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Evan Dogariu MAT 425: Problem Set 4 Problem 1

Problem 1

Solution

Proof of (a). Let

fn(x) =
sin(ex)

1 + nx2

Then, we can see pretty clearly that fn → 0 pointwise for a.e. x ∈ [0,∞]. Using composition rules and

continuity, we can use Property 2 of measurable functions to see that all the fn are measurable. Now, we

can find a dominating function by observing that for all x ∈ [0,∞],

|fn(x)| ≤
1

1 + nx2
≤ 1

1 + x2
≤

∞∑
k=0

1

1 + k2
1[k,k+1](x) := g(x)

The first inequality comes from the fact that |sin(a)| ≤ 1. The second inequality comes from the fact that

n ≥ 1 and x2 ≥ 0 =⇒ 1 + nx2 ≥ 1 + x2. The third inequality can be seen in the following way: fix x and

let k′ ≥ 0 be the integer such that x ∈ [k′, k′ + 1); then, k′ ≤ x =⇒ 1 + k′2 ≤ 1 + x2, and so 1
1+k′2 ≥ 1

1+x2 .

Since the indicator functions are 0 for all other k ̸= k′, this is the value of g(x), and the last inequality holds.

So, |fn| ≤ g for this nonnegative function g. We want to show that g is integrable. To see this, note that∫ ∞

0

g =

∞∑
k=0

1

1 + k2
m([k, k + 1]) =

∞∑
k=0

1

1 + k2
≤ 1 +

∞∑
k=1

1

k2
< ∞

So, we have that (fn)n are measurable, converge to 0 pointwise, and |fn| ≤ g for a single integrable g. So,

dominated convergence yields that

lim
n→∞

∫ ∞

0

fn(x)dx =

∫ ∞

0

lim
n→∞

fn(x)dx =

∫ ∞

0

0 = 0

Proof of (b). Let

fn(x) =
ncos(x)

1 + n2x3/2

We can use simple properties to see that∣∣∣∣∫ 1

0

fn(x)dx

∣∣∣∣ ≤ ∫ 1

0

|fn(x)|dx ≤
∫ 1

0

n

1 + n2x3/2
dx,

where the first inequality is the triangle inequality for integrals and the second inequality comes from

|cos(a)| ≤ 1. Now, use the substitution x = n−4/3t for some change of variables t. Then, the rightmost

integral equals ∫ n4/3

0

n−4/3 · n

1 + t3/2
dt = n−1/3

∫ n4/3

0

1

1 + t3/2
dt

Since n ≥ 1, we can split this integral into a part from 0 to 1 and a remainder, yielding

= n−1/3

∫ 1

0

1

1 + t3/2
dt+ n−1/3

∫ n4/3

1

1

1 + t3/2
dt

Since t3/2 ≥ t2 on [0, 1] and t3/2 ≥ t on [1,∞), this grants that the above expression is

≤ n−1/3

∫ 1

0

1

1 + t2
dt+ n−1/3

∫ n4/3

1

1

1 + t
dt

= n−1/3 · π
4
+ n−1/3 ·

(
ln(1 + n4/3)− ln(1 + 1)

)
=

C + ln(1 + n4/3)

n1/3
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Evan Dogariu MAT 425: Problem Set 4 Problem 1 (continued)

for some constant C = π
4 − ln(2) that doesn’t depend on n. In other words,

∣∣∣∫ 1

0
fn

∣∣∣ ≤ C+ln(1+n4/3)
n1/3 for all

n ≥ 1. Taking the limit, we get

lim
n→∞

∣∣∣∣∫ 1

0

ncos(x)

1 + n2x3/2
dx

∣∣∣∣ ≤ lim
n→∞

C + ln(1 + n4/3)

n1/3
= 0,

where the right limit equals 0 because ln(1 + a4) grows asymptotically slower than a. So,
∫ 1

0
fn → 0 as

desired.
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Problem 2

Solution

Proof of (a). Let f(x) = sin(x)
x . To show that f is not integrable over [1,∞), we want to show that

∫∞
1

|f |
is not < ∞. Now, by definition we have that∫ ∞

1

|f | = sup
0≤g≤|f |

∫ ∞

1

g,

where the sup is taken over functions g that lie below |f | over the interval [1,∞). So, it suffices to construct

a single function g lying below |f | such that
∫
g is not finite. Consider the following construction of g: over

each period [kπ, (k + 1)π), we select an interval Ik = [(k + 1
4 )π, (k + 3

4 )π]. Over this interval, we want g to

have the value of
|sin((k + 3

4 )π)|
(k + 3

4 )π
=

√
2
2

(k + 3
4 )π

Note that this will have a value smaller than
∣∣∣ sin(x)x

∣∣∣ over the interval Ik (it equals the value of |sin(x)/x|
on the right endpoint of Ik). Then, for every n ∈ N we can construct a simple function given by

gn(x) =

n∑
k=1

√
2
2

(k + 3
4 )π

· 1Ik(x)

For any selection of n, we have that 0 ≤ gn ≤ |f | over the interval in question. Also, the integral of this

simple function gn over [1,∞) can be computed to be∫ ∞

1

gn =

n∑
k=1

√
2
2

(k + 3
4 )π

m(Ik) =

n∑
k=1

√
2
2

(k + 3
4 )π

· π
2
=

n∑
k=1

√
2

4k + 3

So, the integrals of each gn are the partial sums of a harmonic sum, and they can therefore be made to be as

large as desired for large enough n. This means that the supremum in the definition of
∫∞
1

|f | is unbounded
(for any big R there exists a N such that for all n ≥ N ,

∫
gn > R where 0 ≤ gn ≤ |f |), and we see that f is

not integrable over [1,∞).

Proof of (b). Consider the sequence (∫ n

1

sin(x)

x

)
n

of real numbers. We want to show that it is Cauchy, since then we will show that it converges to something

finite (after all, each element of the sequence is certainly finite). So, let ϵ > 0 be arbitrary. Let n,m > 2
ϵ be

arbitrary, and suppose WOLOG that m ≤ n. We are interested in the difference∣∣∣∣∫ n

1

sin(x)

x
dx−

∫ m

1

sin(x)

x
dx

∣∣∣∣ = ∣∣∣∣∫ n

m

sin(x)

x
dx

∣∣∣∣
Observe using the quotient rule and the fundamental theorem of calculus, we see

d

dx

[
cos(x)

x

]
=

−xsin(x)− cos(x)

x2
= −sin(x)

x
− cos(x)

x2

=⇒
∫ n

m

sin(x)

x
dx = − cos(x)

x

∣∣∣∣n
m

−
∫ n

m

cos(x)

x2
dx

Problem 2 continued on next page. . . 4



Evan Dogariu MAT 425: Problem Set 4 Problem 2 (continued)

So, ∣∣∣∣∫ n

m

sin(x)

x
dx

∣∣∣∣ = ∣∣∣∣cos(m)

m
− cos(n)

n
−
∫ n

m

cos(x)

x2
dx

∣∣∣∣
≤
∣∣∣∣cos(m)

m

∣∣∣∣+ ∣∣∣∣cos(n)n

∣∣∣∣+ ∣∣∣∣∫ n

m

cos(x)

x2
dx

∣∣∣∣
≤ 1

m
+

1

n
+

∫ n

m

∣∣∣∣cos(x)x2

∣∣∣∣ dx
≤ 1

m
+

1

n
+

∫ n

m

1

x2
dx

=
1

m
+

1

n
+

[
− 1

x

]n
m

=
1

m
+

1

n
+

1

m
− 1

n
=

2

m
< ϵ

This shows us that for all m,n ≥ 2
ϵ ,∣∣∣∣∫ n

1

sin(x)

x
dx−

∫ m

1

sin(x)

x
dx

∣∣∣∣ < ϵ

This proves that the sequence is Cauchy, and therefore that it converges.
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Problem 3

Solution

Proof. We define the sequence of nonnegative continuous functions as follows. For notational convenience,

denote each function by fk,n where n ∈ N and k ∈ {0, ..., n}. The sequence is then (fk,n)k,n and looks like

f0,1, f1,1, f0,2, f1,2, f2,2, f0,3, f1,3, f2,3, f3,3, f0,4, ...

Now, for a value of n and a value k ∈ {0, ..., n}, define fk,n : [0, 1] → [0,∞) by

fk,n(x) =

{
1− n ·

∣∣x− k
n

∣∣ x ∈
[
k−1
n , k+1

n

]
0 else

In words, fk,n is a triangle of height 1 and width 2/n that is centered at k/n. It is clear that each fk,n is

continuous, as plugging in x = k±1
n will give 0. Also, it is also clear that the integral

∫ 1

0
fk,n → 0, since we

always have that ∣∣∣∣∫ 1

0

fk,n

∣∣∣∣ ≤ area of triangle of width 2/n and height 1 =
1

n

So, as n → ∞ (which happens as we traverse the sequence), the integral converges to 0. Now, all that is

left is to show that for all points x ∈ [0, 1], fn,k(x) doesn’t converge. To see this, we can show that it isn’t

Cauchy. Fix x ∈ [0, 1] to be arbitrary. The negation of the Cauchy criterion in this setting states that there

exists an ϵ > 0 such that for all N ∈ N, there exist two m,n ≥ N for which there are two km ∈ {0, ...,m}
and kn ∈ {0, ..., n} such that

|fkm,m(x)− fkn,n(x)| ≥ ϵ

Let ϵ = 1
2 . Let N be arbitrary. Using properties of the density of rationals in [0, 1], there exists a rational

p
q ∈ [0, 1] s.t. |x − p/q| < 1

2qN . In particular, the property we use is Dirichlet’s Approximation Theorem,

which states that for all real α and any integer k, there exists a rational p/q such that |α − p
q | <

1
q·k ; we

apply this theorem with α = x and k = 2N to get our rational p
q ∈ [0, 1]. We see that qN ≥ N and

fpN,qN (p/q) = max

(
0, 1− qN ·

∣∣∣∣pq − pN

qN

∣∣∣∣) = max (0, 1− 0) = 1

Since fpN,qN is linear around the tip with slope ±qN depending on which side we descend, we see that

|x− p/q| < 1
2qN =⇒ fpN,qN (x) > 1− qN · 1

2qN = 1− 1
2 = 1

2 . However, there are very clearly two m, km for

which m ≥ N and fkm,m(x) = 0. This gives us that m, qN ≥ N and

|fkm,m(x)− fpN,qN (x)| = fpN,qN (x) >
1

2
= ϵ

This means that for all x ∈ [0, 1], the sequence is not Cauchy and therefore doesn’t converge.
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Problem 4

Solution

Proof of (a). Let (fk)k be a sequence of nonnegative measurable functions converging pointwise a.e. to f

with
∫
fk ≤

∫
f < ∞ for all k. Fatou’s Lemma gives us for free that∫

f ≤ lim inf
k→∞

∫
fk

Also, the fact that
∫
fk ≤

∫
f for all k gives

lim sup
k→∞

∫
fk ≤

∫
f

Combining these two inequalities,

lim sup
k→∞

∫
fk ≤

∫
f ≤ lim inf

k→∞

∫
fk

However, since lim inf ≤ lim sup always, we see that

lim inf
k→∞

∫
fk = lim sup

k→∞

∫
fk =

∫
f =⇒

∫
fk →

∫
f

Namely, the limit of
∫
fk exists and equals

∫
f .

Proof of (b). To begin, split Rn into countably many almost disjoint sets of finite measure {In}n.
For each n define the function

gn,k := |fk − f | · 1In

Now, we know that fk and f are integrable, and therefore bounded a.e., which means us that gn,k is as well.

In fact, the conditions given tell us that gn,k is uniformly bounded for fixed n, say gn,k ≤ Mn. We want

to show that limk→∞
∫
gn,k = 0 for each n. To this end, fix an arbitrary n. Let ϵ > 0. Applying Egorov’s

Theorem to In, we get a set An,ϵ on which fk → f uniformly and s.t. m(In \ An,ϵ) < ϵ. So, there exists

some Kn such that for all k ≥ Kn, we have that |fk − f | < ϵ =⇒ gn,k < ϵ on An,ϵ. This allows us to say

that for k ≥ Kn, ∫
gn,k =

∫
In

gn,k =

∫
An,ϵ

gn,k +

∫
In\An,ϵ

gn,k

Over An,ϵ, we know that gn,k < ϵ. Elsewhere, we know that it is ≤ Mn. So, for k ≥ Kn,∫
gn,k ≤ ϵ ·m(An,ϵ) +Mnm(In \An,ϵ) ≤ ϵ ·m(In) + ϵ ·Mn

Since neither m(In) nor Mn depend on ϵ and this holds for all ϵ, this tells us that
∫
gn,k → 0 for fixed n and

k → ∞. All that is left to do is to observe that because the In’s partition Rn, we have that

|fk − f | =
∞∑

n=1

|fk − f | · 1In =

∞∑
n=1

gn,k

So, since each gn,k ≥ 0, Corollary 1.10 gives that∫
|fk − f | =

∫ ∞∑
n=1

gn,k =

∞∑
n=1

∫
gn,k

Taking the limit as k → ∞ and applying our result that
∫
gn,k → 0 for each fixed n yields the result.
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Problem 5

Solution

Proof of (a). Note that for any r < s, we have that [a, b] ∩ I(c, r) ⊂ [a, b] ∩ I(c, s), and so

sup
x,y∈[a,b]∩I(c,r)

|f(x)− f(y)| ≤ sup
x,y∈[a,b]∩I(c,s)

|f(x)− f(y)|

since the supremum is taken over a subset. This means that oscf (c, r) ≤ oscf (c, s) whenever r < s; in other

words, oscf (c, ·) is a monotonically decreasing function. Since it is bounded below by 0 (|f(x)− f(y)| ≥ 0)

and decreasing, we know that limr→0 oscf (c, r) exists for all f, c. So, oscf (c) is well defined.

( =⇒ ) Suppose first that f is continuous at c. Let ϵ > 0. Then, ∃δ > 0 such that ∀x, y ∈ (c− δ, c+ δ), we

must have that |f(x)− f(y)| < ϵ by the definition of continuity. Taking the supremum,

sup
x,y∈[a,b]∩I(c,δ)

|f(x)− f(y)| ≤ ϵ =⇒ oscf (c, δ) ≤ ϵ

Since oscf (c) ≤ oscf (c, δ) (osc is decreasing), we know that oscf (c) ≤ ϵ. Since this holds for all ϵ, it must

be that oscf (c) = 0.

( ⇐= ) Suppose now that oscf (c) = 0. Let ϵ > 0. Then, since limr→0 oscf (c, r) = 0, there must be

some r > 0 such that oscf (c, r) < ϵ. Therefore,

sup
x,y∈[a,b]∩I(c,r)

|f(x)− f(y)| < ϵ

Since this holds for the supremum, it must hold for all pairs x, y ∈ [a, b] ∩ I(c, r). In other words, we have

that for all x, y ∈ [a, b] ∩ (c − r, c + r), it holds that |f(x) − f(y)| < ϵ. This is precisely the definition of

continuity at c.

Proof of (b). Let ϵ > 0. Define Aϵ := {c ∈ [a, b] : oscf (c) ≥ ϵ} ⊂ R. We want to show that Aϵ

is closed and bounded, as this would show that it is compact. Clearly it is bounded as Aϵ ⊂ [a, b]. To show

closure, consider any sequence (ck)k ⊂ Aϵ that converges to a point c. We want to show that c ∈ Aϵ; so,

suppose by way of contradiction that c /∈ Aϵ. Then, oscf (c) = limr→0 oscf (c, r) < ϵ by definition of Aϵ.

So, there must exist some r > 0 such that oscf (c, r) < ϵ by the properties of a limit. Now, since ck → c,

there must exist some cN ∈ E such that |cN − c| < r. There must then also exist some δ > 0 such that

|cN − c| < r − δ, which means that I(cN , δ) ⊂ I(c, r). Then, we have that

oscf (cN , δ) ≤ oscf (c, r) < ϵ,

where the first inequality is true because the supremum is being taken over a subset I(cN , δ) ⊂ I(c, r), and

we already had the second inequality from earlier. So, since oscf (cN , ·) is decreasing,

oscf (cN ) ≤ oscf (cN , δ) < ϵ =⇒ cN /∈ Aϵ

by definition of Aϵ. This is a contradiction, and so we must have that c ∈ Aϵ. Therefore, Aϵ contains its

limit points, and so is closed. Aϵ is then compact, as desired.

Proof of (c). Let ϵ > 0. Define Aϵ := {c ∈ [a, b] : oscf (c) ≥ ϵ} ⊂ R as before. By part (a), we

know that f is discontinuous at every point of Aϵ. So, since the set of discontinuities of f has measure

0, then so does Aϵ. By Theorem 3.4 of Chapter 1, there must exist an open set U s.t. Aϵ ⊂ U and

m(U \ Aϵ) ≤ ϵ =⇒ m(U) ≤ ϵ. Since U is an open set on R, it is a countable union of disjoint open

Problem 5 continued on next page. . . 8



Evan Dogariu MAT 425: Problem Set 4 Problem 5 (continued)

intervals; this is an open cover of Aϵ by disjoint open intervals. Since Aϵ is compact by part (b), this

open cover must have a finite subcover. In other words, there exists a finite set of disjoint open intervals

{U1, ..., Un} = {(a1, b1), ..., (an, bn)} that covers Aϵ. Since
⋃

i Ui ⊂ U and m(U) ≤ ϵ, the total length of these

intervals must also be ≤ ϵ.

Now, note that since [a, b] is closed and
⋃

i Ui is open, the set [a, b] \
⋃

i Ui over which oscf < ϵ is closed,

and therefore compact. Since f is ϵ-continuous over the set [a, b] \
⋃

i Ui, which is compact, f is uniformly

ϵ-continuous over [a, b] \
⋃

i Ui. So, there exists some δ > 0 such that for all x, y ∈ [a, b] \
⋃

i Ui, we have

|x − y| < δ =⇒ |f(x) − f(y)| < ϵ. We construct our partition P in the following way: split the set

[a, b] \
⋃

i Ui into finitely many disjoint intervals {Ik}Nk=1 such that each Ik is of length less than δ. Then,

the partition is

P =

(
N⋃

k=1

Ik

)
∪

(
n⋃

i=1

Ui

)
,

where f is ϵ-continuous over all the Ik’s and each Ik has length < δ, and all of the Ui’s together have total

length ≤ ϵ. Then, we can write

U(f, P )− L(f, P ) =

(
N∑

k=1

|Ik|
(
sup
x∈Ik

f(x)− inf
x∈Ik

f(x)

))
+

(
n∑

i=1

|Ui|
(
sup
x∈Ui

f(x)− inf
x∈Ui

f(x)

))

=

(
N∑

k=1

|Ik|
(

sup
x,y∈Ik

|f(x)− f(y)|
))

+

(
n∑

i=1

|Ui|
(

sup
x,y∈Ui

|f(x)− f(y)|
))

Since f is ϵ-continuous with parameter δ over each Ik and they are all of width < δ, the supremum of the

variation along each Ik is < ϵ. Also, since f is bounded (say f ≤ M), we know that over each Ui the

supremum of the variation along each Ui is ≤ 2M . This gives us that

U(f, P )− L(f, P ) ≤ ϵ

N∑
k=1

|Ik|+ 2M

N∑
i=1

|Ui|

Since the Ik’s are disjoint and subsets of [a, b], their total length sums to ≤ b − a. Also, we already know

that the total length of the Ui’s sums to ≤ ϵ. We then get that

U(f, P )− L(f, P ) ≤ (b− a)ϵ+ 2Mϵ

Since this holds for all ϵ, we find that f is Riemann integrable by the Riemann integrability condition.

Proof of (d). Note that the set of discontinuities of f is contained in
⋃

n A1/n. To see this, suppose

that f is discontinuous at c; part (a) then gives that oscf (c) > 0. So, there exists some m ≥ 1
oscf (c)

=⇒
oscf (c) ≥ 1/m =⇒ c ∈ A1/m =⇒ c ∈

⋃
n A1/n.

Now, suppose that f is Riemann integrable on [a, b]. Define Aϵ := {c ∈ [a, b] : oscf (c) ≥ ϵ} ⊂ R as

before. Fix some arbitrary n, and let ϵ > 0; we want to show that m(A1/n) < ϵ. Since f is Riemann

integrable, the Riemann integrability condition says that there exists some partition P such that

U(f, P )− L(f, P ) <
ϵ

n

Let P = {x1, ..., xN} such that a = x1 < ... < xN = b denote the endpoints of the intervals of this partition.

Problem 5 continued on next page. . . 9
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Then, by selection of P , we have that

ϵ

n
> U(f, P )− L(f, P )

=

N−1∑
k=1

(
sup

x∈[xk,xk+1]

f(x)− inf
x∈[xk,xk+1]

f(x)

)
(xk+1 − xk)

=

N−1∑
k=1

(
sup

x,y∈[xk,xk+1]

|f(x)− f(y)|

)
(xk+1 − xk)

Let K := {k : (xk, xk+1) ∩ A1/n ̸= ∅} be the set of indices of intervals of P whose interiors intersect A1/n.

Note that for all k ∈ K we have that there is some c ∈ (xk, xk+1) such that oscf (c) ≥ 1/n. So, for such

c and k we can say that ∃r > 0 such that oscf (c, r) ≥ 1/n and I(c, r) ⊂ [xk, xk+1]. Then, there exists a

y ∈ I(c, r) =⇒ y ∈ [xk, xk+1] such that |f(y)− f(c)| ≥ 1/n. This immediately yields that for k ∈ K,

sup
x,y∈[xk,xk+1]

|f(x)− f(y)| ≥ 1

n

So, going back to our earlier sum,

ϵ

n
>

N−1∑
k=1

(
sup

x,y∈[xk,xk+1]

|f(x)− f(y)|

)
(xk+1 − xk)

≥
∑
k∈K

(
sup

x,y∈[xk,xk+1]

|f(x)− f(y)|

)
(xk+1 − xk)

≥
∑
k∈K

1

n
(xk+1 − xk) =

1

n

∑
k∈K

(xk+1 − xk),

where the second inequality comes from the fact that each element of the top line’s sum is nonnegative. This

tells us that
∑

k∈K(xk+1 − xk) < ϵ; that is, the total length of all the intervals in P whose interior intersect

A1/n is < ϵ. Since A1/n ⊂
⋃

k∈K [xk, xk+1] by construction of K, we find that

m∗(A1/n) ≤
∑
k∈K

m∗([xk, xk+1]) =
∑
k∈K

(xk+1 − xk) < ϵ

Since m∗(A1/n) < ϵ for all ϵ, it must be measurable with measure 0! This logic holds for all n =⇒
m(A1/n) = 0 ∀n. So,

{discontinuities of f} ⊂
∞⋃

n=1

A1/n =⇒ m∗({discontinuities of f}) ≤
∞∑

n=1

m(A1/n) = 0

So, the set of discontinuities of f has measure 0.
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