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Evan Dogariu MAT 425: Problem Set 7 Problem 1

Problem 1

Solution

Proof. Let us start by proving that l2(Z) with the given inner product is separable. To this end, let us

define the following set of vectors:

S := {v ∈ l2(Z) : vn ∈ Q[i] ∀n ∈ Z}

Here, Q[i] is the set of all complex numbers a + bi with rational coefficients a, b ∈ Q (algebraically, we get

Q[i] by taking the quotient group Q \ [{i}]); then, Q[i] is countable. Firstly, note that S is countable, since

we can express

S =
⋃
k∈N

{v ∈ l2(Z) : vn ∈ Q[i] ∀|n| < k and vn = 0 ∀|n| ≥ k}

Each constituent set {v ∈ l2(Z) : vn ∈ Q[i] ∀|n| ≤ k and vn = 0 ∀|n| > k} is certainly countable,

since it is the set of vectors of finite length, each coefficient having countably many possibilities (so, it is
∼= Q[i]2k+1). So, since S is the countable union of countable sets, it is itself countable. We then want to

prove that S is dense in l2(Z). So, let a = (an)n∈Z ∈ l2(Z) be arbitrary. Let ϵ > 0. For each an ∈ C, we can

select bn ∈ Q[i] such that

|an − bn|2 <
ϵ

2|n|+2

by the fact that Q[i] is dense in C. This means that, if we form the vector b = (bn)n∈Z ∈ S, we get

||a− b||2 = ⟨a− b, a− b⟩ =
∑
n∈Z

(an − bn)(an − bn) =
∑
n∈Z

|an − bn|2

<
∑
n∈Z

ϵ

2|n|+2
≤ 2

∑
n≥0

ϵ

2|n|+2
=
∑
n≥0

ϵ

2n+1
=
∑
n≥1

ϵ

2n
= ϵ

So, since this holds for all ϵ > 0, we can arbitrarily approximate a with S. Since this holds for all a ∈ l2(Z),
we get that S is dense in l2(Z). Since S is countable, therefore l2(Z) is separable.

To see completeness of l2(Z), we must prove that every Cauchy sequence converges. Let (a(n))n ⊂ l2(Z) be
a Cauchy sequence, where each a(n) = (a

(n)
k )k ∈ l2(Z) (we use upper indices to label the elements of the

Cauchy sequence, and lower indices to label the coordinates of each element). Then, the Cauchy criterion

grants that there is some N such that for all m,n > N ,

||a(n) − a(m)||2 < ϵ2 =⇒
∑
k∈Z

|a(n)k − a
(m)
k |2 < ϵ2

In particular, this means that since each term in the sum is nonnegative, each individual term is also

nonnegative; so, |a(n)k − a
(m)
k |2 < ϵ2 =⇒ |a(n)k − a

(m)
k | < ϵ for all k. Therefore, since this holds for all ϵ, we

see that for each k, the sequence {a(n)k }n is Cauchy in C; this means that each one must converge to some

element, say ak ∈ C. Form the vector a := (a1, a2, ...); we want to show (1) that a ∈ l2(Z), and (2) that

a(n) → a in the norm. We will do (2) first. Let ϵ > 0. Note that for all N , since we can pass limits through

finite sums and a
(m)
k → ak for all k, we get∑

|k|≤N

∣∣∣a(n)k − ak

∣∣∣2 = lim
m→∞

∑
|k|≤N

∣∣∣a(n)k − a
(m)
k

∣∣∣2 ≤ lim
m→∞

∑
k∈Z

∣∣∣a(n)k − a
(m)
k

∣∣∣2 = lim
m→∞

||a(n) − a(m)||2,

Since {a(n)}n is Cauchy, we can select an M big enough such that for all n > M , the last term is < ϵ2; note

that this value of M doesn’t depend on N . This means that for all n > M ,∑
|k|≤N

∣∣∣a(n)k − ak

∣∣∣2 < ϵ2 ∀N,

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 425: Problem Set 7 Problem 1 (continued)

which in particular means that it must hold in the limit. In other words, for all n > M ,

||a(n) − a||2 =
∑
k∈Z

∣∣∣a(n)k − ak

∣∣∣2 < ϵ2 =⇒ ||a(n) − a|| < ϵ

Since such an M exists for all ϵ, we get that a(n) → a in the norm.

With (2) done, (1) comes clearly from the triangle inequality with

||a|| ≤ ||a− a(n)||+ ||a(n)|| < ∞,

where the first term is bounded for large enough n because a(n) → a in the norm, and the second term is

bounded because a(n) ∈ l2(Z) for all n. So, this Cauchy sequence converges in l2(Z), which means that l2(Z)
is complete.
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Problem 2

Solution

Proof of (a). We start with a convenient lemma.

Lemma 1. Let E = [a, b) ⊂ [0,∞). Then, we have that, for all α > 0, there is some constant cα = α ·m(B1)

such that ∫
|x|∈E

1

|x|α
dx = cα

∫ ∞

a

1

tα+1
· (min{b, t}n − an)dt

Proof of Lemma 1. Note by the regular rules of Riemann integration that

1

|x|α
=

∫ ∞

|x|

α

tα+1
dt

So, we get that by Tonelli’s theorem, since 1
|x|α is nonnegative,∫

|x|∈E

1

|x|α
dx =

∫
|x|∈E

∫ ∞

|x|

α

tα+1
dtdx =

∫
Rn

1|x|∈E

∫
R
1{|x|≤t}

α

tα+1
dtdx

=

∫
R

∫
Rn

1|x|∈E1{|x|≤t}
α

tα+1
dxdt =

∫ ∞

0

∫
Rn

1|x|∈E∩[0,t]
α

tα+1
dxdt

=

∫ ∞

0

α

tα+1
·m(|x| ∈ E ∩ [0, t])dt

We can note that E ∩ [0, t] =

{
[a,min{b, t}] a ≤ t

∅ else
. So, denoting B1 as the unit ball and noting the realtive

scale invariance of the measure, we get

m(|x| ∈ E ∩ [0, t]) = m(B1) ·

{
(min{b, t})n − an a ≤ t

0 else

This gives that ∫
|x|∈E

1

|x|α
dx = α ·m(B1) ·

∫ ∞

a

1

tα+1
· (min{b, t}n − an)dt

From here, proving that both inclusions fail simply reduces to applications of the lemma. Consider the

functions f, g : Rn → R given by

f(x) =

{
1

|x|n |x| ≥ 1

0 else
and g(x) =

{
1

|x|n/2 |x| < 1

0 else

We can compute the L1 and L2 norms of both of these functions easily, with Ef := [af , bf ) = [1,∞) and

Eg := [ag, bg) = [0, 1). We get from application of Lemma 1 and routine use of Riemann integration that

||f ||L1 =

∫
Ef

1

|x|n
dx = cn

∫ ∞

1

1

tn+1
· (tn − 1)dt = cn

∫ ∞

1

1

t
dt− cn

∫ ∞

1

1

tn+1
dt

= cn · ∞ − cn ·
[
−1

n
t−n

]∞
1

= cn · ∞ − cn
n

= ∞ =⇒ f /∈ L1(Rn)

Problem 2 continued on next page. . . 4



Evan Dogariu MAT 425: Problem Set 7 Problem 2 (continued)

Similarly,

||f ||2L2 =

∫
Ef

1

|x|2n
dx = c2n

∫ ∞

1

1

t2n+1
· (tn − 1)dt = c2n

∫ ∞

1

1

tn+1
dt− c2n

∫ ∞

1

1

t2n+1
dt

= c2n

[
−1

n
t−n

]∞
1

− c2n ·
[
−1

2n
t−2n

]∞
1

=
c2n
2n

< ∞ =⇒ f ∈ L2(Rn)

So, f ∈ L2(Rn) \ L1(Rn) proves that L2(Rn) ̸⊂ L1(Rn). Similar logic applies for g. We compute via the

lemma and Riemann integration that

||g||L1 =

∫
Eg

1

|x|n/2
dx = cn/2

∫ ∞

0

1

tn/2+1
·min{t, 1}ndt = cn/2

∫ 1

0

tn/2−1dt+ cn/2

∫ ∞

1

1

tn/2+1
dt

= cn/2 + cn/2 ·
[
−n

2
t−n/2

]∞
1

= cn/2 +
cn/2 · n

2
< ∞ =⇒ g ∈ L1(Rn)

and

||g||2L2 =

∫
Eg

1

|x|n
dx = cn

∫ ∞

0

1

tn+1
·min{t, 1}ndt = cn

∫ 1

0

1

t
dt+ cn

∫ ∞

1

1

tn+1
dt

= cn · ∞+ cn ·
[
−1

n
t−n

]∞
1

= cn · ∞+
cn
n

= ∞ =⇒ g /∈ L2(Rn)

So, g ∈ L1(Rn) \ L2(Rn) proves that L1(Rn) ̸⊂ L2(Rn). Therefore, no such inclusion can hold.

Proof of (b). Suppose that f ∈ L2(Rn) =⇒ |f | ∈ L2(Rn) is supported on a set E ⊂ Rn of finite

measure (note that this means 1E ∈ L2(Rn)). Then, we can observe that

||f ||L1 =

∫
Rn

|f | =
∫
Rn

|f | · 1E = ⟨|f |,1E⟩L2

By Cauchy-Schwarz and the fact that the L2 norms of f and |f | agree, we get

||f ||L1 = ⟨|f |,1E⟩L2 ≤ ||f ||L2 · ||1E ||L2

Since ||1E ||2L2 =
∫
Rn |1E |2 =

∫
Rn 1E = m(E), we conclude that

||f ||L1 ≤ m(E)1/2 · ||f ||L2 ,

and so f ∈ L2(Rn) =⇒ f ∈ L1(Rn).

Proof of (c). Suppose now that f ∈ L1(Rn) is bounded (i.e. |f(x)| < M ∀x ∈ Rn). Then, we

can observe that

||f ||2L2 =

∫
Rn

|f |2 ≤
∫
Rn

|f | ·M = M

∫
Rn

|f | = M ||f ||L1

Taking the square root, we conclude that

||f ||L2 ≤ M1/2 · ||f ||1/2L1 ,

and so f ∈ L1(Rn) =⇒ f ∈ L2(Rn).
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Problem 3

Solution

Proof of (a). Write the Hilbert spaces H1 and H2 as given, and define a map U : H1 → H2 that sends

F 7→ f as determined by

f(x) :=
1√

π(i+ x)
F

(
i− x

i+ x

)
We wish to show that the map U is unitary. Firstly, observe that it certainly is linear, as we get that

U(αF + βG) =
1√

π(i+ x)
(αF + βG)

(
i− x

i+ x

)

= α

(
1√

π(i+ x)
F

(
i− x

i+ x

))
+ β

(
1√

π(i+ x)
G

(
i− x

i+ x

))
= αUF + βUG

Secondly, it is definitely injective, as it has a trivial kernel; to see this, note that the only way that UF ≡ 0

is if F (i − x/i + x) = 0 for all x, which only happens if F ≡ 0. So, in order to prove that U is unitary, it

suffices to show that it is both surjective and norm-preserving.

Let F ∈ L2([−π, π]) be arbitrary. To see norm-preserving, we can make use of the change of variables

formula found in Exercise 21 of Chapter 3. To begin with, note that the function x : R → R given by

x(θ) := tan(θ/2) is bounded and increasing on [−a, a] for any 0 ≤ a < π, since tan is monotonic and doesn’t

diverge over such intervals (interestingly, x(θ) is also surjective, which will come in handy later). Then, since

we can express x(θ) as a difference of two bounded, monotonic functions (namely, tan(θ/2) and 0), we get

that x is absolutely continuous on [−a, a] for all a < π. Furthermore, x(θ) is differentiable with

x′(θ) =
sec2(θ/2)

2
=

1 + x(θ)2

2

This grants that, for all a < π, we can apply the change of variables formula on the second line to get that∫ tan(a/2)

tan(−a/2)

1

π
· 1

|i+ x|2

∣∣∣∣F ( i− x

i+ x

)∣∣∣∣2 dx =
1

π

∫ tan(a/2)

tan(−a/2)

1

1 + x2

∣∣∣∣F ( i− x

i+ x

)∣∣∣∣2 dx
=

1

π

∫ a

−a

1

1 + x(θ)2

∣∣∣∣F ( i− x(θ)

i+ x(θ)

)∣∣∣∣2 · x′(θ)dθ

=
1

2π

∫ a

−a

∣∣∣∣F ( i− tan(θ/2)

i+ tan(θ/2)

)∣∣∣∣2 dθ
Multiplying top and bottom by −i cos(θ/2), we get

=
1

2π

∫ a

−a

∣∣∣∣F (cos(θ/2) + i sin(θ/2)

cos(θ/2)− i sin(θ/2)

)∣∣∣∣2 dθ =
1

2π

∫ a

−a

∣∣∣∣F ( eiθ/2

e−iθ/2

)∣∣∣∣2 dθ =
1

2π

∫ a

−a

∣∣F (eiθ)∣∣2 dθ
Taking the limit as a → π (which means tan(a/2) → ∞ and tan(−a/2) → −∞), we get the relation∫ ∞

−∞

1

π
· 1

|i+ x|2

∣∣∣∣F ( i− x

i+ x

)∣∣∣∣2 dx =
1

2π

∫ π

−π

∣∣F (eiθ)∣∣2 dθ
Note that the LHS is precisely equivalent to ||UF ||2H2

, while the RHS is precisely equivalent to ⟨F, F ⟩H1 =

||F ||2H1
. This proves immediately that U is norm-preserving, as desired. Note that this implies that UF ∈ H2

for every F ∈ H1, and so it is a valid mapping.

Problem 3 continued on next page. . . 6



Evan Dogariu MAT 425: Problem Set 7 Problem 3 (continued)

To show that U is surjective, we will define a map V and prove that V = U−1. Let V : H2 → h1 be

the map that sends f → F , where

F (eiθ) :=
√
π · (i+ tan(θ/2)) · f(tan(θ/2))

A very similar change of variables shows that ||V f ||H1 = ||f ||H2 for every f ∈ H2, which reveals that

V f ∈ H1, and so V is a valid mapping. Now, for every F ∈ H1 we have that

(V UF )(eiθ) =
√
π · (i+ tan(θ/2)) · (UF )(tan(θ/2))

=
√
π · (i+ tan(θ/2)) · 1√

π(i+ tan(θ/2))
F

(
i− tan(θ/2)

i+ tan(θ/2)

)
= F

(
cos(θ/2) + i sin(θ/2)

cos(θ/2)− i sin(θ/2)

)
= F

(
eiθ/2

e−iθ/2

)
= F (eiθ) ∀θ

Similarly, we get that for every f ∈ H2,

(UV f)(tan(θ/2)) =
1√

π(i+ tan(θ/2))
(V f)(tan(θ/2))

=
1√

π(i+ tan(θ/2))
·
√
π · (i+ tan(θ/2)) · f(tan(θ/2))

= f(tan(θ/2))

Since x(θ) is surjective, this means that tan(θ/2) will hit every possible value for x as we vary θ, and so

(UV f)(x) = f(x) ∀x

These two results prove that U and V are inverses, which in particular proves that they’re both bijective.

So, U is a bijective, norm-preserving linear map, and thus is a unitary operator.

Proof of (b). Now, we can note that the functions {Fn(e
iθ) := einθ}n∈Z ⊂ H1 actually form an or-

thonormal basis for H1. To see this, note that

⟨Fn, Fn⟩H1
=

1

2π

∫ π

−π

einθe−inθdθ =
1

2π

∫ π

−π

1dθ = 1,

while for m ̸= n we get

⟨Fn, Fm⟩H1
=

1

2π

∫ π

−π

einθe−imθdθ =
1

2π

∫ π

−π

ei(n−m)θdθ =
1

2πi(n−m)

[
ei(n−m)θ

]π
−π

= 0

So, the functions {Fn}n∈Z form an set basis for H1. The fact that they form a basis comes from the

well-known Fourier decomposition of L2([−π, π]). By the properties of unitary maps, this means that the

functions {UFn}n∈Z form an orthormal basis for H2. We can simply compute the image of these functions

under U to see that {
1√
π

1

i+ x

(
i− x

i+ x

)n}
n∈Z

is an orthonormal basis for L2(R), as desired.
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Problem 4

Solution

Proof. Note first that (S⊥)⊥ ⊃ S, since for every f ∈ S we have ⟨f, g⟩ = 0 for all g ∈ S⊥, and so f ∈ (S⊥)⊥.

Also, (S⊥)⊥ is closed since orthogonal complements are closed. Now, suppose by way of contradiction that

(S⊥)⊥ is not the smallest closed subspace of H that contains S; that is, suppose that there is some smaller

closed subspace V ofH such that S ⊂ V ⊊ (S⊥)⊥. Then, there must be some nonzero element f ∈ (S⊥)⊥\V .

Since V is a closed subspace, by Proposition 4.2 we get that H = V ⊕ V ⊥, which means that f decomposes

into f = fV + fV ⊥ with fV ∈ V and fV ⊥ ∈ V ⊥; since f /∈ V , we know that fV ⊥ ̸= 0. Also, by the properties

of subspaces, fV ⊥ ∈ (S⊥)⊥. So, we find a nonzero element in (S⊥)⊥ ∩ V ⊥; for ease of notation, we will call

this element simply as f from now on. First, we will prove the following lemma:

Lemma 2. If A,B ⊂ H are subspaces with A ⊂ B, then B⊥ ⊂ A⊥.

Proof of Lemma 2. Suppose that x ∈ B⊥, which means that ⟨x, b⟩ = 0 for each b ∈ B. In particular, this

means that for every a ∈ A =⇒ a ∈ B, we have ⟨x, a⟩ = 0. So, x ∈ A⊥. Since this holds for every x ∈ B⊥,

we get B⊥ ⊂ A⊥.

Applying the lemma to S ⊂ V , we get that V ⊥ ⊂ S⊥. Applying it again, we get that (S⊥)⊥ ⊂ (V ⊥)⊥. This

means that

f ∈ (S⊥)⊥ ∩ V ⊥ =⇒ f ∈ (V ⊥)⊥ ∩ V ⊥ =⇒ f ∈ (V ⊥)⊥ and f ∈ V ⊥

So, we must have that f ≡ 0, since the intersection of a closed subspace and its orthogonal complement is

{0}. However, this contradicts our selection of f as nonzero, and the result follows.
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Problem 5

Solution

Throughout this problem, since S is closed, we can use the orthogonal decomposition H = S ⊕ S⊥ to see

that for every f ∈ H, we have f = Pf + (f − Pf), where Pf ∈ S and f − Pf ∈ S⊥.

Proof of (a). Note that Pf ∈ S for all f ∈ H by the remark in the beginning of the problem. So,

P (Pf) = Pf for f ∈ S by definition of P ; it also holds that for f /∈ S we have Pf = 0 =⇒ P (Pf) = 0 = Pf ,

and so P 2 = P . Also, for every f, g ∈ H, we have

⟨Pf, g⟩ = ⟨Pf, Pg + (g − Pg)⟩ = ⟨Pf, Pg⟩+ ⟨Pf, g − Pg⟩

Since Pf ∈ S and g − Pg ∈ S⊥, we know ⟨Pf, g − Pg⟩ = 0. Similarly, ⟨f − Pf, Pg⟩ = 0. So, by additivity

of ⟨·, ·⟩,
⟨Pf, g⟩ = ⟨Pf, Pg⟩+ 0 = ⟨Pf, Pg⟩+ ⟨f − Pf, Pg⟩ = ⟨f, Pg⟩

Since this holds for every f, g ∈ H and the adjoint is unique, we have P = P ∗. (Note that P = P ∗ certainly

has the other two properties of an adjoint trivially, as ||P ||op = ||P ∗||op and (P ∗)∗ = P ∗ = P ).

Proof of (b). Suppose P = P ∗ = P 2 is a bounded (and therefore continuous by Proposition 5.2)

operator on H. Define V := kerP to be the kernel of P . Since P is continuous, V is closed (to see this,

take any convergent sequence of points in the kernel of P and use that continuity means the limit will have

value 0 and also be in the kernel). Therefore, V is the smallest closed subspace containing V ; combined with

the result from Problem 4, this gives us that (V ⊥)⊥ = V . Then, we can apply Theorem 2.4 and write the

orthogonal decomposition

H = V ⊥ ⊕ (V ⊥)⊥

We want to show that P takes the form

Pf =

{
f if f ∈ V ⊥

0 if f ∈ (V ⊥)⊥ = V

as this will prove that P is the projection operator for the closed subspace V ⊥ (it is closed since orthogonal

subspaces are always closed). To show this, note that if f ∈ (V ⊥)⊥ = V , then trivially Pf = 0 (this is the

definition of the space V = kerP ). So, it is left to show that for any f ∈ V ⊥ we have Pf = f . Suppose that

f ∈ V ⊥. For all g ∈ H, since P = P ∗ we have

⟨Pf, g⟩ = ⟨f, Pg⟩

Since g = Pg + (g − Pg) with Pg ∈ V ⊥ and g − Pg ∈ (V ⊥)⊥ = V , we also get

⟨f, g⟩ = ⟨f, Pg + (g − Pg)⟩ = ⟨f, Pg⟩+ ⟨f, g − Pg⟩ = ⟨f, Pg⟩,

where ⟨f, g − Pg⟩ = 0 because f ∈ V ⊥ and g − Pg ∈ V . This means that for every g ∈ H we have

⟨Pf, g⟩ = ⟨f, g⟩ =⇒ ⟨Pf − f, g⟩ = 0,

and so Pf − f = 0 =⇒ Pf = f . Since this holds for all f ∈ V ⊥, then P indeed takes the form as a

projection onto the closed subspace V ⊥, and we are done.

Proof of (c). Let S ⊂ H be any closed subspace, and let P be the projection operator to S. We

know from class that S is also a Hilbert space with the induced inner product, which means that || · ||S
agrees with || · ||H agrees for all elements of S. Because H is separable, let {fk}∞k=1 be a countable dense

Problem 5 continued on next page. . . 9



Evan Dogariu MAT 425: Problem Set 7 Problem 5 (continued)

subset of H. Then, note that Pfk ∈ S for each k by definition of projection operators; we want to show that

{Pfk}∞k=1 is dense in S, as this will reveal that S has a countable dense subset and is therefore separable.

To that end, let f ∈ S be arbitrary. Let ϵ > 0. We want to show that ||f − Pfk||S < ϵ for some k. Select

an fk ∈ {fk}∞k=1 such that

||f − fk||H < ϵ

Such an fk exists because {fk}∞k=1 is dense in H. Since S is a closed subspace, we can use orthogonal

decomposition (Theorem 2.4) to write any arbitrary g ∈ H as g = Pg + (g − Pg), where Pg ∈ S and

g − Pg ∈ S⊥. The Pythagorean Theorem grants that, since Pg ⊥ g − Pg, then

||g||2H = ||Pg||2H + ||g − Pg||2H + 2Re⟨Pg, g − Pg⟩ = ||Pg||2H + ||g − Pg||2H,

and so

||Pg||2H ≤ ||g||2H =⇒ ||Pg||H ≤ ||g||H ∀g ∈ H

Note also that f ∈ S =⇒ Pf = f by the logic used in earlier parts of the proof. Then, we have that since

|| · ||S agrees with || · ||H on all elements of S,

||f − Pfk||S = ||Pf − Pfk||S = ||P (f − fk)||S = ||P (f − fk)||H ≤ ||f − fk||H < ϵ,

where the bound by ϵ comes from our selection of fk. This shows that there exists a Pfk ∈ {Pfk}k ⊂ S such

that ||f − Pfk||s < ϵ. Since this holds for all ϵ > 0, we find that {Pfk}k approximates f . Since this holds

for all f ∈ S, we see that {Pfk}k is dense in S. So, since S has a countable dense subset, it is therefore

separable.

10
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Problem 6

Solution

Proof. Let H,H′ be two completions of a pre-Hilbert space H0; they are therefore complete metric spaces.

By Proposition 2.7, this gives us that (i) H0 ⊂ H and H0 ⊂ H′, (ii) ⟨f, g⟩H0
= ⟨f, g⟩H = ⟨f, g⟩H′ whenever

f, g ∈ H0, and (iii) H0 is dense in both H and H′. We would like to construct a unitary mapping U : H → H′

such that Uf = f for all f ∈ H0. We construct it as follows:

1. Let g ∈ H be arbitrary.

2. Since H0 is dense in H, there must exist some Cauchy sequence {fn}n ⊂ H0 that converges to g in

|| · ||H (we can get arbitarily close by the density property and H is complete).

3. This Cauchy sequence {fn}n ⊂ H0 ⊂ H′ must converge to some element g′ ∈ H′ because H′ is also

complete.

4. Define Ug = g′; that is, U maps limit points of Cauchy sequences in H0 from their limit point in H to

their limit point in H′.

We want to show that this is a unitary mapping that is the identity when restricted to H0. Firstly, note that

it is indeed a mapping, since Ug ∈ H′ for every g ∈ H by step 4 of the construction, and it is well-defined

by uniqueness of limit points in H′. Now, observe that for any f ∈ H0, we know that the Cauchy sequence

{fn}n converges to f in || · ||H by step 2; however, since fn, f ∈ H0 and || · ||H0 = || · ||H = || · ||H′ over H0 by

property (ii), we must therefore have that fn → f in || · ||H′ . In particular, this means that Uf = f , since

we defined Uf to be the element that {fn}n converges to in || · ||H′ . So, U restricted to H0 is indeed the

identity.

Next, we would like to show that U is linear. To this end, let α ∈ C, and let f ∈ H. There is some

Cauchy sequence {fn}n ⊂ H0 such that fn → f in || · ||H by step 2. Note that this means that {αfn}n is

still a Cauchy sequence in H0 (scaling by a fixed constant still allows elements to get arbitrarily close). To

see that αfn → αf in || · ||H, note that

||fn − f ||H = |1/α|||αfn − αf ||H =⇒ ||αfn − αf ||H → 0 if ||fn − f ||H → 0

Now, we also knew that fn → Uf in ||·||H′ by definition of Uf . Symmetric logic then shows that αfn → αUf

in || · ||H′ , and so U(αf) = αUf since αf and αUf are the H,H′ limit points of the same Cauchy sequence,

respectively. Next, note that for two f, g ∈ H with corresponding Cauchy sequences {fn}n, {gn}n ⊂ H0 that

converge to f, g in || · ||H respectively, we get

||(fn + gn)− (f + g)||H = ||(fn − f) + (gn − g)||H ≤ ||fn − f ||H + ||gn − g||H → 0

So, {fn + gn}n ⊂ H0 is a Cauchy sequence in H0 that converges in || · ||H to f + g (it is Cauchy by another

application of the triangle inequality to the Cauchy criterion). Symmetric logic shows that

||(fn + gn)− (Uf + Ug)||H′ = ||(fn − Uf) + (gn − Ug)||H′ ≤ ||fn − Uf ||H′ + ||gn − Ug||H′ → 0

by the definitions of Uf,Ug as the elements of H′ that {fn}n, {gn}n converge to, respectively. So, this means

that U(f + g) = Uf + Ug, and therefore that U is linear.

U is clearly bijective, as we can easily define its inverse by switching the roles of H and H′ in the con-

struction. This inverse will be both a left and right inverse by the uniqueness of limits, which grants us that

Problem 6 continued on next page. . . 11
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U is bijective. So, all that remains is to prove that U preserves norms. To this end, let f ∈ H. Note that

the triangle inequality grants that, if {fn}n is the Cauchy sequence in H0 that converges to f in || · ||H, then

||f ||H ≤ ||f − fn||H + ||fn||H −−−−→
n→∞

lim
n→∞

||fn||H

and

lim
n→∞

||fn||H ≤ lim
n→∞

||fn − f ||H + ||f ||+H = ||f ||H

So,

||f ||H = lim
n→∞

||fn||H

Similar logic shows that

||Uf ||H′ = lim
n→∞

||fn||H′

However, by property (ii), we know that limn→∞ ||fn||H = limn→∞ ||fn||H′ , and therefore that ||Uf ||H′ =

||f ||H. So, U preserves norms, and therefore it is unitary.

12
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Problem 7

Solution

Proof. Let T : H1 → H2, where H1 is finite-dimensional, say with dimH1 = N . Let {φk}Nk=1 be an

orthonormal basis for H1 (we know one must exist by Theorem 2.4). Let f ∈ H1 be arbitrary. Note that we

can express f =
∑N

k=1 akφk for some ak’s by the properties of a basis. Also, Parseval’s identity gives that

since the basis is orthonormal

||f ||2H1
=

N∑
k=1

|ak|2

Therefore, by linearity of T and the triangle inequality,

||Tf ||2H2
=

∥∥∥∥∥T
(

N∑
k=1

akφk

)∥∥∥∥∥
2

H2

=

∥∥∥∥∥
N∑

k=1

akT (φk)

∥∥∥∥∥
2

H2

≤
N∑

k=1

|ak|2||T (φk)||2H2

If we let

M2 := max
k∈{1,...,N}

||T (φk)||2H2
< ∞,

then we get that

||Tf ||2H2
≤ M

N∑
k=1

|ak|2 = M2||f ||2H1
=⇒ ||Tf ||H2

≤ M ||f ||H1

Since this holds for every f ∈ H1 and the bound M doesn’t depend on f , this reveals that T is bounded.

13
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Problem 8

Solution

Proof of (a). Suppose that B is such that ||Tv|| ≤ B||v|| for all nonzero v, and so ||Tv||
||v|| ≤ B =⇒∥∥∥T ( v

||v||

)∥∥∥ ≤ B for all nonzero v. Equivalently, ||Tw|| ≤ B for all w with unit norm, since v
||v|| will always

be unit norm. Since the conditions are equivalent for every such B, we certainly have

||T ||op := inf{B : ||Tv|| ≤ B||v|| for all v ∈ H} = inf{B : ||Tv|| ≤ B for all ||v|| = 1}

Clearly, ||T ||op ≥ ||Tv|| for every unit vector ||v|| = 1, since this is the case for every B, and so it must hold

for the infimum over such B’s. Therefore, it must hold over the supremum over unit vectors; that is,

||T ||op ≥ sup{||Tv|| : ||v|| = 1}

To see the other direction, note that ||Tv|| ≤ sup{||Tv|| : ||v|| = 1} for every unit vector ||v|| = 1 by definition

of supremum. So, the real number sup{||Tv|| : ||v|| = 1} upper bounds ||Tv|| over the unit sphere; since

||T ||op is the infimum over such upper bounds, we must have

||T ||op ≤ sup{||Tv|| : ||v|| = 1}

by definition of infimum. The result follows.

Proof of (b). From part (a), we have that

||T1 + T2||op = sup{||T1v + T2v|| : ||v|| = 1}

Let ϵ > 0 be arbitrary and let v be a unit vector ||v|| = 1 such that

||T1 + T2||op − ϵ ≤ ||T1v + T2v|| ≤ ||T1 + T2||op

Note that this can always be done, since we can realize values arbitrarily close to the supremum. Then, the

triangle inequality and the fact that ||Tiv|| ≤ ||Ti||op for i = 1, 2 give

||T1 + T2||op − ϵ ≤ ||T1v + T2v|| ≤ ||T1v||+ ||T2v|| ≤ ||T1||op + ||T2||op

So,

||T1 + T2||op ≤ ||T1||op + ||T2||op + ϵ

for every ϵ > 0. Taking ϵ → 0, we get the desired result.

Proof of (c). In order for d(T1, T2) := ||T1 − T2||op to be a metric, the following properties must

hold for every T1, T2, T3 ∈ L(H):

1. d(T1, T2) ≥ 0

2. d(T1, T2) = d(T2, T1)

3. d(T1, T3) ≤ d(T1, T2) + d(T2, T3)

4. d(T1, T2) = 0 ⇐⇒ T1 = T2

The first condition holds trivially, as || · ||H is always nonnegative, and so the supremum over such norms

must also be nonnegative, which means that || · ||op ≥ 0. The second condition also holds easily, since

||T1v − T2v|| = ||T2v − T1v|| for all v ∈ H means

||T1 − T2||op = sup{||T1v − T2v|| : ||v|| = 1} = sup{||T2v − T1v|| : ||v|| = 1} = ||T2 − T1||op

Problem 8 continued on next page. . . 14
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For the third condition, we can apply the result from part b to see

||T1 − T3||op = ||(T1 − T2) + (T2 − T3)||op ≤ ||T1 − T2||op + ||T2 − T3||op

For the last condition, suppose first that d(T1, T2) = 0. Then, nonnegativity of the norm || · ||H yields

sup{||T1v − T2v|| : ||v|| = 1} = 0 =⇒ ||T1v − T2v|| = 0 for all unit vectors v

So, this means that T1v = T2v for every unit vector v, which means that T1 and T2 must agree on an every

element of an orthonormal basis of H. Therefore, T1 and T2 must agree on all elements of H by linearity,

and so T1 = T2. For the other direction, suppose that T1 = T2. Then, ||T1v − T2v|| = 0 for all v ∈ H, and

clearly ||T1 − T2||op = sup{||T1v − T2v|| : ||v|| = 1} = 0. So, d is a metric on L(H).

Proof of (d). To show that L(H) is complete in the metric d, we must show that every Cauchy se-

quence converges in L(H). So, let (Tn)
∞
n=1 ⊂ L(H) be a Cauchy sequence. We can always find a subsequence

(Tnk
)∞k=1 with the property that ∥∥Tnk+1

− Tnk

∥∥
op

≤ 2−k ∀k ≥ 1

by repeated application of the Cauchy criterion (take ϵk = 2−k). Consider the operators defined by

SN := Tn1 +

N∑
k=1

(
Tnk+1

− Tnk

)
and

T := Tn1 +

∞∑
k=1

(
Tnk+1

− Tnk

)
Now, note that T is certainly linear, and so

sup
||v||=1

||Tv|| = sup
||v||=1

∥∥∥∥∥Tn1
v +

∞∑
k=1

(
Tnk+1

− Tnk

)
v

∥∥∥∥∥
The triangle inequality (which can be applied countably many times because of the continuity of the norm

|| · ||H) and simple reasoning about suprema yield

||T ||op = sup
||v||=1

||Tv|| ≤ sup
||v||=1

{
||Tn1

v||+
∞∑
k=1

∥∥(Tnk+1
− Tnk

)
v
∥∥}

≤ sup
||v||=1

||Tn1
v||+

∞∑
k=1

(
sup

||v||=1

∥∥(Tnk+1
− Tnk

)
v
∥∥)

= ||Tn1
||op +

∞∑
k=1

∥∥Tnk+1
− Tnk

∥∥
op

≤ ||Tn1
||op +

∞∑
k=1

2−k

= ||Tn1 ||op + 1 < ∞

So, T is bounded, and is therefore in L(H). Now, note that by the properties of telescoping sums, SN = TnN+1

for all N . So, to show Tnk
→ T in L(H) as k → ∞,

||T − TnN
||op = ||T − SN−1||op =

∥∥∥∥∥
∞∑

k=N

(
Tnk+1

− Tnk

)∥∥∥∥∥
op

≤
∞∑

k=N

||Tnk+1
− Tnk

||op ≤
∞∑

k=N

2−k

Problem 8 continued on next page. . . 15
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Note that above, we implicitly used that the triangle inequality on || · ||op can be applied countably many

times; we basically proved this in the first three lines of the earlier proof that ||T ||op < ∞. So, for every

ϵ > 0 we can select the N large enough that
∑∞

k=m 2−k < ϵ for every m > N , which would mean that

||T − Tnm
||op < ϵ for all such m > N . This proves that Tnk

→ T in || · ||op as k → ∞. Lastly, recall that

(Tn)n is Cauchy. Let ϵ > 0. Then, there is some M > 0 such that for all n,m > M ,

||Tn − Tm||op <
ϵ

2

Choose any new N large enough that for all nk > N , we have ||Tnk
− T ||op < ϵ

2 (such an N exists since

Tnk
→ T in || · ||op). Then, for all such n, nk > max{M,N}, the Cauchy criterion and the triangle inequality

(part (b)) grant

||Tn − T ||op ≤ ||Tn − Tnk
||op + ||Tnk

− T ||op <
ϵ

2
+

ϵ

2
= ϵ

Since this holds for all ϵ > 0, we see that (Tn)n converges to T in the || · ||op norm.

16
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Problem 9

Solution

Proof. First, we prove that the general problem reduces to the case with separable H. To see this, note that

for general H, we can write S ⊂ H to be S := span{fn}∞n=1, which is a closed subspace and therefore is a

Hilbert space. In particular, S is separable, as it certainly has a countable dense subset. Such a subset is the

set of every possible linear combination of {fn}n using coefficients in Q[i], which are the complex numbers

a+ bi with a, b ∈ Q; this approximates every sequence of linear combinations of {fn}n arbitrarily well (you

can select elements of Q[i] that are ϵ/2n close to the coefficient of fn for each n), and it is also countable.

The proof of this very closely follows the proof of separability in Problem 1, except instead of vectors in

l2(Z) we have vectors of coeffecients in the expansion of elements of the span. Suppose that we can prove

the separable case of the claim, i.e. that there exists an f ∈ S and a subsequence {fnk
}k ⊂ {fn}n ⊂ S such

that

lim
k→∞

⟨fnk
, g⟩ = ⟨f, g⟩ ∀g ∈ S

Via the decomposition H = S ⊕ S⊥, we see that for all g ∈ H we can write g = gS + gS⊥ with gS ∈ S and

gS⊥ ∈ S⊥. Then, for the constructed f and subsequence {fnk
}k ⊂ {fn}n, we know ⟨fnk

, gS⊥⟩ = 0 for each

k and also ⟨f, gS⊥⟩ = 0 by definition of S⊥. Therefore, for each g ∈ H,

lim
k→∞

⟨fnk
, g⟩ = lim

k→∞
(⟨fnk

, gS⟩+ ⟨fnk
, gS⊥⟩) = lim

k→∞
⟨fnk

, gS⟩

= ⟨f, gS⟩ = ⟨f, gS⟩+ ⟨f, gS⊥⟩ = ⟨f, g⟩ ∀g ∈ H,

where to get from the first line to the second line we use the result for separable S. So, we see that if we

can prove the claim for separable Hilbert spaces H, then we can prove the general case via the above logic.

Therefore, suppose without loss of generality that H is separable from here on out.

Now, as H is separable, we can find a countable orthonormal basis {φj}∞j=1 of H. We will apply a di-

agonalization argument to inductively find ”good” subsequences of {fn}n, take the diagonal, and construct

f using these diagonal entries. First, we require the following lemma to prove that there always is a ”good”

subsequence.

Lemma 3. Fix h ∈ H to be an arbitrary element of of H. If {fn}n ⊂ H is a bounded sequence, then we can

find a subsequence {fnk
}k ⊂ {fn}n such that limk→∞⟨fnk

, h⟩ converges.

Proof of Lemma 3. Note that the claim holds if and only if the sequence {⟨fn, h⟩}∞n=1 ⊂ C has a

convergent subsequence. We know that {fn}n is bounded, say by M > 0. By Cauchy-Schwarz,

|⟨fn, h⟩| ≤ ||fn|| · ||h|| < M ||h|| ∀fn,

which means that the sequence {⟨fn, h⟩}∞n=1 must also be bounded by M ||h||. This means that {⟨fn, h⟩}∞n=1

is actually contained in the set {z ∈ C : |z| ≤ M ||h||}, which is compact (it’s the closed ball of radius M ||h||
in C). So, {⟨fn, h⟩}∞n=1 is a sequence in a compact set of scalars, which means that it must have a convergent

subsequence (by definition of sequential compactness, which is equivalent to compactness for subsets of C).
So, {⟨fn, h⟩}∞n=1 has a convergent subsequence, from which the claim follows.

Armed with this lemma, we can proceed. The procedure reads:

1. For j = 1, we can apply Lemma 3 with h = φ1 to select a subsequence {fn(k,1)
}k ⊂ {fn}n such that

lim
k→∞

⟨fn(k,1)
, φ1⟩ =: a1

Problem 9 continued on next page. . . 17
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for some a1 ∈ C.

2. Now, we perform the following inductive step: suppose by way of induction that we have a subsequence

{fn(k,j)
}k ⊂ {fn(k,j−1)

}k ⊂ ... ⊂ {fn(k,1)
}k ⊂ {fn}n for some j such that for all i ≤ j, the limits

lim
k→∞

⟨fn(k,i)
, φi⟩ = ai

converge to some ai’s in C. Then, we can apply Lemma 3 on the sequence {fn(k,j)
}k with h = φj+1 to

find a subsequence {fn(k,j+1)
}k ⊂ {fn(k,j)

}k such that

lim
k→∞

⟨fn(k,j+1)
, φj+1⟩ =: aj+1

for some aj+1 ∈ C. Since it is a subsequence of {fn(k,j)
}k, it inherits the limit results for all i ≤ j as

well (a subsequence of a convergent sequence in C also converges). So, the inductive step is proven.

3. Now, we have infinitely many subsequences {fn(k,j)
}k ⊂ {fn}n such that for each j, we know

{fn(k,j+1)
}k ⊂ {fn(k,j)

}k and lim
k→∞

⟨fn(k,i)
, φi⟩ = ai ∈ C ∀i ≤ j

Applying a diagonalization argument, we can define a subsequence {fnl
}l ⊂ {fn}n by fnl

:= fn(l,l)
for

every l. Note that for every j, we have the property that fnl
∈ {fn(k,l)

}k ⊂ {fn(k,j)
}k for all l ≥ j

because of the monotonic nature of the subsequences we created; put differently, the sequence {fnl
}l

is eventually a subsequence of {fn(k,j)
}k for every j. This means that for each j, eventually {fnl

}l
inherits the desired limit property. In other words, for every j,

lim
l→∞

⟨fnl
, φi⟩ = ai ∈ C ∀i ≤ j

Now, we have constructed a ”good” subsequence {fnk
}k ⊂ {fn}n (I relabeled l to k so that we can forget

all the messy notation from above) such that for every j,

lim
k→∞

⟨fnk
, φi⟩ = ai ∈ C ∀i ≤ j,

which means that

lim
k→∞

⟨fnk
, φj⟩ = aj ∈ C ∀j

We construct the vector

f :=

∞∑
j=1

ajφj

To see that this sum converges, note that

||f ||2 =

∥∥∥∥∥∥
∞∑
j=1

ajφj

∥∥∥∥∥∥
2

=

∞∑
j=1

|aj |2 =

∞∑
j=1

∣∣∣∣ limk→∞
⟨fnk

, φj⟩
∣∣∣∣2 =

∞∑
j=1

lim
k→∞

|⟨fnk
, φj⟩|2,

where the last equality uses the continutity of the norm | · | on C. Now, note that we can switch the sum and

the limit by monotone convergence, as the partial sums of nonnegative elements are monotonically increasing.

This grants

||f ||2 = lim
k→∞

 ∞∑
j=1

|⟨fnk
, φj⟩|2

 = lim
k→∞

||fnk
||2 = 1 < ∞,

where we used Parseval’s identity and the fact that {φj}j is an orthonormal basis in the second equality.

Thus, the sum defining f converges, and so f ∈ H. Next, we want to show that

lim
k→∞

⟨fnk
, g⟩ = ⟨f, g⟩ ∀g ∈ H

Problem 9 continued on next page. . . 18
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To this end, fix g ∈ H arbitrary and let ϵ > 0. We can write in the orthonormal basis that g =
∑∞

j=1⟨g, φj⟩φ.
Therefore, since ⟨f, φj⟩ = aj = limk→∞⟨fnk

, φj⟩ for all j, we have by the continuity and (antilinearity) of

the inner product ⟨f, ·⟩H that

⟨f, g⟩ =
∞∑
j=1

⟨g, φj⟩ · ⟨f, φj⟩ =
∞∑
j=1

aj⟨g, φj⟩ =
∞∑
j=1

lim
k→∞

⟨fnk
, φj⟩ · ⟨g, φj⟩

Similarly, for each l we get that

⟨fnl
, g⟩ =

∞∑
j=1

⟨fnl
, φj⟩ · ⟨g, φj⟩

(This is basically implicitly constructing the unitary map from H to l2(N) via h 7→ (⟨h, φ1⟩, ⟨h, φ2⟩, ...) and
using the fact that this map preserves inner products, as is done in the proof of Corollary 2.5). Combining

these two, we have by the continuity of | · | that for every nl,

|⟨f − fnl
, g⟩| =

∣∣∣∣∣∣
∞∑
j=1

lim
k→∞

⟨fnk
− fnl

, φj⟩ · ⟨g, φj⟩

∣∣∣∣∣∣ ≤
∞∑
j=1

|⟨g, φj⟩| · lim
k→∞

|⟨fnk
− fnl

, φj⟩|

Now, we know that the sequence {⟨fnk
, φj⟩}k is convergent in C and therefore Cauchy, for every j. This

means that, if we hold j fixed, we can find an N large enough that for all nk, nl > N , we get

|⟨fnk
− fnl

, φj⟩| <
ϵ

||g||2
|⟨g, φj⟩| =⇒ lim

k→∞
|⟨fnk

− fnl
, φj⟩| ≤

ϵ

||g||2
|⟨g, φj⟩| ∀nl > N

Thus, for all nl > N we get

|⟨f − fnl
, g⟩| ≤

∞∑
j=1

|⟨g, φj⟩| ·
ϵ

||g||2
|⟨g, φj⟩| =

ϵ

||g||2
∞∑
j=1

|⟨g, φj⟩|2 =
ϵ

||g||2
· ||g||2 = ϵ,

where the second to last equality uses Parseval’s Identity. Since such an N exists for all ϵ, we see that

lim
l→∞

⟨f − fnl
, g⟩ = 0 =⇒ lim

l→∞
⟨fnl

, g⟩ = ⟨f, g⟩

Since this holds for all g ∈ H, we are done.
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Problem 10

Solution

Proof of (a). Suppose that T is an isometry, and let f, g ∈ H. Since we are in a Hilbert space, we have

the Parallelogram Law, which allows us to make use of the polarization identity reads. It reads

⟨f, g⟩ = 1

4

[
∥f + g∥2 − ||f − g||2 + i||f + ig||2 − i||f − ig||2

]
=

1

4

[
∥T (f + g)∥2 − ||T (f − g)||2 + i||T (f + ig)||2 − i||T (f − ig)||2

]
=

1

4

[
∥Tf + Tg∥2 − ||Tf − Tg||2 + i||Tf + iTg||2 − i||Tf − iTg||2

]
= ⟨Tf, Tg⟩,

where the second equality uses the fact that T is an isometry, the third equality uses linearity of T , and

the fourth equality applies the polarization identity again. Then, for all f, g ∈ H, we have that since

(T ∗T )∗ = T ∗T ,

⟨T ∗Tf, g⟩ = ⟨g, T ∗Tf⟩ = ⟨Tg, Tf⟩ = ⟨Tf, Tg⟩ = ⟨f, g⟩ =⇒ ⟨T ∗Tf − f, g⟩ = 0

So, for every f ∈ H, we have that ⟨T ∗Tf − f, g⟩ = 0 ∀g ∈ H, which means that for every f ∈ H,

T ∗Tf − f = 0 =⇒ T ∗Tf = f . So, T ∗T = I.

Proof of (b). Suppose now that T is a surjective isometry. To show that T is injective, we want to

show that Tf = 0 =⇒ f = 0 (i.e. T has a trivial kernel). So, suppose that Tf = 0 for some f ∈ H; then,

||Tf || = 0 =⇒ ||f || = 0 =⇒ f = 0, and so T is injective. Therefore, T is a bijective linear map that

preserves norm, which means that T is unitary. Then, for all f, g ∈ H, we have that

⟨T ∗f, g⟩ = ⟨g, T ∗f⟩ = ⟨Tg, f⟩ = ⟨f, Tg⟩ and ⟨T−1f, g⟩ = ⟨TT−1f, Tg⟩ = ⟨f, Tg⟩,

where the last equality uses the result from part (a). So, for every f ∈ H, we have that ⟨T ∗f−T−1f, g⟩ = 0

for all g ∈ H, which means that for every f ∈ H, T ∗f − T−1f = 0 =⇒ T ∗f = T−1f . So, T ∗ = T−1 =⇒
TT ∗ = I.

Proof of (c). Consider the space l2(N) with a basis {ek}∞k=1 where ek has a 1 in the kth index and

0’s everywhere else. Clearly, this is an orthonormal basis. Now, define T to be the map that sends ek 7→ e2k
for every k, and extend it linearly. In other words, for every f ∈ l2(N), we can write f =

∑∞
k=1 akek

and define Tf :=
∑∞

k=1 ake2k. This is certainly a linear map; to see that it’s an isometry, note that for

f =
∑∞

k=1 akek we have ||f ||2 =
∑∞

k=1 |ak|2 and

||Tf ||2 =

∥∥∥∥∥
∞∑
k=1

ake2k

∥∥∥∥∥
2

=

〈 ∞∑
k=1

ake2k,

∞∑
j=1

aje2j

〉
=

∞∑
k=1

ak

〈
e2k,

∞∑
j=1

aje2j

〉

Since ⟨ek, ej⟩ = δk,j , we get that

||Tf ||2 =

∞∑
k=1

ak

〈
e2k,

∞∑
j=1

aje2j

〉
=

∞∑
k=1

ak⟨e2k, ake2k⟩ =
∞∑
k=1

akak =

∞∑
k=1

|ak|2 = ||f ||2

Since this holds for every f , we know that T is an isometry. However, it is certainly not surjective, since

there is no element of l2(N) that gets mapped to e1, or more generally to ei for any odd i. So, since T is not

surjective, it cannot be bijective, and therefore can’t be unitary.
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Proof of (d). Suppose that T ∗T is unitary. Then, if T ∗T has any nontrivial eigenvalues, they must

have unit norm (this is a well-known property of unitary operators). However, since we have that (T ∗T )∗ =

T ∗T ∗∗ = T ∗T , then T ∗T is self-adjoint, which means it must have real eigenvalues, if any (for any normal-

ized eigenvector v, we have λv = ⟨T ∗Tv, v⟩ = ⟨v, T ∗Tv⟩ = ⟨T ∗Tv, v⟩). So, this means that T ∗T must have

eigenvalues of either -1 or 1. However, suppose by way of contradiction that v is a (normalized) eigenvector

of T ∗T with eigenvalue λv = −1. Then,

−1 = ⟨T ∗Tv, v⟩ = ⟨v, T ∗Tv⟩ = ⟨Tv, Tv⟩ = ||Tv||2 ≥ 0

This is a contradiction, and so T ∗T can only have an eigenvalue of value 1. The only unitary operator with

all nontrivial eigenvalues equalling 1 is the identity operator, and so T ∗T = I. From here, we can conclude

that for all v ∈ H, we have

||v||2 = ⟨v, v⟩ = ⟨v, Iv⟩ = ⟨v, T ∗Tv⟩ = ⟨Tv, Tv⟩ = ||Tv||2

Therefore, T preserves norms, and is thus an isometry.
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