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Problem 1

Solution

Proof. Let a > 0. We begin by noting that

a - ]lEa = Q- ]l{m:f(x)>a} < f

holds over all x, since if x ¢ E,, the left hand side is 0 < f(x) by nonnegativity of f, and if z € E,, then the
left hand side is @ < f(x) by definition of E,. By Proposition 1.6(iii), we then see that

0<a-1g, < f = /Oé'llEQS/f

However, since a - 1, is a simple function, its integral is simply [« - 1g, = o -m(E,). This gives us that

a~m(Ea)§/f = m(Ea)Sé/f
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Problem 2

Solution

Proof. Fix o > 0. Let E be the set of those 2 € R such that there exist infinitely many fractions p/q, with
p, q relatively prime integers, such that

p 1

T - q‘ = q2+a

Fix an interval [k, k + 1] for some k € Z. Define Ey, = EN [k, k + 1]. Then, m.(Ex) = m.(Ep) for all k
by translation invariance. Let us then try and determine the measure of Ey. Enumerate all the irreducible
rationals p/q in [—1,2] (irreducible means p,q are relatively prime) by (r,)52, and for each 7, define

m(rn) = ¢n to be the denominator of the irreducible rational in its irreducible representation (which is
unique). Note that we only worry about rationals between -1 and 2 because an z € [0, 1] can only satisfy
the desired property for rationals in this range, since the right hand side is always less than or equal to 1.
Now, let

An—{ze[(),l]\(@i|$7"n|§ﬂ(rj)2+a}

denote the set of all elements of [0, 1] desirably close to 7, for each n. Since each A,, is just a closed interval
around 7, of the given width, we see that each A, is measurable with m(4,) = W Now, we may
notice that for each possible denominator m(r,) = j, there is an upper bound of 3j different r,,’s that can
have this denominator (since they must lie within -1 and 2). So, we can compute that

oo

Zlm( Z Z 2+a = Z jlfj-oz

Jj=1

Since o > 0, this sum converges to something finite, and so Y-, m(4,) < co. Also, note that by construc-
tion of Ej, we have precisely that

Ey ={z € R:x € A, for infinitely many n}

We can then apply the Borel-Cantelli Lemma directly to see that Fy is measurable with m(Fy). This gives
us for free that m(E})) = 0 for all k£ by translation invariance. So, even though the Ej’s are not disjoint, by
monotonicity and subadditivity we have that

Ec|JEnkk+1]=]E = m.(E) i (Ex) =0
kezZ keZ k=1

So, E is measurable with measure 0. m
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Problem 3

Solution

Proof. Let C = {E C R? : Vy € R, EY € Bgr} be as defined in the hint, where By is the Borel o-algebra
on R. We want to show first that C is a g-algebra; that is, it is closed under complements and countable
unions. So, suppose first that £ € C. Then, for all y € R, we can say that (EY)¢ = (E€)Y because

(BY) ={z: (z,y) ¢ B} = {z: (z,y) € E°} = (ET)"

Since EY € Bg (since E € C), then so is (EY)Y by the closure of the Borel o-algebra. Then, (E)Y =
(EY)C € By for all y tells us that E€ € C as well. So, C' is closed under complements.

Next, consider {E,}>2, such that E,, € C for all n. Define E = J,, E,,. For all y € R we claim that

EY = (U En> = |J (&)Y

n=1

To see this, fix y and suppose that z € (o, E,)”. Then (z,y) € U,, En, and so (z,y) € Ej for some
k. Therefore, z € (Ey)Y for that k, and so x € |J,,(E,)Y. This gives us the C direction. Now, fix y and
suppose that z € |, (Ey,)Y, which means that x € (Ej)Y for some k. Then, (x,y) € Ej for that k, and so
(z,y) € U,, En. Therefore, z € (U, E,)”, giving us the D direction. These together prove the claim, and
show that EY = |J,,(E,)Y. Then, since each E, € C tells us that each (E,)Y € Br, we have by closure of
Br under countable union that |J,,(E,)Y € Br. By our earlier claim, this means that EY € Bg. Since this
held for all fixed y € R, we get that F € C' by construction of C'. So, C' is closed under countable union and
must be a o-algebra.

We now wish to show that C' contains the open sets. Let £ C R? be an arbitrary open set. Then, for
all (z,y) € E, there exists a 6 > 0 such that Bs((z,y)) C E. Fix a y. For all  such that (x,y) € E, we can
select any 2’ € (z — §,x + 0) and have that

{(2',y): 2" € (x — 6,2+ ) C Bs((z,y)) C E}

This is equivalent to stating that for every x € EY, there exists a § > 0 such that (z — d,z+J) C EY, and so
EY is open. Therefore, EY € By for all y, yielding that ' € C. So, C' is a g-algebra containing every open
set. This means that Bg2 C C by construction of Bgs.

Now, we can prove the problem statement. Let £ C R? be Borel. Then, by the above conclusion,
E € Bge = FE € C. So, all slices EY must be in Bg by construction of C, and we are done. =
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Problem 4

Solution
Proof of (a). Let f be M-Lipschitz. Let € > 0. Then, there exists a § > 0 (namely, § = 57) such that for

all z,y with |z — y| <4,

(@) = 1) < Mlw —y| < M5 = M7 =<

where the first inequality comes from the Lipschitz condition. This is precisely the continuity condition;
since it holds for all such x,y, we know that f is continuous. ®

Proof of (b). Suppose that E C R™ has m(E) = 0. Let 1 > € > 0. Then, there exists a countable
collection of closed cubes (Q;)32; such that

ECUQj and Z|Qj|<€

j=1 j=1
Let f(Q;) be the image of each cube under f. Any two points z,y € Q; have coordinate-wise distances of at
most the side length of Q;, which is |Q;|'/™. So, we can say that |z —y| = /31, (z; — y;)? < \/n|Q; 1/ =
|Q;|*/™/n for all 2,y € Q;. The Lipschitz condition then guarantees that for all z,y € Q;,
f(@) = F)] < Mz —y| < M|Q;]"/"v/n

So, all points f(z), f(y) € f(Q;) are at most M|Q;|*/"\/n distance apart, which means that f(Q;) lies
within a cube of side length 2M|Q;|'/"\/n. In other words, for each closed cube @; C R™, we can find a
closed cube @; C R™ such that

f(@Q) CQ; and |Qj| < (2M|Q;[Y/"v/n)™ = (2M/n)™|Q;™/™

Since |Q;] < 1 (because € < 1) and m > n, we can say that the |Q;|™/™ < |Q;|, and so |@]| < (2M+/n)™|Q;.
Now, note that because of the fact that the image of a union is the union of the images, we get

ECUQJ:>f UfQ] CU@]‘
j=1

j=1

Using monotonicity of exterior measure, and the fact that each closed cube @j has exterior measure |ij|7
we get

Z SZM\f "Q, = 2Mv/n)™ ZlQ]\< (2M+/n)™e

Since this holds for all arbitrary € > 0 and (2M+/n)™ doesn’t depend on €, taking ¢ — 0 yields that
m.(f(E)) =0, and so f(F) is measurable with measure 0. m

Proof of (c). Let F C R™ be an F, set. Then, F is a countable union of closed sets F = U;il E
for closed E;. We know that the image of a union is the union of an image, yielding that

oo

f=f{UE =Uf<EJ>

j=1

Note that we can write each I; as a countable union with closed balls

(E; N B(0)),

(@

E; =

r=1

Problem 4 continued on next page. .. 5
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yielding

3

F(F) = U fE; 0B 0)
1r=1

J

We have that each E; N B,(0) is compact, as it is closed and bounded in R™. So, we find that each
f(E; N B,(0)) is also compact, and thus closed, since continuous functions map compact sets to compact

sets. Therefore, f(F') is a countable union of closed sets, and so it is a F,, set. Since this holds for all such
F, we see that f carries F, sets in R” to F,, sets in R™. m

Proof of (d). Let E C R™ be measurable. By Corollary 3.5(ii), there exists an F, set F C E such
that E'\ F has measure 0. So, we write

fF(E)=F(E)Uf(E\F)

By part (b), m(f(E \ F)) = 0. By part (c), f(F) is F,. So, we arrive at the result that f(F) is the union
of an F, set with a set of measure 0, which by Corollary 3.5(ii) yields that f(FE) is measurable. m

Proof of (e). It does hold for any Lipschitz function f : R?> — R. To see this, let f be such a
function with Lipschitz constant M. The only result we need to prove is that this f maps sets of measure
0 to sets of measure 0, since we can still apply the result from part (c) to this f (in part (c) we never cared
whether m > n held). So, following the steps in the proof of (b), suppose that £ C R? has m(E) = 0. Let
€ > 0. Then, there exists a countable collection of closed cubes (Q;)72; such that

EC UQj and Z|Qj|<e

j=1 j=1

Let f(Q;) be the image of each cube under f. Since each @; is compact (closed and bounded) and f is
continuous, we know that each f(Q;) C R is a compact set and is therefore measurable. Furthermore, by the
Lipschitz condition, we know that the maximum distance between any two points in f(Q;) is M \/§|Qj|1/ 2
by the same logic as was used in the proof of part (b). This means that f(Q;) must be contained within an

interval of width M+/2|Q;|'/2, meaning that m(f(Q,)) < M+v/2|Q;|'/2. So, we see that

oo

Ec (@) = m(f(E) <3 m(f(@Q) <D MV2|Q;'*

j=1

oops W

Proof of (f). Suppose that f is a-Holder for some o > 1. Let x,y € R™ be arbitrary. Fix n > 0,
and define a sequence of n 4+ 1 points equally spaced and interpolating between = and y. In other words,
define (x;)!_,, where
y—x

n

Ti=T+1-

So, xg = = and z,, = y. We then have via a telescoping sum that

n—1 n—1 n—1
[F(x) = F@)| = D F@) = Fl@ia)| < Y1 (@) = flea)| <Y Mla; — 2iga],
=0 =0 =0

where the first inequality is the triangle inequality and the second comes from the a-Holder condition.
However, we note by construction that

Yy—x
Li = Ti4l = — )
n

Problem 4 continued on next page. .. 6
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and so ) 1
n— (e n—

y—x o 1 My — x|®

If(w)—f(y)ISZM‘ =" pry—gfe. 3 L - Myl
i=0 =0

Taking the limit as n — oo we see that since a > 1, the right hand side approaches 0, and so f(z) = f(y).
Since this holds for all z,y, we find that f must be constant. =

Proof of (g). We know that the Cantor-Lebesgue function F' is a-Holder with a = log(2)/log(3).
We also know from the previous PSET that F' maps a measurable set to a non-measurable set. If we rescale
any closed interval to [0, 1], we can apply the Cantor-Lebesgue function on that rescaled interval. With this
logic, there exists an a-Holder function from R — R that maps a measurable set to a nonmeasurable set.
This yields the claim. m
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Problem 5

Solution

Proof of (a). Let f:[0,1] — R be a C? function. We want to show that f is Lipschitz. Fix any two
arbitrary z,y € [0, 1]; suppose without loss of generality that z < y. By the Mean Value Theorem (which
we can apply since f is differentiable), there exists some ¢ € (z,y) such that

fy) = f@)=f'(c)-(y— =)

Since [0, 1] is compact and |f’| is continuous (f’ is differentiable), we know that |f’| achieves a maximum on
[0,1]. Let M = maxqepo,1]|f'(a)]. Then we have that

[f () = f@) = 1f' ()] - |y — =] < My — x|

This means that f is Lipschitz! Now, define a function g : [0,1]? — R? by g(z1, 22) = (21 +x2, f(21)+ f(22)).
We see that the set I'+ 1T is the image of [0, 1]2, a compact set, under g. We want to show that g is Lipschitz,
which will tell us that g([0,1]?) = I’ + T is measurable by Problem 4(d). So, let (z,y), (2/,y') € [0,1]? be
arbitrary. Note that if we consider the L1 norm (all norms are equivalent on R?),
lg(z,y) — g,y = |z +y — 2" =y, f(=) + f(y) = F(@") = F()]]

=l t+y—a' =y [+|f(=)+ fly) - f) = )]

<le =2l +ly =1+ 1f(@) = F@)]+ [f) — f&)]

<o —a'| +ly—y'| + Mz — 2’| + Mly — /|

=M+ Dz -2l +y—y']) = (M +Dll(z,y) — @",5)ll
So, we see that g is Lipschitz with constant M + 1. Therefore, I' + I', which is the image of a measurable set
[0,1]% under g, is measurable. m

Proof of (b). We want to show that the following statements are equivalent:
(i) m('+T) >0

(ii) I + T contains an open set

(iii) f is not linear

((i) = (iii)) To show this direction, we will instead show the contrapositive. That is, suppose that f is
linear. Then, for all z1, x5 € [0, 1], we see that

Flan) 4 floa) = o ) =2 £ (2522

by linearity. So, this means that

T+ Ty 1+ X2
g(w1,m2) =g B ) 5

for all 21, x5 € [0,1]. This means that the images ¢([0,1]?) = g ({(z,z) : x € [0,1]}) are equal, since for each
pair (21, 72) € R? we have just seen that there is some single value (z, ) that maps to the same thing. So,
F+T =g{(z,z) : 2 €[0,1]}). Note that this is precisely the curve of the function h : [0,2] — R given by
h(z) = 2% f(x/2), which is continuous since f is. So, by Problem 6 on the last PSET, we see that I + T" has
measure 0.

Problem 5 continued on next page. .. 8
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((iii) = (ii)) For this direction, suppose that f is not linear. We can compute the derivative of g
(the Jacobian matrix) to be

Doan) = ]

using simple rules of differentiation. We compute the determinant of this matrix to be

det((Dg)((a,b))) = f'(b) — f'(a)

for all (a,b) € [0,1]%. Since f is nonlinear, there must be some pair a,b € [0,1] with f'(a) # f/(b) (if
not, then f’ would be constant over [0,1] and f would be linear). Select the point (a,bd) such that this
property holds; then, at this point we have that det((Dg)((a,b))) # 0. The inverse function theorem tells
us that at this point (a,b) for which this determinant is nonzero, there exists an open neighborhood around
(a,b), say Bs((a,b)) C [0,1]?, and an open neighborhood around g((a,b)), say Be(g((a,b))) C R?, such that
g(Bs((a,b))) C Be(g((a,b))) and g : Bs((a,b)) = Be(g((a,b))) is bijective. Note that this tells us that there
is some open ball B.(g((a,b))) C g([0,1]?) =T +I'. That is, there exists an open set in I + T".

((ii) == (i)) Suppose that I' + I" contains an open set. Then, there is some closed ball of radius §
contained in I' + T" for some 0, by definition of openness (take any open ball and shrink it slightly to get a
closed ball). Then, using the geometry of a square circumscribed by a circle of radius 0, we find that there
exists a closed cube (a square in R?) of side length §v/2. This means that there exists some closed square
Q C T +T with |Q| = 262. Since I' + T is measurable by part (a), this tells us that

m(l4+T) > Q| =26>>0

With these three implications, we see that each of the three statements implies the next, yielding that the
statements are equivalent. So, we are done. ®




