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Problem 1.4

Solution

Proof of (a). Suppose that the lk’s are chosen such that
∑∞

k=1 2
k−1lk < 1. Let Ĉ0 = [0, 1], and let Ĉk

denote the construction after the kth iteration; then, Ĉ = ∩∞
k=0Ĉk. Consider the kth iteration: from Ĉk−1

we remove 2k−1 disjoint open intervals, say {Ei}2
k−1

i=1 , with each |Ei| = lk. Then, the collection

{Ĉk, E1, ..., E2k−1}

is pairwise disjoint and unions to the entirety of Ĉk−1, and each element is measurable (they are elements

of the Borel σ-algebra). So, by the additivity of measure,

m(Ĉk) +

2k−1∑
i=1

lk = m(Ĉk−1) =⇒ m(Ĉk) = m(Ĉk−1)− 2k−1lk

Since this holds for all k ≥ 1 and m(Ĉ0) = m([0, 1]) = 1, induction gives that m(Ĉk) = 1 −
∑k

i=1 2
i−1li.

Since Ĉ = ∩∞
i=1Ĉk and Ĉk ⊂ Ĉk+1 ({Ĉk} decreases to Ĉ), Corollary 3.3(ii) gives

m(Ĉ) = lim
k→∞

m(Ĉk) = 1−
∞∑
k=1

2k−1lk > 0

Proof of (b). Let x ∈ Ĉ be arbitrary. Consider the construction of Ĉ as a binary tree where the

kth level contains the centers of the 2k−1 open intervals removed in this step of the construction. It is a

binary tree because for each open interval removed in the kth step, there are two open intervals removed in

the k+ 1th step - one to the left and one to the right - that are closer to it than to any other open intervals

removed in the kth step. Consider performing binary search on these nodes to find x: there will be no node

with value x, but we always get closer to x as each of the open intervals being centrally situated means that

the sequence of distances |x− xk| for xk’s in the binary search is strictly decreasing. Since this sequence of

distances |x − xk| is nonnegative and strictly monotonically decreasing, we see that it must converge to 0.

Equivalently, we see that the sequence of nodes visited in the binary search (xk)k∈N must converge xk → x.

However, since each xk is in an open interval removed during the kth step of construction, none of the xk’s

lie in Ĉ. Furthermore, since the lk’s are decreasing to 0 (otherwise
∑

k 2
k−1lk wouldn’t converge), we have

that the widths of the open intervals removed during the construction decreases to 0 as k increases. So, this

means that we have a sequence (xk) such that xk → x, all the xk /∈ Ĉ, and each xk ∈ Ik for some open

interval Ik ⊂ ĈC such that |Ik| → 0 as k → ∞.

Proof of (c). Note that since we construct each Ĉk by removing open intervals, we have the state-

ment Ĉk closed =⇒ Ĉk+1 closed. Since Ĉ0 = [0, 1] is closed, induction tells us that all Ĉk are closed, and

thus that Ĉ is also closed and contains no open interval. So, since part (b) reveals that Ĉ contains all its

limit points (the |Ik| → 0 criterion means there are elements of Ĉ infinitely close to any element of Ĉ), we

know that Ĉ is a perfect set. So, Ĉ is a perfect set containing no open interval.

Proof of (d). We have shown already that m(Ĉ) > 0. So, suppose by way of contradiction that Ĉ

is countable, i.e. that Ĉ = {ak}∞k=1. Let ϵ > 0 be arbitrary. Then, we can form a covering of Ĉ as the union

of open balls

Ĉ ⊂
∞⋃
k=1

Bϵ/2k(ak),
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since each ak is contained in its own ball. Subadditivity of measure (we don’t care if the balls are disjoint)

yields

m(Ĉ) ≤
∞∑
k=1

ϵ

2k
= ϵ

Since this holds for all ϵ, we see that m(Ĉ) = 0. This is a contradiction, and so we find that Ĉ must be

uncountable.
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Problem 1.10

Solution

Proof of (a). Note first that for all x ∈ [0, 1], we have that 0 ≤ Fn(x) ≤ 1 for all n ≥ 1. So, the product

fn(x) = F1(x)F2(x)...Fn(x) must clearly also lie in [0, 1] for all x ∈ [0, 1] and all n ≥ 1. Also,

fn+1(x) = Fn+1(x) · fn(x) ≤ fn(x)

for all x ∈ [0, 1] and all n ≥ 1 since Fn+1 ≤ 1. So, we see that for all x ∈ [0, 1], {fn(x)}n is a bounded,

monotonically decreasing sequence. Therefore, it must converge to a limit, say f(x). We can then conclude

that there is some function f such that fn → f pointwise.

Proof of (b). Note first that for all x ∈ Ĉ, we have by definition that f(x) = 1, since x ∈ Ĉ means

that x /∈ Ĉk ∀k, which means Fk(x) = 1 ∀k. Fix any x ∈ Ĉ, and consider the construction of Ĉ as a

binary tree where the kth level contains the centers of the 2k−1 open intervals removed in this step of the

construction. It is a binary tree because for each open interval removed in the kth step, there are two open

intervals removed in the k + 1th step - one to the left and one to the right - that are closer to it than to

any other open intervals removed in the kth step. Consider performing binary search on these nodes to find

x: there will be no node with value x, but we always get closer (the sequence of distances |x− xk| for xk’s

in the binary search is bounded and decreasing). Therefore, for any δ > 0, we can find some node xk for

some large enough k such that |x − xk| < δ. However, since this xk is a node, it is the center of an open

interval removed during the kth step of the construction. By construction, we then have that f(xk) = 0,

since Fk(xk) = 0 =⇒ fn(xk) = 0 ∀n ≥ k. So, we have found that for any fixed x ∈ Ĉ, for any δ > 0, we

can find an element xk ∈ [0, 1] such that |x− xk| < δ but |f(x)− f(xk)| = 1. So, f is discontinuous at x for

all x ∈ Ĉ. The logic following the problem statement shows that f is not Riemann integrable!
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Problem 1.21

Solution

Proof. Let N ⊂ [0, 1] be the non-measurable subset of the unit interval that we constructed in class. Let

F : C → [0, 1] be the surjective, continuous, (weakly) monotonically increasing function that we constructed

in Exercise 1.2(c) from Stein, where C is the Cantor Set. Then, surjectivity yields that there is some set

E = F−1(N ) that maps exactly to N under F (that is, E is the preimage of N under F ). However, we

have that E ⊂ C, since E lies within the domain of F . Recall that the Cantor Set has exterior measure 0.

Therefore, monotonicity of the exterior measure yields that

E ⊂ C =⇒ m∗(E) ≤ m∗(C) = 0 =⇒ m∗(E) = 0

By Property 2 of the Lebesgue measure, we then have that E is measurable and m(E) = 0. We have

then shown that there is a continuous function F that maps a Lebesgue measurable set E = F−1(N ) to a

non-measurable set N , as desired.
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Problem 1.32

Solution

Proof of (a). Let N ⊂ [0, 1] be the non-measurable set constructed in class. Let E ⊂ N be measurable.

Enumerate the rationals in Q∩ [−1, 1] by (rn)n∈N, and let En = E+rn be the translates of E by all rationals

in Q ∩ [−1, 1]. Then, by the translation invariance of m(·), we have that each En is also measurable and

m(En) = m(E) for all n. Also, the collection {En} is pairwise disjoint, since if any En ∩Em were nonempty

for nneqm, we would have x1 + rn = x2 + rm for two x1, x2 ∈ E ⊂ N that are not equal (they are not equal

since rn ̸= rm for n ̸= m). If this were possible, then x1 and x2 would differ by a rational and x1 ∼ x2, which

cannot be the case since the construction of N only allowed for one element of each equivalence class. So,

we have infinitely many disjoint sets En ⊂ [−1, 2] (because E ⊂ [0, 1] and the translations were in [−1, 1])

that are all pairwise disjoint. Additivity and monotonicity of m(·) gives

∞⋃
n=1

⊂ [−1, 2] =⇒
∞∑

n=1

m(En) =

∞∑
n=1

m(E) ≤ 3 =⇒ m(E) = 0

Proof of (b). Let G ⊂ R be a set with exterior measure m∗(G) > 0. Since G has nonzero measure,

there must be an interval of unit length [N,N + 1] for which m∗(G ∩ [N,N + 1]) > 0 some N ∈ Z. If there
weren’t, we could write G as

G =
⋃
n∈Z

(G ∩ [n, n+ 1]) =
⋃
n∈Z

(G ∩ [n, n+ 1))

and the additivity of measure to see that m∗(G) = 0. So, let IN = [N,N + 1] be an interval of unit length

for the N such that m∗(G ∩ IN ) > 0. Let G̃ = (G ∩ IN )−N be the translate of G ∩ IN such that G̃ ⊂ [0, 1]

(this means that m∗(G̃) > 0). We can now mimic the non-measurable subset N constructed in class, instead

constructing a Ñ ⊂ G̃. To do this, create an equivalence relation ∼ such that any two elements of G̃ are

equivalent if and only if they differ by a rational, and let Ñ be a set containing exactly one element from each

equivalence class of G̃. Let (rn)n∈N be an enumeration of the rationals in Q∩ [−1, 1], and define Ñn = Ñ +rn
to be the translates of the set Ñ by the rationals rn. We can say that every element x ∈ G̃ must be part of

some equivalence class, which means by construction of Ñ that it must differ from some element of Ñ by a

rational (furthermore, the rational must be in [−1, 1] since G̃ ⊂ [0, 1]). This, in turn, means that x must be

contained in one of the Ñn = Ñ + rn for some n. Since this logic holds for all x ∈ G̃, each Ñn ⊂ [−1, 2], and

the Ñ ’s are pairwise disjoint by the logic in part (a), we get

G̃ ⊂
∞⋃

n=1

Ñn ⊂ [−1, 2],

which allows us to say via the monotonicity of the exterior measure and additivity of m(·) that if Ñ were

measurable, we would have to have

0 < m∗(G̃) ≤
∞∑

n=1

m(Ñn) =

∞∑
n=1

m(Ñ ) ≤ m∗([−1, 2]) = 3,

where the measurablility of Ñn and the middle equality comes from the translation invariance of m(·). This
cannot happen, since Ñ ’s measure cannot be 0 and it cannot be nonzero to satisfy this inequality. So, we find

that Ñ ⊂ G̃ is non-measurable. Then, translating back by N , we find that Ñ +N ⊂ G̃+N = G ∩ IN ⊂ G

is a non-measurable subset of G.

6



Evan Dogariu MAT 425: Problem Set 2 Problem 1.33

Problem 1.33

Solution

Proof. Suppose, by way of contradiction, that m∗(NC) < 1. Then, for any ϵ > 0, we can find a measurable

set U ⊂ [0, 1] such that NC ⊂ U ⊂ [0, 1] and m(U) < 1 − ϵ. Now, consider the complement UC ; we must

have that UC is also measurable, and that U ∪ UC = [0, 1] while U ∩ UC = ∅. The additivity of measure

(Theorem 3.2) guarantees that

m(U) +m(UC) = m([0, 1]) = 1 =⇒ 1−m(UC) < 1− ϵ =⇒ m(UC) > ϵ

However, NC ⊂ U =⇒ UC ⊂ N , meaning that there is a measurable subset of N with positive measure.

This is a clear contradiction of the previous exercise, and so we must have that m∗(NC) = 1. We also know

that m∗(N ) > 0, since otherwise it would be measurable. So, we have that N ∪NC = [0, 1], yet

m∗(N ) +m∗(NC) > m∗([0, 1]),

as desired.
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Problem 1.37

Solution

Proof. Pick any arbitrary interval I = [a, b]. Let ϵ > 0 be arbitrary. Since f is continuous on the compact

interval I, the Heine-Cantor Theorem grants that f |I is uniformly continuous (let us refer to f |I as f for now).

Now, let δ > 0 be such that for all x, y ∈ I with |x−y| < δ we have |f(x)−f(y)| < ϵ
2(b−a) (such a δ exists by

uniform continuity). Suppose, without loss of generality, that δ divides b− a, since we can always decrease δ

to do so. Now, we can partition [a, b] into intervals {[a, a+δ), [a+δ, a+2δ), ...} of width δ (call them {Ei}ni=1

with n = b−a
δ ). On each interval Ei, we know that f varies by less than ϵ

2(b−a) by the uniform continuity

guarantee. So, if we consider the rectangle Ei ×
[
f(a+ (i− 1)δ)− ϵ

2(b−a) , f(a+ (i− 1)δ) + ϵ
2(b−a)

]
, we see

that this rectangle simply must cover the curve f over the region Ei. However, this rectangle has volume

δ · ϵ
b−a since each Ei has width δ. There are also n such rectangles necessary to fully cover the graph of f |I

over I, yielding a combined measure of at most n · δ · ϵ
b−a (we do not care if the rectangles aren’t disjoint,

as we only need to upper bound). Since n = b−a
δ , we find that the combined measure of all the rectangles in

this covering of f |I is b−a
δ · δ · ϵ

b−a = ϵ, meaning that m∗(Γ|I) < ϵ. Since this holds for all ϵ, we find that ΓI

is measurable and has measure 0 for any closed interval I. Writing R as a (not necessarily disjoint) union

of countably many closed regions and using monotonicity and subadditivity allows the result to follow. So,

m(Γ) = 0.
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