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Problem 1.4

Solution

Proof of (a). Suppose that the [;’s are chosen such that Zk 12871 < 1. Let Co = [0,1], and let Cj,
denote the construction after the k* iteration; then C = N OCk Consider the k" iteration: from Ck 1
we remove 2! disjoint open intervals, say {EZ}Z»:1 , with each |F;| = li. Then, the collection

{Cy,E1,...,Eqr1}

is pairwise disjoint and unions to the entirety of 5k_1, and each element is measurable (they are elements
of the Borel o-algebra). So, by the additivity of measure,

m(Cr) + Z I = m(Cp_1) = m(Cy) = m(Cr_1) — 28711,

Since this holds for all £ > 1 and m(C’o) = m([0,1]) = 1, induction gives that m(Cy) = 1 — S, 2i=1;.
Since C' = nee 1Cr and Cj, C Cry1 ({Cr} decreases to C), Corollary 3.3(ii) gives

oo

m(C) = lim m(Cy) =1-Y 2571, >0

k—oc0
k=1

Proof of (b). Let z € C be arbitrary. Consider the construction of C as a binary tree where the
k" level contains the centers of the 2¥~! open intervals removed in this step of the construction. It is a
binary tree because for each open interval removed in the k** step, there are two open intervals removed in
the k + 1*" step - one to the left and one to the right - that are closer to it than to any other open intervals
removed in the k** step. Consider performing binary search on these nodes to find x: there will be no node
with value z, but we always get closer to = as each of the open intervals being centrally situated means that
the sequence of distances |z — x| for s in the binary search is strictly decreasing. Since this sequence of
distances |z — x| is nonnegative and strictly monotonically decreasing, we see that it must converge to 0.
Equivalently, we see that the sequence of nodes visited in the binary search (x)gen must converge z; — x.
However, since each zj is in an open interval removed during the k** step of construction, none of the xj’s
lie in C. Furthermore, since the I;;’s are decreasing to 0 (otherwise Y, 2¥71; wouldn’t converge), we have
that the widths of the open intervals removed during the construction decreases to 0 as k increases. So, this
means that we have a sequence (x) such that xp — z, all the =5, ¢ 6, and each x; € I for some open
interval I, C CC such that |I;| — 0 as k — co. m

Proof of (c). Note that since we construct each ék by removing open intervals, we have the state-
ment ék closed = CA'kH closed. Since 50 [0,1] is closed, induction tells us that all 6'k are closed, and
thus that C is also closed and contains no open interval. So, since part (b) reveals that C contains all its
limit points (the |I| — 0 criterion means there are elements of C infinitely close to any element of C), w
know that C is a perfect set. So, Cisa perfect set containing no open interval. m

Proof of (d). We have shown already that m(CA') > 0. So, suppose by way of contradiction that C
is countable, i.e. that C' = {ar}?2 ;. Let € > 0 be arbitrary. Then, we can form a covering of C as the union
of open balls

oo

6 C U Be/zk(ak),
k=1

Problem 1.4 continued on next page... 2
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since each ay, is contained in its own ball. Subadditivity of measure (we don’t care if the balls are disjoint)
yields

~ > €
m(C)§Z2—k:e
k=1

Since this holds for all €, we see that m(CA') = 0. This is a contradiction, and so we find that C' must be
uncountable. ®
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Problem 1.10

Solution

Proof of (a). Note first that for all « € [0, 1], we have that 0 < F,,(z) <1 for all n > 1. So, the product
fu(x) = Fi(z)Fy(x)...F,(z) must clearly also lie in [0,1] for all € [0,1] and all n > 1. Also,

fot1(x) = Foga(z) - fu(z) < fu(z)

for all z € [0,1] and all n > 1 since F,11 < 1. So, we see that for all € [0,1], {fn(2)}» is a bounded,
monotonically decreasing sequence. Therefore, it must converge to a limit, say f(z). We can then conclude
that there is some function f such that f,, — f pointwise. m

Proof of (b). Note first that for all z € C, we have by definition that f(z) = 1, since z € C means
that = ¢ Ci Vk, which means Fy(z) = 1 Vk. Fix any x € C, and consider the construction of C' as a
binary tree where the k' level contains the centers of the 2°~1 open intervals removed in this step of the
construction. It is a binary tree because for each open interval removed in the k" step, there are two open
intervals removed in the k 4+ 1" step - one to the left and one to the right - that are closer to it than to
any other open intervals removed in the k*" step. Consider performing binary search on these nodes to find
x: there will be no node with value z, but we always get closer (the sequence of distances |z — x| for z;’s
in the binary search is bounded and decreasing). Therefore, for any § > 0, we can find some node ) for
some large enough k such that |z — x| < 6. However, since this xj is a node, it is the center of an open
interval removed during the k*" step of the construction. By construction, we then have that f(zy) = 0,
since F(zr) =0 = fu(zr) = 0Vn > k. So, we have found that for any fixed x € C, for any 6 > 0, we
can find an element ) € [0,1] such that |z — zx| < § but |f(z) — f(zx)| = 1. So, f is discontinuous at z for
all z € C. The logic following the problem statement shows that f is not Riemann integrable! m
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Problem 1.21

Solution

Proof. Let N C [0,1] be the non-measurable subset of the unit interval that we constructed in class. Let
F :C — [0, 1] be the surjective, continuous, (weakly) monotonically increasing function that we constructed
in Exercise 1.2(c) from Stein, where C is the Cantor Set. Then, surjectivity yields that there is some set
E = F~1(N) that maps exactly to N/ under F (that is, E is the preimage of ' under F). However, we
have that E C C, since E lies within the domain of F. Recall that the Cantor Set has exterior measure 0.
Therefore, monotonicity of the exterior measure yields that

EcC = m«(F)<m,(C)=0 = m.(E)=0

By Property 2 of the Lebesgue measure, we then have that E is measurable and m(FE) = 0. We have
then shown that there is a continuous function F' that maps a Lebesgue measurable set E = F~1(N) to a
non-measurable set A, as desired. m
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Problem 1.32

Solution

Proof of (a). Let N C [0,1] be the non-measurable set constructed in class. Let F C A be measurable.
Enumerate the rationals in QN [—1, 1] by (7, )nen, and let E,, = E+7,, be the translates of E by all rationals
in @N[—1,1]. Then, by the translation invariance of m(-), we have that each FE,, is also measurable and
m(E,) = m(E) for all n. Also, the collection {F,} is pairwise disjoint, since if any E,, N E,, were nonempty
for nneqgm, we would have z1 +r, = T3 + 7, for two z1,72 € E C N that are not equal (they are not equal
since 1, # ry, for n # m). If this were possible, then 7 and xo would differ by a rational and x; ~ x2, which
cannot be the case since the construction of A only allowed for one element of each equivalence class. So,
we have infinitely many disjoint sets E,, C [—1,2] (because E C [0,1] and the translations were in [—1,1])
that are all pairwise disjoint. Additivity and monotonicity of m(-) gives

G c[-1,2] = im(En):im(E) <3 = m(E)=0

n=1

Proof of (b). Let G C R be a set with exterior measure m.(G) > 0. Since G has nonzero measure,
there must be an interval of unit length [N, N + 1] for which m.(G N[N, N +1]) > 0 some N € Z. If there
weren’t, we could write G as

G=J@Enmhn+1)=J(GENnrn+1)

nez neZ

and the additivity of measure to see that m.(G) = 0. So, let Iy = [N, N + 1] be an interval of unit length
for the N such that m.(G N Iy) > 0. Let G = (GN1Iy)— N be the translate of G N Iy such that G C [0, 1]
(this means that m, (G) > 0). We can now mimic the non-measurable subset A constructed in class, instead
constructing a N c G. To do this, create an equlvalence relation ~ such that any two elements of G are
equivalent if and only if they differ by a rational, and let N be a set containing exactly one element from each
equivalence class of G. Let (rn)nen be an enumeration of the rationals in QN[—1, 1], and define ./\7n =N+ T
to be the translates of the set A¥ by the rationals r,. We can say that every element x € G must be part of
some equivalence class, which means by construction of N that it must differ from some element of N/ by a
rational (furthermore, the rational must be in [~1,1] since G C [0,1]). This, in turn, means that 2 must be
contained in one of the N, = N+, for some n. Since this logic holds for all z € G, each N, C [-1,2], and
the A’s are pairwise disjoint by the logic in part (a), we get

Gc | N cl-12,
n=1

which allows us to say via the monotonicity of the exterior measure and additivity of m(-) that if N were
measurable, we would have to have

0<m,(G) <Y mNo) =Y mN) <m.([-1,2]) =3,

where the measurablility of J\N/' and the middle equality comes from the translation invariance of m(-). This
cannot happen since A’s measure cannot be 0 and it cannot be nonzero to satlsfy this mequahty So, we find
that A C G is non-measurable. Then, translating back by N, we find that N+NCG+N=GnIyCG
is a non-measurable subset of G. =
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Problem 1.33

Solution

Proof. Suppose, by way of contradiction, that m.,(N©) < 1. Then, for any € > 0, we can find a measurable
set U C [0,1] such that N c U C [0,1] and m(U) < 1 — e. Now, consider the complement UY; we must
have that U is also measurable, and that U UUY = [0,1] while U N U® = (). The additivity of measure
(Theorem 3.2) guarantees that

mU) +mU) =m([0,1]) =1 = 1-mU) <1—¢ = m(U°) > ¢

However, N¢ ¢ U = U® C N, meaning that there is a measurable subset of A’ with positive measure.
This is a clear contradiction of the previous exercise, and so we must have that m.(N¢) = 1. We also know
that m.(N) > 0, since otherwise it would be measurable. So, we have that N"UNC = [0, 1], yet

M (N) +m (M) > me ([0, 1)),

as desired. m
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Problem 1.37

Solution

Proof. Pick any arbitrary interval I = [a,b]. Let ¢ > 0 be arbitrary. Since f is continuous on the compact
interval I, the Heine-Cantor Theorem grants that f|; is uniformly continuous (let us refer to f|; as f for now).
Now, let & > 0 be such that for all z,y € I with |x —y| < § we have |f(z) — f(y)] < 3=ay (such a 0 exists by
uniform continuity). Suppose, without loss of generality, that § divides b — a, since we can always decrease ¢
to do so. Now, we can partition [a, b] into intervals {[a, a+9), [a+ 7, a+26), ...} of width § (call them {E;}?

with n = bjT“). On each interval E;, we know that f varies by less than m by the uniform continuity

guarantee. So, if we consider the rectangle F; x |f(a+ (i —1)d) — B=a) fla+(i—1)) + ﬁ}, we see
that this rectangle simply must cover the curve f over the region E;. However, this rectangle has volume
d - 3= since each E; has width ¢. There are also n such rectangles necessary to fully cover the graph of f|;
over I, yielding a combined measure of at most n - ¢ -

€

(we do not care if the rectangles aren’t disjoint,

b—a
as we only need to upper bound). Since n = I’TT“, we find that the combined measure of all the rectangles in
this covering of f|; is I’TT“ -0 - = = ¢, meaning that m, (I'|;) < e. Since this holds for all ¢, we find that I';

is measurable and has measure 0 for any closed interval I. Writing R as a (not necessarily disjoint) union
of countably many closed regions and using monotonicity and subadditivity allows the result to follow. So,
mT)=0. m




