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Evan Dogariu MAT 425: Problem Set 5 Problem 1

Problem 1

Solution

Proof of (a). For all x ∈ R, let r(x) denote the integer closest to x. Consider the function f : R → R≥0

given by

f(x) = |r(x)| ·max
{
1− |r(x)| · 2|r(x)| · |x− r(x)|, 0

}
This opaque definition is better explained in words: in short, at each integer value k ∈ Z \ {0} is centered

a triangle with width 2−|k|+1/|k| and height |k|. Each triangle linearly decreases from its peak of |k| to 0,

and the function f is 0 everywhere outside of these triangles. Since no triangle has a width of > 1/2, each

triangle decreases to a y-value of 0 before the next triangle begins; this ensures continuity. Also, the function

is by definition nonnegative, since it is always at least 0. A plot of the function is given below for clarity:

The function is clearly measurable since it is continuous; to see that it is integrable, note that we can write

its integral as the sum of the areas of each triangle:∫
R
f =

∞∑
k=−∞
k ̸=0

1

2
· |k| · 2

−|k|+1

|k|
=

∞∑
k=−∞
k ̸=0

2−|k| = 2 ·
∞∑
k=1

2−k = 2 < ∞

So, f is integrable. However, lim supx→∞ f(x) = ∞ as the sequence (f(k))k grows unboundedly as k → ∞
(this is because f(k) = k for each k ∈ N).

Proof of (b). Suppose that f : R → R is positive, uniformly continuous, and integrable. Suppose

by way of contradiction that lim|x|→∞ f(x) exists, but is not equal to 0 (say it is equal to a for some

a > 0). Then, by the definition of a limit, there is some R > 0 such that for all x with |x| > R, we have

|f(x) − a| < a/2 =⇒ f(x) > a/2. This would contradict Proposition 1.12(i), which states that for any

ϵ > 0 there is some R′ such that ∫
|x|>R′

f < ϵ

Clearly, if f maintained a nonzero value a/2 at infinity, its integral over the region |x| > R′ could not be

arbitrarily small; this is a contradiction. So, we see that if lim|x|→∞ f(x) exists, it must equal 0. Now, all

that is left to do is to show that the limit exists.

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 425: Problem Set 5 Problem 1 (continued)

Let ϵ > 0. Since f is uniformly continuous, let δ > 0 be such that |x − y| < δ =⇒ |f(x) − f(y)| < ϵ/2.

Suppose by way of contradiction that lim|x|→∞ f(x) doesn’t exist. Then, for any R > 0 (unrelated to the

earlier R), there must exist a y with |y| > R such that f(y) > ϵ (if this weren’t the case, then f(y) ≤ ϵ for

all |y| > R for all R, and the limit therefore exists and equals 0). This means that for all x ∈ (y − δ, y + δ),

we have |f(x)− f(y)| < ϵ/2 =⇒ f(x) > ϵ/2. Therefore, for every R > 0 we can find a y with |y| > R such

that ∫
(y−δ,y+δ)

f >

∫
(y−δ,y+δ)

ϵ

2
= ϵδ

I will refer by (∗) to the statement that for every R > 0 there exists some y ∈ R with |y| > R such that∫
(y−δ,y+δ)

f > ϵδ. We know by Proposition 1.12(i) that there exists some R0 > 0 with
∫
|y|>R0

f < ϵ. Now,

let n > 1/δ be some big natural number. Construct a sequence as follows:

1. From (∗), we know that there exists some y1 with |y1| > R1 := R0 + δ and
∫
(y1−δ,y1+δ)

f > ϵδ

2. For each i ∈ {2, ..., n}, select Ri such that Ri > |yi−1| + 2δ. Then, apply (∗) to find a yi such that

|yi| > Ri and
∫
(yi−δ,yi+δ)

f > ϵδ

This construction has the following properties:

• R0 + δ < R1 < ... < Rn. This comes trivially from the construction of each Ri.

• The interval (yi − δ, yi + δ) is disjoint from (yj − δ, yj + δ) for all 1 ≤ i < j. To see this, note that

|yj | > Rj ≥ Ri+1 > |yi|+ 2δ.

• For all i ≥ 1 and all x ∈ (yi − δ, yi + δ), we have |x| > Ri − δ > R0. The first inequality comes from

the way we selected yi, and the second inequality comes from the way we selected R1 and the fact that

Ri ≥ R1.

We can use these properties to say that

n⋃
i=1

(yi − δ, yi + δ) ⊂ {y : |y| > R0}

Since f is nonnegative, this reveals that∫
|y|>R0

f ≥
n∑

i=1

∫
(yi−δ,yi+δ)

f >

n∑
i=1

δϵ > n · δϵ > ϵ,

where for the second inequality we used the property granted by (∗) and for the fourth inequality we used

that n > 1/δ. This, however, is a contradiction since we selected R0 specifically so that
∫
|y|>R0

f < ϵ.

Therefore, the limit lim|x|→∞ f(x) must exist. Thus, it must also equal 0.
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Evan Dogariu MAT 425: Problem Set 5 Problem 2

Problem 2

Solution

Proof. Suppose that f is integrable and that
∫
E
f ≥ 0 for all measurable E. Let x be an arbitrary point

in the Lebesgue set of f . Then, for all balls B such that x ∈ B, we have that
∫
B
f ≥ 0 by the assumed

property. Taking the limit as the balls B shrink about x,

lim
m(B)→0
B ball
B∋x

∫
B

f ≥ 0 =⇒ lim
m(B)→0
B ball
B∋x

1

m(B)

∫
B

f ≥ 0 =⇒ f(x) ≥ 0,

where the first implication simply comes from the fact that m(B) ≥ 0, and the second implication uses the

definition of Lebesgue points of functions. So, f ≥ 0 over its Lebesgue set. Corollary 1.6 grants that since

f ∈ L1(Rd), almost every x ∈ Rd is in the Lebesgue set of f . So, since f ≥ 0 for all points in its Lebesgue

set, we find that f ≥ 0 a.e..

Suppose now that
∫
E
f = 0 for every measurable E. This means that

∫
E
f ≥ 0 and

∫
E
(−f) ≥ 0 for

every measurable E. Using the above result, this tells us that f ≥ 0 a.e. and also that (−f) ≥ 0 =⇒ f ≤ 0

a.e.. Let A be the set over which f is not ≥ 0, and let B be the set over which f is not ≤ 0; the previous

statement says that m(A) = m(B) = 0. Also, f(x) = 0 for all x /∈ A ∪B. From this, we see that f = 0 a.e..
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Evan Dogariu MAT 425: Problem Set 5 Problem 3

Problem 3

Solution

Proof. Let f ∈ L1(Rn) and define Eα := {x ∈ Rn : |f(x)| > α}. Define the function F : Rn ×R≥0 → {0, 1}
by

F (x, α) := 1Eα(x)

To see that F is measurable on Rn+1, consider the set {F < a} ⊂ Rn × R≥0 for various values of a . If

a ≤ 0, this set is simply the empty set (and is therefore measurable) since F ≥ 0 always. If a ≥ 1, this set

is simply Rn × R≥0 (and is therefore measurable) since F ≤ 1 always. Lastly, for a ∈ (0, 1) we have that

{F < a} = {F = 0} = {F = 1}C = {(x, α) ∈ Rn × R≥0 : 0 ≤ α < |f(x)|}C ,

where the last equality is by definition of Eα. Corollary 3.8(i) states that because f is measurable, so is

{(x, α) ∈ Rn × R≥0 : 0 ≤ α < |f(x)|}. Since the space of measurable sets is closed under complements, this

tells us that {F < a} is measurable for a ∈ (0, 1). Therefore, {F < a} is measurable for all a, and F is

then a measurable function over Rn ×R≥0. Since F is nonnegative and measurable, we can apply Theorem

3.2(iii) to see that ∫
Rn

(∫
[0,∞)

F (x, α)dα

)
dx =

∫
[0,∞)

(∫
Rn

F (x, α)dx

)
dα

=⇒
∫
Rn

(∫
[0,∞)

1Eα
(x)dα

)
dx =

∫
[0,∞)

(∫
Rn

1Eα
(x)dx

)
dα

Now, note that for all x ∈ Rn we have x ∈ Eα ⇐⇒ α < |f(x)|, and so∫
[0,∞)

1Eα(x)dα =

∫
[0,|f(x)|)

1dα = |f(x)|

Also, we know that ∫
Rn

1Eα
(x)dx = m(Eα)

Plugging these results in, we get that ∫
Rn

|f(x)|dx =

∫
[0,∞)

m(Eα)dα

as desired.
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Evan Dogariu MAT 425: Problem Set 5 Problem 4

Problem 4

Solution

Proof of (a). The fact that f, g are integrable means that they are certainly measurable on Rn. By

Proposition 3.9, we get that f being measurable on Rn implies that f̃(x, y) = f(x − y) is measurable on

R2n. Also, Corollary 3.7 gives that g̃(x, y) = g(y) is measurable on R2n as well. Since f, g are integrable, we

know that f̃ , g̃ are finite a.e.. This means that f̃ · g̃ is measurable on R2n (we can redefine them on a set of

measure 0 so that they are finite everywhere and then apply property 5 of measurable functions; since we

only change a set of measure 0, which is measurable, the measurability of f̃ , g̃, and f̃ · g̃ are not affected).

So, f(x− y)g(y) is measurable on R2n.

Proof of (b). By Theorem 3.2(iii), since |f(x− y)g(y)| ≥ 0, we can write∫
R2n

|f(x− y)g(y)|dxdy =

∫
Rn

(∫
Rn

|f(x− y)| · |g(y)|dx
)
dy

Since |g(y)| is constant with respect to x, we can move it out and get

=

∫
Rn

|g(y)|
(∫

Rn

|f(x− y)|dx
)
dy

By translation invariance of the integral,
∫
Rn |f(x − y)|dx = ||f ||L1 , which is constant with respect to the

variable y. So,

= ||f ||L1

∫
Rn

|g(y|dy = ||f ||L1 · ||g||L1 < ∞,

where we know that this is finite since f, g are both integrable. We have therefore proven that f(x− y)g(y)

is integrable on R2n.

Proof of (c). From part (b), we know that h(x, y) := f(x − y)g(y) is integrable on R2n. Then, Fu-

bini’s Theorem (i) grants that the slice hx is integrable on Rn for almost every x. In other words, for almost

every x we have that f(x− y)g(y) is integrable on Rn. So, (f ∗ g)(x) is well defined for a.e. x.

Proof of (d). Fubini’s Theorem (ii) gives that f ∗ g is integrable on Rn as well. Now,

||f ∗ g||L1 =

∫
Rn

|(f ∗ g)(x)| dx =

∫
Rn

∣∣∣∣∫
Rn

f(x− y)g(y)dy

∣∣∣∣ dx ≤
∫
Rn

∫
Rn

|f(x− y)g(y)| dydx,

with equality holding if and only if f and g are nonnegative. From here we proceed exactly as we did in

part (b): nonnegativity of |f(x − y)g(y)| over R2n allows us to use Theorem 3.2(iii) to switch the integrals

and get that ∫
Rn

∫
Rn

|f(x− y)g(y)| dydx =

∫
Rn

∫
Rn

|f(x− y)g(y)| dxdy

|g(y)| is constant with respect to x, and so

=

∫
Rn

|g(y)|
(∫

Rn

|f(x− y)| dx
)
dy

Translation invariance of the integral gives that
∫
Rn |f(x− y)| dx = ||f ||L1 , which is constant with respect

to y. So,

= ||f ||L1

∫
Rn

|g(y)|dy = ||f ||L1 · ||g||L1

Problem 4 continued on next page. . . 6



Evan Dogariu MAT 425: Problem Set 5 Problem 4 (continued)

Equality holds if and only if both f and g are nonnegative.

Proof of (e). Define

f̂(ξ) :=

∫
Rn

f(x)e−2πix·ξdx

and provide an analogous definition for ĝ. Note that

|f̂(ξ)| =
∣∣∣∣∫

Rn

f(x)e−2πix·ξdx

∣∣∣∣ ≤ ∫
Rn

|f(x)| · |e−2πix·ξ|dx =

∫
Rn

|f(x)|dx = ||f ||L1 ,

where the second equality holds since |eia| = 1 for all a ∈ R. So, f̂ is bounded in magnitude by ||f ||L1 < ∞.

Now, we would like to show that f̂ is continuous. Let ϵ > 0. By Proposition 1.12(i), since f is integrable

there exists a R > 0 such that ∫
|x|>R

|f(x)|dx < ϵ

Fix ξ ∈ Rn. Then, for all h ∈ Rn with |h| < δ := ϵ
||f ||L1 ·R , we can say that

|f̂(ξ + h)− f̂(ξ)| =
∣∣∣∣∫

Rn

f(x)
(
e−2πix·(ξ+h) − e−2πix·ξ

)
dx

∣∣∣∣
≤
∫
Rn

∣∣∣f(x)(e−2πix·(ξ+h) − e−2πix·ξ
)∣∣∣ dx

=

∫
|x|>R

∣∣∣f(x)(e−2πix·(ξ+h) − e−2πix·ξ
)∣∣∣ dx+

∫
|x|≤R

∣∣∣f(x)(e−2πix·(ξ+h) − e−2πix·ξ
)∣∣∣ dx

We can bound these two terms seperately. Firstly, since
∫
|x|>R

|f(x)|dx < ϵ, we have that∫
|x|>R

∣∣∣f(x)(e−2πix·(ξ+h) − e−2πix·ξ
)∣∣∣ dx ≤

∫
|x|>R

|f(x)|
(∣∣∣e−2πix·(ξ+h)

∣∣∣+ ∣∣e−2πix·ξ∣∣) dx
= 2

∫
|x|>R

|f(x)|dx < 2ϵ

For the second term, let us first derive a cute fact about exponentials. For notation, let a := −2πx · (ξ + h)

and b := −2πx · ξ. Then,

eia − eib = eibei(
a−b
2 )
(
ei(

a−b
2 ) − ei(

b−a
2 )
)

= eibei(
a−b
2 )
(
ei(

a−b
2 ) − e−i( a−b

2 )
)

= eibei(
a−b
2 ) · 2i · sin

(
a− b

2

)
=⇒

∣∣eia − eib
∣∣ = 2

∣∣∣∣sin(a− b

2

)∣∣∣∣
Since −x ≤ sin(x) ≤ x for all x ∈ R, this gives us that

∣∣eia − eib
∣∣ ≤ 2

∣∣∣∣a− b

2

∣∣∣∣ = |a− b|

Plugging in our values for a and b we get∣∣∣e−2πix·(ξ+h) − e−2πix·ξ
∣∣∣ ≤ 2π|x · h| ≤ 2π|x| · |h|,

Problem 4 continued on next page. . . 7



Evan Dogariu MAT 425: Problem Set 5 Problem 4 (continued)

where the last inequality is the Cauchy-Schwartz inequality. Since |x| ≤ R over the interval and |h| < δ,∣∣∣e−2πix·(ξ+h) − e−2πix·ξ
∣∣∣ ≤ 2πRδ = 2π

ϵ

||f ||L1

Going back to our earlier inequality,

|f̂(ξ + h)− f̂(ξ)| ≤ 2ϵ+

∫
|x|≤R

∣∣∣f(x)(e−2πix·(ξ+h) − e−2πix·ξ
)∣∣∣ dx

= 2ϵ+

∫
|x|≤R

|f(x)| ·
∣∣∣(e−2πix·(ξ+h) − e−2πix·ξ

)∣∣∣ dx
≤ 2ϵ+ 2π

ϵ

||f ||L1

∫
|x|≤R

|f(x)| dx ≤ 2ϵ+ 2π
ϵ

||f ||L1

∫
Rn

|f(x)| dx

= 2ϵ+ 2πϵ

Since this holds for all h with |h| < δ, we see that f̂ is continuous at ξ; since it holds for all ξ, we have that

f̂ is continuous (in fact, it is uniformly continuous since δ didn’t depend on ξ).

To prove the last part, fix a ξ. We have

(̂f ∗ g)(ξ) =
∫
Rn

(∫
Rn

f(x− y)g(y)dy

)
e−2πix·ξdx

=

∫
Rn

∫
Rn

e−2πix·ξf(x− y)g(y)dydx

=

∫
Rn

∫
Rn

e−2πi(x−y)·ξ · e−2πiy·ξ · f(x− y)g(y)dydx

Note that the integrability of f(x− y)g(y) over R2n implies the integrability of e−2πi(x−y)·ξ · e−2πiy·ξ · f(x−
y)g(y) over R2n since

∣∣e−2πi(x−y)·ξ · e−2πiy·ξ · f(x− y)g(y)
∣∣ = |f(x− y)g(y)|. This means that we can apply

Fubini’s Theorem (iii) to switch the order of the integrals and get that

(̂f ∗ g)(ξ) =
∫
Rn

∫
Rn

e−2πi(x−y)·ξ · e−2πiy·ξ · f(x− y)g(y)dxdy

Since e−2πiy·ξ · g(y) is constant with respect to x,

=

∫
Rn

e−2πiy·ξ · g(y)
(∫

Rn

e−2πi(x−y)·ξ · f(x− y)dx

)
dy

By translation invariance of the integral,
∫
Rn e−2πi(x−y)·ξ · f(x− y)dx =

∫
Rn e−2πix·ξ · f(x)dx = f̂(ξ), and so

= f̂(ξ) ·
∫
Rn

e−2πiy·ξ · g(y)dy = f̂(ξ) · ĝ(ξ)

This is the desired result.
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Evan Dogariu MAT 425: Problem Set 5 Problem 5

Problem 5

Solution

Proof. Following the hint, define

ξ′ :=
1

2
· ξ

|ξ|2

Then, we get that ∫
Rn

[f(x)− f(x− ξ′)]e−2πix·ξdx = f̂(ξ)−
∫
Rn

f(x− ξ′)e−2πix·ξdx

By translation invariance of the integral,∫
Rn

f(x− ξ′)e−2πix·ξdx =

∫
Rn

f(x)e−2πi(x+ξ′)·ξdx

We can note that

(x+ ξ′) · ξ = x · ξ + |ξ|2

2|ξ|2
= x · ξ + 1

2
,

and so ∫
Rn

f(x)e−2πi(x+ξ′)·ξdx =

∫
Rn

f(x)e−2πix·ξ · e−2πi·1/2dx = e−iπ f̂(ξ) = −f̂(ξ)

Therefore, ∫
Rn

[f(x)− f(x− ξ′)]e−2πix·ξdx = 2f̂(ξ)

Define the function

fξ(x) := f(x− ξ′)e−2πix·ξ = f

(
x− ξ

2|ξ|2

)
e−2πix·ξ

This tells us that fξ(x) → f(x)e−2πix·ξ pointwise as |ξ| → ∞ (by this I mean that they get arbitrarily close).

So, by Proposition 2.5, since f ∈ L1 we get that∫
Rn

[f(x)− f(x− ξ′)]e−2πix·ξdx → 0 as |ξ| → ∞

=⇒ 2f̂(ξ) → 0 as |ξ| → ∞
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Evan Dogariu MAT 425: Problem Set 5 Problem 6

Problem 6

Solution

Proof. Define g(x) := f(x) · 1[0,2π]. Then,∫
[0,2π]

f(x)e−inxdx =

∫
R
g(x)e−2πix(n/2π)dx = ĝ

( n

2π

)
From Problem 5, we know that ĝ

(
n
2π

)
→ 0 as n/2π → ∞, proving the first result.

Now, we can use some trigonometric identities to see that

cos2(nx+ un) =
cos(2nx+ 2un)

2
+

1

2
=

cos(2nx)cos(2un)

2
− sin(2nx)sin(2un)

2
+

1

2

=⇒
∫
E

cos2(nx+ un)dx =
m(E)

2
+

cos(2un)

2

∫
E

cos(2nx)dx− sin(2un)

2

∫
E

sin(2nx)dx

By the relative scale invariance of the Lebesgue integral,
∫
E
cos(2nx)dx = 1

2

∫
E
cos(nx)dx, and the same for

sin(·). Thus, ∫
E

cos2(nx+ un)dx =
m(E)

2
+

cos(2un)

4

∫
E

cos(nx)dx− sin(2un)

4

∫
E

sin(nx)dx

Note that ∫
[0,2π]

1Ee
−inxdx =

∫
E

cos(nx)dx− i

∫
E

sin(nx)dx

So, ∫
E

cos(nx)dx = Re

(∫
[0,2π]

1Ee
−inxdx

)
and

∫
E

sin(nx)dx = −Im

(∫
[0,2π]

1Ee
−inxdx

)
By the first result of this problem, we know that∫
[0,2π]

1Ee
−inxdx → 0 as n → ∞ since 1E is clearly integrable on [0, 2π]. Therefore, the real and imaginary

parts must also converge to 0 (a complex sequence (zn)n converges to z ∈ C if and only if the sequences

(Re zn)n → Re(z) and (Im zn)n → Im(z)). So,

lim
n→∞

∫
E

cos(nx)dx = lim
n→∞

∫
E

sin(nx)dx = 0

This means that as n → ∞, regardless of the sequence (un)n, the triangle inequality and the boundedness

of |cos(2un)|, |sin(2un)| ≤ 1 give∣∣∣∣∫
E

cos2(nx+ un)dx− m(E)

2

∣∣∣∣ ≤ ∣∣∣∣ cos(2un)

4

∫
E

cos(nx)dx

∣∣∣∣+ ∣∣∣∣sin(2un)

4

∫
E

sin(nx)dx

∣∣∣∣
≤ 1

4

∣∣∣∣∫
E

cos(nx)dx

∣∣∣∣+ 1

4

∣∣∣∣∫
E

sin(nx)dx

∣∣∣∣
→ 0

as desired.
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Problem 7

Solution

Proof. Define Ẽ to be the set of x ∈ [0, 2π) for which
∑∞

n=0 An(x) converges. Then, An → 0 pointwise on

Ẽ. Note that An(x) = An(x+2πk) for all k ∈ Z. So, if it were the case that m(Ẽ) = 0, then
∑

An(x) would

converge on only a set of measure 0 on all intervals [2πk, 2π(k + 1)) with k ∈ Z, which means that it would

converge only on a set of measure 0 over R; this would be a contradiction. So, m(Ẽ) > 0. However, since

Ẽ ⊂ [0, 2π], we know m(Ẽ) < ∞. Let 0 < ϵ < m(Ẽ). Since An → 0 on Ẽ, we can apply Egorov’s theorem

to find a closed set Aϵ ⊂ Ẽ such that An → 0 uniformly on Aϵ and m(Ẽ \Aϵ) < ϵ. We have

m(Aϵ) +m(Ẽ \Aϵ) = m(Ẽ) =⇒ m(Aϵ) = m(Ẽ)−m(Ẽ \Aϵ) > m(Ẽ)− ϵ > 0

If we define E := Aϵ, we have therefore found a (closed) set E of positive measure on which An → 0 uniformly.

From here, note that we can refactor the expression for An(x) with a well known trigonometric identity.

If one lets an = γcos(ϕ) and bn = γsin(ϕ) for some γ and ϕ, we can note that

γcos(nx− ϕ) = γcos(nx)cos(−ϕ)− γsin(nx)sin(−ϕ)

= γcos(ϕ) · cos(nx) + γsin(ϕ) · sin(nx) = ancos(nx) + bnsin(nx) = An(x)

We can solve for γ and ϕ via

γ2 = γ2(sin2(ϕ) + cos2(ϕ)) = a2n + b2n =⇒ γ =
√
a2n + b2n

Therefore, we can also get

ϕ = cos−1

(
an√

a2n + b2n

)
With this in mind, we know that An(x) =

√
a2n + b2ncos(nx− ϕ).

Since An → 0 uniformly on E, then we have that∫
E

An → 0

by bounded convergence (for large enough n, we can always bound |An|). Note, however, that∫
E

An =
√
a2n + b2n

∫
E

cos(nx− ϕ)dx

Because E has positive measure, it must contain a ball B of some radius, say δ (this is an interval since

E ⊂ R). Consider the sequence (nk)k given by nk = ⌈k/δ + π
2 ⌉. Then,∫

B

cos(nkx− ϕ)dx

does not converge to 0 since we are always integrating over half a phase, which will always have a nonzero

integral. So, there is a subsequence (nk)k such that
∫
E
cos(nkx− ϕ)dx doesn’t converge to 0 as k → ∞. So,

the only way for
∫
E
Ank → 0 is for

√
a2nk

+ b2nk
→ 0, which in turn can only happen if both ank → 0 and

bnk → 0 as k → ∞. Since limn→∞ an and limn→∞ bn must exist (after all, limn→∞ An(x) exists), they must

agree with the limit along this subsequence. Therefore,

lim
n→∞

an = lim
n→∞

bn = 0

11



Evan Dogariu MAT 425: Problem Set 5 Problem 8

Problem 8

Solution

Proof of (a). Suppose that

||f − fk||L1 → 0 as k → ∞

Let ϵ > 0 be arbitrary. Define

Ek := {x ∈ Rn : |f(x)− fk(x)| > ϵ}

By Chebyshev’s inequality,

m(Ek) ≤
1

ϵ

∫
Rn

|f − fk| =⇒ 0 ≤ ϵm(Ek) ≤ ||f − fk||L1

Since ||f − fk||L1 → 0, the above inequality tells us that m(Ek) → 0 as k → ∞ as well (by the Squeeze

theorem). This is what we set out to prove.

Proof of (b). Define a sequence of functions fk : R → R by

fk(x) = max{k2(1− k|x|), 0}

In words, fk(x) is a triangle centered at 0 with width 2/k and height k2. fk is clearly measurable, as it is

continuous. Then, for all ϵ > 0 we have

{|fk − 0| > ϵ} ⊂ {|fk − 0| > 0} = {fk > 0} =

(
−1

k
,
1

k

)
,

which means that

m({|fk − 0| > ϵ}) ≤ m

((
−1

k
,
1

k

))
=

2

k
,

and so m({|fk − 0| > ϵ}) → 0 as k → ∞. So, (fk)k converges in measure to 0.

However,

||fk − 0||L1 = ||fk||L1 =
1

2
· k2 · 2

k
= k,

and so ||fk − 0||L1 → ∞ as k → ∞. So, fk → 0 in measure, but not in L1.
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