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Evan Dogariu MAT 425: Problem Set 7 Problem 1

Problem 1

Solution

Proof. Let T : H → H be a bounded operator on a separable Hilbert space H which is diagonal with respect

to an orthonormal basis {φk}k, with Tφk = λk.

( =⇒ ) Suppose first that T is compact. For all ϵ > 0, define the index set of all eigenvalues with magnitude

larger than ϵ as

Aϵ := {k : |λk| ≥ ϵ}

We want to show that for all ϵ, the set Aϵ is finite. So, suppose by way of contradiction that there exists an

ϵ such that Aϵ has infinitely many distinct elements. Consider the (infinite) sequence

(Tφk)k∈Aϵ

Since T is bounded, we know that this sequence is also bounded. By the definition of compactness, this

sequence must then have some convergent subsequence indexed by (kn)n ⊂ Aϵ. Since H is a Hilbert space

and is therefore complete, this subsequence is Cauchy. The Cauchy criterion then reads that there exists an

N such that for all n,m > N ,

||Tφkn − Tφkm ||H < ϵ (km, kn ∈ Aϵ)

However, we have that for all km, kn ∈ Aϵ,

||Tφkn
− Tφkm

||2H = ||λkn
φkn

− λkm
φkm

||2H
= ||λknφkn ||2H + ||λkmφkm ||2H − 2Re ⟨λknφkn , λkmφkm⟩H
= ||λkn

φkn
||2H + ||λkm

φkm
||2H = |λkn

|2 · ||φkn
||2H + |λkm

|2 · ||φkm
||2H

= |λkn |2 + |λkm |2

≥ 2ϵ2,

where the first line uses that the φk’s are eigenvectors, the third line uses that the φk’s are orthogonal, the

fourth line uses that the φk’s have unit norm, and the last line uses that km and kn are in Aϵ. Taking the

square root, we have that for all n,m > N ,

||Tφkn
− Tφkm

||H ≥
√
2ϵ > ϵ

This contradicts the Cauchy criterion, and so we find that Aϵ must be finite for all ϵ; then, for all ϵ > 0, it

must be that maxAϵ < ∞. We know that for all n > maxAϵ, it is true that n /∈ Aϵ =⇒ |λn| < ϵ. Since

such a property holds for all ϵ, we know that |λk| → 0, and so λk → 0.

( ⇐= ) Suppose now that λk → 0. Let Pn be the orthogonal projection operator onto the subspace spanned

by φ1, ..., φn. We want to show that

||PnT − T ||op ≤ sup
m>n

|λm|

For any vector v ∈ H, we can write v =
∑∞

k=1 akφk in terms of the basis, and so since Pn sends φk to 0 for

k > n,

||(PnT − T )v||2H =

∥∥∥∥∥
(

n∑
k=1

akλkφk

)
−

( ∞∑
k=1

akλkφk

)∥∥∥∥∥
2

H

=

∥∥∥∥∥
∞∑

k=n+1

akλkφk

∥∥∥∥∥
2

H

Since the φk’s are an orthnormal basis, Parseval’s identity gives that

||(PnT − T )v||2H =

∥∥∥∥∥
∞∑

k=n+1

akλkφk

∥∥∥∥∥
2

H

=

∞∑
k=n+1

|ak|2|λk|2

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 425: Problem Set 7 Problem 1 (continued)

Clearly, for each k we are summing over, |λk| ≤ supm>n |λm|, and so

||(PnT − T )v||2H ≤
∞∑

k=n+1

|ak|2
(
sup
m>n

|λm|
)2

=

(
sup
m>n

|λm|
)2 ∞∑

k=n+1

|ak|2

So, for all unit vectors v ∈ H with ||v||H =
∑∞

k=1 |ak|2 = 1, we have that

||(PnT − T )v||2H ≤
(
sup
m>n

|λm|
)2 ∞∑

k=n+1

|ak|2 ≤
(
sup
m>n

|λm|
)2 ∞∑

k=1

|ak|2 =

(
sup
m>n

|λm|
)2

Taking the square root of both sides, we get that for all unit vectors v,

||(PnT − T )v||H ≤ sup
m>n

|λm|

Since this holds for all unit v, it must hold in supremum, and so

||PnT − T ||op = sup
||v||H=1

||(PnT − T )v||H ≤ sup
m>n

|λm|

Now, we know that λk → 0. Let ϵ > 0. Then, there exists some N such that for all m > N , we know

|λm| ≤ ϵ. Therefore, for all n > N ,

||PnT − T ||op ≤ sup
m>n

|λm| ≤ ϵ,

where the last inequality holds since m > n =⇒ m > N =⇒ |λm| ≤ ϵ. Since such an N exists for all

ϵ > 0, we know that ||PnT − T ||op → 0. However, note that each PnT is a compact operator since its range

has finite dimension (in particular, it has dimension n). So, by Proposition 6.1(ii), since we have a sequence

(PnT )n of compact operators with ||PnT − T ||op → 0, we get that the bounded operator T is also compact.
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Evan Dogariu MAT 425: Problem Set 7 Problem 2

Problem 2

Solution

Proof of (a). Let T : H → H be compact, and assume λ ̸= 0. We want to show that the range of λI − T

is closed. To that end, suppose that (gn)n ⊂ range(λI −T ) is an arbitrary sequence of elements in the range

that converges to some vector g ∈ H; we want to show that g ∈ range(λI − T ). For convenience, denote

Vλ := ker(λI − T )

We know that Vλ is closed since null spaces are closed. So, we can perform the orthogonal decomposition

H = Vλ ⊕ V ⊥
λ . Now, since each gn is in the range, we can write

gn = (λI − T )fn

for some fn ∈ H. In this case, use the orthogonal decomposition to get fn = f
(1)
n + f

(2)
n with f

(1)
n ∈ Vλ and

f
(2)
n ∈ V ⊥

λ , which means

gn = (λI − T )fn = (λI − T )f (1)
n + (λI − T )f (2)

n = (λI − T )f (2)
n

This means that gj is also the image of some element f
(2)
n ∈ V ⊥

λ , and so we can suppose without loss of

generality that fn ∈ V ⊥
λ for all n.

Lemma 1. The sequence (fn)n is bounded.

Proof of Lemma 1. Suppose by way of contradiction that (fn)n is not bounded. Since (gn)n is convergent,

it is bounded, say by ||gn||H ≤ M for all n. For each n, define

vn := (λI − T )

(
fn

||fn||H

)
=

1

||fn||H
(λI − T )fn =

gn
||fn||H

Since ||vn||H ≤ M/||fn||H and the fn’s get unboundedly large, we can always find a new arbitrarily small

element of (vn)n. So, there exists some subsequence (vnk
)k such that vnk

→ 0 as k → ∞. However, note

that the sequence
(
T
(

fnk

||fnk
||H

))
k
is the image of a bounded sequence under a compact operator T ; we must

therefore have a convergent subsequence T

(
fnkj

||fnkj
||H

)
→ w as j → ∞ for some w ∈ H. Since

λ
fnk

||fnk
||H

= T

(
fnk

||fnk
||H

)
+ vnk

,

taking the limit along the subsequence (nkj)j ⊂ (nk)k and dividing by λ ̸= 0 reveals that, since vnkj
→ 0 (it

is a subsequence of (vnk
)k),

fnkj

||fnkj
||H

→ w

λ

Since fnkj
∈ V ⊥

λ for all j and orthogonal complements are closed subspaces, we find that w
λ ∈ V ⊥

λ as well.

However, since T is bounded and therefore continuous, T

(
fnkj

||fnkj
||H

)
→ T

(
w
λ

)
. By uniqueness of limits,

w = T
(w
λ

)
=⇒ Tw = λw =⇒ w ∈ Vλ

So, since w ∈ Vλ and w ∈ V ⊥
λ , we know that w = 0. Therefore,

fnkj

||fnkj
||H → 0. This is a contradiction, since

a sequence of unit vectors can’t approach 0. So, (fn)n is bounded.

Problem 2 continued on next page. . . 4



Evan Dogariu MAT 425: Problem Set 7 Problem 2 (continued)

Now, since (fn)n is bounded and T is compact, there exists a subsequence (fnk
)k such that (Tfnk

)k converges,

say Tfnk
→ h ∈ H as k → ∞. By definition of gn and the fact that λ ̸= 0,

gnk
= λfnk

− Tfnk
=⇒ fnk

=
gnk

+ Tfnk

λ
=⇒ lim

k→∞
fnk

=
g + h

λ
∈ H,

where we used the fact that Tfnk
→ h and gnk

→ g as k → ∞ (since gn → g, so does any subsequence).

Define

f :=
g + h

λ

such that fnk
→ f as k → ∞. Then, T is compact =⇒ T is bounded =⇒ T is continuous, and so

Tfnk
→ Tf as k → ∞ (continuous functions inherit limits). So, the facts fnk

→ f and Tfnk
→ Tf together

imply that (λI − T )fnk
→ (λI − T )f as k → ∞. However, gnk

= (λI − T )fnk
→ g; by uniqueness of limits,

this gives that

g = (λI − T )f

In particular, we get that g ∈ range(λI − T ). Then, range(λI − T ) contains all of its limit points and is

therefore closed.

Proof of (b). Suppose now that λ = 0. We wish to find a compact operator T : H → H such that

range (λI − T ) = range (−T ) is not closed; for simplicity, let us instead find a T for which V := range (T )

is not closed, as the negation of this T will have the desired property. Let {φk}∞k=1 be an orthonormal basis

for H, and define

T (φk) :=
1

k
φk+1

We know from Problem 5 that T is compact, and so all we must do is find a sequence of vectors in V such

that their limit is not in V . To this end, consider the sequence (fn)n ⊂ H given by

fn :=

n∑
k=1

φk =⇒ Tfn =

n∑
k=1

φk+1

k

Clearly, the sequence (Tfn)n is contained in V by definition. Furthermore, the sequence has a limit which

is equal to

lim
n→∞

Tfn =

∞∑
k=1

φk+1

k
=: g =⇒ ||g||2H =

∞∑
k=1

∣∣∣∣1k
∣∣∣∣2 =

∞∑
k=1

1

k2
< ∞,

where we used Parseval’s identity and the p-series to show that ||g||2H < ∞. So, the infinite sum defining g

converges to a vector in H, and we can say Tfn → g. However, it can be shown that g /∈ V . Suppose by

way of contradiction that g ∈ V ; that is, suppose that g = Tf for some f ∈ H. Write f =
∑∞

k=1 akφk. This

means that
∞∑
k=1

ak
k
φk+1 = Tf = g =

∞∑
k=1

1

k
φk+1 =⇒ 0 = Tf − g =

∞∑
k=1

ak − 1

k
φk

Since the φk’s are linearly independent, the only way for this sum to be equal to 0 is if all the coefficients

are 0, which means that ak = 1 for all k ≥ 1. However, Parseval’s identity reveals that

||f ||2H =

∞∑
k=1

|ak|2 =

∞∑
k=1

1 = ∞

This is a contradiction since we assumed that f ∈ H, and so it must be that g /∈ V . We have thus found

a compact operator T for which a sequence in range (T ) converges to a vector not in range (T ), and so

range (T ) is not closed. This means that range (T − λI) is also not closed when λ = 0, which in turn means

that range (λI − T ) is not closed. So, the result from (a) doesn’t always hold when λ = 0.

Problem 2 continued on next page. . . 5



Evan Dogariu MAT 425: Problem Set 7 Problem 2 (continued)

Proof of (c). ( =⇒ ) Suppose first that the range of λI − T is all of H. We want to show that

h /∈ ker(λI − T ∗) for all nonzero h, as this will prove that the kernel is trivial. To this end, let h ∈ H be an

arbitrary nonzero vector. We want to show that (λI − T ∗)h ̸= 0. So, note that since the range of λI − T

is all of H, then there exists some f ∈ H such that (λI − T )f = h. We have that the adjoint of λI − T ∗ is

simply (λI − T ∗)∗ = λI − T ; to see this note that for all u, v ∈ H,〈
u, (λI − T ∗)v

〉
H =

〈
u, λv

〉
H − ⟨u, T ∗v⟩H = λ ⟨u, v⟩H − ⟨Tu, v⟩H = ⟨(λI − T )u, v⟩H

Using this, we get 〈
(λI − T ∗)h, f

〉
H =

〈
(λI − T ∗)(λI − T )f, f

〉
H

= ⟨λf − Tf, λf − Tf⟩H
= ||λf − Tf ||2H = ||h||2H ̸= 0,

So, we see that
〈
(λI − T ∗)h, f

〉
H ̸= 0, which in particular means that (λI −T ∗)h ̸= 0 (if it were 0, we would

not have been able to find a vector f that it isn’t orthogonal to). Therefore, h /∈ ker(λI − T ∗); since this

holds for all arbitrary nonzero h, we find that λI − T ∗ has trivial kernel.

( ⇐= ) We will prove the contrapositive of the reverse direction. For notation, define V := range(λI − T ).

Suppose that V ̸= H (i.e. the range of λI−T is not all of H). By part (a), V is closed. So, we can decompose

H = V ⊕ V ⊥

Since V ̸= H, there must be some nonzero element of V ⊥ (if V ⊥ were to equal {0}, then H = V ⊕ V ⊥ =

V ̸= H, a contradiction). So, let f ∈ V ⊥ be nonzero. Define g := (λI − T ∗)f . Since f is orthogonal to all

elements of the range of λI − T , in particular we must have

⟨(λI − T )g, f⟩H = 0 =⇒ ⟨g, (λI − T )∗f⟩H = 0

We know from the proof of the other direction λI − T and λI − T ∗ are adjoints, and so we get that〈
g, (λI − T ∗)f

〉
H = 0 =⇒ ⟨g, g⟩H = 0 =⇒ g = 0

This means that (λI − T ∗)f = 0, and so f ∈ ker(λI − T ∗). Since f is nonzero, this means that λI − T ∗ has

nontrivial kernel, and we are done.
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Evan Dogariu MAT 425: Problem Set 7 Problem 3

Problem 3

Solution

Proof of (a). Define the function

K(z) := i(sign(z)π − z)

on the interval [−π, π) and extend it periodically over all of R. For an f ∈ L1([−π, π]) that is extended over

R periodically, we have

(Tf)(x) =
1

2π

∫ π

−π

K(x− y)f(y)dy =
i

2π

∫ π

−π

πsign(x− y)f(y)dy − i

2π

∫ π

−π

(x− y)f(y)dy

Since x − y > 0 for y over the interval [−π, x) and x − y < 0 for y over the inteval (x, π], we split the first

integral and get that

(Tf)(x) =
i

2π

∫ x

−π

πf(y)dy − i

2π

∫ π

x

πf(y)dy − i

2π

∫ π

−π

(x− y)f(y)dy

=
i

2

∫ x

−π

f(y)dy +
i

2

∫ x

π

f(y)dy +
i

2π

∫ π

−π

yf(y)dy − x
i

2π

∫ π

−π

f(y)dy

We know that the functions
∫ x

−π
f(y)dy and

∫ x

π
f(y)dy are absolutely continuous w.r.t x by Proposition

1.12(ii) from Chapter 2; furthermore, both
∫ π

−π
yf(y)dy and

∫ π

−π
f(y)dy are constant w.r.t. x . So, the

function x
∫ π

−π
f(y)dy is a linear function w.r.t. x, and is therefore absolutely continuous. This means that

Tf is a linear combination of 3 absolutely continuous functions and a constant, and must itself be absolutely

continuous. To see that a linear combination of absolutely continuous functions is absolutely continuous,

note that the variation over a partition
∑N

k=1 |F (bk) − F (ak)| can be split by the triangle inequality, and

each term can be bounded separately since the constituents are absolutely continuous. Take the minimum δ

required to uniformly bound the constituent variations such that the total is < ϵ, and the sum is therefore

also absolutely continous. Thus, F = Tf is absolutely continuous.

Suppose now that
∫ π

−π
f(y)dy = 0. By the converse part of Theorem 3.11 of Chapter 3, we know that

F ′ exists a.e., and that we can simply differentiate with the rule that

d

dx

∫ x

a

f(y)dy = f(x) a.e.

So, since
∫ π

−π
yf(y)dy is a constant and contributes 0 to the derivative and

∫ π

−π
f(y)dy = 0 =⇒ x

∫ π

−π
f(y)dy =

0, the linearity of the derivative grants that

F ′(x) =
i

2
f(x) +

i

2
f(x) + 0− 0 = if(x) a.e.

Proof of (b). Note that if we can show that

K̃(x, y) := K(x− y) = i(sign(x− y)π − (x− y))

is in L2([−π, π] × [−π, π]), then we get for free that T is a Hilbert-Schmidt operator on L2([−π, π]), which

automatically implies compactness of T as an operator on L2([−π, π]). Now, by Proposition 3.9 of Chapter

2, K̃ is measurable on [−π, π]× [−π, π]. Since |K̃|2 is nonnegative, we can apply Tonelli’s Theorem (Theorem

3.2 of Chapter 2) to see that

||K̃||2L2([−π,π]×[−π,π]) =

∫
[−π,π]×[−π,π]

|K̃|2 =

∫ π

−π

∫ π

−π

|sign(x− y)π − (x− y)|2dxdy

Problem 3 continued on next page. . . 7



Evan Dogariu MAT 425: Problem Set 7 Problem 3 (continued)

For x, y ∈ [−π, π], we know by the triangle inequality that

|sign(x− y)π − (x− y)| ≤ |sign(x− y)π|+ |x− y| = π + |x− y| ≤ π + |x|+ |y| ≤ 3π

So,

||K̃||2L2([−π,π]×[−π,π]) ≤
∫ π

−π

∫ π

−π

(3π)2dxdy = 9π2 · 2π · 2π = 36π4 < ∞

In particular, K̃ ∈ L2([−π, π] × [−π, π]), and so T is a valid Hilbert-Schmidt operator on L2([−π, π]),

which immediately means that T is compact. To see that T is self-adjoint on L2([−π, π]), note that for all

f, g ∈ L2([−π, π]),

⟨Tf, g⟩L2([−π,π]) =
1

2π

∫ π

−π

(
1

2π

∫ π

−π

K(x− y)f(y)dy

)
· g(x)dx

=
1

4π2

∫ π

−π

∫ π

−π

K(x− y)f(y)g(x)dydx

Now, note that K(x− y) = −K(x− y) = K(y− x) because i = −i and the function K(·) is odd. Therefore,

⟨Tf, g⟩L2([−π,π]) =
1

4π2

∫ π

−π

∫ π

−π

f(y)K(y − x)g(x)dydx

If we switch the order of integration (we know that |K(y−x)| ≤ 3π and that f, g ∈ L2, and so we can apply

Fubini’s Theorem), we get that

⟨Tf, g⟩L2([−π,π]) =
1

4π2

∫ π

−π

f(y)

∫ π

−π

K(y − x)g(x)dxdy

=
1

2π

∫ π

−π

f(y)

(
1

2π

∫ π

−π

K(y − x)g(x)dx

)
dy

= ⟨f, Tg⟩L2([−π,π]) ,

where we used that the complex conjugate of an integral is the integral of the conjugate of the integrand

(which can easily be seen by splitting into real and imaginary parts). Since this holds for all f, g ∈ L2([−π, π]),

we see that T is self-adjoint.

Proof of (c). ( =⇒ ) Suppose first that φ ∈ L2([−π, π]) is an eigenfunction of T . From part (b),

we know that Tφ is absolutely continuous (and so differentiable a.e.). Also, if we define

ϕ(x) := φ(x)− 1

2π

∫ π

−π

φ(y)dy =⇒
∫ π

−π

ϕ(x)dx = 0,

then the second result from part (b) yields

(Tϕ)′(x) = iϕ(x) a.e.

Now, if we let C := 1
2π

∫ π

−π
φ(y)dy =⇒ ϕ = φ− C, then ∀x,

(Tϕ)(x) =
1

2π

∫ π

−π

K(y)ϕ(x− y)dy =
1

2π

∫ π

−π

K(y)φ(x− y)dy − C

2π

∫ π

−π

K(y)dy

The first term on the right hand side is none other than (Tφ)(x), and the second term evaluates to 0 by the

oddness of K (the fact that T sends constant functions to 0 is something we will use again). So,

(Tϕ)(x) = (Tφ)(x) =⇒ (Tϕ)′(x) = (Tφ)′(x)

Problem 3 continued on next page. . . 8



Evan Dogariu MAT 425: Problem Set 7 Problem 3 (continued)

In particular, this means that Tφ is differentiable a.e., and that since ϕ(x) = φ(x)− C,

(Tϕ)′(x) = iϕ(x) a.e. =⇒ (Tφ)′(x) = iϕ(x) = iφ(x)− iC a.e.

However, since φ is an eigenfunction of T , then

(Tφ)(x) = λφ(x) a.e.

If λ = 0, then Tφ = 0 =⇒ (Tφ)′ = 0 =⇒ iφ− iC = 0 =⇒ φ = C, and so φ equals the function 1 up to

a constant multiple. If λ ̸= 0, then the previous facts imply that

λφ′(x) = iφ(x)− iC a.e. =⇒ φ′(x) =
i

λ
φ(x)− iC

λ
a.e.

So, φ is differentiable a.e., and satisfies the above differential equation. However, note that

C =
1

2π

∫ π

−π

φ(y)dy =
1

2πλ

∫ π

−π

(Tφ)(y)dy =
1

2πλ
⟨Tφ, 1⟩L2([−π,π]) =

1

2πλ
⟨φ, T1⟩L2([−π,π]) = 0,

where the above result is because T is symmetric and we know that T sends constant functions to 0.

Therefore, C = 0, and

φ′(x) =
i

λ
φ(x)

We know this differential equation to have the unique (up to a constant multiple) solution of

φ(x) = eix/λ

The last step is to note that since C = 0 and λ ̸= 0, we can compute

0 =
1

2π

∫ π

−π

eix/λdx =
1

2π

[
λ

i
eix/λ

]π
−π

=⇒ eiπ/λ − e−iπ/λ = 0

=⇒ 2i sin(π/λ) = 0 =⇒ sin(π/λ) = 0

The above reveals that π/λ = nπ for some n ∈ Z, which means that λ = 1
n for some n ∈ Z. To sum

up, we have shown that for an eigenfunction φ of T with eigenvalue λ, either φ is constant with λ = 0, or

φ(x) ∝ einx and λ = 1
n for some n ∈ Z \ {0}.

( ⇐= ) To show the other direction, suppose first that λ = 0 and φ(x) = C for some C ∈ C. Then,

as we have seen in the previous part, T sends constant functions to 0, and so

Tφ = 0 = λφ,

and φ is an eigenfunction of T with eigenvalue λ. Suppose next that n ∈ Z \ {0} and φ(x) = Ceinx for some

C ∈ C nonzero. Then, we can compute using the expression from part (a) that

(Tφ)(x) =
Ci

2

∫ x

−π

einydy +
Ci

2

∫ x

π

einydy +
Ci

2π

∫ π

−π

yeinydy − x
Ci

2π

∫ π

−π

einydy

Starting with the fourth integral first,∫ π

−π

einydy =

[
1

in
einy

]π
−π

=
1

in

(
einπ − e−inπ

)
=

2

n
sin(nπ) = 0

For the first and second integrals,∫ x

a

einydy =

[
1

in
einy

]x
a

=
1

in

(
einx − eina

)
Problem 3 continued on next page. . . 9



Evan Dogariu MAT 425: Problem Set 7 Problem 3 (continued)

So,
Ci

2

∫ x

−π

einydy +
Ci

2

∫ x

π

einydy =
Ci

2

(
1

in

(
einx − e−inπ

)
+

1

in

(
einx − einaπ

))
=

Ci

2
· 2

in
einx =

C

n
einx

For the third integral, integration by parts yields∫ π

−π

yeinydy =

[
− i

n
einy

]π
−π

+

∫ π

−π

i

n
einydy

Both of these terms evaluate to 0, as we have seen before. In total, we find that

(Tφ)(x) =
C

n
einx + 0 + 0 =

1

n
φ(x)

So, Ceinx is an eigenfunction of T with eigenvalue 1
n , as desired.

Proof of (d). From part (b), since T is symmetric and compact, there is an orthonormal basis of

L2([−π, π]) consisting of eigenfunctions of T . However, from part (c), those eigenfunctions are exactly

{einx}n∈Z. Since einx and eimx have different eigenvalues for n ̸= m (unless n = 0 and m = 1), they are

orthogonal. When n = 0 and m = 1, they can be computed to be orthogonal via

〈
1, eix

〉
L2([−π,π])

=
1

2π

∫ π

−π

eixdx =
1

2π

∫ π

−π

cos(x)dx+
i

2π

∫ π

−π

sin(x)dx =
1

2π
[sin(x)]π−π + 0 = 0

They are also all certainly normalized, as for all n ∈ Z we have

||einx||2L2([−π,π]) =
1

2π

∫ π

−π

|einx|2dx =
1

2π

∫ π

−π

1dx = 1

So, the eigenfunctions of T form an orthonormal set, and from the spectral theorem there is some orthonormal

basis of L2([−π, π]) consisting of eigenfunctions of T ; therefore, the orthonormal basis of L2([−π, π]) must

be precisely the eigenfunctions {einx}n∈Z.

10
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Problem 4

Solution

Proof of (a). Let H := L2([0, 1]). Let T : H → H be defined by

T (f)(t) = tf(t)

Note first that for all f, g ∈ H and all α, β ∈ C,

T (αf + βg)(t) = t(αf + βg)(t) = αtf(t) + βtg(t) = αT (f)(t) + βT (g)(t) ∀t ∈ [0, 1],

and so T is linear. Also, for all f ∈ H, we have

||Tf ||2H =

∫
[0,1]

|tf(t)|2dt ≤
∫
[0,1]

|f(t)|2dt = ||f ||2H,

where for the inequality we used that t2 ≤ 1 over [0, 1]. So, T is bounded. Next, for all f, g ∈ H we know

⟨Tf, g⟩H =

∫
[0,1]

tf(t) · g(t)dt =
∫
[0,1]

f(t) · tg(t)dt = ⟨f, Tg⟩H ,

where for the second equality we used that t = t for t ∈ [0, 1]. This reveals that T = T ∗. The last thing to

show is that T is not compact. To do so, we will first prove a silly little lemma (that we totally won’t use

for part (b) hehe).

Lemma 2. T has no eigenvalues and no eigenvectors.

Proof of Lemma 2. Suppose by way of contradiction that T has an eigenvalue λ. Then, there is some

corresponding eigenvector f ̸= 0 (0 cannot be an eigenvector) such that (being careful to note that equality

in H means equality over the domain [0, 1] up to a set of zero measure)

Tf = λf =⇒ tf(t) = λf(t) for a.e. t ∈ [0, 1]

Since f ̸= 0 and tf(t) = λf(t) a.e., there must be a set E of positive measure such that f(t) ̸= 0 and

tf(t) = λf(t) for all t ∈ E. Then, for all t ∈ E we can divide by f(t) to see that t = λ over E, and so

E ⊂ {t : t = λ}. However, the set {t : t = λ} trivially has 0 measure (it can be contained in an arbitrarily

small ball around λ, and so it cannot have a positive measure), contradicting that E has positive measure.

So, we see that T can have no eigenvalue λ (note that this logic also disallows the possibility λ = 0). There-

fore, it can’t have any eigenvectors either.

Now, suppose by way of contradiction that T is compact. Certainly T ̸= 0, and we have already shown

that T = T ∗. Then, by Lemma 6.5, we find that either ||T ||op or −||T ||op is an eigenvalue of T . However,

this contradicts the result of Lemma 2, and so T cannot be compact.

Proof of (b). I lied. By Lemma 2, we know that T has no eigenvectors.

11
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Problem 5

Solution

Proof. Let {φk}k be an orthonormal basis for H. Let T : H → H be defined by

T (φk) =
1

k
φk+1

Note that this operator is certainly linear, as it is defined on a basis and extended linearly. Furthermore, for

every f =
∑∞

k=1 akφk, Parseval’s identity yields

||Tf ||2H =

∥∥∥∥∥
∞∑
k=1

ak
k
φk+1

∥∥∥∥∥
2

H

=

∞∑
k=1

∣∣∣ak
k

∣∣∣2 ≤
∞∑
k=1

|ak|2 = ||f ||2H,

where the inequality is because k ≥ 1 =⇒ 1
k2 ≤ 1. So, ||T ||op ≤ 1, and so T is bounded. Now, for all

n ∈ N, define the projection operator Pn onto the subspace of H spanned by {φ1, ..., φn}. Then, PnT is a

compact operator for all n since it bounded and has finite rank. For all unit vectors f =
∑∞

k=1 akφk with∑
k |ak|2 = 1,

||(PnT − T )f ||2H =

∥∥∥∥∥(Pn − I)

∞∑
k=1

ak
k
φk+1

∥∥∥∥∥
2

H

=

∥∥∥∥∥
∞∑

k=n

ak
k
φk+1

∥∥∥∥∥
2

H

=

∞∑
k=n

|ak|2

k2

We know that |ak|2 ≤ 1 for all k because f is a unit vector. So, for all unit vectors f , we have

||(PnT − T )f ||2H ≤
∞∑

k=n

1

k2

Then, the supremum over all unit vectors still has this property. In other words,

||PnT − T ||2op ≤
∞∑

k=n

1

k2

Since the right hand side is a tail of a convergent sum, it must go to 0 as n → ∞. Therefore,

||PnT − T ||op → 0

This means that T is the limit of a sequence (PnT )n of compact operators (in the topology induced by the

operator norm). By Proposition 6.1(ii), since T is bounded we know that T is therefore compact.

We now wish to show that T has no eigenvectors. Suppose by way of contradiction that g =
∑∞

k=1 akφk ̸= 0

is an eigenvector of T , say with eigenvalue λ. Then,

Tg = λg =⇒
∞∑
k=1

ak
k
φk+1 =

∞∑
k=1

λakφk

=⇒
∞∑
k=2

ak−1

k − 1
φk =

∞∑
k=1

λakφk

=⇒ λa1φ1 +

∞∑
k=2

(
λak − ak−1

k − 1

)
φk = 0

Since the φk’s are linearly independent (they form a basis), we must have that all their coefficients are 0. In

particular, we require

λa1 = 0 and λak − ak−1

k − 1
= 0 ∀k ≥ 2

Problem 5 continued on next page. . . 12
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Suppose first that λ ̸= 0; the first statement then requires a1 = 0. Since a1 = 0, the second statement

with k = 2 requires that a2 = 0. Similarly, the second statement with k = 3 requires that a3 = 0 since

a2 = 9. Proceeding inductively, we find that ak = 0 for all k ≥ 1, and so g = 0. This contradicts that

g is an eigenvector. Suppose now that λ = 0. The second statement then yields that ak−1 = 0 for all

k ≥ 2 =⇒ ak = 0 ∀k ≥ 1, resulting in the same contradiction regardless of the value of λ. Therefore, T has

no eigenvectors.
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Problem 6

Solution

Proof of (a). Let T1 and T2 be two linear, self-adjoint, compact operators that commute. Since T1

is self-adjoint and compact, the spectral theorem tells us that there is an orthonormal basis {φk}k of H
composed of eigenvectors of T1. Let {λk}k be the corresponding eigenvalues such that T1φk = λkφk. Let

{λ̃n}n be the set of distinct eigenvalues. Then, we know that the eigenspaces {ker(λ̃nI − T1)}n are finite

dimensional for all n, and are orthogonal for i ̸= j by Lemmas 6.3 and 6.4. Furthermore, since each element

of the orthonormal basis {φk}k is contained in exactly one such eigenspace, we know that we must have the

decomposition

H =

∞⊕
n=1

ker(λ̃nI − T1)

Let Vn := ker(λ̃nI − T1) denote the eigenspace corresponding to the nth distinct eigenvalue of T1; then,

Vn ⊂ H is a closed subspace since null spaces are closed, and so Vn is itself a Hilbert space. Then, for all

f ∈ Vn, we see that because T1 and T2 commute,

T1(T2f) = T2(T1f) = T2(λ̃nf) = λ̃nT2f =⇒ (λ̃nI − T1)T2f = 0 =⇒ T2f ∈ Vn

So, T2|Vn
: Vn → Vn is an operator on the Hilbert space Vn. Certainly, this operator is linear, bounded,

and self-adjoint since T2 is. Compactness also follows clearly, since any sequence {fl}l of bounded vectors

in Vn yields a convergent subsequence {T2flm}m; since T2 maps vectors from Vn to Vn, which is closed, we

see that this subsequence converges in Vn as well. This means that T2|Vn
is self-adjoint and compact, and so

by the spectral theorem there exists an orthonormal basis {ϕn
s }

dimVn
s=1 of Vn corresponding of eigenvectors of

Sn. However, each element of Vn is automatically an eigenvector of T1 by construction, and so these ϕ
(n)
s ’s

are eigenvectors of both T1 and T2. We clam that

B :=

∞⋃
n=1

{ϕ(n)
s }dimVn

s=1

is an orthonormal basis for H. Certainly, each vector in B has unit norm by construction. Furthermore, for

any two ϕ
(n)
s and ϕ

(m)
p in B, they are orthogonal if n ̸= m because eigenspaces are orthogonal by Lemma 6.3,

and they are orthogonal if n = m and s ̸= p because they are part of an orthonormal set in Vn. So, B forms

an orthonormal set in H. To see that it is a basis, note that it is the union of bases {ϕ(n)
s }dimVn

s=1 of the Vn’s,

which partition the space H by a direct sum. So, any element of f ∈ H is uniquely representable as a sum

f =
∑∞

n=1 vn, where each vn ∈ Vn. Since each vn is in turn uniquely representable as a finite linear combina-

tion of elements of {ϕ(n)
s }dimVn

s=1 since {ϕ(n)
s }dimVn

s=1 is a basis of Vn, we see that each f is uniquely representable

as an infinite linear combination of elements of B. This means that B is an orthonormal basis of H, formed

by vectors that are eigenvectors of both T1 and T2. Therefore, T1 and T2 are simultaneously diagonalizable.

Proof of (b). Suppose that T : H → H is normal and compact. Let

T1 :=
T + T ∗

2
and T2 =

iT ∗ − iT

2

Lemma 3. The sum of compact operators is compact.

Proof of Lemma 3. Let S, T be compact. Let (fn)n be a bounded sequence in H. Then, (Sfn)n has a

convergent subsequence, say (Sfnk
)k by compactness. Now, consider (fnk

)k, which is a bounded sequence

in H; compactness of T grants that (Tfnk
)k has a convergent subsequence, say (Tfnkj

)j . Since (nkj
)j is a

subsequence of (nk)k, we know that both (Sfnkj
)j and (Tfnkj

)j must converge. Therefore, ((S + T )fnkj
)j

must also converge. So, for all bounded (fn)n ⊂ H, there is a subsequence (fnkj
)j such that ((S + T )fnkj

)j

Problem 6 continued on next page. . . 14
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converges. Therefore, S + T is compact.

Lemma 3 and Proposition 6.1(iv) (T compact ⇐⇒ T ∗ compact) tell us that T1 and T2 are both com-

pact. Furthermore, they are both self-adjoint. To see this, note that

T ∗
1 =

(T + T ∗)

2
=

T ∗ + T

2
= T1

and

T ∗
2 =

(iT − iT ∗)∗

2
=

(iT )∗ + (−iT ∗)∗

2
=

−iT ∗ + iT

2
= T2,

where we used the fact that (cS)∗ = cS∗ for all c ∈ C. Lastly, we can note that because TT ∗ = T ∗T ,

T1T2 =
i

4
(T + T ∗)(T ∗ − T ) =

i

4
(TT ∗ − T 2 + (T ∗)2 − T ∗T ) =

i

4
((T ∗)2 − T 2)

and

T2T1 =
i

4
(T ∗ − T )(T + T ∗) =

i

4
(T ∗T + (T ∗)2 − T 2 − TT ∗) =

i

4
((T ∗)2 − T 2)

So, T1T2 = T2T1, and therefore T1 and T2 are two compact, self-adjoint, commuting linear operators. By

part (a), they are simultaneously diagonalizable, say w.r.t. an orthonormal basis {φk}k. Lastly, since we

can write

T1 + iT2 =
T + T ∗

2
+

−T ∗ + T

2
= T,

we find that T is the linear combination of two operators that are diagonal w.r.t. {φk}k. In particular, T

itself must then be diagonal w.r.t. {φk}k, which means T is diagonalizable.

Proof of (c). Let T : H → H be compact. Let λ ∈ C, and suppose that U := λI − T is unitary.

This means in particular that λI − T is injective, which means that there is no nonzero f ∈ H such that

Tf = λf ; put differently, this means that λ is not an eigenvalue of T . Furthermore, λI − T unitary means

that

(λI − T )−1 = (λI − T )∗ = λI − T ∗,

where we evaluated the adjoint just like we did in the proof of Problem 2(c) (this is a consequence of the

fact that U unitary implies
〈
f, U−1g

〉
H =

〈
Uf,UU−1g

〉
H = ⟨Uf, g⟩H =⇒ U−1 = U∗). This relationship

grants the following two equalities

(λI − T )(λI − T ∗) = I =⇒ |λ|2I − λT ∗ − λT + TT ∗ = I

(λI − T ∗)(λI − T ) = I =⇒ |λ|2I − λT ∗ − λT + T ∗T = I

Subtracting the two above equations reveals that TT ∗ = T ∗T ; in other words, T is a compact, normal

operator. The result from part (b) reveals that there is an orthonormal basis {φk}k of H consisting of

eigenvectors of T . Let {λk}k be the corresponding eigenvalues; since λ is not an eigenvalue of T , we know

that λ /∈ {λk}k. Now, for each basis vector φk,

Uφk = (λI − T )φk = λφk − Tφk = λφk − λkφk = (λ− λk)φk

Therefore, φk is an eigenvector of U with eigenvalue λ− λk ̸= 0. Since this holds for each k and {φk}k is an

orthonormal basis of H, we have found an orthonormal basis of H consisting of eigenvectors of U . Thus, U

can be diagonalized.
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Problem 7

Solution

Proof of (a). Suppose that T : H → H is compact and λ ̸= 0. We want to show that

λI − T is injective ⇐⇒ λI − T ∗ is injective

To do so, we will show the contrapositives of both directions.

( =⇒ ) Suppose first that λI − T ∗ is not injective. Then, there is some nonzero vector f ∈ H such

that

(λI − T ∗)f = 0 =⇒ T ∗f = λf

For all nonzero vectors g ∈ H, we have that

⟨λg − Tg, f⟩H = λ ⟨g, f⟩H − ⟨Tg, f⟩H =
〈
g, λf

〉
H − ⟨g, T ∗f⟩H = ⟨g, T ∗f⟩H − ⟨g, T ∗f⟩H = 0

So, f is orthogonal to the range of λI − T , which from Problem 2(a) we know is closed. FINISH THIS,

something something Riesz lemma??? i dont get it man

Proof of (b). From Problem 2(c), we know that the range of λI − T is all of H if and only if the

null space of λI − T ∗ is trivial. In other words,

λI − T is surjective ⇐⇒ λI − T ∗ is injective

From part (a), though, we know that

λI − T is injective ⇐⇒ λI − T ∗ is injective

Combining these two, we arrive at the desired conclusion that

λI − T is injective ⇐⇒ λI − T is surjective

16
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Problem 8

Solution

Proof of (a). Suppose H is a Hilbert space and T : H → H a bounded operator with ||T ||op < 1. For

notation, let M := ||T ||op < 1. Consider the operator W : H → H given by

W := I + T + T 2 + ... = I +

∞∑
n=1

Tn =⇒ W (f) = f +

∞∑
n=1

Tnf

Note first that this is indeed a valid map from H → H, since for every f ∈ H, the sum converges. To see

this, note that by definition of the operator norm,

||Tnf ||H = ||T (Tn−1f)||H ≤ M · ||Tn−1f ||H

for all f ∈ H and all n > 1. So, by induction (with the base case ||Tf ||H ≤ M · ||f ||H) we have that

||Tnf ||H ≤ Mn · ||f ||H

Therefore, by the triangle inequality,

||Wf ||H =

∥∥∥∥∥f +

∞∑
n=1

Tnf

∥∥∥∥∥
H

≤ ||f ||H =

∞∑
n=1

||Tnf ||H ≤ ||f ||H
∞∑

n=0

Mn < ∞,

where the last sum is a geometric series with M < 1, and is therefore finite. So, W indeed maps vectors of

H to other vectors in H, and is therefore a valid map. We would like to show that W is an inverse of the

operator I − T . To that end, note that since TW = T + T 2 + ..., we get

(I − T )W = IW − TW = W − TW = I +

∞∑
n=1

Tn −
∞∑

n=1

Tn = I,

Next, note that by the distributive property of operators,

W (I − T ) =

(
I +

∞∑
n=1

Tn

)
(I − T ) = I(I − T ) +

∞∑
n=1

Tn(I − T )

= I − T +

∞∑
n=1

Tn −
∞∑

n=1

Tn+1

= I − T +

∞∑
n=1

Tn −
∞∑

n=2

Tn

= I −
∞∑

n=1

Tn +

∞∑
n=1

Tn

= I,

where we distributed in the first two lines and relabeled the index of the second summation in the third line.

So, we find that (I − T )W = W (I − T ) = I, and so W is an inverse of I − T . In particular, this means that

I − T is invertible.

Proof of (b). Suppose now that H is finite dimensional. Let T be any arbitrary bounded operator.

Let ϵ > 0. We wish to find an invertible operator S : H → H with ||T −S||op < ϵ. Note first that T can have

only finitely many distinct eigenvalues: if T had infinitely many distinct eigenvalues, by Lemma 6.3(ii) there

would be an infinite orthogonal set in H, contradicting that H is finite dimensional. So, there must exist

Problem 8 continued on next page. . . 17
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some nonzero λ ∈ C with |λ| < ϵ such that λ is not an eigenvalue of T . Since this λ is not an eigenvalue of

T , we know that there is no nonzero vector f ∈ H such that Tf = λf , and so there is no nonzero vector f

such that (λI − T )f = 0. In other words the kernel of λI − T is trivial, and so λI − T is injective. Now, we

can say that T is compact, since T is of finite rank (range T ⊂ H =⇒ dim(range T ) ≤ dim(H) < ∞). This

allows us to apply the Fredholm alternative (Problem 7(b)) to say that since T is compact and λ ̸= 0 is such

that λI − T is injective, then λI − T is also surjective, which means that it is invertible. Set S := T − λI;

then, S is invertible as well. We compute

||T − S||op = ||T − (T − λI)||op = ||λI||op = |λ| · ||I||op = |λ| < ϵ

So, there is an invertible S such that ||T − S||op < ϵ. Since this holds for any ϵ > 0, we see that we can

arbitrarily approximate T with invertible operators. Since T was an arbitrary bounded operator, we find

that the set of invertible operators is dense in the set of bounded operators.

Proof of (c). The result from (b) fails when H is infinite dimensional. For a counterexample, let

{φk}∞k=1 be an orthonormal basis of H and consider the left and right shift operators TL, TR : H → H that

map

TL(φk) :=

{
φk−1 k > 1

0 k = 1

and

TR(φk) := φk+1 ∀k ∈ N

Clearly both TL and TR are not invertible, since TL(φ1) = 0 (and so TL is not injective since kerTL ̸= ∅)
and there is no vector in H that gets mapped to φ1 under TR (and so TR is not surjective). TL is, however,

bounded because for all vectors f =
∑∞

k=1 akφk in H,

||TLf ||2H =

∥∥∥∥∥
∞∑
k=2

akφk−1

∥∥∥∥∥
2

H

=

∞∑
k=2

|ak|2 = ||f ||2H − |a1|2 ≤ ||f ||2H =⇒ ||TL||op ≤ 1,

where we used Parseval’s identity for the second equality. Similarly, we can compute that ||TR||op ≤ 1.

Furthermore, we know that for all vectors f =
∑∞

k=1 akφk in H, we have

TL(TRf) = TL

( ∞∑
k=1

akφk+1

)
=

∞∑
k=1

akTL(φk+1) =

∞∑
k=1

akφk = f,

and so TLTR = I. Now, we want to show that there is no invertible operator that approximates TL arbitrarily

well. Suppose by way of contradiction that there was an invertible operator S such that

||TL − S||op < 1

For all f ∈ H,

||TR(TL − S)f ||H ≤ ||TR||op · ||(TL − S)f ||H ≤ ||TR||op · ||TL − S||op · ||f ||H,

and so the operator TR(TL − S) has operator norm

||TR(TL − S)||op ≤ ||TR||op · ||TL − S||op < 1

Now, we would have by part (a) that W := I − TR(TL − S) = I + TRS − TRTL is invertible. Observe that

since TLTR = I,

TLW = TL(I + TRS − TRTL) = TL + TLTRS − TLTRTL = TL + S − TL = S

Problem 8 continued on next page. . . 18
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=⇒ TL = SW−1

Since TL is not invertible but both S and W are, this is a contradiction. So, there cannot be an invertible

operator S such that ||TL − S||op < 1, which certainly means that we cannot approximate the bounded

operator TL arbitrarily well with invertible operators. So, the set of invertible operators cannot be dense in

the set of bounded operators when H is infinite dimensional.
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