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Evan Dogariu MAT 425: Problem Set 5 Problem 1

Problem 1

Solution

Proof of (a). For all z € R, let r(z) denote the integer closest to x. Consider the function f: R — Rxg
given by
f@) = Ir@) - max {1 = |r(@)| - 2" [z = r(@)], 0}

This opaque definition is better explained in words: in short, at each integer value k € Z \ {0} is centered
a triangle with width 27*1+1/|k| and height |k|. Each triangle linearly decreases from its peak of |k| to 0,
and the function f is 0 everywhere outside of these triangles. Since no triangle has a width of > 1/2, each
triangle decreases to a y-value of 0 before the next triangle begins; this ensures continuity. Also, the function
is by definition nonnegative, since it is always at least 0. A plot of the function is given below for clarity:
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The function is clearly measurable since it is continuous; to see that it is integrable, note that we can write
its integral as the sum of the areas of each triangle:
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So, f is integrable. However, limsup,_, . f(z) = oo as the sequence (f(k)); grows unboundedly as k — oo
(this is because f(k) =k for each k € N). m

Proof of (b). Suppose that f : R — R is positive, uniformly continuous, and integrable. Suppose
by way of contradiction that lim, . f(x) exists, but is not equal to 0 (say it is equal to a for some
a > 0). Then, by the definition of a limit, there is some R > 0 such that for all x with |z| > R, we have
|f(z) —a| < a/2 = f(z) > a/2. This would contradict Proposition 1.12(i), which states that for any
€ > 0 there is some R’ such that
/ f<e
|z| >R’

Clearly, if f maintained a nonzero value a/2 at infinity, its integral over the region |z| > R’ could not be
arbitrarily small; this is a contradiction. So, we see that if lim |, f(7) exists, it must equal 0. Now, all
that is left to do is to show that the limit exists.

Problem 1 continued on next page. .. 2
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Let € > 0. Since f is uniformly continuous, let 6 > 0 be such that |z —y| < § = |f(z) — f(y)| < ¢/2.
Suppose by way of contradiction that lim ;| f(z) doesn’t exist. Then, for any R > 0 (unrelated to the
earlier R), there must exist a y with |y| > R such that f(y) > e (if this weren’t the case, then f(y) < € for
all |y| > R for all R, and the limit therefore exists and equals 0). This means that for all € (y — 4,y + 9),
we have |f(z) — f(y)| < €/2 = f(x) > ¢/2. Therefore, for every R > 0 we can find a y with |y| > R such

that
/ f> / S e
(y—0,y+9) (y—b,y+6) 2

I will refer by (%) to the statement that for every R > 0 there exists some y € R with |y| > R such that
f(yﬂs,yﬂs) f > €6. We know by Proposition 1.12(i) that there exists some Ry > 0 with fly\>Ro f < e. Now,
let n > 1/4 be some big natural number. Construct a sequence as follows:

1. From (*), we know that there exists some y; with |y;| > Ry := Rog + ¢ and f(y175 y1+6) f>e€

2. For each ¢ € {2,...,n}, select R; such that R; > |y;—1| + 2J. Then, apply (*) to find a y; such that
‘yi| > R; and f(yi—57yi+5) f>eo

This construction has the following properties:
e Ry+0 < Ry <..<R,. This comes trivially from the construction of each R;.
e The interval (y; — 6,y; + 9) is disjoint from (y; — d,y; + 9) for all 1 < i < j. To see this, note that
lyjl > Rj > Riv1 > |yil +20.

e Foralli>1and all z € (y; — d,y; + 0), we have |x| > R; — 0 > Ry. The first inequality comes from
the way we selected y;, and the second inequality comes from the way we selected Ry and the fact that
R; > R;.

We can use these properties to say that

n

U@ = 6,9 +3) € {y: [yl > Ro}

i=1
Since f is nonnegative, this reveals that
n n
/ fZZ/ f>25€>n~56>€,
ly|>Ro i=1 Y (yi—d,y:+9) i=1

where for the second inequality we used the property granted by (%) and for the fourth inequality we used
that n > 1/6. This, however, is a contradiction since we selected Ry specifically so that fly|> Ro f <e
Therefore, the limit lim|,|_, f(2) must exist. Thus, it must also equal 0. m
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Problem 2

Solution

Proof. Suppose that f is integrable and that f g/ = 0 for all measurable E. Let x be an arbitrary point
in the Lebesgue set of f. Then, for all balls B such that = € B, we have that fB f > 0 by the assumed
property. Taking the limit as the balls B shrink about x,

1

li >0 = i — >0 = >0,
o [ 120 = s [ 20 = g2

B ball B ball

B>z B>z
where the first implication simply comes from the fact that m(B) > 0, and the second implication uses the
definition of Lebesgue points of functions. So, f > 0 over its Lebesgue set. Corollary 1.6 grants that since
f € LY(RY), almost every x € R? is in the Lebesgue set of f. So, since f > 0 for all points in its Lebesgue

set, we find that f > 0 a.e..

Suppose now that [, f = 0 for every measurable E. This means that [, f > 0 and [ (—f) > 0 for
every measurable E. Using the above result, this tells us that f > 0 a.e. and also that (—f) >0 = f <0
a.e.. Let A be the set over which f is not > 0, and let B be the set over which f is not < 0; the previous
statement says that m(A) = m(B) = 0. Also, f(x) =0 for all x ¢ AU B. From this, we see that f =0 a.e..
(]
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Problem 3

Solution

Proof. Let f € L'(R™) and define E,, := {z € R" : |f(z)| > a}. Define the function F : R" x R>q — {0,1}
by
F(z,a) :=1g_(x)

To see that F is measurable on R"*!, consider the set {F < a} C R" x Rx( for various values of a . If
a < 0, this set is simply the empty set (and is therefore measurable) since F' > 0 always. If a > 1, this set
is simply R™ x R>¢ (and is therefore measurable) since F' < 1 always. Lastly, for a € (0,1) we have that

(F<a}y={F=0} ={F =1} ={(z,0) €R" xRs¢: 0 < a < |f ()]},

where the last equality is by definition of E,. Corollary 3.8(i) states that because f is measurable, so is
{(z,0) e R" xR0 : 0 < aw < |f(z)|}. Since the space of measurable sets is closed under complements, this
tells us that {F < a} is measurable for a € (0,1). Therefore, {F < a} is measurable for all a, and F is
then a measurable function over R” x R>g. Since F' is nonnegative and measurable, we can apply Theorem

3.2(iii) to see that
/n (/[o,oo) F(x,a)da) dx = /[o,oo) (/Rn F(x,a)dw) do
= ([ ) as= [ (] et a

Now, note that for all z € R™ we have z € E, < «a < |f(z)|, and so

[ te@da= [ lda=|f@)
[0,00) [0,[f(z)])

Also, we know that
/ 1p, (z)de = m(E.)

Plugging these results in, we get that

(ﬂf@W=Amm@Ma

as desired. m
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Problem 4

Solution

Proof of (a). The fact that f,g are integrable means that they are certainly measurable on R™. By
Proposition 3.9, we get that f being measurable on R™ implies that f(x,y) = f(z — y) is measurable on
R?". Also, Corollary 3.7 gives that g(z,y) = g(y) is measurable on R?" as well. Since f, g are integrable, we
know that f, g are finite a.e.. This means that f g is measurable on R?" (we can redefine them on a set of
measure 0 so that they are finite everywhere and then apply property 5 of measurable functions; since we
only change a set of measure 0, which is measurable, the measurability of f,ﬁ, and f g are not affected).
So, f(z —y)g(y) is measurable on R*". m

Proof of (b). By Theorem 3.2(iii), since |f(z — y)g(y)| > 0, we can write

[ = waiasay = [ ([ 1f -l latar) a

Since |g(y)| is constant with respect to z, we can move it out and get

= [ 19l ([ 15~ las) ay

By translation invariance of the integral, [, |f(z —y)|dz = ||f||L1, which is constant with respect to the
variable y. So,

- Hf\lu/ l9(yldy = £z - lgllzs < oo,
R'IZ

where we know that this is finite since f, g are both integrable. We have therefore proven that f(x — y)g(y)
is integrable on R?*. m

Proof of (c). From part (b), we know that h(z,y) := f(x — y)g(y) is integrable on R?>". Then, Fu-
bini’s Theorem (i) grants that the slice h” is integrable on R™ for almost every x. In other words, for almost
every x we have that f(z —y)g(y) is integrable on R™. So, (f * ¢g)(z) is well defined for a.e. x. =

Proof of (d). Fubini’s Theorem (ii) gives that f x g is integrable on R™ as well. Now,

17 <alles = [ 1ol = [ | e-ngmasas< [ [ 15 ol e

with equality holding if and only if f and g are nonnegative. From here we proceed exactly as we did in
part (b): nonnegativity of |f(z — y)g(y)| over R*" allows us to use Theorem 3.2(iii) to switch the integrals

and get that
/ / (r—y |dyda:—/ / (x —y)g(y)| dedy

lg(y)] is constant with respect to z, and so

= [ 19wl ([ 15 ias) ay

Translation invariance of the integral gives that [, |f(z —y)|dz = ||f||1:, which is constant with respect
to y. So,

=1fller [ lowldy = 11flls - sl

Problem 4 continued on next page. .. 6
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Equality holds if and only if both f and g are nonnegative. m

Proof of (e). Define

~

&= [ fle)e ™ da
R’ﬂ
and provide an analogous definition for g. Note that

o~

[F()l =

< [ Ir@l-te e sian = [ s = il

f(x)ef%riw-ﬁdm
RTI,

where the second equality holds since |¢?*| = 1 for all a € R. So, fis bounded in magnitude by ||f]|z: < oo.
Now, we would like to show that fis continuous. Let € > 0. By Proposition 1.12(i), since f is integrable

there exists a R > 0 such that
[ if@lds<e
|z|>R

Fix £ € R™. Then, for all h € R" with |h| < § := m, we can say that

~ ~

|fE+n)— f(&)l = /Rn f(=) (e—zm~<5+h) _ e—2m;c.§> i

</

:/ ‘f(x) <6727riw-(£+h) _ 67271'2@-5) da Jr/ ‘f(x) <6727riw-(£+h) _ 67271'2@-5) ' da
|z|>R lz|<R

f(x) (672”"'(&}‘) - 672”‘”'5) ‘ dz

We can bound these two terms seperately. Firstly, since flx\> g | f(7)]dx < €, we have that
/ ‘f(a:) (e—zmx.(g+h) _ e—2m‘m~§) ‘ dz < / If(2)] (’e—%ix-(&h)‘ + ’6—27”‘0:-5‘) dr
|z[>R |z|>R
- 2/ 1 (2)|da < 2
|z]|>R

For the second term, let us first derive a cute fact about exponentials. For notation, let @ := —27x - (£ + h)
and b := —27x - £. Then,

Since —z < sin(z) < z for all z € R, this gives us that

‘eia_eib <9

Plugging in our values for a and b we get

‘672m»(£+h) — e~ 2] < ox|x - h| < 27| - |B],

Problem 4 continued on next page. .. 7
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where the last inequality is the Cauchy-Schwartz inequality. Since |z| < R over the interval and |h| < 6,

—2miz(§+h) _ o—2mizd| < 9n RS — o

e

Hf”Ll

Going back to our earlier inequality,

Fe+n) - Fo) s2e+/

|z|<R

=2+ / |f(x)] - ‘ (6*2’”’“5”) - e*%”f) ‘ dx
|:1:\<R

<2+ 27 1/ dr < 2+ 27 1/ x)|dz
T Sy ) T Jen )
= 2¢ + 27e

’f(x) (e—2m‘w-(f+h) _ e—27riw-§) ‘ du

Since this holds for all h with |h| < §, we see that fis continuous at &; since it holds for all £, we have that
f is continuous (in fact, it is uniformly continuous since § didn’t depend on &).

To prove the last part, fix a &. We have

Fo©= [ ([ 1oty esaa

/n /n e f(x — y)g(y)dyda

- / / e 2L 2L f(2 — y)g(y)dyda

Note that the integrability of f(z —y)g(y) over R®" implies the integrability of 2™ (= —¥)€ . o=2miy-& . f (5 —
y)g(y) over R?" since |e’2”(f”’y)'5 ce2mWE L f(z—y)g(y)| = [f(z — y)g(y)|. This means that we can apply
Fubini’s Theorem (iii) to switch the order of the integrals and get that

£) = /n /n e~2mie=y)E o =2mE | f (Vg (y)dady

Since e~27W'¢ . g(y) is constant with respect to ,

= [ st ([ e o= pac) ay

By translation invariance of the integral, [, e 2 ey E . (g —y)da = Jgn €727 C . f(2)dx = f(£), and so

~

—Fl)- [ e gtyay = Fle)-g(6)

This is the desired result. m
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Problem 5
Solution
Proof. Following the hint, define
gl €
2 ¢)

Then, we get that

/ @) = fla =™ 8w = f(§) = | fla—&)e " de
By translation invariance of the integral,

f(fIJ B é-/)e—27ri;ﬂ-§dx _ f($)e—2ﬂi($+5/)'fdw
R™ R™

We can note that

i) e=eer L syl
2leP? 2
and so
/ f($)6_2ﬂi(x+f/)'quj _ (x)e—27r1',ac~§ . e—27ri~1/2dx — e—iﬂf(é—) _ _J/c\(g)
n Rn
Therefore,

[ 1@ = fa - €)= = 2i)

Define the function

fe(@) = flz — &)e 28 = f <x _ 2|§2) o—2miz-€

This tells us that fe(z) — f(x)e™ 2™ pointwise as || — oo (by this I mean that they get arbitrarily close).
So, by Proposition 2.5, since f € L' we get that

/ (@) — fla— Ve 8dr 50 as €] - oo

— 2f(6) >0  as|¢ — oo
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Problem 6

Solution
Proof. Define g(z) := f(x) - 1[9,2+)- Then,

n

f T eiinzdl‘:/g T 6727riz(n/27r)dI:§ _
/[0’%] (z) R () (2%)

From Problem 5, we know that g (%) — 0 as n/2m — oo, proving the first result.

Now, we can use some trigonometric identities to see that

cos?(n + uy) = cos(2nx + 2uy,) n 1 cos(2nx)cos(2u,)  sin(2nx)sin(2un) N 1
2 2 2 2 2
E 2u, in(2uy, )
= / cos?®(nx 4 uy, )dr = m(E) + cos(2un) / cos(2nx)dx — M/ sin(2nz)dx
E 2 2 E 2 E

By the relative scale invariance of the Lebesgue integral, [ 5 cos(2nr)dr = % / p cos(nx)dr, and the same for
sin(-). Thus,

/ cos®(nx 4 uy, )dr = m(E) + cos(2un) / cos(nx)dx — M/ sin(nz)dx
E 2 4 E 4 E

/ ]lEe*”””dx:/ cos(nm)dxfi/ sin(nz)dx
[0,271'] E E

/ cos(nz)dx = Re / lge "™ dx and / sin(nz)dr = —Im / 1pe ™ dg
E [0,27] E [0,27]

By the first result of this problem, we know that
f[o o] lge~"dz — 0 as n — oo since 1g is clearly integrable on [0,27]. Therefore, the real and imaginary

Note that

So,

parts must also converge to 0 (a complex sequence (z,), converges to z € C if and only if the sequences
(Re zn)n — Re(z) and (Im z,), — Im(2)). So,

lim [ cos(nx)dx = lim sin(nz)dz =0

This means that as n — oo, regardless of the sequence (uy),, the triangle inequality and the boundedness
of |cos(2uy,)|, |sin(2u,)] <1 give

2
cos(2un) / cos(nx)dz| +
4 E
< =

1
/ cos(nx)dx
41/E

—0

i (2

M/ sin(nx)dz
4 E

_’_7

1
/ sin(nz)dz
41/E

/ECOSZ(TL.%‘ + uy,)dx — m(QE)’ <

as desired. m
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Problem 7

Solution

Proof. Define E to be the set of z € [0,27) for which > o An(x) converges. Then, A, — 0 pointwise on
E. Note that A, (z) = A, (x+2rk) for all k € Z. So, if it were the case that m(E) = 0, then > A, (z) would
converge on only a set of measure 0 on all intervals [27k, 27 (k 4 1)) with k € Z, which means that it would

converge only on a set of measure 0 over R; this would be a contradiction. So, m(E) > 0. However, since

E C [0,2n], we know m(E) < co. Let 0 < € < m(E). Since A, — 0 on E, we can apply Egorov’s theorem
to find a closed set Ac C E such that A,, — 0 uniformly on A. and m(E \ A.) < e. We have

m(A) +m(E\ A) = m(E) = m(A) =m(E) —m(E\ A) > m(E) —e >0

If we define F := A, we have therefore found a (closed) set E of positive measure on which A,, — 0 uniformly.

From here, note that we can refactor the expression for A, (z) with a well known trigonometric identity.
If one lets a,, = ycos(¢) and b,, = ysin(¢) for some v and ¢, we can note that

~yeos(nz — ¢) = yeos(nx)cos(—¢) — ysin(nx)sin(—ad)

= ycos(9) - cos(nx) + ysin(9) - sin(nx) = a,cos(nz) + bysin(nx) = A, (z)

We can solve for v and ¢ via

72 =72 (sin?(9) + cos*(9)) = a2 + 12 = 5 = \/aZ + B3

Therefore, we can also get

—cos— L[
) Va2 + b2

With this in mind, we know that A, (x) = \/a2 + bZcos(nx — ¢).

Since A,, — 0 uniformly on E, then we have that

/A,L—>O
E

by bounded convergence (for large enough n, we can always bound |A,|). Note, however, that

/An: \/a%er%/ cos(nx — ¢)dx
E E

Because E has positive measure, it must contain a ball B of some radius, say ¢ (this is an interval since
E C R). Consider the sequence (ny)x given by ny = [k/0 + 5 |. Then,

/ cos(nix — ¢)dx
B

does not converge to 0 since we are always integrating over half a phase, which will always have a nonzero
integral. So, there is a subsequence (ny)x such that [, cos(nyz — ¢)dx doesn’t converge to 0 as k — oo. So,
the only way for fE Apr — 0is for \/W — 0, which in turn can only happen if both a,; — 0 and
bnr — 0 as k — oo. Since lim,,_,~ a,, and lim,,_, b, must exist (after all, lim,,_,~, A, (z) exists), they must
agree with the limit along this subsequence. Therefore,

lim a, = lim b, =0
n—oo n—oo

11
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Problem 8

Solution

Proof of (a). Suppose that
lf — fellcr = 0 as k — oo

Let € > 0 be arbitrary. Define
Ey:={x eR": [f(z) — fu(z)] > €}

By Chebyshev’s inequality,
1
mE) < ¢ [ 1f = fil = 0<em(B) <|If - Allo

Since ||f — fx||lr: — 0, the above inequality tells us that m(E;) — 0 as k — oo as well (by the Squeeze
theorem). This is what we set out to prove. m

Proof of (b). Define a sequence of functions fj : R — R by
fe(x) = max{k?(1 — k|z|), 0}

In words, fi() is a triangle centered at 0 with width 2/k and height k2. fj, is clearly measurable, as it is
continuous. Then, for all € > 0 we have

(U =01> € - 01> 0 = (A > 0 = (1. 7).

m(ll-o><m((~41)) =

and so m({|fx — 0| > €}) = 0 as k — oo. So, (fx)r converges in measure to 0.

which means that

However,

1
fr = Ol = [Ifall, = 5 -k = =k,

and so ||fr — 0]|z1 — oo as k — co. So, fr — 0 in measure, but not in L!. m
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