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Evan Dogariu MAT 425: Problem Set 1 Problem 1.2

Problem 1.2

Solution

Proof of (a). Note that the construction of the Cantor set corresponds to deleting the open interval of

each middle third, and repeating. However, splitting each interval into thirds and selecting one corresponds

precisely to the ternary expansion; a number is in the interval (0, 1/3) if and only if it has a 0 in the first digit

of its ternary expansion; it is in the interval (1/3, 2/3) if and only if it has a 1 in the first digit, and so on.

More precisely, we can write down that any open interval corresponding to a middle third that is removed

during this construction are of the form
(
3m−2
3n , 3m−1

3n

)
for some value m ∈ N and a depth n ∈ N. A number

is in such an open interval, however, if and only if it has a 1 in the nth digit of its ternary representation,

which can be seen quite simply from induction (splitting an already-existing interval into thirds corresponds

to adding a new digit to the ternary representation, and selecting the middle one correspondings to adding a

digit of 1). Thus, an element is in the Cantor set if and only if it doesn’t have a 1 in its ternary representation.

Proof of (b). Note that for any element x ∈ C, we select a unique representation (there can only be

one representation with all ak ∈ {0, 2} since any change to a coefficient cannot be mitigated by chang-

ing lower order coefficients). Such a representation exists by (a). Furthermore, F outputs a deterministic

function F (x) =
∑∞

k=1
ak

2k+1 of the coefficients. Lastly, since each ak ∈ {0, 2} =⇒ 0 ≤ ak ≤ 2, we have that

0 ≤ F (x) ≤
∞∑
k=1

2

2k+1
= 1

for all x ∈ C. The above logic verifies that F has domain C and range [0, 1], and that F (x) can only output

one value. So, F is well defined.

To see surjectivity, note that each number y ∈ [0, 1] has a binary representation given by y =
∑∞

k=1
bk
2k

with bk ∈ {0, 1} for all k. Therefore, the number x =
∑∞

k=1
ak

3k
with each ak = 2bk will be in C by part (a)

(since each ak is in {0, 2}), and will clearly map F (x) = y by the construction of F . So, F is surjective.

Next, 0 has the unique ternary representation ak = 0 for all k, and so F (0) = 0. Similarly, it is clear

that 1 =
∑∞

k=1
2
3k

by the infinite geometric series, and so 1 has the unique ternary representation where

ak = 2 for all k. This yields

F (1) =

∞∑
k=1

1

2k
= 1

So, F (0) = 0 and F (1) = 1.

To see continuity, we can prove that F is (weakly) monotone increasing from 0 to 1. Then, since sur-

jective and (weakly) monotone functions are continuous, we are done. So, we want to show that F is

(weakly) monotone increasing on C. Suppose that x, y ∈ C are such that x < y. Let {a(x)k }k∈N and {a(y)k }k∈N

be their unique Cantor ternary representations respectively (by this I mean that a
(x)
k , a

(y)
k ∈ {0, 2} ∀k). Let

N be the index of the first element at which they disagree. Then, we must have that a
(y)
N = 2 and a

(x)
N = 0

in order for y to be larger. So,

F (y)− F (x) =

∞∑
k=1

a
(y)
k − a

(x)
k

2k+1
=

∞∑
k=N

a
(y)
k − a

(x)
k

2k+1
=

2

2N+1
+

∞∑
k=N+1

a
(y)
k − a

(x)
k

2k+1
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We know that each difference a
(y)
k − a

(x)
k ∈ {−2, 0, 2} =⇒ a

(y)
k − a

(x)
k ≥ −2. Therefore,

F (y)− F (x) ≥ 1

2N
+

∞∑
k=N+1

−2

2k+1
=

1

2N

(
1−

∞∑
k=1

1

2k

)
= 0

So, we see that for any two x, y ∈ C with y > x, we have F (y) ≥ F (x). This means that F is monotone

increasing on C and is surjective onto [0, 1]; this means that it must be continuous.

Proof of (c). We saw the surjectivity of F in part (b).

Proof of (d). Consider two different endpoints of an open interval (a, b) in the complement of the

Cantor set. Since we construct the Cantor set by removing middle thirds, we know that (a, b) must be equal

to
(
3m−2
3n , 3m−1

3n

)
for some depth n ∈ N and value m ∈ N. So, we can compute that the ternary expansion

for b will be of the form a
(b)
n = 2 and a

(b)
k = 0 for all k > n, while the ternary expansion for a will be of

the form a
(a)
n = 0 and a

(a)
k = 2 for all k > n (take, for example, the interval (1/3, 2/3) with expansions

1/3 = 0.022222... and 2/3 = 0.2), with all terms a
(a)
k = a

(b)
k for k < n. Then, we find that since there are no

differences before the nth term,

F (b)− F (a) =

∞∑
k=1

a
(b)
k − a

(a)
k

2k+1
=

1

2n
−

∞∑
k=n+1

1

2k
=

1

2n

(
1−

∞∑
k=1

1

2k

)
= 0

So, F (a) = F (b) for all such endpoints of open intervals removed during the construction of the Cantor

set. Therefore, if we were to define F to be constant on these intervals, we see that the resulting function

F : [0, 1] → [0, 1] is still surjective and (weakly) monotonically increasing as was the case in part (b), as

addition of constant intervals doesn’t change monotonicity. Therefore, F is still continuous.
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Problem 1.6

Solution

Proof. Let B be the open ball of radius r > 0 in Rd. Clearly, B is measurable since it is open. Without loss

of generality, suppose that both B and B1 are centered at the origin, since otherwise we can translate to the

origin without affecting measure. Let νd be the measure of B1, the open ball of radius 1. Let B1 ⊂
⋃∞

i=1 Qi

be any countable covering of B1 by closed cubes {Qi}. Then, we can simply rescale each cube by a factor of

r such that it covers B; more precisely, rescale each Qi to a new cube Q̃i = {rx : x ∈ Qi}. Then, we will

have that B ⊂
⋃∞

i=1 Q̃i (this is true since each element of B can be written as rx for some x ∈ B1), and have

generated a countable covering of B by closed cubes {Q̃i}. Furthermore, by the definition of volume of a

cube we will have that |Q̃i| = rd|Qi|. Therefore, any countable covering of B1 by closed cubes can generate

a countable covering of B of closed cubes with a value scaled by rd. Thus, the infimum satisties

m(B) ≤ rd
∞∑
i=1

|Qi|

for all coverings {Qi} of B1. Since this holds for all countable coverings of B1 by closed cubes, we get from

another infimum that

m(B) ≤ rdm(B1) = νdr
d

Note, however, that we can perform exactly symmetric logic in the other direction. Starting with a countable

covering B ⊂
⋃∞

i=1 Q̃i of closed cubes, we can rescale by a factor of 1
r > 0 in precisely the same way. Identical

logic shows that

m(B1) ≤
(
1

r

)d

m(B) =⇒ νdr
d ≤ m(B)

These two results taken together give us that m(B) = νdr
d as desired.
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Problem 1.11

Solution

Proof. We construct the following sequence of subsets Ak ⊂ [0, 1], where each Ak is the subset of [0, 1]

consisting of numbers without a 4 in the first k digits of their decimal expansions. To make this precise, let

A0 = [0, 1]

and

A1 = [0, 0.4) ∪ [0.5, 1]

From this, let

A2 = [0, 0.04) ∪ [0.05, 0.14) ∪ [0.15, 0.24) ∪ [0.25, 0.34) ∪ [0.35, 0.4) ∪ [0.5, 0.54) ∪ ...

Continue this, subdividing each interval of Ak into 10 new intervals along the next decimal place, and

removing one of them corresponding to having a 4 in the next decimal place. So, each Ak will be a countable

union of half-open intervals of [0, 1] and will therefore be measurable. The total length of the intervals

decreases by a factor of at least 9/10 at each step. So, we find that m(Ak) ≤ 9
10m(Ak−1) for all k ≥ 1 (this

works because the measure of a union of disjoint intervals is the sum of the lengths), and so

m(Ak) ≤
(

9

10

)k

·m(A0) =

(
9

10

)k

Let A =
⋂∞

k=1 Ak; then, A is the desired set of numbers in [0, 1] without a 4 at any point in its decimal

expansion, and it is measurable. This setup makes it such that Ak+1 ⊂ Ak for all k. In other words, Ak

decreases to A. Therefore, by Corollary 3.3(ii), we have that since m(A0) = 1 < ∞,

m(A) = lim
k→∞

m(Ak) ≤ lim
k→∞

(
9

10

)k

= 0

Since m(A) is nonnegative, we arrive at the result that m(A) = 0.
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Problem 1.15

Solution

Proof. Let E ⊂ Rd. We wish to show that for every countable covering of E by closed rectangles, we can

find a countable covering of E by closed cubes that is the same total size. So, let E ⊂
⋃∞

i=1 Ri be a countable

covering of E by closed rectangles. Let D be the maximal length of any rectangle along any axis (i.e. if we

consider each rectangle to be a product of intervals along dimensions, let D be the max interval length over

both rectangles and dimensions). Fix ϵ > 0. For each rectangle Ri, consider a grid in Rd formed by cubes of

side length ϵ
2i . Let Qi be the set of cubes that are entirely contained in Ri, and let Q′

i be the set of cubes

that intersect both Ri and RC
i . Both Qi and Q′

i must therefore be finite, since Ri is of finite width in each

dimension. Then, we clearly have by construction that⋃
Q∈Qi

Q ⊂ Ri ⊂
⋃

Q∈Qi∪Q′
i

Q =⇒
∑
Q∈Qi

|Q| ≤ |Ri| ≤
∑

Q∈Qi∪Q′
i

|Q|

Now, a simple geometric argument yields that we can always cover each of the 2d faces of Ri with at most(
D·2i
ϵ

)d−1

cubes (each face is d − 1-dimensional and no axis can fit more than D/(ϵ/2i) cubes). With this

in mind, and the fact that |Q| = ϵd

2id
for all Q ∈ Q′

i, we can apply Lemma 1.2 and the fact that rectangles

have nonnegative area to see that

∑
Q∈Q′

i

|Q| =
∑
Q∈Q′

i

ϵd

2id
≤ Dd−1 ϵ

2i
=⇒

∑
Q∈Qi∪Q′

i

|Q| ≤
∑
Q∈Qi

|Q|+
∑
Q∈Q′

i

|Q| ≤ |Ri|+Dd−1 ϵ

2i

This, combined with our earlier inequality, yields that

|Ri| ≤
∑

Q∈Qi∪Q′
i

|Q| ≤ |Ri|+Dd−1 ϵ

2i

So, there exists a finite cover of Ri by closed cubes that is not much larger that Ri. Applying the same logic

for all i, we find that there is a countable cover of E by closed cubes E ⊂
⋃∞

i=1 Ri ⊂
⋃∞

i=1

⋃
Q∈Qi∪Q′

i
Q with

∞∑
i=1

|Ri| ≤
∞∑
i=1

∑
Q∈Qi∪Q′

i

|Q| ≤
∞∑
i=1

|Ri|+
∞∑
i=1

Dd−1 ϵ

2i
=

∞∑
i=1

|Ri|+Dd−1ϵ

Taking ϵ → 0, we get that the sum of areas of these closed cubes Q equals the sums of areas of these

closed rectangles Ri, both of which countably cover E. Since this applies for any countable cover of E by

closed rectangles, the result also holds after taking an infimum over possible countable covers of E by closed

rectangles. The result follows.
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Problem 1.16

Solution

Proof of (a). Note first that we can write

E =

∞⋂
n=1

⋃
k≥n

Ek

since an element x is in
⋃

k≥n Ek for all n ∈ N if and only if it is in infinitely many Ek’s, which happens

if and only if x ∈ E by definition. Since each Ek is measurable, the countable unions
⋃

k≥n Ek must also

be measurable. Next, since each
⋃

k≥n Ek is measurable and E is a countable intersection of such sets, E is

therefore also measurable.

Proof of (b). Fix an arbitrary ϵ > 0. The fact that
∑∞

k=1 m(Ek), which is a sum of nonnegative values,

converges to a finite value in R implies that there exists an N ∈ N large enough that
∑∞

k=N m(Ek) < ϵ.

Using the same form for E as in part (a), we can note that

E ⊂
⋃
k≥N

Ek,

and so by subadditivity of measure

m(E) ≤
∞∑

k=N

m(Ek) < ϵ

Since this holds for all ϵ > 0, we can take the limit ϵ → 0 to get that m(E) = 0 as desired.
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Problem 1.26

Solution

Proof. Suppose that A ⊂ E ⊂ B, where A,B are measurable sets of finite measure with m(A) = m(B).

We therefore know that m(B − A) = 0 (since m(B − A) + m(A) = m(B)). Now, consider the set E − A,

which is a subset of B −A since E ⊂ B. Monotonicity yields

E −A ⊂ B −A =⇒ m∗(E −A) ≤ m∗(B −A) = 0

This therefore means that m∗(E−A) = 0 as well. Since sets of exterior measure 0 are measurable, we know

that E − A is measurable, which means that E = A ∪ (E − A), the union of two measurable sets, is also

measurable.
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