,

T) a mesue-pesening G-dynamical system.

# A RV X:2 + IR is invenient it Xotg =X FgeG .

# A G-dynamical system is ergodic if all inverent RVs are

IP-a
. S. constant : - CxEIR st. 1P(EX=3) = 1

.

Ef

Let the,
F

, IP) be prob · space
,

If a separable Hilbert space.

The SA-operator-valued map

A : + + &B = B*
=B(1+)]

is a random operator if FF:IRt & masurable
,

F4
,
Yelt,

the
ma Row > (4

,
flAr> 4) is F-mees

.

We say WHAlm) is weekly measurable.

Defi

Therodom op. Wit A is ergode random op iff
W

An and Aiglu) are unitarily equivalent YgtG,
wer

-

depending an

w, 9

Theoen (Birkhoff) : space any = rediness aus

Let (M ,
F

,
IP

,

T) be an ergodic Zodyn . sys.
and XEL'Ch

,
IP)

be
a random variable

,
the
-

ca X(ta) Ep(x]



Therem (Pastor 1980s) :

Let (M ,
F

,
IP

,

T) be an ergodic 2% dyn . sys,
and H

.

= H
*

&

be
~ engodie madum op . Then

,
7 deterministic sets (a

. s. spectre)
& po .

Eac
,
Es EIR st .

(a) = En P-a . s
.

Proof shutch : Reall &(Hal = EXER : +r(Xca
,
(Hr)) < 0 f accb3

Define X : 2 + 10
,
3) to be

ab

wit +- [Y(a
,
3)(Hw)

Note that

Xas(Tx2) = tr (x
, (H))
* +r (*) (UH-U))

= tr (U*
Xca

.
3) (Hr] u) = Xay(w)

and so as
is engodre.

So
, Xas is Pas. constant ; call it das . Then

,

2 = 31tIR : FabEQ sit. ilab)
, da3 >03

does the job.
B

Anderson Model
oc-S : Ed,

2d)

can
be

thought
of as

-idunste of impurities"

Let Hr : = - 1 + 1 Vw(Et Vr(x) : = wx

zadWe work in the prob. space. 2 : = 11 IP =

029
the product measure (iid).

Say f :1 - & musmable if depeels on finitely many was in 187
d

it L

=> IP(f) = Ep(f] =Sf(rdIP(r)=duwIf

We assure the single-site measurei is "nice" :

D M is E-Holder conthors if JTECO, B st. MCILICIII* FIER interel .

We use 6 = ** to be lattice truktic Tow = w( -x)

Theorem:

-

Anderson model Hw is ergodic nadom opentor !



-3

Theorem (Kunz-Sorilland) : "Spectur expands

as 15 . .
For Hw = -A + 7Vr(E) engodie, r I'd 2

= & R : 1 = a+b
,2 = [-20

, 2d] + 1 supple)
- S

a + 0( -1)
,
beo(av-()))( o( - 1) + o(iv()))

~roof statch : I a lays holds
.

Just to show it again, suppose

= C-Id
,
20] + 1 supp(u) dest(E, &supp(n)) >Id

=> -A + 1V(x) - EX = (1V- (E) - ED)(1 - (2Vw(z) -Ex)'s)
=> 11 (1V(E) - EM)"all = 11-11)/lGULE)-ENT"ll cl

[2d Ed
=> nutble ! EO(Hm]

=> Weyl entere gives

ECO(-1) # Vaz0
,
74gtht s.

t
. I fell = 1

,
1l(-1- EM Yell < S

So
,

let EES-21, 2d] and StaBeso be such a sea.

By locality ,

we may assume 34s3sso is unifory compactly supported.
in the box 1. For all EEXsupp(m)

IP wer : sp kw-El <3 =Tr(BE)E
↓ 1

For such wis
,

we have [Masco is Weyl for ExE :

1) (Hr -(E+ E) +) Yall = 11 ( -A - EM) Yll + 11 (Vw(E) -E4) Yall = Is

Weyl selection of w

So,
↑P & E+E = d(Hr)3 > O

Engodity and Pastor's theorem gives the result.

B



#H
H

w

= U
=

*

H24x with UreB(e(29) unitary trusktom (M + 4)(y) = Y(x+y)

and

(Ux* Vo(E) U
=
>(4) = UnCE - x1)(4) = y 1 my- 4(y)

Facts & Conjectures about Anderson

(Fact) · d = 1 => Anderson model is localized Faso
,
at all energie.

(Conjutue) · d=2 = - ---- ("Sailing they of loc
. ")

We also expect this to be tre due to -Anderson et. al

connection with supersymmety (Efetor) and ID 0(3) model,
for whichI phase transition.

(Fact) · d> 2 = J1 <
(d) S .

t
. Viik

,

localized at all energies.

(Fact) · daz = VisO, if E is "close to22" the localized
.

( Conjecte · da2 I suff. small
,
d(E, d) soft large,

the delocalized.
/

(Extended states conjecture)

We will prove the third bullet above today. Before
, we well get some

more intuition for localization. 17
o < a lized

delocalized (d + 2)M(diffusive)

Criteria for localization at EF
[ za 10(Hr]

zeo DC coul: Oj(E)=d
*: E(kSo ,

(Hr-(4) "()() = 0(i) E

(@ zwo temp)

(ii) dynamical criterion : Mij(+) = EC1) So
,Ye+

X: X: CityBGGo)1] bounded as + -
have

evectors
expantal

decay

x (iii) pure point spectrum around Ef : Ja0 st.
O(H) /Baler) = Opp(H)nBa(Ef) < xxxx

can't be inf. degen

evals

(iv) freational moment criturion : FCME(, 0) st. Vxy, SPE[16(x, 2 ; Entia) (s] = Cavalley
and Se 10

,
il

Azenman proved this ! It implies most others

(v) 2e mont cituron : FCUECO,
1) s .

t
. Fxge29, SUSE[16(x; Era)]Ceally

(i) dynaue localization : 750st SP Ell (6x, eit XBaCE (H)Sy(1]aCe-rlla-a



(ii)QMMguest (4) ha (11Pxyll) = Ce
-allx->

(viii) functional analysis : Sup

↑ bdd . mus,
E(IIf(HID = (emllx-yll

Criti S

f
BaCEfC const. ↑ Recall that I local

=> f(1) local for analytic-f .

If it also holds for endrees. F,
we are localized

Criteria for deloclization (i
.e .
diffusivel

- fully continues Spectrum - dij(r) e(o, - Mij(Er) ~t

- inverse perfector : & It isnatio read derloz
|x1, = 1

A-priori bound a Freational moments

In a vibes sense
,

the Genis & for a compact (only pp .) H-74 is

6 (x
, j;z) = ( - 74)]= = E62iz)] ~ Sinduce

We expect the to scale as ~Si = 0
.

Wh oh !

However
,
the ingevity is that # [16 ; z)15] ~S, d = Es (sto

,
1)

Huma: (Schu Complet)

Suppose H = H
,
01z

,
let L = [1B] ,

A:H, B : H2 + I,

2 : It , - Hz D : 12+ Ha

Assume D is invertible and S := A-BD"CeB(1
,) is investible.

The
, L =

S
- I

- S BDY
- ( -D+Cs"D" +D"CS'DJ

We will now start pering the fractural moments stuff !



Theorem (Graf 94) :

eis
HolderConstert
↓

YUse 10
,
7

,
we have SuPE[16( ; Ends] < (Fxge

&of: We well use findermenk perturbation theory? H= H + F F fite rank
.

We will only prace the diagonal case y= x.

Decompose H = H
, 072

,

wher H
,

= range (Px) : = range (S0S
*) (Idin)

Utz = H
,

t (n-dim)

H - z4 =
(1w=

- z)yp+ ( 1)pxt
when F : = PXtHP++ weep of we !

I

Then
,

[ P+
-A)PX F- z1

+2 I
Since # is still S

.A. and InSz30 = F-z1 invertible
and S : = Xu-z-P(-1)P = ve + 3 -b) =

mertible
= The dim Ki+) = 1 Heglotz fu

.

of z invertible

we may apply Sahu complement to find (H-zt)! Since we are all
concerned with the CH-z4)] elect

, we get

6 (x
,xiz) = its for some BEC is idp of we !

Lemme :
-

Vse(0
,
4) -duX &

depends on regulants
of M

Broof of lene : For all DcO
,

S1 -Blduc = Slu-sduct Slu-slduco
3(3v -B1-D3 31] v -B1T- D3-

mem

ED Since u(IR)= 1

Using the laye-alan repesitation Sesam : Su19fet)dt ,
we get

S.-Blduc D+ ukv-B) (VD > 0)

-2
The condition 17v-B1st /10-BECEs #Cr-Pm) + BE <t Elivel

*
st

and so

m (3(zv-si + 3) =m(3/r- -E3)(2 indpecht

,
of B !

Th
, Sv-du D+*=Detect

Optimizing our D
, S-sdu B

Use the learn to integrate one We .

The
, sine the boud is help of Wars'

we al done. Off-dregual port is the same
,

since Schre gives

6(x
,ziz) =

C
for L

,
Be inde , of we D



2/27- Loc
. & high I , all E

17

Reall the picture &
a

delocalizedim(diffusive)

[ Id 10(Hr]

We will device what happens at the green
live (i . e . high 1 => 10c.

FE
,
d).

Lemme (Decoupling) : inder.
of c

,
B

S. due
Prof: For simplify ,

let veir
,

and so we wis
-

Stei#dult- M Sreml--e1 duct
Note that Un

,

v
,Bek, supposing WOLOn In-B1 : /v-s1,

=> In-pK = (v-B - +u = (lu -b) + () + (u))) si)( -Bl+ 1)+141

=> lul+ Inl > In-BK -In-BI
So
,

(IP(ul" - 1) In-31 + ((u1(r)* - 1) (v-B1 + 11 + 11s

= (IPlul" - 1) In-31 + (lu(r)" - 1) /r-Bl + In-sl-1v-s1
In-B)(v- B)

-
> (Ir11n1 + In Iris - 2) Iv-BIS 20
-

t+ 22 for
to

Dividiy by Iv-siSlu-B1s
,

lv-sl" + 1-b) (lulu-pl) + (ii) (vue

Take v = v-d
, n = u-a

, B = B - x to get

Iv -Bl + In-pl - (((u-c) + (m-p() + Hi(1v- a+ 1-3 +-3)

Integrating by SS . dulnidulu) ,

SinstIr-Bl = (Sdaic L) (Sdai (n-al+ 1n -31
-)
) Sink

=: n
- B



Theorem :

There is a 110 s .
t

. FAzta
,

FEER
,

-> selo,
1) and Geelo,

) sit . (16(, 3; Ea] : Cell

Raf: We begin with the Schrodinge equation
H= - 1 + VE)

(H- z1)R(z) = 1 = -SR(z) = 1+ z R(z) - 1Vr(E)R(z)

Letting -A : Idt-A
,

when (MX=&My is the adjay matrix,

=> (z -2d) R(z) - ]V(E) R(z) = - AR(z) - 1

Taking the xy matrix elements
,

(2d - z +1 wx)G(x, y;
z) = Gxy + [6, jiz)

=> (2d - z + 1 wx) (6(x- y; z)) = (6+
+ bit) (fse(, 1)

Sire (atb) a+ b for abso
,

seco,
i)

,

(2d - z + 1 w+1s (6(x- y; z)) = Sx + 16(5
, 3;z))

=> E((2d - z + 2 -+1 16(x. y; z)/] = Sxz+ [16, it)1]
-

By decoupling ,

its is pull at the conster

IE[12d - z+ 1wx( 16(,giz)1] = I'm ES16(x, 3;z)19]

=> (16/3iz)/] = In Gr + EE(6iz) 11
For x

, 3729, denote f(x
, y) := E(16(x, 2 : z715] .

The
,

for x for

from
y (which is what we care about)

,

f(x , j) = f(
, 3) subharmonicity

in speck

Lenna (Subharvanity) :

Consider a Kend B : 24+2* + [0
,
00) obying

By - Buy Frzezd and son Wad
,

The, Buy = E exp(-Eell-yl) with m = E-2d

Boot of huma : Let (AY)x = Y be the adjoccy openter, and so

BV(ABy = (B) 10 Say
=- A + m1

=> ((1 +m1)B)
+

= Sxy => Bij = (- 1 +11) => Brs = = exp(-z w((x -y(l)
use

hist kene
,

Bessel
↑

Combes -

A to show (-Stuty20 Thomas B
if mac

This learn completes the proof , T



Theorem :

There is a 110 s .
t

. FAzta
,

FEER
,

-> selo,
1) and Geelo,

) sit . (16(, 3; Ea] : Cell

Raf: We begin with the Schrodinge equation
H= - 1 + VE)

(H- z1)R(z) = 1 = -SR(z) = 1+ z R(z) - 1Vr(E)R(z)

Letting -A : Idt-A
,

when (MX=&My is the adjay matrix,

=> (z -2d) R(z) - ]V(E) R(z) = - AR(z) - 1

Taking the xy matrix elements
,

(2d - z +1 wx)G(x, y;
z) = Gxy + [6, jiz)

=> (2d - z + 1 wx) (6(x- y; z)) = (6+
+ bit) (fse(, 1)

Sire (atb) a+ b for abso
,

seco,
i)

,

(2d - z + 1 w+1s (6(x- y; z)) = Sx + 16(5
, 3;z))

=> E((2d - z + 2-+1 16(x. y; z)/] = Sxz+ [16, it)1]
-

By decoupling ,

Xuts Pot cat ] = G + En E6Eiz)1
Letting 6(x

, 3; z) =g(x, >) for notation

-ribbit⑰·oo22a- c Loc & all X
,
extremen Eru

17

Reall the picture &
a

delocalized-(diffusive)

[ za Id 10(Hr]

We saw above that we have 3 = (d) so that myO.

Now, let's look at localization below the
green
↑from

decorplya

We have Hr = -S+ MVCE)
, Ho = -1

,
and so the resolvent identity

yields Ew(z) = Mo(z) + Rolz) But
#[1 . 19]

=> ECG(x;z)] siz)] + 16.(x ,FECIwEP (Gu(E, 3,)(9]
nonrandom

Notes that
we are in a different regine (1 is on the right, decoupling must go in

other drection)
. Specifically,

we can goma need

① need z #O(-1) to use Coubes - Thomas on Go
.

* Q need is small
③ need another decoupling hea in the other direction

↳imme (Decoupling 2) :

Suppose that

~ HoldermsmotIis

9. 1xr-BiduC = DS lu-sdl
VEIR

Proof : Using our earlier lenna,-

S 11-de (
Also

,
FQERT

, Slv-sdn-Elzu--Bis de
We know liv-slc(ul + 13) + Q + /B1 ,

and so

S(zv-Bis du + (a + 1BD
-

s (1 - m3(a-ka3)
[1 iv) = Q3



Markov'sine states Ff() monotone

M31xk3 Slide = M914-193:
f (c)

Choosing & st
. Bus/(@)" = & (i . e . Q = 125 Bushks]

S.ku-du-E1Bks + (p)

1: (B) = (15 Bas)

This follows clearly
,

and we get D in that regine

-2 : 18k ( ... / s

Here
, Swed = S, 1rk

---

: (i) B + ())1-1 dr

a-priori
·ord = (7) (B + Bash) = Dz)(25- Backs + 101)

for large enough D.
D

So
, 0-3 above gird localization

.
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17 Fi
delocalized&(diffusive)

[ I- # <O(Hr]There are the following mechanisms for localization:
za Id

⑦ larger - E complete Loc
, via subhumanity

# Exo(-1) and I soft
. small = loc via subherwanty

# low desity of states ("Lifschitz tails")

# Complete Loe
. in 1D

We already pared I and#
. We will tackle # and I toding.

#- Low Density of States

We have Hr : -S + 3Vn(E)
.
Tweets to 12 : [2,

2]d12d to get a

N : = RLrd +
N metrx He acting on K (bordy conditions don't matter).

As N+ x
,

the N eiganches of Her fill of O(Mr) -
↳IIIIIII S

O(Hu)
We are interested in the states corresponding to the red regine
For EF-Id+ a (or Id-a)

,
we expect the eigentrations of the Laplacian to

be approximately constant.
So

,
the probabilityaf such a statewe-fuel

*
This exparential day of probability of

flat V= a

efr eigenstates nee the fringes In contrast to the

R semicircle law) is called Lifschitz tails.

Through black magic, we'd be able to get avantitative boards

① ↑ Sw : dist(o(HC)· E) = <2-03 = [2-l

Using the aprisi boud and a Schur coplant H = 11) 0e(2112),
we can see that find-value FMC =>X-volume FML via

② IE(16122 : 7)19] = CEC1G(xiz)15] (seeChI el)
depof

Furthmore, the 1x-y/ behaven is controlled by the 10-11 behewer :

③ IE(161 2 : z)19] = CE(16,
10

, 2 : =)15]
↑

depof
Smithsoa



Lastly
,

we use the following foot.

① heme :

-

Ifa is an intel herel satisfying

g(x,3) =W&g(xzg(s) for I set los

the suff. fast poly => exportal day-

day of g of 9

Using D-Q,
we do the following :

Defe Se := Ew : dest(oltcni)
,
El-C2-93 ·

Within Se
,

Combes - Those

yidds 16(0 ,
2 ; E)' = Zep(-cs[92) .

Also
, 1PEXE3 : EL

So,

#[16,
10,2,E)/9] = E[16,

10, 2/ Xs] + #[16,
10,

2, Els XsE]
exp(-(s(' -b) + 5)

- SP

and so we get a day at freational mounts.

Thus
, we get location for the E for which we may preve D : these are

exactly the Lifschitz tails !

# - Complete loalization in 1D : treefer metric approach
↓ ⑨

⑥ & &

ii↑
&Entuitively,

localization comes about from quantum interface :
·
T

O

medomness from other places and the past affect ② ⑧

State .

-
in tree - --

-

This

iswhmehaveBeeable
to sha

t

a abte
-

-

graphs : rendumess
.

-

In 1D
S

this effect is seen to the max
,

since 1
the an't as many divisions in which to distribute the

randeness
.

In 1D, HY= z4 ↳> Idtn-4n--Tu + Awn Yn = z4 Une El-

-77 ↑un = - (z-2d - ]m) Yn - Mr-

Lifting Un : []
,

M4 = -4 EY
=

= [- A -zd -x m) + 2 Yn-1I O

-
=: An(z)



These Andz) are the treefer ratrices
,

and
we

have that Un = (A) Yo
From conservationat prob , current

,
we see that the transfer matures are

Sympheta : An(z)thAnlz) =R um r = [i]
So Anl)" =M"Anle E ...

=> eigenvalues are symrature about $1

Thus
,
the system may be modeled wis large products of id radam metrics.

Products of Random Matures

Consider &Bunez ind nardam metrices of size Wow.

For jetu]
,

we define the Lyapunov exponents

V : = Ins E(log o; (B. ... B.)] Oj(M) = jth singulen wahre

o
,
(m) = 11 M/

O (m) = 11M-11
+

In the ID Anderson mode
,

W: 2 and 0,4) = ty by symplate condtuna
So

,
2

,
(z) = - z(z)

.

· If 5
,
17) s0

,
we expect InleVilzin = localized

· It U
,

(z) =0
,

we expert * ex . daycontain t poly day => deloc.

of lemmer

The Furstabery theory gives an answer to when there are simple Lyspor exports :

it's pecisely whe &Br3. fills an open subset of the group they belong
to (the symple group) : this can't hopen forthe ID Andrson model sincetre

only are metox elevant depends on the rendumess.

So
,
(

, (z) + Velz) = V,
(z) 0

.



Fill in 3/19

Entre to Topo . Insulting



-3/21-

Quickreep an topological insulators :

Analytically,
we have been using the condition for H = B(e (29)(Y)

of
11Hill = cerlle-y Es H localized

We seek
a topological dessitation.

Periodic
,

I DOF (bothan be relizal

For illustration
,
let M be periodic

,
i. e. H x+z

, y + z
= Hx

,z
Since the F.

T
. diagonalizes H

,
we have a symbol

h : Nd -> 3A +Matur (1) 1 o(A) do 3
T

conte -

If OGOCA),
the

C .
T . gives that A

local .

The set of such his isE the space at loa Hamiltains.

Use the compact open topology on Esymbols (10norm).
E

~
E emEz

In the case N=2
,
dif

,
we want - - E ,

Or o
-

- ,

7k
7 k

So
,

the space in dif has nontral trivial

↓
S

.
A

. toate
h : $1 + [AtMatzz(@) : E,

cOcE 3 = $2

The E is an alg . top ,
foot. We know 2[$= $3] = 203

hone

So. there is nothy interesting in 1D
.

Chern
↓ #In 20

,

((N + 37 E ②

Quantum Hall Effort (1979)
conductivity clesial

(Ohnis
let

Ou
IDEG Clow temp) system he Quantum

large magnetic Fed

⑳ perp
to

, 20 ~-plane
B

&
n # elections)



Classial Computation

We on do the dessical computation : for a path X. Ir - I EC
S

we have the ODE resistivity, LO time - space
in Const E(r) = Eo e

,

j(H) = E(x) + j B() + rj electric and B (2) = B2zI8
negete frees FIR

This has the solution

~ () =

+ (e-iBt-1B+ (a)+

·if- i th ste nades al
we getnset

· If Eo
, Bo O

,
- O

,Mgetthe
Hall effectihere is ret

movent in the constant electric c

fel in e, direction ·2L
7

· In equilibriu
,
j = 0 = - (v-iBoC = Ec .

For 21 cret dusts j = nj
,

which by Ohu's law jOE gives

E: oni = 0=

-B E

(
Note that in the above

,
we have used the perspective commo to 2D :

(EEIR2 F
jtIR2 -

o C

o =[ ] j=E

j = E

⑨ If Bo = 0
,

O = - * EIR and everything behoves as usual

Li . e . resistanty~l
· If Boto

,
the I doesn't blow up as -0. Insted,

In =i ti .
We cll Call

longitudial Hall conductivity.



Quarter Computation

&
H = (P-A)"+ EoI = (-iX -A)2 = B(LCIRY),Th 2D we home -

with a

garge
choice sit . Curl/A) = Bo is constant :

A(x) = = Bo[-] AS = Bo(-j2] or Bo[]
symatic garge Lander garge

Reall that in the classical computation
,

to get O we sought the velocity J.
Here

,
we want =: [H

,
E] (since G (ACHYy = (iCH,zS(y)

In the second Lander garge,

H = (P-A)+ to E = P
.

2

+ (P2-BoE)
"

+ Eo E

There B no dependence on En
,
ah so it's 2-tusktrainment.

. By a

portral F.
T

.
m the second card

,

# (k) = P,+ (k) -Bo + to i
+B- ) + k

This is solvable with Ej(kz) = Bo(2j+ 1) +Fok- (jt30,
1
,

2
, ... 3) (shifted SHO)

O

Howar, it's difficult to make sense of this *

Instend
, we will do perturbation theory inEo and eventually use Kubo.

So we first solve the unpertubed setting : The Landau Hamiltonian

H = (P -A)" = Pi+ EBoE - Bols
, Ly = X, Pu-XzP

,
langular morental

O

Synera
By a change of cords Z : =E + iE (and 1z1 = *2) => Lz = zD +z* D

*
--

D : = E(p
, -iPe) (and IDE= =P2)

Since [D
,
z] = 1

,
we get Ly = 2ReSZD3-1

,
and so

Ho = YIDi+ B1ZR - Bo(2ReSED3-1) = 1z-2D*+ Bo M
2

-

=: A

We may show [A*, AJ = Botand so its a ladder operator and H= A*A + Bot
itVia two 45 degree rotative me modified to a single harmonic oscillator.

S

It turns at that the spector is the
Bo We call each at these
-

[ & ⑨ & > a "Lander level"
X

each is a copy of

an independent SHO, and So

i x-degenerate



Dropping the constants Bo from about,

& = =(P ,
-iPz) = = (-id

, - (z) = idz = A = - expl - z(zk)(zexp(t(z)
To find ground state

,
we need AY= 0 <Ge exp(t(z) 4(z) = 0

Letting ↑ (z) = exp(-E(z1)f(z), th -
=
f(z) = 0

~

Carchy Ricea
So

,
the first Lacke Level is

fur

S meNuSospor flzteElti : f hole
. 3

holo M

A particular chore of f(z) as monnials allows You'= exp)-t1z)
for m = 0

.
These satisfy L

3 Yom = 1 Yo
,
e

,
and so the first L

.
L

.
has

agulen moretum 10. More generally,

nth Landar level has any. mon .
I -n

For a Lander level at fixed n
,

the Hilbet space of states is ER"(/)

Fill in 3/76



3128- Properties of Shall

Recall that for the quatin Hall effect and the double commentator

formula

x = i +- (P[[ ,
03 ,
[22

,P]]) (DCF)

From this
,

① I he spectral gap & Ef => P = X (0, (1) is local

② [1%, P] is local ad 11/15, Pryll has day in Ij1 , Kit
separately

③ [1., P][12 ,
P] e 5

,
(1)

& Using position operates
,

we need to use the tree/nit volume

Qual = itupur (P([X,
p)

,
(xn

,ps)) ·rid (d) Ei(h)(n~
(k) = i ((n

,
P)(k)note (Xj , P]

Since Plat=Yik@Yik*, we get the Berry curve formula

&
Hel

= Saphn4;,Up I Eij =& (
Levi- Cerita

umis paperby TNN proud that t evala

We will
proce integrality of the DCF

,
which is also more general.

Integrality of Double-Commutator Formula (Fredholm)

Lamme :

↑ [G .,
03

,
S1n

, P]] = [P1
,
P
,
P12P]-

spertent ens
Eig sum

↓

f. EijP(1 :, P](1j ,P] = EijP1 : P1jP
B

Note that ABE5, the tr(SA
,
BJ) : tr(AB) - tr(BA) = 0

.

Sie P1
,
Php istotree cless

, Onall #0.



Now, some Fredholm stuff
.

scaffolly
for

Theorem : (Fedosor formula Atigah-singer
inter

-

Fredholm
If FeF(7t) and G is a parametix with [F

,
GJET,

(H)
,

the
-

index(F) = tr ([F, 63)

#ben: (Atkinson)

If F has a parametix, then FeF(+).

The magic is the following formula :

Theorem: (Baby As Index)
compare with

If Q is S
.
A

. proj andI unitary with
⑳ E = index (f)

[u
.
Q] Y

,
(1)

,
then

since [Q
,
U] If

↓ (u * [Q
, u]) = index (QUQ + Q+ and n

*=
= dim Ker (QUQ + Q

+) (topology)
Igeometry)

&of of them : (from Arron,
Seiter

,
Since 194 "Change deficiency")

Let QU : = QUQ + Qt. We show the QU* = QU * Q +Q is a

paraetix : we was H- (QU*)QUELE (ut) ·

1) - (Que)(Qu) = Q + Q
+

- (Qu*
Qua + Qt

=a - Qu + Qua = Q(1 - u +Qu)Q
-

= qu
+ (10)uQ = u

*Y

Q +

= QUAQ
+ [U

,Q]EK(11) Since [U,Q] compact .

So
,
QU is Fredlon . Applying Fadosov with parantar QUP

Thus
,

inder (Qu) = + ((Qu)(Qu*) - (QU*(Qu)
= + (QuQu* Q - Q + Q - Qu +QuQ)

We short above that QUQU
*Q-QEY

,
(H)

,
and so,

letting R := U * QU be another S
.
A

. proj,

new(Qu) = +r(RQR -R) - +-(QRQ - Q)



Note that [a
,
(a - R)2] = [r

,
(Q - R)] = 0 Since

& (a -R)= Q - QR- QRQ + QR = (Q -R) Q.
.

The
,

(Rar-R) - 1QRQ -a) = (a - n) = (a - ufra)"= (u + Su ,
a])3

=> index(Qu) = tr((U *[U ,
Q])3)

We are almost doe
,

and all we mustshow is that wea

use the 1st power instead of the -

(Q - R)3 = Q -R - QRQ + RQR = Q - R - [QR
,
RQ]

= Q - R - [QR
,
(R

,
Q -R]]

Sine Q-REX
,
(H)

,

the [QR
,

[R
,
Q-R]] = 0 Since it's [A

,
BJ with BEY

So, +~((Q - r)) = +- (Q - R) = +- (u + [u
,QT)

D

Now
,
the main result.

Theorem: (Gle[]

We have Mal = it- (p [(1 ,
p]

,
[12

,P]]) Kitaev
L inder

= ↓ index (1
, expl-zipMP)1 , + 1

,t)

2
.

Proof: Let us note that from the DCF and the first lenma,-

en

Onall = its ([P1
,
P

,
P12P]) d it (PMP, PM]

mi fe Leappr ,
p
,
01203 eicome) dacyclicity

i e Y,
Cuti

Since e-AGB
,
Abedt = ideidABeict

,
the fundamental the at cale

gives 2 P1p
-pr ,p)+ - Ce 210 pr

,
pe

In te letion pr, p
, eliProy)

Since [P12P
,

P3 = 0
,

we know (ezipep] = 0
,

and so

I (pezP1pp(1 , e-zip1p])



We
may write e-ziphp-pe-zipled + pt by untants

,

and so

tr (e-iP1[1 , eiprp)

By Baby AS,

=Inde (1 ,
etPrPr

,
+ 1 , 4) Et

D

Calculating Gall-Loughlin Flux Formula

The above formulae are good toproceHya but not to

compute the Char #
. We go a

-> radial electric field
,·

>

magnetic
measure "current" as #

flux (dust) at e gong + o

Let U : = expliag(X+ ixz)) be the withy associated with the

insertion at the origh over are period. Note that P-U* PU is

not in 5
,

but it I EYs .

So
,

we expect
-

on = + +~((p-uppu)3) =... = 1 nder (PUP + p
+ ) .

2π 24

We can now calculate the Lander Hamiltonian's Chern # !

Prop :

Let P be a proj .

on to Ge
Landar Level.

LL => im(p) = &2(E -nno has ay. mon
.
12-n &

Let O := any (X,
+ i Xz) be the polar angle position op.

Then,

-

( like how it
is mounter shift by 1)

&finish· Any , non , is conjugate nar. to E

· O generates the angular montre shifts

· (Gf) (r, 4) = 4 f(r
,
4) (polar coards)



12-

Reall from lastfime that for the IQHE with

·H= B(l(z2)(v) local
, gapped a Ef

· P = X( - 0
,
E1)(H) local

projectives
to

me ware able to show
upper

and right
half-planes

1/4

: it(03,20077) : IePhDto !trace-cless

ti Z

We will now look at the Laughlin index
,

which is more commonly used in

mathematical physics.

De (Laughlin Flux Insertion

Befre U := expliag(X+ ix) to be the Laughlin flux insertion.

Theorem: (Laughin Index)

We have Man" Er index (PUP + Pt

Proof: Reall from last lecture that if [P
,
UJEL (7)

,
the

-

Pup + p
+

=: /Put F(1t) Cearlie
,

we knew (1
.,
e-ziphp) < 5

,
(t)).

If turns out that (P
.U]-Yg(1t) but not trace-class

. We need the

following lennes :

Lemma: If SSh der (Qw) = + (w* [w
,q])

der(Qw) = + (w* [w
,
q]3)

-
Avron ,

Soler
,

Simon 94

Schenorm noncommentative geometry !

↳ Hall = tapte&nd (EA110)
to

VA = B(l(z)02")
Axy = (Sx , ASz)

#ofof lenme: Let A =

I "A%
A

, n

I
and so

A = &
need

Alk) g (A()+ y
= A

+ y
+ S

+ z,
4

Ank
K

Reality conctates
= llAlpAl



We compute

11Allp = tr (1A(0) : 11 IA'12110
Then,

(Ak()
y

= (Al *A(k))+y

= E((m)*)x= (AM)Ey

= (Ax Sern)
*

Any Sea = Say (Ax 12

So
,
1A2 is diagonal , siding (IAM3]P = Say /Ax+

1

B

The next cla is to show the following :

have : It p is a local projection and U is Laught,
-

# Sp
,
u]e Ts (1+) .

& The previous leave gives 119P. U]/In:En (11 (P
.4)113)

Locality at P
gives sumbility

in h via

(P
,
u]

+ y
= (pu- up)

+y
= (S x, (Pu-up) Sj) = (Uyy-Ux] Pry

=> II(P
.]x+ ll = 11 Px

, all (lUxn-Ux,
/l =

locality
2e-e11k1 11Un - Ux

,
+

/l

Wa will use the fact that for fit= &
give by

(x
, x) + eia(x+ix)

,

IDE(0,
0) S .

t .

If(x) - f()) =D
The

, 11 Un-Ux
,

+(l = (f(x+) - f(x)) =Dy .

We need the third

↓ ↓
exponent since

1 + |x |
isn't integrable in 20

,
but (1 + (x1)3

is
.

So
, (P ,

u] = 5
,
(t)

·

D

The man the then follows.
B

We an also direty correct the Kitcer and Laughlin voices
S

without referace to the DaF which may not always hold
.

This

proof uses direct homotopy.
Fredholm +

A .S .

indexO&
indu (IPU) = nder (1

,
eiBrD1

.
+ 1

,7) .

back :

Bleeker B

=: index (1
,
e-2 : P1P) Booss



Roof: For FeF(7)
,

we know index (F+6) = index (5) if

& 11G11 is sufficiently small [Dieudonne)
② G is compact (Atkinson ?)

Let f : + & be Sadig (x
, x2) +t eargexifix) as before .

&
Sep 1 : Change f(E) to f(E-a) for some at Cl &2

positive and large. Non-cent. deformation to change

[0,
B = + + (Pf(E+ (1- +) a)

102: Let 4 : - $'be a continuous fr with winding
number wind (4) =+ 1 that does all its winding m

-

a small widew Y zi

- /

* in O

This closes the circle to an are in a worm-continuous homotopy.
So,

IPf(E-a) - Peilarg(E- c)
= (5(1+)

#3 : under (IPe: Klany(a)) = under 1/ X
e

: Mlany(+al) since ther1 I

difference is
*

C .
w .

IP us P

*iPe"- IPe = 1 , IPe"1
,
+ 1

,

+
- IPe"

Since
Ie = (1

,
+ 1

.+) Me= (1
,
+ 1 ,
t

= 1
,
IPe 1 , + 1

+ Pe 1
,

+
+ 1 ,

Ie" 1 ,

+
+ 1.

+
Ie"

=> diff=-iPe) 1 ,

+
+ 1

,
1Pe1 + Mit p e1

,

= 1
,

+ (p+ p +
- Pe P - p + 1= 1

,

+ P(4- e
=) p1

,

t

= 1
,

+ [P
,

1-e= ] P1 , +e) Pl
,

t

= O since e"is H

outside a come
,

so.....GXT
a

! --

projectly left = 0
.

-

....

The other extre parts are dealt with similarly. So,

diff = 1
,

+ [P
,

M-e= ]P1 ,
+e((1+) by stp 2.

#U: Add another flex on the left
. Specifically

,
consider the

nu untr # : = e
: R(ag(E -d)-iY(ay( +a))

= ci3(E)
The differe is now

↑ IPe :
"

- A
,
IPT = 1

.
Peitlaykal) (1 -eiY(y(x+1))p1 ,

...
(5(1+)

&5 : A
,
Pei3(E) - A

,
IPeiP3(E)P(((1+)

#6: Befor ECE) to -zile(E) norm-continuously .

D



# IQHE cont.

· O
Hall

: it- (P ((1
,

03
,
(12

,
P3])

We saw so far: Ero(+) =- under (PUP + Pt
2π

E
-

15 = mer(1PU)
-

Okall

n
P : = Y(0

,
es(M)

-
Ef

-
= X( -x

,
Er +a)(k)

if EFEED

From the above
,

weimmediately see

① P = 0
,

1 = Gull = O

② If [D
, E) = 0

,

the P connotes with functions of E and so Ouall = 0.

③ If p has foutermark image or level
,

then Guall = 0.

Howeve
, changing Ex to Era doesn't change P under the spectral gap

assumption. To see something interesting ,
we need to allow pure point eigenerales

i the spectul gop 1
,

introducing the following picture that allows us to continuously

way EF :

Ef+E

(H)
X -localizatde

- o (Hi A "mobility gap"
The above picture is about the EQUE under the disanded model.

O almost such
,

the eigenvales in 1 are simple

② Since Gall is discrete
, the only way for it to change is

at points where Gall doesn't exist IPU not Fredholm
So

,
the blue back can be take I L [P,U] not compact (to be delocalized. => DC is not e M

,
2

=& 1 P is not localized

This is mend; it seems that Muell #0 = J deloc
.,

but in ID
we

had

seen complete localization. A more complete picture is thes :

· complete deloe in 2D for d= 3· in
, May

time-reveal invariat (TRI) bosose have deloa .

systems



D (TRI)

Let O:(E2 + 22) be the fire-reversal operator
,

wheh is simply
an antiunitary operator

,

i .e. (04
, 4) = <D

,
4) it. 00 *

= 0 *
= /

arch ⑦ is arti-k-line.

+ bosoric

There are in general two versions : o =

- 1 fermionic

We
may choose O as complex conjugation (

..., 4,
Y, ...
) )

.

...
Jo

,
F

,
. ..

since fire evolution eith gets conjugated by O to e-itH.

We say the system is TRI if [H
, 0] = 0

Note that if G is complex conjugation. the

D [H,] = 0 for the Anderson model since [1 ,
03 = 0 ET Mxy EIR Ex, y

② By measurable frctural calculus
.
[P

.
] = 0

③ In fert
,

[G
,
] = 0 with QUE = Geisy( =)0 = e-iag(z) = u

*

From the above, & (IPu)o = O (Pup + pt) 0 = Ph
*

P + Pt = IPUR .

Since the Fredholn index has index (F) = - index (F*) and

and so under (AB) = index (A) + index (B),

index(1PU) = - index (IPU
*) = -2 index (0) - under (IPU) = - under (1PU)

=> Oxall = O

There are serial useful models to apply this :

① Disordered Lander an LCIR2) : H = (P-A)" + 1 Vr(Et
S

~loc=>
oneaf the eigehes in each mobility gap is

② Harper model on 12(23) : Hry= Six-ye"
Beyer's
model - ③ On e(z))@( = (201(E) with H = I A m]

and [E ,

B] = 0
, (E ,

A] = 0
-

B -A

right
B = R

,
shiftThe

, Elke) : ktanh(42) = Cherno (H) = + (B* (1
,, BJ) = - 1

With disorder
,

this gives
the picture above.



Properties of Chem # W.
r .t . disorder

Propi
-

If P
,Q are local S

.
A . projections st. PLQ

,
the

index ((P+Q)> U) = index (1PU) + index /Qu)

Proof :
- indIPU + ind Qu = ind((IPU)(Qu)) = ind (PUPa+

+ p +
Qua + P +at

= ind (PUP-Q +Qua-Pa-a))
1- (P+ Q)

· (P+a)u = (P+a)u(p+a) + 1 - (P+a) = PuP +QuQ + Pua+ Qup + 1 - (P+ a)

So, we must show that PUQ + QUPEK(H)
,

which holds since

PUQ = (P,UJQEESt) by assumption .

B

& (SULE bass)

We sy that S4In is a "SULE" ONB for V if

7) [x3
.
[20 localization centers" sit . F2z0

, J(x
Sut. 1) U

.
(x) = Cae-ullx-yll +allell(x= 29)

del Rio,
see

For such a setup
, we have the sunrability Jito, ...,

Lasi , Simon

(V( 0) for proof of

(1 + 11 x- (1)
- d-3 IEneN/Ill23) ad

If

St,PrP t
(p) h a SUCE be,See

we

Prop:
-

dense p.p.
-

Let Pm := X(u) (H) .

The
,

if = O

Chen (Pu) = Chen (Pural .

&oof: Pu+ a
= Pu + Q with Q := Xunta) (H) by the featurel calcls.

So
,

we most show that Chem(a) = 0
.

Lemma : Q fully localized => Chern(a) = O
-

Profi When 11 exhibits Anderson localization inA ,
FMC
-
->

Su #(116( ;Ell]Cell (EEA)
exp . day

of mar.

Fral

- Sup [11f(H) +/1] = Ce-Mllx-y11
feB

,
(A)

=> almost-surely ,
Fact J2,2 st . 11f(tryll = Cae-mllt-yll +all x/)



Wer wis ind(Qu) = 0, or equivalenty show that QU is

compactly away from investible. Defore V vitey as follows :

VI := eiag(x1)0n El = 4 if Yeim (at)

# is clearly vitey and QU-E((H) (U- VTQ(k(H)

We can show that (U-VQ is p-Schatten for p suff
. large :

1) (U-v1Q/lp =Ell (M
-va) (

%) Cearlier lenna

Also, f(z) = eias y

IU.
-Yet t

We know from last time, which along with

the SULE estiate gives surrability in Ex.
n

.

So
,
(U-UQ is p-Schette

and so compact .

&

B

fill in ula
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remat
to d ele posic in boude syste

Adjust R(2)
-

> -(2)N)e
the simplest bounding we could introduce.

We saw last time that

In courd.
I'm xd l (29) -> l (2*

= ()

] (H) local -> local->

=> 7 insulator -> not an insulator
o(F)

&(n) 11 = 0 + 0(k)+ 1 = A

We wel introduce a fretical calculus for las regular as possible) fros supportant
on 1

,
as this wil let us understand edge systems coming from

truncating spectrally-gapped bulk systems.

Bef: (Bulk Gap)

We say a local edge Haultonian M = #*EB(&(E% "ON) @K
*)

has a bulk gap within S&IR iff F Smooth giR+ &

with supply) [S,
1) g(1)+yl) = (a

- 2 ((x-y - v(xa + ya (x
, y +zd N

Smooth Functional Calculus (Dynkin, Hellfen-Sjostrand, Hanzile-Sigal)

Let f: IR -C be smooth a compactly - supported and A :** EB(14)
for It separable .

The goal is
,

as always,
to defire f(A).

Cauchy-Rieman
er

Consider the Wertinger devinators &z = (x + iby and CRE Geg = 0

Let X : IR-1R be even
,

smooth
, compactly supported, with *

Bria
= I for

Some S0 (* is basically a bup) . Fix NEI.
T
large

# (Quasi-analytic extension of fl

We define F : =C via Extig) := X(z) (*)k = 0

to be the avasi-analytic extension off depending on Xx and N.



Observe the following :

& E(x) = f(x) FxEIR some KEO turns vanish -> extension !

② E obeys the CRE on 1
,

i . e. (Ef)liz = 0
.

To see this,

(E) (x+ iy) = (G
=

+ idy)X() (x)
= () k

=
~

= X(y)f(
+1)(x)() + iX() f(x)N !

when ly18 ,
= f(N(x)Lig

Note that def is compactly - supported in K.

③ A compact spt .

= flu) compact spt .

① Analogously to the Carchy integral formula
,

we have

Peop:

f(a) = 1 S (z)(a - +)
+
de (FaEIR)

=ImJ de (6)(z) la

&Im 3731 < 93

Proof: have
~

We only need to conside as y + 0. We

cpt . spt .

(e)(+ ) = t()(m/fm ())+some constant
S

- y

Also, la-z1"Igl" . Thus,

& It S)(z) (a-z del : S E 1+

dedy o(A
x+ in-k N !I

↑
compact

& Nsl
,

and so the integel carrages absolutely !
Defin

f (a) : = Siks (GEF)(x+iy)(a - x - iz) dedy

We claim fact pointwise.



Integration by parts wrot . GE (which is just Stokes' in 2B)
gives that fa(a)= S [F(x + ic)(a - x - is)]- de

↓EIR

Since (a-z) is holomorphic . Since # (x = i 2) = f(x) + is f(x) + O(ct)
,

=> falal-SrImhatalde
↓ S f(x)+ C - a + ic)")

So
, fala) + f(a)

. i
Bet (Smooth Fal Cala) : D

We
may always define falt) :=+ & ( = f)(z) (A - z4)

+ dz
2π

#1 - m3z3/s
since we

have the resplant any frto the real live.

Pointwise comegee at tells us that falt) + A(A)

strongly, wher the RMS is understood here wi measurable

fal cala .
In feet

,

it can be boasted to operatur -

nom

convergence .

So
, we get :

X
converges in op . norm

F : IR+ & Smooth
, => f(a) = [S( =

f)(z)(A - z)
+
dz

compactly - supported

Theore /Smooth Preserves Locality) :

Let A = A *EB(l(2@KY) be local and filR-C smooth and

compactly supported. Then,
J M30 s.

t . VNEW, J Cr10 sit.

ll f(A)
+y() = Cr(1 +u(l + -y())

-e

# fatu (A
=> IItaly Il S 33zu e

-m)[n(z3)((x -yll

=All Soda ae-cell
-All (N-i ! Cullx-yl) ix something

else that's regular if x= y -

D



The : (Smooth Presences Bulk Decay) :

Let H = H*
- B(l(29)0K1) be local with a spectral

gap on S CIR. Let 5 : e-(zd xN) -> l (29) be the ↳

partial isoretry and let
g : /R- & smooth with supply) - 1

.

If ↑ B(l(2*xN)*(Y)
,

the
-

1) ( -5 *5)
+yl) = Ce - m((x -3) - v(xa+3d) = ((g(7)xy)) ...

Raf: By def, (5) = H if Xadco · Company gCl

with g(H),

9) (M)+y
- g()+*)(((--(-]

resoluted... finish
D
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5 partial
iso

~ 2 12

It
-- i

bulk
Recall the picture on 15(2) on 1(EN) :

---------edge 1
,

2/

We say A is local and decys in dreation j iff

llAxall = Ce
-M/(x-yll - v((xi) + (yj)

Note that if A is local
,

the [A, 1j] decys in dreaten j
.

Sover facts :

· if HeB(H) is loved and goped, and
g is swook and

thesupported on the gap,
-

= g(5* H5) days into brik

· If A local
,

B days in dr. j , the AB
,
BA

,
B* decays

in dr . j

· A decays in all directions- > A is tree-class

D Ledge Hamiltonian)

# +BIT) is an edge Hamiltonian if F = 5
* H5 for some

HERCUt) that is local
, gapped,

and decys into the bulk.

Bet Ledge Hall conductivity (

We defie the edge Hall conductivity to be

a = i + - (g- (m)(π ,
1

,]) - ,-

Ele => OIH
-

for a
smooth approximation g to X70

, Et
A

Theorem : (Kallendark
,

Richter
,
Schulz-Baldes 199) :

We have = I index (A , e-zig(n)
Def dec notes -

D



~ Load and
so, dras

Even: (Bulk-edge correspondere --5
*15

N into balk

↓

Oral = O
Hall

when UeB(e
*(22) local a gapped

Proof : We get there using:
-

#en: (Forsee-Shepio-Shote - Way -Yamaha 120)

= I index (A , e-zig(n) ↑ :
1-0,
(H) _E

Mall = I index(A , e-ziPhp)

With this
, we was we can reple PlaP with lapla in Ball,

which
we get Since PlzP - 12P1 = [P

, 1]P + 1291st

days into the bulk. = [P
, 1230 + [12 ,93127

Next
,

we his we can reple leg(H)1e oth g(5* H5)
.
To

do so :



10-

Defi
dimher1 , di im1 = -

-

Let It be a
Hilbert

space and 1 amotrivial proj
We

say AERCH) is 1-local if [A
,
1] is compact.

Let [S1) denote the
space of 1- local ops.

Prop:

It A
,
Be2(1)

,
the

· AB
,

A+ B
,

A
* =2(1)

· if A normal
,
f:O(A)+ continuous

,

the f(A)e2(e)

Let I : = GUEBGH) : 1 oritory3. The,

# connected
Cunitres) Theorem : Is

- componen->

Kriper Theorem) ↑ (2) = 0S

Profi Let Hell
,
and so oluleS ! Find fo(u) -IR bac

.

-

St, eif(x) = X
,

and so U = eif(u)
. Letting 2: 50

, 13 + 22 be

giv by the eitf(u) this is a continuous path from M
/

↓ U
.

Since the holds FUEL
,

Ho (2) = 0
.

D

Remak : The proof will feel for 2112(1) since we canot
-

graventure UCHE2(1) (which happens size we cannot

gravated thatf is continuous in the case Ocul = S.
So

, perhaps (212(1)) + 0
,

and indeed this is true
.

localLunteres Theorem : (Shpino and the grad student : relehdte(+) = 2

#(u12(1)) = R

Baf: We want to find a corresponde between path-connected comports
of M11(1) and the value at index AU.

un2(1)

By continuity at the under
,

we already know that if n - V

the inder AU = nderAV. We will show the concese.

By the log . property of the index
,

under (MU) = nder (AV) the



index (Aur+) = 0 and UV* = UmV

So
,

it suffices to show that index/Au= 0 =M
.

Suppose UE212(1) is s.t. index(AU) = 0
.

Decomposer H : m+ im 1
,

and wate

u :[ 1 : [i]
=>[u , 1) = [ _0Ur] um

,
Uet

↑

off-digs
loca E

are cost .

Since U is vitey,

UH= 1
,

from which we see U
..

4 - 4

Un* Un - 1(((1+)
.

...
for Re

-
TSo

,
Ure is Fredholm with index (URR)= 0.

Un tullis essen

untary
ma:

If ZeECt) Las z
*

Z-1
,

ZZ
*-HEKCH) and under (2) = 0

,

# JYET st . z-Yek(2+)
·

Apply this Lemma to Her and Use to get Brn , Bu EI
with

(407-(]k(EU for KEY(1+)
.

=
=: B = 2(1)

(no aff-drags

So
,

U = AB where&2 with Cek(ct) ad BeU12(1).

this meas A has
p. p . spectum

/ accumulation only at 1

u12
Apply is the prev result to Bac and Bro, B - H since the

off-diagonals stay 0
.

Since o(A) = S, the wh ~
ful f : (A) + C

continuous sit . A= cif(t). Continuity preserves locality
,

and so A EM.

Thus
,
ABUH.

D

We stop and note thatNo (self-ady· unitares) is infinite. However
,

if we

restrict to natural vitores we got more.

dim Ker (U + 1) = 0
,

i . e.
desslu) = E + 1

T-2(nontuur)
The

Ho (self-adjoint, nontrivial nituus) =
ni

Proof: We 1) = (her U+ 1) O(ke-U-1)
.

Let U
, VE S

.

A
,

nontrivial witeres
.

-



Since du(keU + 4) = dm(keV+ 1) = =
,

then SW: Kell+ 1) + Ker (v+ 1)
unteg We have U = W& VW /checks)

· The
,

since writering

are path-connected, Wh, 1 along We . Defiry U.:: We
* VW

+,

we see thatI met V.
B

Bef (1-nontrivial

Let UET12(1) be S
.
A. We say U is Anontrivial if

Jess (141) = Jess (1+un
+) = 3 = 13

I. e . H acts nortrivially on both ind and in It.

Theore:

# (EU = U12(1) : H
*

= U
,

U nontral
, U1-noutunial)) = 0

Proof: As before
,

write n = [* ]] ,
X

,
Y S

.
A

.. We have the properties-

AA*
= H - y2

(i) (l Ull = 1 => 11 x11
,

11y11 = / (ii) U +2 = A*A = 1 - x2

(iii) U + 2 (1) => A compact XA = - AY

So
, size & and Y are essentially-vitory , they have spective that can

accumulate at 11 only, and are isolated in (-1
.

17
.
Thus, :A

↑: [1,
13 + IR is continuous at II

,
the flock is continuous

since O(xn(1
,

1) is isolated. If we let X> 0sgn(x):= 20 = 0 ,

- I -O

then XA= -AY => Sqn(x)A = -Asgu(Y) and so Yop(x)A = Asgn(Y)
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Classification of 1-D Insulators

Recall that for periodic systems ,
we had a correspondere with

from Nd + Gru (4) .

Since locality I this
mp continuous,maps is

twe can study the topological stuva me : we find that the corrected

comports of 3F:Nd+M3 correspond to homotopy classes of M
,

and so

# ($%
+M) = Td(M) = J G classification scheme

-af- Oh ,
so noreToward the non-periodic setting ,

the has been a program
to app ly

you
know

k-theory
?
"

methods from noncommentative geometry and K-theory (the CE alg . type) :
- Shaping

* Jean Bollissand (sine 90's) : K-theory in conduced matter physics
* 6 . Thing (2015) : Ph

.
D . these explore kitaer table at level of Kother

However
,

it is generally tough to apply these ideas
,
and so there is a goal

to do it in a functional-analytic way .
In 1D

, this is already done.

Functional-Analytic Approach

LetIt be a separable Hilbert spece ,
and 1 a fixed S

.

A.

projection.

# Assume 1 is nontrivial (i .e .

dim (Ker1) = dimlim1) =x)
Jessentially converte

& Define the subspace 2(1) = 2 : = 3A = 1(7) : [A,1]e(5(+)]
⑭ 2. (1) is a C* algebr .Hain"Algbeic structure is inheted from BC)

,
andoa

must show 2/1) is op ,
room-closed. If AntA for

(An)n[[(1), the [An
,
1] = [A ,

1] = (A
,
1]e((1+)

Since corpect ops,
are norm-closed.

D

① Since continuous funtional calc is closed in a C*-alg,
the [A

,
A*] = 0 and f: C + & continuous means

[A, 1]c((u+) = [f(A),1]t((1+)

Soa timeMrtow calculus presumes decyiy tobea



Now,
define the linem operator X : B(H) + Blt) serdy

An 111 + 1+. 1 defines a R
, -grading of It via

#- and so [· I-] **
An

We note ↑ (U)12(1)) [F((+) Sin AUR is a parametrix
↓o AU : 1- (AUD)(1u) = 1 - 148141 = 14k(4 -1)m1 = [1

,
u +]1+

un
-

Ek(n+)

define the R-index indu : ((+) 12(1) + 2
.So, me

e ind (ur) = n (u) +n(v)⑪

Symmetrics: E
invertible

↓

Let C
,JER(+) be anti-unitary ops .

Sit. C: -52= 4

IR-structure : <p : = &Yest : < = 43
quaternious

↑

IH-structure : generatures of IH-alg: 1
,

4
,
5

,
i5

C-structure: It is born with this !

Delie for FeSC
,
53

,
FEER

,
IHY the following:

· By (t) : = SAtB(t) : Af= FAS
: .e . FAF = A

*

· Brkt) : = [AtB(t) : Af= FA
* 3

· B (7+) : = &At Blt) : AF= -FAS
iF

Standing assumption : [C
,
1) : [5

,
1] = 0 (C ,

5 are hyperlocal
,
should be unnecessary).

& 2- index (Atiyah-Siger 1969)

Claim : ind(Er() = O

# inder A = die KerF-diker FF = -index F*
.
Since AEt 114)

,

the
#F

these most be equal ,
and so they are 0. D

The same holds for S
.A . operators :

Det (Zn-index) : indux (A) := (dmKerf) mod 2 e Ea

index
z

,
e

: (H)+1/1) -> E2 sads HitidxU.



&am (AS 190) : indal and inda) are norm-conte and

# (4k+) Fr
*

(1+) compactly stable.

*I a logarithmic law for inde.

ito (2(7) 12(1)) - the 10 Bijections

* Iheorm: 15 bijections)

W
. r .

t
. the operate norm topology,

0. ind : (UFu2) =& (Fe(R, (3)

③ W : No (U
,H12) - 22 (i .e . these wa)

④ To (Her12) = 303

⑤ inde : Ho(12) 22

Remarks :

-

· ② was
CHO82 JFA

,
which we covered last time .

· Ho(21) ESO3 (Kriper 5) compared with ② shows

that locality is crucial.
↓

some manifold

· Atiyah-Singer 1969 should (M + F(c)) = ko(vt)
Atizah-Janich 1965

and soHo (F(ct)) = 2
.

& (self-adjont urteries)

Defin S(7) : = SA = A* E2)(1+)3 to be the cless of

S.A
. unteres. If P is an orthogonal projection ,

then H-2P is

a S
.
A

. unitary. 1 if xo

else - I

↓

Physics: ↑ = Xce
,
0 (H) the Ferriprojection at EE = O

, Sgn(H) the flat
Hamiltonian, the

Sgn(H) = 1-2P is S
.

A. unitary

Recalling 1-nontrality from last time
,

we have

Han: Santal [S12(1) S

& U :[ii] ,
and so U-VeKt) = Ucr

,

YaneKk+). T



A Then: 15 more bijections)

W
. r i

t
. up . norm topology ,

starte - ⑥, o(S) = 203 (FESIR,
K
, 1HY]

proving
last

time ⑨ to (S ) = 303

⑩ ind (S) Da

Raks: · O comes from Andudow et al
.

2015 JFA

& Dropping locality in ⑥ is easy : for U
,
V,

W : kar (n - 1)0km (u + 1) + ke(V - 1)0ke(v+ 1)

has w*
W = V.

Classification of 1-D insulators

Previously
,

we had

rest
the

Copy

from

blackbord
pies



425
spectrally-

gapped
Write X

I = 3H= H * EB(er)(2) : H is exp-local and Oto(n)3O,
N

and equis it w the operator norm topology.

Edra: Relax expolocality to [1,
H]EK for 1 := Xgos (E)

Example:

H = 1 - 1
+ c

- 1
,

1
7

M = -1 + 1
+

&
M

,

- T
Y

Laim: H andIt above are not pattconnected in Fo
,
N.

Pot Suppose otherwise
,

it. Suppose Bo

=> cont. [0
,
1 +He e For sit . Ho = H

,
H

,
= F

Wate Pf := E(1-sgn(H +)) = Po = 1
,

P
,

=1.

E if I cont
. path connecting S. A

. projections in a C*

alg ,

then they are equialet up
to conjugation by a city.

So
,
JUeH(1+) 12(1) Si. 1 = 41

+ u
.

Writing U: (U Un]
,

LU,EveU
So
,

1007 : (U UnY
*

[10](U ]
=>M= UREURL = MeK *.

B
So

, clearly we need to rele the defintion slightly.

Lef

H = H** B(&*(2)CY) is a bulk-insulator iff :

[H ,
1]eK

,
OfO(H)

,
and 1sgu(H)1, are ess ,

nontrivial

1+ Sgz(H)1+ SAUs

Let duote the set of bulk insulators.



"flat"

Man: TB is a deformation retuation of the
lets us check

↓
F (t

,

11) = Fa

Perf- F(t
,
H) = (1-7)H + +squ(H) satisfies Squ(F(t ,H)) = squ(H) . we ne In

= Se-nontarial D

The goal is to show
o (b) = 303

Andruchow et al
.
(2015) mestigate

S

[ =
X
, Y, 5 S

.

A
.

u = ) , [ with A
,
E compact

Se-nontrivial e

One wants to find path connecting u- u

If v
,
I are two nontvial SAUs

,
the = WeR(it) St . V= w

* EW
.

We want to decompose It = Ker (v+ 1) ke (V - 1) = ker(u + 1)0ke(- 1)
and use Kripe to correct W > H (Kripe) on the diagonals .

So
,

it reduces to correcting U to a diagonal SAL within Seventual.

...
insert stuff ben about intentuining eigespaces
of X

,Y to each other van A
...

there is isomphiom between XSIEIB and -@(X)(E + 13

U i a SAM
UE= 1 E

AAR = - Y2 for A: her(Y-x1)S 1A*P = 1 - x2 - ke(X +11),
ess .

SAh XA = -AY 1x14/
Note that

3113 : "Gess(u) = Jess(x) Udess(4)
and *(xz(x)A = AX3-13Y

So to construct a homotopy sady Off + EEB
, we do the following :

-

vidend at O

· Let f+: /R-1R sand XI SgulxIXsos (x)
· Write V:= f

+(x) + f (Y) eSerrantical
91

Se-nontura
um --The problem reduces to showing V

X

Write 6 := E(u + +) => Gu = . ..
= VG

Note that GEF(1t) and ind 6 = 0
. Defining g+

(x):= x + f= (x)

=>6 - 1) 09. (v) EK => indu(d = 0

invertible

We claim even more : that G is itself invertible.



To see this
, we WiS kn6 = 303

. Suppose G(Y] = 0
.

Since 6 : Eg+
(x) ] ①[ * =(x). = (9+

(x)4+ 14 = 0

g. (y)y+ A* 4 = 0 ②

So, A+

g+
(x) = A

* (X+ syn(x) + xg0(x)) = (-y - syn(y) + Xy0z(Y)) A*
=

-

g . (Y)
*

Thus
, ① => A*

g+
(x)4 + (Amy = 0 = 0 = -

g .
(y)A+ 4+ 1AMC

= O = g -() +1 = Y :T

So
,

6 ismutible
.

We aledy knew GU = VG
,

and so

· n = Ga = un = [02
, u] = [02v] = 0

=> [In 0 ... pol(6) U = pol(o)

"popt,
So

, polCa) is a
SAM which conjugates U and I. Together,

pol(but H
--

Kriper ~ Mmxpol(E) -
U -> ve me x U

So
,
the first entry in the Kiter table is empty for ID.

fullThe 10 bijections give the full ID kither table.

D


