MAT 425: Problem Set 3

Due on February 24, 2023

Professor Paul Minter

Evan Dogariu Collaborators: None

Solution

Proof. Let $\alpha > 0$. We begin by noting that

$$\alpha \cdot \mathbb{1}_{E_{\alpha}} = \alpha \cdot \mathbb{1}_{\{x:f(x) > \alpha\}} \le f$$

holds over all x, since if $x \notin E_{\alpha}$ the left hand side is $0 \leq f(x)$ by nonnegativity of f, and if $x \in E_{\alpha}$ then the left hand side is $\alpha < f(x)$ by definition of E_{α} . By Proposition 1.6(iii), we then see that

$$0 \le \alpha \cdot \mathbb{1}_{E_{\alpha}} \le f \implies \int \alpha \cdot \mathbb{1}_{E_{\alpha}} \le \int f$$

However, since $\alpha \cdot \mathbb{1}_{E_{\alpha}}$ is a simple function, its integral is simply $\int \alpha \cdot \mathbb{1}_{E_{\alpha}} = \alpha \cdot m(E_{\alpha})$. This gives us that

$$\alpha \cdot m(E_{\alpha}) \le \int f \implies m(E_{\alpha}) \le \frac{1}{\alpha} \int f$$

Solution

Proof. Fix $\alpha > 0$. Let *E* be the set of those $x \in \mathbb{R}$ such that there exist infinitely many fractions p/q, with p, q relatively prime integers, such that

$$\left|x - \frac{p}{q}\right| \le \frac{1}{q^{2+\alpha}}$$

Fix an interval [k, k+1] for some $k \in \mathbb{Z}$. Define $E_k = E \cap [k, k+1]$. Then, $m_*(E_k) = m_*(E_0)$ for all k by translation invariance. Let us then try and determine the measure of E_0 . Enumerate all the irreducible rationals p/q in [-1, 2] (irreducible means p, q are relatively prime) by $(r_n)_{n=1}^{\infty}$, and for each r_n define $\pi(r_n) = q_n$ to be the denominator of the irreducible rational in its irreducible representation (which is unique). Note that we only worry about rationals between -1 and 2 because an $x \in [0, 1]$ can only satisfy the desired property for rationals in this range, since the right is always less than or equal to 1. Now, let

$$A_n = \left\{ x \in [0,1] \setminus \mathbb{Q} : |x - r_n| \le \frac{1}{\pi(r_n)^{2+\alpha}} \right\}$$

denote the set of all elements of [0, 1] desirably close to r_n for each n. Since each A_n is just a closed interval around r_n of the given width, we see that each A_n is measurable with $m(A_n) = \frac{2}{\pi(r_n)^{2+\alpha}}$. Now, we may notice that for each possible denominator $\pi(r_n) = j$, there is an upper bound of 3j different r_n 's that can have this denominator (since they must lie within -1 and 2). So, we can compute that

$$\sum_{n=1}^{\infty} m(A_n) = \sum_{n=1}^{\infty} \frac{2}{\pi(r_n)^{2+\alpha}} \le \sum_{j=1}^{\infty} 3j \cdot \frac{2}{j^{2+\alpha}} = \sum_{j=1}^{\infty} \frac{6}{j^{1+\alpha}}$$

Since $\alpha > 0$, this sum converges to something finite, and so $\sum_{n=1}^{\infty} m(A_n) < \infty$. Also, note that by construction of E_0 , we have precisely that

$$E_0 = \{ x \in \mathbb{R} : x \in A_n \text{ for infinitely many } n \}$$

We can then apply the Borel-Cantelli Lemma directly to see that E_0 is measurable with $m(E_0)$. This gives us for free that $m(E_k) = 0$ for all k by translation invariance. So, even though the E_k 's are not disjoint, by monotonicity and subadditivity we have that

$$E \subset \bigcup_{k \in \mathbb{Z}} E \cap [k, k+1] = \bigcup_{k \in \mathbb{Z}} E_k \implies m_*(E) \le \sum_{k=1}^{\infty} m(E_k) = 0$$

So, E is measurable with measure 0.

Solution

Proof. Let $C = \{E \subset \mathbb{R}^2 : \forall y \in \mathbb{R}, E^y \in \mathcal{B}_{\mathbb{R}}\}$ be as defined in the hint, where $\mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra on \mathbb{R} . We want to show first that C is a σ -algebra; that is, it is closed under complements and countable unions. So, suppose first that $E \in C$. Then, for all $y \in \mathbb{R}$, we can say that $(E^y)^C = (E^C)^y$ because

$$(E^y)^C = \{x : (x, y) \notin E\} = \{x : (x, y) \in E^C\} = (E^C)^y$$

Since $E^y \in \mathcal{B}_{\mathbb{R}}$ (since $E \in C$), then so is $(E^y)^C$ by the closure of the Borel σ -algebra. Then, $(E^C)^y = (E^y)^C \in \mathcal{B}_{\mathbb{R}}$ for all y tells us that $E^C \in C$ as well. So, C is closed under complements.

Next, consider $\{E_n\}_{n=1}^{\infty}$ such that $E_n \in C$ for all n. Define $E = \bigcup_n E_n$. For all $y \in \mathbb{R}$ we claim that

$$E^y = \left(\bigcup_{n=1}^{\infty} E_n\right)^y = \bigcup_{n=1}^{\infty} (E_n)^y$$

To see this, fix y and suppose that $x \in (\bigcup_{n=1}^{\infty} E_n)^y$. Then $(x, y) \in \bigcup_n E_n$, and so $(x, y) \in E_k$ for some k. Therefore, $x \in (E_k)^y$ for that k, and so $x \in \bigcup_n (E_n)^y$. This gives us the \subset direction. Now, fix y and suppose that $x \in \bigcup_n (E_n)^y$, which means that $x \in (E_k)^y$ for some k. Then, $(x, y) \in E_k$ for that k, and so $(x, y) \in \bigcup_n E_n$. Therefore, $x \in (\bigcup_n E_n)^y$, giving us the \supset direction. These together prove the claim, and show that $E^y = \bigcup_n (E_n)^y$. Then, since each $E_n \in C$ tells us that each $(E_n)^y \in \mathcal{B}_{\mathbb{R}}$, we have by closure of $\mathcal{B}_{\mathbb{R}}$ under countable union that $\bigcup_n (E_n)^y \in \mathcal{B}_{\mathbb{R}}$. By our earlier claim, this means that $E^y \in \mathcal{B}_{\mathbb{R}}$. Since this held for all fixed $y \in \mathbb{R}$, we get that $E \in C$ by construction of C. So, C is closed under countable union and must be a σ -algebra.

We now wish to show that C contains the open sets. Let $E \subset \mathbb{R}^2$ be an arbitrary open set. Then, for all $(x, y) \in E$, there exists a $\delta > 0$ such that $B_{\delta}((x, y)) \subset E$. Fix a y. For all x such that $(x, y) \in E$, we can select any $x' \in (x - \delta, x + \delta)$ and have that

$$\{(x',y): x' \in (x-\delta, x+\delta) \subset B_{\delta}((x,y)) \subset E\}$$

This is equivalent to stating that for every $x \in E^y$, there exists a $\delta > 0$ such that $(x - \delta, x + \delta) \subset E^y$, and so E^y is open. Therefore, $E^y \in \mathcal{B}_{\mathbb{R}}$ for all y, yielding that $E \in C$. So, C is a σ -algebra containing every open set. This means that $\mathcal{B}_{\mathbb{R}^2} \subset C$ by construction of $\mathcal{B}_{\mathbb{R}^2}$.

Now, we can prove the problem statement. Let $E \subset \mathbb{R}^2$ be Borel. Then, by the above conclusion, $E \in \mathcal{B}_{\mathbb{R}^2} \implies E \in C$. So, all slices E^y must be in $\mathcal{B}_{\mathbb{R}}$ by construction of C, and we are done.

Solution

Proof of (a). Let f be M-Lipschitz. Let $\epsilon > 0$. Then, there exists a $\delta > 0$ (namely, $\delta = \frac{\epsilon}{M}$) such that for all x, y with $|x - y| \le \delta$,

$$|f(x) - f(y)| \le M|x - y| \le M\delta = M\frac{\epsilon}{M} = \epsilon,$$

where the first inequality comes from the Lipschitz condition. This is precisely the continuity condition; since it holds for all such x, y, we know that f is continuous.

Proof of (b). Suppose that $E \subset \mathbb{R}^n$ has m(E) = 0. Let $1 > \epsilon > 0$. Then, there exists a countable collection of closed cubes $(Q_j)_{j=1}^{\infty}$ such that

$$E \subset \bigcup_{j=1}^{\infty} Q_j$$
 and $\sum_{j=1}^{\infty} |Q_j| < \epsilon$

Let $f(Q_j)$ be the image of each cube under f. Any two points $x, y \in Q_j$ have coordinate-wise distances of at most the side length of Q_j , which is $|Q_j|^{1/n}$. So, we can say that $|x-y| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \le \sqrt{n|Q_j|^{1/n^2}} = |Q_j|^{1/n} \sqrt{n}$ for all $x, y \in Q_j$. The Lipschitz condition then guarantees that for all $x, y \in Q_j$,

$$|f(x) - f(y)| \le M|x - y| \le M|Q_j|^{1/n}\sqrt{n}$$

So, all points $f(x), f(y) \in f(Q_j)$ are at most $M|Q_j|^{1/n}\sqrt{n}$ distance apart, which means that $f(Q_j)$ lies within a cube of side length $2M|Q_j|^{1/n}\sqrt{n}$. In other words, for each closed cube $Q_j \subset \mathbb{R}^n$, we can find a closed cube $\widetilde{Q}_j \subset \mathbb{R}^m$ such that

$$f(Q_j) \subset \widetilde{Q}_j$$
 and $|\widetilde{Q}_j| \le (2M|Q_j|^{1/n}\sqrt{n})^m = (2M\sqrt{n})^m |Q_j|^{m/n}$

Since $|Q_j| < 1$ (because $\epsilon < 1$) and $m \ge n$, we can say that the $|Q_j|^{m/n} \le |Q_j|$, and so $|\tilde{Q}_j| \le (2M\sqrt{n})^m |Q_j|$. Now, note that because of the fact that the image of a union is the union of the images, we get

$$E \subset \bigcup_{j=1}^{\infty} Q_j \implies f(E) \subset \bigcup_{j=1}^{\infty} f(Q_j) \subset \bigcup_{j=1}^{\infty} \widetilde{Q}_j$$

Using monotonicity of exterior measure, and the fact that each closed cube \tilde{Q}_j has exterior measure $|\tilde{Q}_j|$, we get

$$m_*(f(E)) \le \sum_{j=1}^{\infty} |\tilde{Q}_j| \le \sum_{j=1}^{\infty} (M\sqrt{n})^m |Q_j| = (2M\sqrt{n})^m \sum_{j=1}^{\infty} |Q_j| < (2M\sqrt{n})^m \epsilon$$

Since this holds for all arbitrary $\epsilon > 0$ and $(2M\sqrt{n})^m$ doesn't depend on ϵ , taking $\epsilon \to 0$ yields that $m_*(f(E)) = 0$, and so f(E) is measurable with measure 0.

Proof of (c). Let $F \subset \mathbb{R}^n$ be an F_{σ} set. Then, F is a countable union of closed sets $F = \bigcup_{j=1}^{\infty} E_j$ for closed E_j . We know that the image of a union is the union of an image, yielding that

$$f(F) = f\left(\bigcup_{j=1}^{\infty} E_j\right) = \bigcup_{j=1}^{\infty} f(E_j)$$

Note that we can write each E_j as a countable union with closed balls

$$E_j = \bigcup_{r=1}^{\infty} (E_j \cap \overline{B}_r(0)),$$

yielding

$$f(F) = \bigcup_{j=1}^{\infty} \bigcup_{r=1}^{\infty} f(E_j \cap \overline{B}_r(0))$$

We have that each $E_j \cap \overline{B}_r(0)$ is compact, as it is closed and bounded in \mathbb{R}^n . So, we find that each $f(E_j \cap \overline{B}_r(0))$ is also compact, and thus closed, since continuous functions map compact sets to compact sets. Therefore, f(F) is a countable union of closed sets, and so it is a F_{σ} set. Since this holds for all such F, we see that f carries F_{σ} sets in \mathbb{R}^n to F_{σ} sets in \mathbb{R}^m .

Proof of (d). Let $E \subset \mathbb{R}^n$ be measurable. By Corollary 3.5(ii), there exists an F_{σ} set $F \subset E$ such that $E \setminus F$ has measure 0. So, we write

$$f(E) = f(F) \cup f(E \setminus F)$$

By part (b), $m(f(E \setminus F)) = 0$. By part (c), f(F) is F_{σ} . So, we arrive at the result that f(E) is the union of an F_{σ} set with a set of measure 0, which by Corollary 3.5(ii) yields that f(E) is measurable.

Proof of (e). It does hold for any Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}$. To see this, let f be such a function with Lipschitz constant M. The only result we need to prove is that this f maps sets of measure 0 to sets of measure 0, since we can still apply the result from part (c) to this f (in part (c) we never cared whether $m \ge n$ held). So, following the steps in the proof of (b), suppose that $E \subset \mathbb{R}^2$ has m(E) = 0. Let $\epsilon > 0$. Then, there exists a countable collection of closed cubes $(Q_j)_{j=1}^{\infty}$ such that

$$E \subset \bigcup_{j=1}^{\infty} Q_j \quad \text{and} \quad \sum_{j=1}^{\infty} |Q_j| < \epsilon$$

Let $f(Q_j)$ be the image of each cube under f. Since each Q_j is compact (closed and bounded) and f is continuous, we know that each $f(Q_j) \subset \mathbb{R}$ is a compact set and is therefore measurable. Furthermore, by the Lipschitz condition, we know that the maximum distance between any two points in $f(Q_j)$ is $M\sqrt{2}|Q_j|^{1/2}$ by the same logic as was used in the proof of part (b). This means that $f(Q_j)$ must be contained within an interval of width $M\sqrt{2}|Q_j|^{1/2}$, meaning that $m(f(Q_j)) \leq M\sqrt{2}|Q_j|^{1/2}$. So, we see that

$$E \subset \bigcup_{j=1}^{\infty} f(Q_j) \implies m(f(E)) \le \sum_{j=1}^{\infty} m(f(Q_j)) \le \sum_{j=1}^{\infty} M\sqrt{2}|Q_j|^{1/2}$$

oops

Proof of (f). Suppose that f is α -Holder for some $\alpha > 1$. Let $x, y \in \mathbb{R}^n$ be arbitrary. Fix n > 0, and define a sequence of n + 1 points equally spaced and interpolating between x and y. In other words, define $(x_i)_{i=0}^n$, where

$$x_i = x + i \cdot \frac{y - x}{n}$$

So, $x_0 = x$ and $x_n = y$. We then have via a telescoping sum that

$$|f(x) - f(y)| = \left|\sum_{i=0}^{n-1} f(x_i) - f(x_{i+1})\right| \le \sum_{i=0}^{n-1} |f(x_i) - f(x_{i+1})| \le \sum_{i=0}^{n-1} M |x_i - x_{i+1}|^{\alpha},$$

where the first inequality is the triangle inequality and the second comes from the α -Holder condition. However, we note by construction that

$$x_i - x_{i+1} = -\frac{y - x}{n},$$

Problem 4 continued on next page...

and so

$$|f(x) - f(y)| \le \sum_{i=0}^{n-1} M \left| \frac{y-x}{n} \right|^{\alpha} = M|y-x|^{\alpha} \cdot \sum_{i=0}^{n-1} \frac{1}{n^{\alpha}} = \frac{M|y-x|^{\alpha}}{n^{\alpha-1}}$$

Taking the limit as $n \to \infty$ we see that since $\alpha > 1$, the right hand side approaches 0, and so f(x) = f(y). Since this holds for all x, y, we find that f must be constant.

Proof of (g). We know that the Cantor-Lebesgue function F is α -Holder with $\alpha = \log(2)/\log(3)$. We also know from the previous PSET that F maps a measurable set to a non-measurable set. If we rescale any closed interval to [0, 1], we can apply the Cantor-Lebesgue function on that rescaled interval. With this logic, there exists an α -Holder function from $\mathbb{R} \to \mathbb{R}$ that maps a measurable set to a non-measurable set. This yields the claim.

Solution

Proof of (a). Let $f : [0,1] \to \mathbb{R}$ be a C^2 function. We want to show that f is Lipschitz. Fix any two arbitrary $x, y \in [0,1]$; suppose without loss of generality that x < y. By the Mean Value Theorem (which we can apply since f is differentiable), there exists some $c \in (x, y)$ such that

$$f(y) - f(x) = f'(c) \cdot (y - x)$$

Since [0, 1] is compact and |f'| is continuous (f' is differentiable), we know that |f'| achieves a maximum on [0, 1]. Let $M = \max_{a \in [0,1]} |f'(a)|$. Then we have that

$$|f(y) - f(x)| = |f'(c)| \cdot |y - x| \le M|y - x|$$

This means that f is Lipschitz! Now, define a function $g:[0,1]^2 \to \mathbb{R}^2$ by $g(x_1, x_2) = (x_1+x_2, f(x_1)+f(x_2))$. We see that the set $\Gamma + \Gamma$ is the image of $[0,1]^2$, a compact set, under g. We want to show that g is Lipschitz, which will tell us that $g([0,1]^2) = \Gamma + \Gamma$ is measurable by Problem 4(d). So, let $(x,y), (x',y') \in [0,1]^2$ be arbitrary. Note that if we consider the L1 norm (all norms are equivalent on \mathbb{R}^2),

$$\begin{aligned} ||g(x,y) - g(x',y')||_{1} &= ||(x+y-x'-y',f(x)+f(y)-f(x')-f(y')||_{1} \\ &= |x+y-x'-y'| + |f(x)+f(y)-f(x')-f(y')| \\ &\leq |x-x'| + |y-y'| + |f(x)-f(x')| + |f(y)-f(y')| \\ &\leq |x-x'| + |y-y'| + M|x-x'| + M|y-y'| \\ &= (M+1)(|x-x'| + |y-y'|) = (M+1)||(x,y) - (x',y')||_{1} \end{aligned}$$

So, we see that g is Lipschitz with constant M + 1. Therefore, $\Gamma + \Gamma$, which is the image of a measurable set $[0, 1]^2$ under g, is measurable.

Proof of (b). We want to show that the following statements are equivalent:

((i) \implies (iii)) To show this direction, we will instead show the contrapositive. That is, suppose that f is linear. Then, for all $x_1, x_2 \in [0, 1]$, we see that

$$f(x_1) + f(x_2) = f(x_1 + x_2) = 2 \cdot f\left(\frac{x_1 + x_2}{2}\right)$$

by linearity. So, this means that

$$g(x_1, x_2) = g\left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}\right)$$

for all $x_1, x_2 \in [0, 1]$. This means that the images $g([0, 1]^2) = g(\{(x, x) : x \in [0, 1]\})$ are equal, since for each pair $(x_1, x_2) \in \mathbb{R}^2$ we have just seen that there is some single value (x, x) that maps to the same thing. So, $\Gamma + \Gamma = g(\{(x, x) : x \in [0, 1]\})$. Note that this is precisely the curve of the function $h : [0, 2] \to \mathbb{R}$ given by h(x) = 2 * f(x/2), which is continuous since f is. So, by Problem 6 on the last PSET, we see that $\Gamma + \Gamma$ has measure 0.

Problem 5 continued on next page...

((iii) \implies (ii)) For this direction, suppose that f is not linear. We can compute the derivative of g (the Jacobian matrix) to be

$$(Dg)((a,b)) = \begin{bmatrix} 1 & f'(a) \\ 1 & f'(b) \end{bmatrix}$$

using simple rules of differentiation. We compute the determinant of this matrix to be

$$det((Dg)((a,b))) = f'(b) - f'(a)$$

for all $(a,b) \in [0,1]^2$. Since f is nonlinear, there must be some pair $a,b \in [0,1]$ with $f'(a) \neq f'(b)$ (if not, then f' would be constant over [0,1] and f would be linear). Select the point (a,b) such that this property holds; then, at this point we have that $det((Dg)((a,b))) \neq 0$. The inverse function theorem tells us that at this point (a,b) for which this determinant is nonzero, there exists an open neighborhood around (a,b), say $B_{\delta}((a,b)) \subset [0,1]^2$, and an open neighborhood around g((a,b)), say $B_{\epsilon}(g((a,b))) \subset \mathbb{R}^2$, such that $g(B_{\delta}((a,b))) \subset B_{\epsilon}(g((a,b)))$ and $g: B_{\delta}((a,b)) \to B_{\epsilon}(g((a,b)))$ is bijective. Note that this tells us that there is some open ball $B_{\epsilon}(g((a,b))) \subset g([0,1]^2) = \Gamma + \Gamma$. That is, there exists an open set in $\Gamma + \Gamma$.

((ii) \implies (i)) Suppose that $\Gamma + \Gamma$ contains an open set. Then, there is some closed ball of radius δ contained in $\Gamma + \Gamma$ for some δ , by definition of openness (take any open ball and shrink it slightly to get a closed ball). Then, using the geometry of a square circumscribed by a circle of radius δ , we find that there exists a closed cube (a square in \mathbb{R}^2) of side length $\delta\sqrt{2}$. This means that there exists some closed square $Q \subset \Gamma + \Gamma$ with $|Q| = 2\delta^2$. Since $\Gamma + \Gamma$ is measurable by part (a), this tells us that

$$m(\Gamma + \Gamma) \ge |Q| = 2\delta^2 > 0$$

With these three implications, we see that each of the three statements implies the next, yielding that the statements are equivalent. So, we are done. \blacksquare