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Evan Dogariu MAT 425: Problem Set 6 Problem 1

Problem 1

Solution

Proof. Let f ∈ L1(Rd) and let {Kδ}δ>0 be an approximation for the identity; then, Kδ(x) is integrable

on Rd for all δ > 0. By Problem 4(d) on Problem Set 5, we already know that since f(x),Kδ(x) are both

integrable on Rd, then so is (f ∗Kδ)(x).

Now, let us denote the difference between f and f ∗ Kδ as g(x) := (f ∗ Kδ)(x) − f(x). Then, since∫
Rd Kδ(y)dy = 1, we can say

f(x) =

∫
Rd

f(x)Kδ(y)dy =⇒ g(x) =

∫
Rd

(f(x− y)− f(x))Kδ(y)dy

So,

|g(x)| ≤
∫
Rd

|f(x− y)− f(x)| · |Kδ(y)|dy,

and therefore

||g||L1 ≤
∫
Rd

(∫
Rd

|f(x− y)− f(x)| · |Kδ(y)|dy
)
dx

Note that by Corollary 3.7 and Proposition 3.9 of Chapter 2, we know that both f(x) and f(x − y) are

measurable on Rd × Rd, which certainly means that |f(x − y) − f(x)| is. In addition, Kδ(y) ∈ L1(Rd) by

definition of an approximation to the identity, and so |Kδ(y)| must be measurable on Rd; this, in turn, means

by Corollary 3.7 that it is measurable on Rd×Rd. Then, the function |f(x−y)−f(x)| · |Kδ(y)| is nonnegative
and measurable on Rd ×Rd, which means we can apply Tonelli’s Theorem to switch the integrals. Denoting

fy(x) ≡ f(x− y) for each y ∈ Rd, we get

||g||L1 ≤
∫
Rd

(∫
Rd

|f(x− y)− f(x)| · |Kδ(y)|dy
)
dx

=

∫
Rd

(∫
Rd

|f(x− y)− f(x)| · |Kδ(y)|dx
)
dy

=

∫
Rd

|Kδ(y)|
(∫

Rd

|f(x− y)− f(x)|dx
)
dy

=

∫
Rd

||fy − f ||L1 |Kδ(y)|dy

Let ϵ > 0. By Proposition 2.5, fy converges to f in L1 as y → 0; so, there exists an η > 0 such that

||fy − f ||L1 < ϵ whenever |y| < η. This allows us to split the integral and see

||g||L1 ≤
∫
|y|<η

||fy − f ||L1 |Kδ(y)|dy +
∫
|y|≥η

||fy − f ||L1 |Kδ(y)|dy

< ϵ

∫
|y|<η

|Kδ(y)|dy +
∫
|y|≥η

||fy − f ||L1 |Kδ(y)|dy

By property (ii) of approximations to the identity,
∫
|y|<η

|Kδ(y)|dy ≤
∫
Rd |Kδ(y)|dy ≤ A for some con-

stant A independent of δ. By property (iii), there exists some δ > 0 such that for all δ′ < δ, we

have
∫
|y|≥η

|Kδ′(y)|dy < ϵ. Lastly, by the triangle inequality and translation invariance of the integral,

||fy − f ||L1 ≤ ||fy||L1 + ||f ||L1 = 2||f ||L1 . Putting this all together, we find that for all δ′ < δ

||g||L1 < ϵ

∫
|y|<η

|Kδ(y)|dy +
∫
|y|≥η

||fy − f ||L1 |Kδ(y)|dy

≤ Aϵ+ 2||f ||L1

∫
|y|≥η

|Kδ′(y)|dy < Aϵ+ 2||f ||L1ϵ

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 425: Problem Set 6 Problem 1 (continued)

Since such a δ exists for all ϵ, we see that ||g||L1 → 0 as δ → 0. Therefore, f ∗Kδ converges in L1 to f as

δ → 0.
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Problem 2

Solution

Proof. Let f ∈ L1(Rn) be not identically 0. Then, ||f ||L1 = D for some D > 0. By Proposition 1.12(i),

there exists some ball B such that
∫
BC |f | < D

2 =⇒
∫
B
|f | = ||f ||L1 −

∫
BC |f | > D − D

2 = D
2 > 0. Let

a := supx∈B |x| be the maximal distance from the origin to a point in this ball, and let A := max{a, 2} > 1.

Now, for each x ∈ Rn, let Bx be the ball centered at the origin of radius A|x|. Then, for all x with |x| ≥ 1

we have that

A|x| > |x| =⇒ x ∈ Bx and A|x| ≥ a =⇒ B ⊂ Bx

So, we get that since |f | is nonnegative and B ⊂ Bx,

1

m(Bx)

∫
Bx

|f | ≥ 1

m(Bx)

∫
B

|f | > D/2

m(Bx)
=

c

|x|n

for some constant c > 0 (here, c = D
2An·m(B1(O)) where B1(O) is the unit ball). Therefore, for |x| ≥ 1 we

have

f∗(x) := sup
B′∋x

1

m(B′)

∫
B′

|f | ≥ 1

m(Bx)

∫
Bx

|f | > c

|x|n

because of the definition of a supremum and the fact that Bx ∋ x. This fact shows that f∗ is not integrable

on Rn since it is larger than c/|x|n, which is itself not integrable. To see that c/|x|n is not integrable, it

suffices to note that by Riemann integration,

c

|x|n
=

∫ ∞

|x|

cn

tn+1
dt

So, we get that by Tonelli’s theorem,∫
Rn

c

|x|n
dx =

∫
Rn

∫ ∞

|x|

cn

tn+1
dtdx =

∫
Rn

∫
R
1{|x|≤t}

cn

tn+1
dtdx =

∫ ∞

0

∫
Rn

1{|x|≤t}
cn

tn+1
dxdt

=

∫ ∞

0

cn

tn+1
m(Bt(O))dt = cn ·m(B1(O))

∫ ∞

0

tn

tn+1
dt = cn ·m(B1(O))

∫ ∞

0

1

t
dt,

where Bt(O) is the ball of radius t about the origin, which we know has measure tn ·m(B1(O)) with B1(O)

the unit ball. Since the integral
∫∞
0

1
t dt diverges by the p-test (it is greater than its right Riemann sums,

which diverge by the p-series test), we can confirm that c
|x|n is not integrable on Rn; therefore, neither is f∗.

Suppose now that f is supported in the unit ball with ||f ||L1 = 1. Let Eα := {x ∈ Rn : f∗(x) > α}.
For each x with |x| ≥ 1, let B|x|(O) be the ball of radius |x| about the origin. Then, by virtue of the

supremum in the definition of f∗ we have{
x : |x| ≥ 1 and

1

m(B|x|(O))

∫
B|x|(O)

|f | > α

}
⊂ Eα

Note that since B|x|(O) ⊃ B1(O) for such x and f is supported in the unit ball,
∫
B|x|(O)

|f | =
∫
B1(O)

|f | =
||f ||L1 = 1. Therefore, {

x : |x| ≥ 1 and
1

m(B|x|(O))
> α

}
⊂ Eα

If α < 1
m(B1(O)) , this set is not empty. In these cases, the set

{
x : |x| ≥ 1 and 1

m(B|x|(O)) > α
}

contains

the set Ba(O) \ B1(O) for the a such that 1
m(Ba(O)) = α (we selected α small enough that a > 1). To

see this note that for all x ∈ Ba(O) \ B1(O) we have B|x|(O) ⊂ Ba(O) =⇒ 1
m(B|x|(O)) > 1

m(Ba(O)) = α.

Problem 2 continued on next page. . . 4



Evan Dogariu MAT 425: Problem Set 6 Problem 2 (continued)

So, Ba(O) \ B1(O) ⊂ Eα. However, we can also show that B1(O) ⊂ Eα; indeed, if x ∈ B1(O) then
1

m(B1(O))

∫
B1(O)

|f | = 1
m(B1(O)) > α =⇒ f∗(x) > α =⇒ x ∈ Eα. Therefore,

Ba(O) ⊂ Eα =⇒ m(Eα) ≥ m(Ba(O)) =
1

α
,

as desired.
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Problem 3

Solution

Proof of (a). Fix α > 0. Suppose that f ∈ L2(Rn). Let f1(x) := 1{x′: |f(x′)|>α/2} · f(x). Then,∫
Rn

|f1| =
∫
{|f |>α/2}

|f | =
∫
{α/2<|f |<1}

|f |+
∫
|f |≥1

|f |

Note that over the region {|f | ≥ 1} we must have that |f | ≤ |f |2. So,∫
Rn

|f1| ≤
∫
{α/2<|f |<1}

|f |+
∫
|f |≥1

|f |2 ≤
∫
{α/2<|f |<1}

|f |+
∫
Rn

|f |2

Since f ∈ L2(Rn), we know that
∫
Rn |f |2 is finite. So, to prove f1 ∈ L1(Rn), all we must do is show that∫

{α/2<|f |<1} |f | is finite. However,∫
{α/2<|f |<1}

|f | ≤
∫
{α/2<|f |<1}

1 = m({α/2 < |f | < 1})

Since

m({α/2 < |f | < 1}) = m({α2/4 < |f |2 < 1}) ≤ 4

α2

∫
{α2/4<|f |2<1}

|f |2 ≤ 4

α2
||f ||L2 < ∞,

we know that m({α/2 < |f | < 1}) is finite, and therefore that
∫
{α/2<|f |<1} |f | is as well. So, we get that∫

Rn |f1| < ∞, and thus that f1 ∈ L1(Rn).

Now, suppose that f∗(x) > α for some x. Then, there exists a ball B such that
∫
B
|f | > α · m(B) by

definition of f∗. Therefore,

α ·m(B) <

∫
B

|f | =
∫
B∩{|f |>α/2}

|f |+
∫
B∩{|f |≤α/2}

|f | ≤
∫
B∩{|f |>α/2}

|f |+ α

2
·m(B),

where the last step is since B ∩ {|f | ≤ α/2} ⊂ B and |f | ≤ α/2 over the region of interest. However, the

result above reads that

α

2
·m(B) <

∫
B∩{|f |>α/2}

|f | =
∫
B

|f1| =⇒ 1

m(B)

∫
B

|f1| >
α

2

Since this value is attained by the given B, it certainly holds for all balls containing x, and so f∗
1 (x) > α/2.

Since this held for all x s.t. f∗(x) > α, we then find that

{x : f∗(x) > α} ⊂
{
x : f∗

1 (x) >
α

2

}

With these two above results, we can prove the claim. Note that by Theorem 1.1(iii), we have that

m
({

x : f∗
1 (x) >

α

2

})
≤ 2 · 3n

α

∫
Rn

|f1| =
2 · 3n

α

∫
{|f |>α/2}

|f |

by definition of f1. Finally, monotonicity of measure grants that

m({x : f∗(x) > α}) ≤ m
({

x : f∗
1 (x) >

α

2

})
≤ 2 · 3n

α

∫
{|f |>α/2}

|f |

as desired.

Problem 3 continued on next page. . . 6



Evan Dogariu MAT 425: Problem Set 6 Problem 3 (continued)

Proof of (b). Let us begin by noting that the function F (x, α) := 1{f∗>α}(x) is measurable on Rn × R+

by measurability of f∗, which comes from Theorem 1.1(i) (I proved this result in Problem 3 on Problem Set

5). So, the function α1{f∗>α}(x) is as well, which means that we can apply Tonelli’s Theorem. In particular,

2

∫ ∞

0

αm({f∗ > α})dα = 2

∫ ∞

0

α

(∫
Rn

1{f∗>α}(x)dx

)
dα = 2

∫
Rn

(∫ ∞

0

α1{f∗(x)>α}dα

)
dx

Since α1{f∗(x)>α} =

{
α α < f∗(x)

0 else
, we get that

2

∫ ∞

0

αm({f∗ > α})dα = 2

∫
Rn

(∫ f∗(x)

0

αdα

)
dx = 2

∫
Rn

[
α2

2

]f∗(x)

α=0

dx =

∫
Rn

|f∗(x)|2dx

Proof of (c). We have from part (a) that αm(Eα) ≤ 2 · 3n
∫
{|f |>α/2} |f |. Plugging this into the re-

sult from (b), we get

||f∗||2L2 ≤ 2

∫ ∞

0

(
2 · 3n

∫
{|f |>α/2}

|f(x)|dx

)
dα = 4 · 3n

∫ ∞

0

(∫
{|f |>α/2}

|f(x)|dx

)
dα

Since 1{|f |>α/2}|f | is nonnegative, we can apply Tonelli’s Theorem to switch the integrals and get that

||f∗||2L2 ≤ 4 · 3n
∫
Rn

(∫ ∞

0

1{|f(x)|>α/2}|f(x)|dα
)
dx = 4 · 3n

∫
Rn

|f(x)|
(∫ ∞

0

1{|f(x)|>α/2}dα

)
dx

(Note that in the above, we use the fact that the function F (x, α) := 1{|f |>α/2}(x) is measurable on Rn×R,
which I proved on Problem 3 of Problem Set 5). We can note by the relative scale invariance of the integral

that ∫ ∞

0

1{|f(x)|>α/2}dα = 2

∫ ∞

0

1{|f(x)|>α}dα = 2

∫ |f(x)|

0

dα = 2|f(x)|

So,

||f∗||2L2 ≤ 8 · 3n
∫
Rn

|f(x)| · |f(x)|dx = 8 · 3n||f ||2L2

Since the square root is monotonic,

||f∗||L2 ≤
√
8 · 3n||f ||L2

as desired.
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Evan Dogariu MAT 425: Problem Set 6 Problem 4

Problem 4

Solution

Proof. Let (rn)n∈N ⊂ Q be an enumeration of the rationals. Define the function f : R → R by

f(x) :=

∞∑
n=1

1

2n
1[rn,∞)(x)

Firstly, we note that this function is bounded and increasing. To see boundedness, note that for any x ∈ R
we have

|f(x)| =
∑
n∈N
rn≤x

1

2n
≤
∑
n∈N

1

2n
= 1,

where the inequality holds since each element of the sum is nonnegative. To see that f is increasing, let

x < y be arbitrary. Then, there exist some rationals lying in between x and y that contribute something

positive to the sum. In particular,

f(y)− f(x) =
∑
n∈N
rn≤y

1

2n
−
∑
n∈N
rn≤x

1

2n
=

∑
n∈N

x<rn≤y

1

2n
> 0,

and so f is actually strictly increasing (there is always a rn in between x and y). Also, clearly f is discon-

tinuous at each rational, since there is a jump of size 2−n at each rn. Now, note that the convergence of the

partial sums is uniform. To see this, let ϵ > 0. Let N ′ be such that
∑∞

n=N ′ 2−n < ϵ. Then, for all N > N ′

and all x ∈ R we have∣∣∣∣∣f(x)−
N∑

n=1

1

2n
1[rn,∞)(x)

∣∣∣∣∣ =
∞∑

n=N+1

1

2n
1[rn,∞)(x) =

∑
n>N
rn≤x

1

2n
≤
∑
n>N

1

2n
≤

∞∑
n=N ′

1

2n
< ϵ

So, the convergence is uniform. Therefore, to see that f is continuous at all irrationals, it suffices to show

that every partial sum is continuous at all irrationals since continuity is inherited by uniform convergence.

To this end, let N ∈ N be arbitrary. We want to show that the function

fN (x) :=

N∑
n=1

1

2n
1[rn,∞)(x)

is continuous at each irrational. However, each 1[rn,∞) is certainly continuous at every irrational z, since for

each z ∈ R \Q there exists a ball around z with radius < |z − rn| such that 1[rn,∞) is constant on this ball.

Since fN is a finite sum of functions continuous on R \ Q, we therefore have that fN is also continuous on

R \Q. Lastly, since fN → f uniformly as N → ∞, we get that f is also continuous at every point in R \Q.

So, f is bounded and strictly increasing, and its set of discontinuities is precisely Q, as desired.
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Problem 5

Solution

Proof. If a, b > 0, let

f(x) =

{
xa sin(x−b) x ∈ (0, 1]

0 x = 0

( =⇒ ) Suppose that f is of bounded variation in [0, 1]. Consider the family of partitions {PN}N∈N given

for each N by

tk =
(
kπ +

π

2

)−1/b

for k ≤ N , with x0 = 0 and xN = 1. Note that for such tk’s, we always have

sin(t−b
k ) = sin

(
kπ +

π

2

)
= (−1)k =⇒ f(tk) = tak · (−1)k

Therefore, we can sum the variation over these partitions PN and get

N∑
k=1

|f(tk)− f(tk−1)| =
N∑

k=1

|tak · (−1)k − tak−1 · (−1)k−1|

Note that tak · (−1)k and tak−1 · (−1)k−1 will always be of the opposite sign, and so this sum equals

=

N∑
k=1

tak + tak−1 = taN + ta0 + 2

N−1∑
k=1

tak = 1 + 2

N−1∑
k=1

tak ≥
N−1∑
k=1

tak

We can plug in our tk’s to get that our variation is larger than the series

N∑
k=1

|f(tk)− f(tk−1)| ≥
N−1∑
k=1

(
kπ +

π

2

)−a/b

Suppose by way of contradiction that a ≤ b =⇒ a/b ≤ 1 =⇒ −a/b ≥ −1. Then, this sum is di-

vergent for N → ∞ by the p-series test. In particular, that means that we can never bound the variation∑N
k=1 |f(tk)−f(tk−1)| uniformly over all partitions, because we can always select a partition PN with a large

enough N to overcome this bound. Therefore, f cannot be of bounded variation. This is a contradiction,

and so we see that a > b.

( ⇐= ) Suppose now that a > b. Note that f is differentiable over (0, 1], since it is the product of a

differentiable function and a composition of two differentiable functions. We readily compute for x > 0 that

f ′(x) = axa−1 sin(x−b) + xa cos(x−b) · (−bx−b−1) = axa−1 sin(x−b)− bxa−b−1 cos(x−b)

Note that for every ϵ > 0, ∫
[ϵ,1]

|axa−1 sin(x−b)|dx ≤
∫
[ϵ,1]

axa−1dx = [xa]
1
x=ϵ ≤ 1

Now, we can also compute∫
[ϵ,1]

|bxa−b−1 cos(x−b)|dx ≤ b

∫
[ϵ,1]

|xa−b−1|dx =

[
b

(a− b)
xa−b

]1
x=ϵ

≤ b

a− b
,

where we were able to bound
[

b
(a−b)x

a−b
]1
x=ϵ

since a− b > 0 =⇒ ϵa−b is small. What this tells us is that

f ′ ∈ L1([ϵ, 1]) for every ϵ, and therefore that f ′ ∈ L1([0, 1]). Since f ′ is integrable, continuous, and bounded

Problem 5 continued on next page. . . 9



Evan Dogariu MAT 425: Problem Set 6 Problem 5 (continued)

(and therefore Riemann integrable) over this interval, we can use the properties of Riemann integration to

recover that

f(x) = f(ϵ) +

∫
[ϵ,x]

f ′(t)dt

Note that f is continuous at 0, as |f(x)| ≤ xa =⇒ | limx→0 f(x)| ≤ limx→0 x
a = 0 = f(0). So, we can take

the limit as ϵ → 0 to see that

f(x) = f(0) + lim
ϵ→0

∫
[ϵ,x]

f ′(t)dt

However, note that
∫
[ϵ,x]

f ′(t)dt →
∫
[0,x]

f ′(t)dt since∣∣∣∣∣
∫
[0,x]

f ′(t)dt−
∫
[ϵ,x]

f ′(t)dt

∣∣∣∣∣ =
∣∣∣∣∣
∫
[0,ϵ]

f ′(t)dt

∣∣∣∣∣ ,
and the term on the right can be made arbitrarily small by Proposition 1.12(ii) of Chapter 2 (since

f ′ ∈ L1([0, 1]). This means that f(x) = f(0) +
∫
[0,x]

f ′(t)dt, and so by the remarks in Section 3.2, f is

absolutely continuous on [0, 1]. Therefore, f ∈ BV ([0, 1]).

Now, let α ∈ (0, 1) be arbitrary. Select a such that α = a
a+1 =⇒ a = α

1−α , and set b = a; this al-

ready yields that f is not of bounded variation on [0, 1]. We would like to show that there is some A > 0

such that |f(x+h)− f(x)| ≤ Ahα for all h ≥ 0. Firstly, note that since |f(x)| = |xa sin(x−a)| ≤ xa, we have

by the triangle inequality

|f(x+ h)− f(x)| ≤ |f(x+ h)|+ |f(x)| ≤ (x+ h)a + xa ≤ 2(x+ h)a

since xa is monotonically increasing and h ≥ 0 =⇒ x+ h ≥ x. However, we can also bound this variation

a different way. Note first that f ′ exists everywhere, except at 0. So, we can apply the mean value theorem

to say that for every x ≥ 0 and every h > 0 (with h ≤ 1− x of course), there exists some c ∈ (x, x+ h) such

that

f ′(c) =
f(x+ h)− f(x)

h
=⇒ |f(x+ h)− f(x)| = h|f ′(c)|

Using the functional form of f ′ from earlier,

|f(x+ h)− f(x)| = h|f ′(c)| = h
∣∣aca−1 sin(c−a)− aca−a−1 cos(c−a)

∣∣
≤ h(|aca−1 sin(c−a)|+ |ac−1 cos(c−a)|) ≤ h(aca−1 + ac−1)

Since c ≤ 1, we know that ca−1 = ca/c ≤ 1/c. Also, c > x =⇒ 1
c < 1

x , and so

|f(x+ h)− f(x)| ≤ 2ha

c
<

2ha

x

With these two bounds, we can now show that f is α-Holder continuous. Let x, y ∈ [0, 1] be arbitrary, and

suppose without loss of generality that x < y; define h = y − x. Then,

|f(y)− f(x)| = |f(x+ h)− f(x)|

If it is the case that xa+1 ≤ h =⇒ x ≤ h1/(a+1), then we can use the first bound to see

|f(x+ h)− f(x)| ≤ 2(x+ h)a ≤ 2(h1/(a+1) + h)a ≤ 2(2h1/(a+1))a = 2 · 2a · hα,

where we used that h ≤ 1 =⇒ h ≤ h1/(a+1). If instead it is the case that xa+1 > h =⇒ x > h1/(a+1) =⇒
1/x < h−1/(a+1), then we can use the second bound to see that

|f(x+ h)− f(x)| ≤ 2ha

x
≤ 2hah−1/(a+1) = 2ah1− 1

a+1 = 2ahα

So, in either case, we have |f(x+ h)− f(x)| ≤ max{2a, 2 · 2a}hα, and so

|f(y)− f(x)| ≤ max{2a, 2 · 2a} · |y − x|α

10
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Problem 6

Solution

Proof. Let F : R → R be defined as

F (x) =

{
x2 sin(x−2) x ̸= 0

0 x = 0

Note that over the set [−1, 1] \ {0}, F ′ exists since the function is the product of a differentiable function

and a composition of two differentiable functions over this region. In fact, we can compute via the product

rule and the chain rule that for x ̸= 0,

F ′(x) = x · sin(x−2) + x2 cos(x−2) · −2x−3 = x · sin(x−2) +
cos(x−2)

x

Now, to show that F ′(0) exists, we need to show that the limit

A := lim
h→0

F (0 + h)− F (0)

h

exists. Since F (0) ≡ 0, we have

A = lim
h→0

F (h)

h
=

h2 sin(h−2)

h
= lim

h→0
h sin(h−2)

Note that, since

0 ≤ |h sin(h−2)| ≤ |h|

by boundedness of sin, we can apply the Squeeze Theorem to see that

0 ≤ A = lim
h→0

h sin(h−2) ≤ lim
h→0

|h| = 0

So, A = 0, and the limit defining F ′(0) therefore exists. So, F ′ exists everywhere.

To show that F ′ is not integrable over [−1, 1], we must show that |F ′| dominates a function that is not

integrable. To this end, define for each k ∈ N the value

tk :=
1√
kπ

Then, we have that | sin(t−2
k )| = | sin(kπ)| = 0 and | cos(t−2

k )| = | cos(kπ)| = 1 =⇒ F ′(tk) =
√
kπ for each

k. Also, we have that tk ≤ t1 = 1√
π
< 1 for all k. Note that over each period, the function

|F ′(x)| =
∣∣∣∣x · sin(x−2) +

cos(x−2)

x

∣∣∣∣
is concave, and so any straight line drawn between two points coming from the same period lies underneath

the curve. We will construct a function G made from triangles whose peaks lie at (tk, F
′(tk)) for each k, and

whose widths are such that they decay to 0 within the same period of F ′ that they peak in. In particular,

we require the width of each triangle to be

2 ·

(
1√
kπ

− 1√
kπ + π

2

)
:= 2∆k

Writing it out explicitly, we can define a function G : [−1, 1] → R by

G(x) :=

∞∑
k=1

F (tk) ·max

{
0, 1−

∣∣∣∣x− tk
∆k

∣∣∣∣}
This function is graphed below in black to verify that it indeed lies below F ′, which is graphed in red.

Problem 6 continued on next page. . . 11



Evan Dogariu MAT 425: Problem Set 6 Problem 6 (continued)

We know by our concavity argument (and a lovely proof by Desmos) that 0 ≤ G(x) ≤ |F ′(x)| for all

x ∈ [−1, 1] (note that G ≡ 0 on [−1, 0)). Furthermore, because we selected each width of the triangles to

ensure that they lie within the same period as the peaks, all of the triangles are disjoint. So, we get that∫
[−1,1]

G =

∞∑
k=1

F (tk) ·∆k =

∞∑
k=1

√
kπ

(
1√
kπ

− 1√
kπ + π

2

)
=

∞∑
k=1

1− 1√
1 + 1

2k


Note that the function 1 − 1√

1+ 1
2x

is continuous, and therefore Riemann integrable in the extended sense;

so, we can simply compute its integral and apply the integral test to prove that this sum diverges. We have∫ ∞

1

1√
1 + 1

2x

dx =

∫ ∞

1

√
2x

2x+ 1
dx

With the substitution x = tan2(u)/2, we get

=

∫ π/2

arctan(
√
2)

tan(u)√
1 + tan2(u)

tan(u) sec2(u)du =

∫ π/2

arctan(
√
2)

tan2(u) sec(u)du

=

∫ π/2

arctan(
√
2)

sec3(u)− sec(u)du

Using the reduction formula for the integral of powers of sec (derived via integration by parts), we get

=

[
sec(u) tan(u)

2

]π/2
arctan(

√
2)

− 1

2

∫ π/2

arctan(
√
2)

sec(u)du

=

[
sec(u) tan(u)

2
− ln(tan(u) + sec(u))

]π/2
arctan(

√
2)

Since sec(arctan(a)) =
√
1 + a2, we get

= lim
u→π/2

sec(u) tan(u)

2
− ln(tan(u) + sec(u))−

√
6

2
+ ln(

√
2 +

√
3)

This limit certainly diverges: to see this, let us substitute a = cos(u)

= lim
a→0

√
1− a2

2a2
− ln(

√
1− a2 + 1) + ln(a) + C = ∞

So, the sum diverges, which means
∫
[−1,1]

F ′ ≥
∫
[−1,1]

G = ∞, and so F ′ is not integrable on [−1, 1].

12
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Problem 7

Solution

Proof of (a). Firstly, F must be measurable since it can be written as the difference of two increasing

functions; so, since an increasing function has countably many discontinuities, F is continuous a.e. and is

therefore measurable. This means that |F (x + h) − F (x)| is also measurable. Note that we can suppose

without loss of generality that h > 0; indeed, we are certainly done if h = 0 and if h < 0 we have∫
R
|F (x+ h)− F (x)|dx =

∫
R
|F (x)− F (x+ h)|dx =

∫
R
|F (x)− F (x− |h|)|dx =

∫
R
|F (x+ |h|)− F (x)|dx,

where the last equality is the translation invariance of the integral. So, let h > 0 be arbitrary. Let us note

that we can partition the integral via∫
R
|F (x+ h)− F (x)|dx =

∫
R

(∑
k∈Z

1[kh,(k+1)h)(x)

)
|F (x+ h)− F (x)|dx

=
∑
k∈Z

∫
R
1[kh,(k+1)h)(x) · |F (x+ h)− F (x)|dx

=
∑
k∈Z

∫ (k+1)h

kh

|F (x+ h)− F (x)|dx,

where the first equality is since
∑

k∈Z 1[kh,(k+1)h)(x) equals the identity function and the second equality is

an application of Corollary 1.10 of Chapter 2 since the elements of our sum are positive and measurable (the

product of an indicator function and a measurable function |F (x+h)−F (x)|). By the translation invariance

of the integral, ∫ (k+1)h

kh

|F (x+ h)− F (x)|dx =

∫ h

0

|F (x+ (k + 1)h)− F (x+ kh)| dx

Pluggin this in, we get∫
R
|F (x+ h)− F (x)|dx =

∑
k∈Z

∫ h

0

|F (x+ (k + 1)h)− F (x+ kh)| dx

=

∫ h

0

∑
k∈Z

|F (x+ (k + 1)h)− F (x+ kh)| dx

Now, let us note that for every n ∈ N, by the definition of TF we clearly have

n∑
k=−n

|F (x+ (k + 1)h)− F (x+ kh)| ≤ TF (x− nh, x+ (n+ 1)h) ≤ sup
a,b

TF (a, b)

Taking the limit as n → ∞, this inequality must still hold: in particular,

∑
k∈Z

|F (x+ (k + 1)h)− F (x+ kh)| = lim
n→∞

n∑
k=−n

|F (x+ (k + 1)h)− F (x+ kh)| ≤ sup
a,b

TF (a, b)

Thus, letting A := sup[a,b]⊂R TF (a, b) < ∞ we get∫
R
|F (x+ h)− F (x)|dx =

∫ h

0

∑
k∈Z

|F (x+ (k + 1)h)− F (x+ kh)| dx ≤
∫ h

0

Adx = Ah,

Problem 7 continued on next page. . . 13



Evan Dogariu MAT 425: Problem Set 6 Problem 7 (continued)

completing the proof.

Proof of (b). Let us write φn(x) := φ(x+1/n)−φ(x)
1/n as a sequence of functions such that φn → φ′

pointwise. Then, clearly Fφn → Fφ′ pointwise as n → ∞ as well. Let B be a ball of finite radius that

φ is supported on, and let MF > 0 be such that |F | ≤ MF since F is bounded. Furthermore, since φ′ is

continuous and supported on a compact set B, then it is bounded; say, |φ′(x)| ≤ Mφ′ for all x ∈ B for some

Mφ′ > 0. Then, we can note that for all x, the mean value theorem gives us that since φ′ is continuous,

there is some cx ∈ B such that φ′(cx) = φn(x). This means that

|φn(x)| = |φ′(cx)| ≤ Mφ′

So, we get that

|F (x)φn(x)| = |F (x)φn(x)| · 1B(x) ≤ MF ·Mφ′ · 1B(x)

Note that since B has finite measure, the function MF ·Mφ′ · 1B(x) is integrable. Since it dominates |Fφn|
for all n, we can apply dominated convergence. In particular,∣∣∣∣∫

R
F (x)φ′(x)dx

∣∣∣∣ = ∣∣∣∣ limn→∞

∫
R
F (x)φn(x)dx

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
R
F (x)φn(x)dx

∣∣∣∣
= lim

n→∞

∣∣∣∣∫
R
F (x) · φ(x+ 1/n)− φ(x)

1/n
dx

∣∣∣∣
= lim

n→∞
n ·
∣∣∣∣∫

R
F (x)φ(x+ 1/n)dx−

∫
R
F (x)φ(x)dx

∣∣∣∣
By the translation invariance of the integral,

∫
R F (x)φ(x+ 1/n)dx =

∫
R F (x− 1/n)φ(x)dx, and so∣∣∣∣∫

R
F (x)φ′(x)dx

∣∣∣∣ ≤ lim
n→∞

n ·
∣∣∣∣∫

R
F (x− 1/n)φ(x)dx−

∫
R
F (x)φ(x)dx

∣∣∣∣
= lim

n→∞
n ·
∣∣∣∣∫

R
φ(x)(F (x− 1/n)− F (x))dx

∣∣∣∣
= lim

n→∞

∣∣∣∣∫
R
φ(x)

F (x− 1/n)− F (x)

1/n
dx

∣∣∣∣
≤ lim

n→∞

∫
R

∣∣∣∣φ(x)F (x− 1/n)− F (x)

1/n

∣∣∣∣ dx
≤ lim

n→∞

∫
R

∣∣∣∣F (x− 1/n)− F (x)

1/n

∣∣∣∣ dx,
where the last inequality is because supR |φ| ≤ 1. Note, however, that applying part (a) with h = −1/n

yields that for every n ∈ N, we have∫
R

∣∣∣∣F (x− 1/n)− F (x)

1/n

∣∣∣∣ dx ≤ A · | − 1/n|
1/n

= A

Since this holds for each element of the sequence, it certainly holds for the limit as well. This grants∣∣∣∣∫
R
F (x)φ′(x)dx

∣∣∣∣ ≤ lim
n→∞

∫
R

∣∣∣∣F (x− 1/n)− F (x)

1/n

∣∣∣∣ dx ≤ A,

and we are done.

14
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Problem 8

Solution

Proof. ( =⇒ ) Suppose that f is M -Lipschitz. Then, let ϵ > 0 be arbitrary. Let δ := ϵ/M . Therefore, for

any disjoint intervals (a1, b1), ..., (aN , bN ) with
∑N

j=1(bj − aj) < δ, we have

N∑
j=1

|f(bj)− f(aj)| ≤
N∑
j=1

M · |bj − aj | = M

N∑
j=1

(bj − aj) < Mδ = ϵ,

where the first inequality is just an application of the Lipschitz condition. Note that this is precisely the

definition of absolute continuity, as δ doesn’t depend on the intervals we selected or on N . From the remark

after the definition of absolute continuity, we know that f is of bounded variation on any bounded interval.

Let

E := {x ∈ R : f ′(x) doesn’t exist}

Since f is of bounded variation on any bounded interval, then on each interval [k, k + 1) we know that f

is differentiable a.e. by Theorem 3.4. So, this means that m∗(E ∩ [k, k + 1)) = 0 for every k ∈ Z. So, by

subadditivity of exterior measure,

m∗(E) ≤
∑
k∈Z

m∗(E ∩ [k, k + 1)) = 0 =⇒ m(E) = 0

Now, for any x /∈ E, we know that f ′(x) exists. For such x,

|f ′(x)| =
∣∣∣∣ limh→0

f(x+ h)− f(x)

h

∣∣∣∣ = lim
h→0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ lim
h→0

∣∣∣∣M(h)

h

∣∣∣∣ = M,

where the inequality is an application of the Lipschitz condition. So, for every x /∈ E (i.e. for a.e. x ∈ R)
we have |f ′(x)| ≤ M .

( ⇐= ) Suppose now that f is absolutely continuous and |f ′(x)| ≤ M for a.e. x ∈ R. Let x, yR be

arbitrary, and suppose without loss of generality that x < y. Theorem 3.11 grants that

f(y)− f(x) =

∫ y

x

f ′(t)dt =⇒ |f(y)− f(x)| =
∣∣∣∣∫ y

x

f ′(t)dt

∣∣∣∣ ≤ ∫ y

x

|f ′(t)|dt ≤ M

∫ y

x

dt = M · |y − x|

Since this holds for every pair x, y ∈ R, we have that f is M -Lipschitz, as desired.

15
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Problem 9

Solution

Proof. Let E ⊂ Rn be covered in the Vitali sense by B with 0 < m∗(E) < ∞. Let η > 0. Fix a δ > 0 such

that the following two conditions hold:

δ < 3−n and 2δ + δ2 < η

Note that such a selection certainly can be made since limδ→0 2δ+δ2 = 0. We can now begin our construction.

First, select C1 ⊃ E measurable such that m(C1) ≤ (1 + δ)m∗(E) and such that B is still a Vitali cover

for C1 (we can do this by Observation 3 of the exterior measure and the properties of a Vitali cover).

Next, select a compact K1 ⊂ C1 such that m(C1 \ K1) ≤ ϵ/2. Next, select an open O1 ⊃ K1 such that

m(O1) ≤ (1 + δ)m(K1). Now, restrict B such that it only contains balls in O1 and is still a Vitali cover of

K1; we can do this by restricting the radii of the balls to simply be less than the distance from the boundary

of K1 to the boundary of O1 (this distance will always be nonzero since no point on the boundary of K1

can also be on the boundary of O1 since K1 is closed and O1 is open). Note that this preserves the Vitali

covering property, since there are still balls of arbitrarily small measure covering all points of K1. Now, since

K1 is compact, there is a finite collection of balls covering K1. From here, we can apply the elementary

Vitali covering lemma (Lemma 1.2) to find a disjoint finite collection of balls {B(1)
j }N1

j=1 ⊂ B such that

m(K1) ≤ 3n
N1∑
j=1

∣∣∣B(1)
j

∣∣∣
From here, define

C2 := K1 \

N1⋃
j=1

B
(1)
j


and remove from B all the balls that are not disjoint with

⋃N1

j=1 B
(1)
j , and it will still be a Vitali cover of C2

(note that C2 is measurable because K1 is and the balls are as well). This completes one iteration of the

construction. In the next iteration, we repeat the steps, listed more briefly and with arbitrary step indices

i > 1 below:

1. Select compact Ki ⊂ Ci such that m(Ci \Ki) ≤ ϵ/2i.

2. Select an open Oi ⊃ Ki s.t. m(Oi) ≤ (1 + δ)m(Ki)

3. Restrict B such that it only contains balls in Oi and is still a Vitali cover of Ki.

4. Apply Lemma 1.2 to a finite subcover to find a disjoint finite collection of balls {B(i)
j }Ni

j=1 ⊂ B with

m(Ki) ≤ 3n
Ni∑
j=1

∣∣∣B(i)
j

∣∣∣
5. Define

Ci+1 := Ki \

 Ni⋃
j=1

B
(i)
j


and remove from B all the balls that are not disjoint with

⋃Ni

j=1 B
(i)
j , such that it will still be a Vitali

cover of Ci+1 (which is measurable).

Problem 9 continued on next page. . . 16
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After T steps of the construction, we will have a finite collection

B̃T :=

T⋃
i=1

Ni⋃
j=1

B
(i)
j

We know that all of these selected balls must be disjoint from each other because in step 5 of the construction

we ensure that our current Vitali cover B is disjoint from the previously selected balls; an induction argument

shows that B̃T is indeed a disjoint collection. Now, we can note that our selections ensure the following chain

of inequalities: for each step i,

m(Ci+1) = m

Ki \

 Ni⋃
j=1

B
(i)
j

 ≤ m

Oi \

 Ni⋃
j=1

B
(i)
j


Since all the B

(i)
j ’s are contained in Oi via our restriction of the Vitali covering in step 3, we get that

m(Ci+1) ≤ m(Oi)−
Ni∑
j=1

∣∣∣B(i)
j

∣∣∣
By the guarantee of Lemma 1.2 in step 4, we know that

∑Ni

j=1

∣∣∣B(i)
j

∣∣∣ ≥ m(Ki)
3n , and so

m(Ci+1) ≤ m(Oi)− 3−nm(Ki)

By selection of Oi in step 2, we know that m(Oi) ≤ (1 + δ)m(Ki), and so since Ki ⊂ Ci, we get

m(Ci+1) ≤ (1 + δ − 3−n)m(Ki) ≤ (1 + δ − 3−n)m(Ci)

=⇒ m(Ci+1) ≤ (1 + δ − 3−n)i ·m(C1)

Note that after any number of steps T ,

CT ∪ B̃T ∪

(
T⋃

i=1

Ci \Ki

)
⊃ C1

since every point that was initially in C1 was either removed by selecting a compact Ki in step 1, removed

by selecting balls in step 4, or remains after all the steps. This means that

CT ⊃ C1 \ B̃T \

(
T⋃

i=1

Ci \Ki

)
=⇒ m(CT ) ≥ m(C1 \ B̃T )−

T∑
i=1

m(Ci \Ki),

where for the inequality we used the fact that Ci \ Ki ⊂ C1 for all i, and so set subtraction equates to

subtracting out measure. However, because of the way we selected Ki ⊂ Ci in step 1, we know that∑T
i=1 m(Ci \Ki) ≤

∑∞
i=1 ϵ/2

i = ϵ, and so taking ϵ → 0 we get

m(C1 \ B̃T ) ≤ m(CT )

Lastly, we note that since E ⊂ C1, monotonicity of exterior measure yields

m∗(E \ B̃T ) ≤ m(CT ) ≤ (1 + δ − 3−n)T ·m(C1)

Since the factor is < 1 and we are free to make T as large as possible, we find that if we continue the

construction indefinitely we get that

m∗(E \ B̃∞) = 0

Problem 9 continued on next page. . . 17



Evan Dogariu MAT 425: Problem Set 6 Problem 9 (continued)

as desired.

To verify the other condition, note that

(Ci+1) ≤ m(Oi)−
Ni∑
j=1

|B(i)
j | ≤ (1 + δ)m(Ki)−

Ni∑
j=1

|B(i)
j |

=⇒
Ni∑
j=1

|B(i)
j | ≤ (1 + δ)m(Ki)−m(Ci+1) ≤ (1 + δ)m(Ci)−m(Ci+1)

=⇒
T∑

i=1

Ni∑
j=1

|Bi
j | ≤ δ

T∑
i=1

m(Ci) +m(C1)−m(CT )

≤ δm(C1)

T∑
i=2

(1 + δ − 3−n)i + (1 + δ)m(C1)−m(CT )

≤ δ ·
(

1

1− (1 + δ − 3−n)

)
·m(C1) + (1 + δ)m(C1)

=

(
1 + δ

(
1 +

1

3−n − δ

))
m(C1) =

(
3−n − δ

3−n − δ
+

3−nδ − δ2 + δ

3−n − δ

)
m(C1)

=
3−n + 3−nδ − δ2

3−n − δ
·m(C1) ≤ (1 + δ)

3−n + 3−nδ − δ2

3−n − δ
·m∗(E)

=
3−n + 3−nδ − δ2 + 3−nδ + 3−nδ2 − δ3

3−n − δ
m∗(E) =

(
δ + δ2 +

3−n + 3−nδ

3−n − δ

)
m∗(E)

≤
(
δ + δ2 +

3−n + 3−nδ

3−n

)
m∗(E) =

(
1 + 2δ + δ2

)
m∗(E)

≤ (1 + η)m∗(E),

where the first line was already derived earlier, the second line makes use of the fact that Ki ⊂ Ci, the third

line computes the telescoping sum of the second line over i’s, the fourth line makes use of the decaying form

of m(Ci) from earlier, the fifth line uses the geometric series and the fact that m(CT ) ≥ 0, the seventh line

uses that m(C1) ≤ (1 + δ)m∗(E), and the last line uses our selection of δ from the beginning of the proof.

Since the bound ∑
B∈B̃T

|B| =
T∑

i=1

Ni∑
j=1

|Bi
j | ≤ (1 + η)m∗(E)

holds for all T , it certainly holds in the limit; i.e.∑
B∈B̃∞

|B| ≤ (1 + η)m∗(E)

as desired.
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Problem 10

Solution

Proof of (a). Let B be the unit ball and define φ(x) := 1
m(B)1B(X). Also, for δ > 0 define

φδ(x) :=
1

δ2
· φ(x/δ)

Let x ∈ R2 be arbitrary with x1x2 ̸= 0. We can compute that, since φ(−x) = φ(x),

(φδ)
∗
R(x) = sup

R∈R

1

m(R)

∫
R

|φδ(x− y)|dy = sup
R∈R

1

m(R)

∫
R

|φδ(y − x)|dy

= sup
R∈R

1

m(R)

∫
R2

1R(y)|φδ(y − x)|dy

= sup
R∈R

1

m(R)

∫
R2

1R(y + x)|φδ(y)|dy

= sup
R∈R

1

m(R) ·m(B) · δ2

∫
R2

1R(y + x)1B(y/δ)dy

Note that y ∈ Bδ(O) ⇐⇒ y/δ ∈ B by scaling, and so 1B(y/δ) = 1Bδ(O)(y). This means that

(φδ)
∗
R(x) = sup

R∈R

1

m(R) ·m(B) · δ2

∫
R2

1R(y + x)1Bδ(O)(y)dy

= sup
R∈R

1

m(R) ·m(B) · δ2

∫
R2

1R(y)1Bδ(O)(y − x)dy

Now, note that y − x ∈ Bδ(O) ⇐⇒ y ∈ Bδ(x) clearly, and so 1Bδ(O)(y − x) = 1Bδ(x)(y). This means

(φδ)
∗
R(x) = sup

R∈R

1

m(R) ·m(B) · δ2

∫
R2

1R(y)1Bδ(x)(y)dy

= sup
R∈R

m(R ∩Bδ(x))

m(R) ·m(B) · δ2

Since m(B) · δ2 = m(Bδ(O)) = m(Bδ(x)), we get

(φδ)
∗
R(x) = sup

R∈R

1

m(R)

m(R ∩Bδ(x))

m(Bδ(x))

Suppose, without loss of generality, that δ < |x|; this means that O /∈ Bδ(x). Clearly, we would like to

take the supremum over rectangles for which one of the vertices is at the origin; if this is not the case, we

can always shrink the rectangle so that the vertex in the opposite quadrant as x goes to the origin and

improve the value of 1
m(R)

m(R∩Bδ(x))
m(Bδ(x))

by decreasing m(R) without changing m(R ∩ Bδ(x)). Also, certainly

the opposite vertex must lie within the square of side length δ around x, since if it undershoots this square

we have m(R ∩ Bδ(x)) = 0, and if it overshoots we can shrink R without changing m(R ∩ Bδ(x)). In any

case, we find that as δ → 0, we must have the opposite vertex lie precisely at x to maximize the function;

this can also be found by Lebesgue differentiation, since

lim
δ→0

m(R ∩Bδ(x))

m(Bδ(x))
= lim

δ→0

1

m(Bδ(x))

∫
Bδ(x)

1R = 1R(x)

for almost every x, and so the smallest such R has the opposite vertex at x. In either case, we find that for

a.e. x,

(φδ)
∗
R(x) → sup

r∈R

1

m(R)
1R(x) =

1

|x1x2|
as δ → 0

Problem 10 continued on next page. . . 19
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Suppose by way of contradiction that the weak-type inequality held. Then, we would have that

m({|x| ≤ 1 : (φδ)
∗
R(x) > α}) ≤ m({x : (φδ)

∗
R(x) > α}) ≤ A

α

Taking δ → 0, this would imply that for all α > 0,

m({|x| ≤ 1 : |x1x2|−1 > α}) ≤ A

α

Note that the set {|x| ≤ 1 : |x1x2|−1 > α} = {|x| ≤ 1 : |x1x2| < 1/α} is the region of the plane contained

in the disk that lies between the hyperbolas x1x2 < 1/α and −x1x2 < 1/α, which will equal 4 times the

area of the region of the disk under the hyperbola x1x2 < 1/α in the first quadrant. We will do a routine

integration for values of α large enough that the hyperbola intersects the disk to find this area. To this end,

let x± =

√
1±

√
1−4/α2

2 be the roots of the expression
√
1− x2 = 1/αx; i.e. these are the points where the

hyperbola and disk intersect. We then have that the area of the set V := m({|x| ≤ 1 : |x1x2| < 1/α}) is

V = 4

∫ x−

0

√
1− x2dx+ 4

∫ x+

x−

1

αx
dx+ 4

∫ 1

x+

√
1− x2dx ≥

∫ x+

x−

1

αx
dx =

1

α
ln(x+/x−)

=
1

2α
ln

(
1 +

√
1− 4/α2

1−
√
1− 4/α2

)
=

1

2α
ln

(
1 + 1− 4/α2 + 2

√
1− 4/α2

1− (1− 4/α2)

)
=

1

2α
ln

(
2α2 − 4 + 2α2

√
1− 4/α2

4

)
For α large enough that 2α2

√
1− 4/α2 > 4, we get that

V ≥ 1

2α
ln(2α2/4) ∼ lnα

α

Note that this contradicts the weak-type inequality for large enough α. So, the weak-type inequality cannot

hold in generality.

Proof of (b). From the result of part (a), we know that for all α > 0, there exists some function

fα ∈ L1(R2) and some Aα such that

m({x : (fα)
∗
R(x) > α}) ≥ Aα

α
||fα||L1

Using this, we can select a sequence of functions (fn)n∈N by setting α = n. Define the function

f :=

∞∑
n=1

1

2n · ||fn||L1

|fn|

Then, this function is also in L1; indeed, it is bounded above by 1 a.e. since each constituent in the sum is

bounded above by 1
2n a.e.. Furthermore, we know that there will always be points for which the maximal

function f∗
R(x) takes the value ∞, since for the constituent fn’s we had a lower bound on the measure of

the set of points for which their maximal function took a value > n. This means that there are points x for

which f∗
R(x) is unbounded, which in particular means that for a.e. x′ we can take a sequence of rectangles

containing those points and attain unbounded averages. Put differently, for a.e. x′ we have

lim sup
diam(R)→0

1

m(R)

∫
R

|f(x′ − y)|dy = lim sup
diam(R)→0

1

m(R)

∫
R

f(x′ − y)dy = ∞
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