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Lecture 1/30-first day yippee !

The heart of many analysis questions is the following : "What even is are
? "

We answer the or the Lebesque Measure.

$1 : Lebesque
Measure

S1.1 : Preliminaries

It is reasonable to say that the rectangle (a
,

b
,
3 x (a .,

b
.] + ... - (a

,

3
.7 <RV

has are bi-ai). a

ab b

This will be our starting point.

&ef : A (closed) rectangle RCRV is a set of the form
-

R = [a
,

b
,] x . . . x [a

,
b
.
) with a:cbi :

The volume is the
IM)= (b

:
- a:)

The interior of R is

int(R) = (a
,

b
,
)x .. . x (an

,
bul

Def : A collection of (closed) rectangles GRABael is almost disjoint if
-

Va
, B int(Rc) 1 int(Rs) =&

Note: I must be countable because each interior contains a national point, if the interiors are nonempty.

From these definitions
, we can prome:

↓mea
1

. 1 : If R is a rectangle which is an almost disjoint uro at finitely manys

other rectangles R = Mr
,

the
IRI Ral-

Lemma 1 . 2 If R
,
CRA

,
are rectangles with RCFRr , the IRI a-



From here
,

we can extend to move general gets via

Theaem1 .

4 : Every open set VER" can be written as a (countable) unio at almost disjoint
cubes U = &R:, when ER3 are almost disjoint.

vostatch. Start ur &"lattice gid .
Save the cabes contained in H

,

and bisect all the crbes partially
contained in U. Iterate this

.
U

open EFEU
,

X will lie in some small enough cube
,

which is entirely
contained in U

.

It is reasonable to hope to define the Vol(U) as the sum of these areas .
We have to check

that all the different rectangularizations yield the same volume
.

#eyexample (Canter Set) : Remove the middle third
open intervals to get

Co = 10
, 17 ⑳ ·

O I

C, = [0
,
] V(

,

17 -

8 - -
2. : (0,]U

,
j]v[,]V(a

,
D
a

&

-

,

The Canter Set is
defined by C-PoCi ,

and enjoys the following properties

& C closed => C is compact
② C bounded
③ C isHallydisconnected (only connected subsets are singletons)
① C is uncountable

From a candiality
(E) /2 each of lettn)

,

andPerspective,CishugeFrom a we perspective, the are of echhe is

Let us maker this precise.

S 1 .
2 - Exterior Measure

Ed get a histattempt of volume by taking coverings by cubes and taking on infirm
.

& For a subset ELIR" define the exterior measure of E by

m (E) = infSQ;
where the int is over all countable coverings of E by closed cubes EC

.

Q
:



&peties of me: · Oux(E)1+o

· inf must be over countable covering not just finiteS
S

·

one can also work withrectangles to get save results

Lector2 -
examples

a) my (Spoints) = c

6) If C is a closed cube
,
the me(s : 12

Proof: ([C = M
+ (c) 2 (C)

-

For the other direction
,
FasO we on take a cour C & Q :

with

coure
&1 Q

.1m() + E
. For each Q: we on tele a open abe SizQ:

iqu
< Open cover ofS with Isi(Qi => CCSi compact set

= finite
subsaue

So
,
ther is some finite inder set I s.t.

A↳ 2 S:I = +
i =

B

2) If C is the Cantor set
,
the my (C = 0

.

Note: at the mount
,

the exterior measure isn't additive under the countablewih at disjoint subsets.

Prop. I . [Properties of mp)

① (Monotaicity) E
, CE2 = MelEDcMe(En

& I countable subadditivity E= PE = MplE)Melti
③ ma(El=it mlu)

U open

⑪ diet/E
,
En)0 EmelE, WEz) = welE)+ my(En)

⑤ if E= Q :
when EQ are almost disjoint abes

,

then

m(E) = &mQ:

&mark :⑪ tells us that the definition of volume of open sets from last tim is well-defined
.



&of: ① Any cover of En is a cover of E, and so the infore covers of E
,

will be

smaller
.

② wow assum EmplEi) is finite . Fix Eco.
Then

,
fi choose a core Eit Qis of

i

again
the

S
closed abes Qis with [Qism(Ei)+W

take a

=> EQijmeij = a + [me(ti)bigger
cover
trick! Taking O yields the result.

③ Clearly
,
EEU = molElzme(n) FU

, by 0 .

So
, moll -int Male

For the other direction
,
fix so.

Wo206
suppose meCE) finte.

"Open

X

We can find 30:3 of closed cubes st. EXUQ:
and &1Q :/Imple +S

For each i takeon open abe SiQi with IS: -IQi+Ei

. Then,

ECUS =: U
,

and by me() mi=+
-

open (my(t)+2E

intTaking tO yelds
use

Me(h) < ma(t)
Kopen

④ Subadditivity yelds Mx(E)< ma(E)+ ratee) .

For the other direction
,
take

5Q:3. to be closed cubes with ECUQ; and QilE + a for some fixed 30.

If S: Edist(E, Er]
, by biseting the Q is iteratively

,
me can WOLOG assure that

all the Q: have side leg↓s c8
.

So
,

each Q: can intersect at most one of E
, or Ez.

Let I
,

be EilQ: 1 E
,
+ 03 and In = Si/Q : MEF@3 = I

, 112=0.

Then
, EEVIjQ : for je31

,
23

.

So
, meltj) & (i) by def of exter me

So
, malt+ melEn)-Qil +Gail :)uE+ Take

↑ i=

because

I
,

Ec disjoint

⑤ (1) comes once again from countable subadditivity .
For the other direction

,
fix as 0

.

For each Q:
,

take a closed orbe S: EQ:
st

. IS: /Q: Since we shrunk to get the

Sis
,
each pair (Si

,
S;) has distance >0 .

We can the apply & inductively to get that~ ~

any fe min has
m(i) = sile -I ,

New

SirenFS:=E
,
monti givesm - a

Taking N = -
,

2 +O
gives m(E)zQil yields the last result

.

I



$1.3- Measurable Sets + Lebesque Measure

Currently
, Me is countably additive on disjoint sets .

(See th Vitali sets)

& A set EGML" is (lebesque) measurable if FS5O
,
I an open set U with

ECU and mp(UlE)zE

& If EXM" is measure,
its /Lebesque) measure is M(E) := my(E)

Remarks :

-

· Prop Is properties are inherited by M( .)
· I open

=> U measurable by definition
· rx(E) = E measurable by property

#op .

2 ('Closure" Properties)

① A countable union of measurable sets is measurable

② closed sets are measurable

&Complement of a measurable set is measurable

& A countable intersection of measurable sets is measurable

Proof:

& Suppose EE:3 are measurable. For 230 .

Fi
,

J an open set UiZE, with
X

m (Ui\E:) .

Set U=, U:; then
, UIEi is open

Note that Ul() (Ui(E) (UEi) =m(VVE) =Emile)

Lecture 2/6 starts her

② Let I be closed. Then
,

C- d 1) . Usin (, it suffices to
pou

that a compact K [R" is measurable .
SinceK compact

, malki.
Fix 230 . By Prop . ((c)

,
we can find USK sit.

V open and (4) ( my(k) + S

We know UK is open,

and so by Thm .
1 .

4
,

UK=EQ : for EQ: 3 almost disjoint cubes.
~

Q is compact Fi and disjoint fram K
.

FNII
, E,

Q; is compact and disjoint from K,
which is also compact. So

, dist)uQ:, K)0 . By Prop . 1
, mp(QUK) =m(Q:) + me(k)



=> mp(u)m(Q) +mk))
Letting No

, Pla =m() = me(U(k)

③ Let E be measurable .
FKal

,
JUIE open st. molUnTE)st

.

So
, UCE is closed

,

and by ② is measurable . By D,
S=U is measurable

.

Also,ESCUEVEmCUVmEx-A
this technique shows that E' is measurable by showing that it differs from
a measurable set (5) by a set (ES) of measure O

④ As PEn : (E)? D and O gives Q.
D

Remark : not true for uncountable unim/intersection

We can finally prove what we went m() to have !

#herem3.
2 (Additivity of Measuel

If SErneN are measurable
,
disjoint sets

,
then

m (Ex) = Em(En
of: Subadditivity gives (1)

. We wish to bord (2).
1: Suppose all En are bounded. E measurable=> ErC measurable/

For Eco.
Choose open URLE" st m (Uk\Enk/

Then
, Fri=UEk ,

Fk is closed
,

and Ex\Fx = Un)Er
So

, melEnfa)Ek

Now
, Ex bounded => For compact . Also

,
En discont => F disjoint.

This compact sets
,
which are a positie distance apart.

For Yielddiejone
,

PropIyes
Also
, ifm

Subedeitivity yelds (i) (mti)-
Taking N-0

,
2 t0

,
we are done with the bounded case.

Ge7: general case ⑳Se↓ S, to be the closed unit ball
, Si = B;(0) /Bj , (0)

Then
, 35%3 are disjoint and M= Sj



&. are measurable
,

so sat En := EjMSK
Then

, Esh are disjoint, bounded measurable sets with Ei = Ein case I again

fl

& Cal
, meti) = m() =Cin== (t))

B

Leniqu: general case comes from bounded case by exhaustingM with

bounded
, disjoint thingies (Si)

We now know that labesque measure isn't stupid .
Let us examine

further properties .

&ovollary 3 .? (Further Properties of m(7) :

Suppose SFiSieN are measurable.

① if SEi3 ; is increasing (EiEEi+ Fi)
,

then

⑪ if Stib : is decessing m (i) for some is

m E) = em(

&k: The condition /Ei)2+ in (ii) is necessary and notrivial. E
.g. Ei = (i

,
0)

-

This phenomenon is like the measure "loses mass" at x
,

as the measure gets
pushed towardo

# (i)Set membe
ad doa

(ii) If 6 = ELEin Fil
,
then E,.(ti) r(6.)

Y -
all disjoint

WOLG
, m(Eco = m(Ei = m(PE) +- & m(6 :)

=mE)m(E-m
-= m(E) + Elm (E) - n(Evil]
↑

can only cancel

=> m(Ei) = Enm because m(E)

B



Theorem3.

4 (More implications of measurability

Suppose EXIR" is measurable. Then
,
FasO,

(i) JULE open with ma(UlE) < E

(ii) J CEE closed with ma(ELC -E

(iii) If mCElco
,

then JKCE compact with m(ElK)1S

(iv) If metco
,
then IFFQi finite union of closed cubes

with m(EAF)E
X

symmetric
diff .

(xor)

&

roof: (i) is definition.

(ii) we saw before : follows from measurability of E and taking complements
(iii) As ENTRIO) increases to E as Reo

, Corollay 3.? gives
7 R20 st . MpEB

the ball

Applying (ii)
,

we can find KEELBR(O) closed (thus compacts with

me (En B(d)(k) = 3 = my(E(k) 29
.

closed cobes

(iv) By de . of Mall
, 7 EXQ with im

The feat that Qi) carrages allows us to take large enough N that,

s .

LetE; mEF= (EF +m
um

CQi

=m(Q) +m(Qi(E)

+-m
B



Lecture2/8-
&mark : The Lebesque measure is translation invariant (by definition)

m(A+ a) = m(t) Fatt" and A measurable

We may wish to study how complicated measurable sets are

D A o-algebra is a collection of sets that is closed under

taking complements and countable unions (and this countable intersections).

So
,
the measurable sets M form a o-algebra.

& The Boel O-algebra Bir is the smallest o-algebra containing all open sets
.

Elements of Bin are Boel sets.

clearly
, BEM .

This inclusion is struct

* Eat : M is the "completion" of Bir by adding in subsets of Bowel sets
with measure O.

Corollay3:

The following are equivalent:

countable
intersection

(i) ECI" is measurable of open
sets

Y(ii) E differs from a lg set by a set of measure O

(iii) E differs from aFo set by a set of measur O

↑ countable union of
closed sets.

&of: (ii) E(i) and (iii) = (i) are immediate

#E(ii) E measurable=>> Fuel
,

5 open UnZE st
. m(UnE) It

If U: Un
,

the U is G and m(UIE) = 0
.

(iii) Same thing with closed sets contained in E.

D

So
, we know her big M has to be

. But hear big be it be?



& Is every set measurable?

A No . Consider [0,
1 &I .

Define an equivalence relation~ on 50
,

13 by try EX-yEQ
The

,

~ partitione [0
,
1 into equivelace classes

[0
,
D = US

~-equivalence casea

Take XatEc and thset N : = Ex : c+ 1?
L

forming this set rules

on the axion of
Choice!

Enumerate Q11
, 1) as Ern : neN3 and consider for each nel

,
N = N + ru.

Then
,
ENE new are disjoint

,
since if two Nr's differed by a national,

we selected two representatives from the same equivalence class
,

which we did not.

So
,
EXECO,

B
,
xEEc for some 2

,
which means thata differs from

an Xa by some natical REQUE
,
B

,

which means xeNn for somen.

=> (0
,
1) N,2)

If N measurable
,
the Nn measurable kn and mIN) = m(Nn) because they are

translates. By (D,

m(10, 13) = m)u
,
Nr) = m(E1 ,23) = 12 &m()=

So
, m/N] cannot be 0 and m/M) cannot be co

. *, so N isn't measurable·

B

$1 .
4- Measurable Functions

* Find a notran of functions we can integrate

The simplest kind of function is an indicator function.

D The characteristia function of a set EEIR" is Mel = X(x) = 1 ES
The next simplest kind of fration is a finite sun of indicators.

& A simple function is a function of the form

& a : ME
,
where GizIR and Ei are neesuable with finite measure.

i= 1

Bak: Reall Riman integration is defied with stepfes
,
which are air : for restles Ri

Simple fos
, as more general.



We consider functions fiR - [-0
, 0) .

We say t is finite-valued
if -ocf(x)< o ExEIR"

&mark: Most fas
.

we consider are finite valued almost everywhere.

We wat to form labeggue in

measure of the peinge at theBefor bymoupling lea setuchesa
measurable.

&: If E is measurable and fiE+ [-x
,0]

,

then f is a measurable function
if FazlR

, f"([-e, al) is measurable.

↓otation: f"((-0,a)) = ExeE : f(x)ca3 = Efca3
.

&mark : we could use [, a] or other stuff. This is equivalent because we can reframe

things with unios
,

intersections
,

and complete
,

which measure beloves well under

In
a sense

,
we an requiring that preimages of Bol sets are measurable.

More generally,

we might look at preimages of elements of a certain

O-algebe being elements at a O-algebre.

&position 3 : (Properties of Measurable functions)

& If f is finite valued
,
then f is measurable #f /U) measurable FU open.

(to remove finite-valued
,

also assume +"(3-03)
,

"(3 +03) measurable

② If f : /VFIR is continuous
,

it is measurable

③ If f is measurable
,

finite-valued
,

and I is continuous
,

then Got is measurable.

( not true if f is not finite valued)
& If Ef

,
are measurable

,
then so are

Sup fu , inff , linsup fr ,

limitf
a

k

⑤ If Ef ,
measurable and converge futt pointwise, then A is measurable.

⑥ It fig measurable
,
the so are

(i) fk for KeA

(ii) fig and by it fig finite-valued



Lecture2/13-

& Two functions Fig : E-IR agree almost everywhere la .
e) if

& E : f(x Egk)Y has measure O .

& If fig agree are
.

and f is measurable, then so is go

&of : Efcab and Egaa's differ by a set of masue O .

So, Efca3 measurable -> Sgza3 measurable.

B

&merk: Because of the above
,
all properties from Prop.

3 hold if you
replace equality with equality ae.

#heren4
.
1 - Suppose f:IR"- 10

,
0] is non-negative measurable. Then,

messrable fre
, are I an increasing sequence of simple functions Y

,
k= 1

conveying to f

(
integration

( 10
good candidates fof pointwise everywhere.

#of : Fix NEW .

Set Qu : -N
,
N]"to be the cre of side length IN

.

Set

Fu(x) : = 1a(x) . minGf(x)
,
N3 .

So
, we truncated to doman Qu and range [0, N] .

By Prop . 3
, Fr is measurable .

This converges tof pointuse as NEx.

Now
,

subdivide the mage furthe . Fix MeN
,

let

preimager of Ev
,j

: = Exte : F for j = 0, . . .,
NM-

a slice

Each Ev
,j

is measurable and
,

since each Ev
,jEQN ,

each Evi, has

finite measure. Set

&:
This is a simple function and Yv

.
m [Er .

Also, Ifn-Yw
,
mldts on Qu

Now set N=M =2 for KEN
. Take Yn : = Ye = /Ex-Yal = E.

So
,

since Ent pointwise and Mr + EK in norm
,

then Yf pointuse and

is an increasing set of simple functions.
↑ B

Mx - f - /Y - F() + 1f - f) + 2



We can now vee this to remove the non-negativity assumption !

"#theorem4
.

2 Suppose filR"-[0,
-] is measurable. Then

,
I a sequance

( at simple functions with Up to pointwise and

(()) = (4 ,
(x)) Vk

,
X .

Dof: Split f into positive and negative parts fift-f; where

f+Ix := max[f(x)
,
03 and f(x) :=

- minEf(x)
,
03

.

This is the oldest trick

in measur theory! Since It andf are both measurable and =0,
*

Theorem 1
.

1 gives (H) = (4% of increasing simple functionas

with D-ft pointwise.

Y = f

Set Un = Unt- Up- to get Reef, and

14x) = 14x+ xy) = (4x+ + 14n+ = (1 + 14 ) = (4mm)
7

ThisLoan
B

nonzero.

#theoremh
.

3 : Suppose filR"-[0,
-] is measurable. Then

,
I a sequance

() at step functions with Up to pointwise ac

&etch proof: Therem 4.2 yields (Bulk St
. 4-f everywhere .

Recall from

ages ago
that if we had a set of finite measure

,
we can fel finitely many rectangles

S.

t
. the symatic difference has small measure (Prop .

3
.(iv). So

, we can find

a step fr
. Yo St

. Yo = UK on some measurable set F
,

whe mNow, The can Bonel-Cartelli on differe

F=
linsu Fr :F =
k=0

IfKef
,

the El sit
. Val, tef Yula) = Yet th

D

We now know that measurable functions are limits of sequences of
Simple functions everywhere and at step functions a.e.

We can now integrate!

We saw before that measurable sets aren't "too finky" as they differ from
Gg or Fo by sets of measure 0

.

Two questions for measurable functions :

① How different are pointuse and miturm convergence

② How different are measurable functions from continuous functions?



Answe to 0 :

Theown : (Egonous Theorem]

Suppose (ful are measurable
, defined on a measurable set E

of fit mesue
. Suppose futt pointwise a .

2
. on E.a

Then
,
FacO

,
J a closed AgEE s.

t
. m/ElAsks ad fett uniformly on As.

&of: WO206, assure feet everywhere .
Un

,
KeN

,
set

En, := ExeE : (fe() - f(x) it Flak3
X

For fixed n
. (E1

..,
are increasing . By pointwise conveguce, they increase to E.

m
,K

=> El Enk decreases to 0 . mEco-Imm(El En,
n = 0

.

for each n
,

we can then choose kn sit. m(E) En
,

K
.
) En

For Eso
, choose N st . &In

Set
s: En = m(Elta) m(ElE) , Ed.

We claim feet uniformly on Es .

To see this
,
fix GO .

Choose an nx - N

sit. S. Then,
↑egxeEndikna Ifa(x) - flale Flakne

Since M , kny are independentat x
,

feet uniformly on Fa
-

Now find closed As &As with m/talAs] .
The

, futt uniformly on As and mIELAg]CIs.

B

↓

Lecture 2/15-
Answer to Q:

#eoen /Lusin's Theoen]

Suppose F : E-IR is finite-rated and measurable
,

where E is measurable
with m/E)cx. Then

,
FacO

,
J a closed set FgCE with

m(E) (2) = E and fe is continuous .

Remark :
↑

flf : Fg-IR is continuous" is weaker than
saying if is continuous on Fa"-

For example, f: Mcoin(IQ) us
. Flo

,Daciria)
l

not continuous continues



&of Theore 4
.3 gives that I step functions (Snl

,

with Sn + f

pointinise a . e. Note that step functions are indicator functions ofrectangles,
and so are discontinuous at their bound its.a

Then
,

for each n we can find EnEE st . SulEIEn is continuous

and m/ElEn) n
. (just remove neighborhood around rectangle bornday)

Fr Ec O
· Egorors Therem yields AgEE with mCElta) < E and

&-f uniformly on As .

Choose N St. &Enc ,
and set Fai = AslPrE

We then have m (ElF2) = 2a Love from As
,

one
from EmIELE))

and Suff uniformly On Ea and Su is continuous on Fa FueN
.

Since continuity is inherited by uniform limits
, flo is continuous .

E

Take a closed set FEEs with m/FalFs) 2.

The
,
m/ElF7 -39

.

E

End of Chapter 1 D

S2 .
Integration

S

Theory

S2 .
1 : Labesque Integral

We will build up the integral on progressively more general functions :

(i) start my simple functions

(ii) bonded measurable functions on sets of finite measure

(iii) non-negative measurable functions
(iv) measurable functions

(i) - Simple functions

Note: Single functions don't have voace representations (you &

We need to ensure that integrals are well-defied . We wa
split sets
use the

-canonicalform of simple functive.



S. a : PE
,

is in canonical form if aita; Fits,
and# ASimple functionenice disjoint.

i= 1

many distinct values,Such a form always exists
:everysir Sta S= 3

,

the-

~

S = : E

D (Integral of Simple Functions)

If Site is a simple fraction in canonical form
,

we define its

Labesque integral by S
m
S(x)dx := aim(E

Also
,
for EZR" measurable

,
we dele

still a
simple
function

-

Ssclde := f Sc . Me de
E An

#tion:To stresslabesqueintegrationmewrite ,
SSd.

Brop. 1 .
/

Lebesque integration of simple functions obeys :

(i) if siteisapetation of a sile frtin,tea
~

(ii) it s
,

Su simple and abelR the:

f(as ,
+ bs) = afs ,

+ b)s
(iii) if E

,
F disjonta measurable ands simple. then

SEurS = Ses + 9
M-

(iv) if S
, Se simple and sitsu

9 . 9 the

Ss . 1 Ssu
(v) ifs simple, the so is Isl and

ISsl = Sist
Gil it s, ,

se simple and agree a .
e
,
the

Ss:
= Su



Prof: Assume (i) first
,

and prove the rest
.

(i) : follows from (i) by writing down any representation

(ii) follows from (ii)
, as MEre = Ne + If for disjoint E

,
F

I: if 30 a
.
e , is simple, then =Lite,

whe m(t O = 9 : 20

=>Is = & aim(Ei) 10
·

Letting S = Si-S, limerit yolds the result.i : 9 : 20

in canonical from => Isl = lail TeiE : s
1s) = 1 - S

[i): proof is same as (iv)

4) Gl: assume that EFi3
; are painnish disjont, but the his could agree .

Write , ...., an for the distinct is .

SetE for i , ...,
N

Clearly
, 3 Ei3

,

an pairwise disjoint and

=Y= /-

canovicto
as desired

.

&2 : Now
, suppose me are in the general caseS::te-

You can find SE;

i
S .

t.

·
- Y-i -

· EE
; is pairwise disjoint - F

~

3j = ----

· Ei=c
Ei

25-1 possible
Eis,

since you
don't

want
all

-& complet

In fact
,
the E are of the form Ein ... En

,

when EicEEi
,
Eis]

Nor
,
if := &di, the~

E

s
j: E. Ek

·
disjo

&I = S: m=...
D

We are now done withfucking with simple frictions
,

and can treat it as a

black box in the future .
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Nowthatwe deedthe integral simple functionswe c preda
measure .

-

#: The Support fiA+ IR is

supp(f) = spt(f) = ExtA : f(x) + 03

We
say f is supported on E if f(x)=0 ExeE

Ne: A measurable=> supplf) measurable

Theorem 4
.
2

gave that ifa measurable
,
IFM

,
and supported on E

,
the

7) (4). simple st. IIIM
, suppli & E

,
and Un-f pointuse .

Iboundedness In Support come from the feet that (4m) is increasing

-Lenna1
.
2 :

Suppose filRV-IR measurable with IfIzM /McO) and supp(f)E,
where m/E c.

Then
,
for many sequence of (9) ,

simple with 14/sM
, supplen) & E

,
and Inf

pointwise a
.
e

.,
we have

· lin So, exists · the limit is independent of
the sequence

Proof: E 33O. m/E)nO allows vs to use Egonor = JAaEE measurable with
-

m(ELA2]ca and Yeef uniformly on As
.

=>IN st
. Fu

,
nzN

, 14
.
(x)-Um()) < d FxeAs Cuniformly Carchy

So
,
the properties of integrating simple functions give

supp()E

194- -S4ml : (Stn-Yml =S14n-Um) = Selle-Unl =C+I
Yul en

-

-
>S+= amMta)Ele-

S

The sequnce (SUn)EIR is Carchy
ht

it converges !

(this idea : split into two sets
,

one of small measure and one on which
you understand

For uninueness
, suppose (thin

,
(Pain are two such sequences. Then,

Un-4 + f- =0 pointwise .



Also
,

Un-Ye is supported on E
,

andMa-YulzIM
,

so it's bounded.

By the previous reasoning, him SY-4e existsi

We want to show that F= O- this limit is O
,

and then we're done.

By the some agent
,

if (7) has 3, 50 pointune are
., Egoror gives

-

Y.
- 4n

->AzEE sit. mCELAsis and 3. 50 uniformly on As

=> IN sit. FIN
,
InCAIs on Aa

=> 1931) = Sel3. =Sand +Seaul : sm/c+ 5 + 0
.

=> S3n + 0
.

D

#: The Labesque integral of any bounded measurable f supported on a set of

finite measure is

SiF(z) de
:=Im I l e

for
any sequence of(97m ,

simple with 14/5M
, supplie,

andIn-f

pointwise a
.
2.

Also
,
for any mesmable EER"

,
defin Set:Sinf . He

By the def of limits
,

our properties of integrals of simple functions apply her!

&p. 1 .3 : Properties (ii) + (vi) of Prop.
1

. I are true for integration at bounded measurable

frctions supported on sets of finite measure .

&of: Duh

AI
theorem 1

.4/Bonded Convergence Theora)

Suppose (f) are measurable
,
all bonded by the save McO

,
and Ia

supported on E with m/Elco. Then
,

if feet pointme a .
e

.,
the

f is measurable · IfEM a .
e .

f is supported on Eare.

· Slfe-fl + 0 as neo the important part !

Bak : Sifu-A to Stueff Elff = St : Sef
Under these assumptions, we can exchange limits and integels !



Proof: We already knowf is measurable. The feat IfIM and Sup()E-

a
. e . follow from test pointrose are

Fix 900 . By Egoror, JAzEE measurable with m/Eltaka and feef uniformly
an ta .

So
,

Slf-fl-Selffl = Saffl +S camlatumto
D

Note: We already knew unifie coregee -> lind = Slim. Egonor shows uniform conveyed except
on a set of small measure. Decreasing this along the sequence yields the result.

Note: If 20 are and measurable,
and St = 0

,
then A = 0 a . e.

To see this
,

set F= Mppco minef,B
Note that supp(E)[Br(o) and IF(z) and Fef an Br(o)

So
, Seaso = Sezo.

But Kel
,E
-

=> Ste - SF =0 useful twick!

=> [m(E3) = 0 (k = m(3 203) = m(835 +3) = 0

k= 1

=> E= 0 a
. e .

= f=0 a.
e . in Belo peto a

D

Riemann Integration & Lebesque Integration
We can now prove : if fi[a

,
b] + R is Riemann integrable,

the

f is measurable the Rieman and Lebesque integels agree

Rieman integable=>F bonded
.

Domain(f) = [a
,
b] = m(supply) < %

.

Also
,

one can find sequences of step functions (A·Mul St.

· (Yxx
.
(Yal are uniformly bounded

· (Unin increasing ,
(Hale decessin

,
and UnfEYh UK

· = [Riemann integrals)
[a

,b]

Since Riemem and Lebesque integration agree on step funtce
, 94: 924

.
[a

,b] [a
,
b]

Since ↑ decessing and bonded below by f
,
they converge pontuise. Scre with UK.

Let 4
,
I be the pointer limits

. Clearly
, 41ES4 .



Boarded converge =
I is

=> 2=F=Y

En24 Y

=>
= 0 = 4- 4 = 0 ac.

= Y= Hae
.

= F- f necea

=> Ye+- pointwise seD+ S = Si A
↑

=eget
(Note: the two limits agreeing is because IR is a Haresdof space

Now
,

we can define integration on y non-negative measurable function.

& For FiRt[0
,
0] measurable

,
we define its lextended) Lebesque integral by

Sinf(x) de := Sup S glad
N

where the Sup is taken over all
o neesmable with Orgef where g is bonded

and supported on a set of finite measure.

We say f is (Lebesgua) integrable if this sup is finite.

As always, if ECRV measurable
, If(x) de =Sef · Red

#p . 1 .

6 : The intege of nonnegative measurable functions obeys :

(i) if f
,g = 0

,
a

,
be 0

,
03

,

then Saftby : aff + 39g

(ii) if E
,
F disjoint and fro,

the Seef = Sef + Set
(iii) if Ofeg ,

the SteSS

(iv) if Ofeg witha integrable,
then f integrable

(v) if 20 integrable, the f(x) co are .

(vi) if Fo0 and St =O
,

then f=0 a . e.



↓

Lecture 2/22-

Bef Recall that Sti
,So .

We see Safealt sid

mescaling each graf . So
, suppose WOLOG that arbit.

() Take Fi
,g ,

zo bouded
, supportsfhith measurable

,
with fief

, g . eg = Ofitgisfg
and fitg ,

will still be bounded and on support of finite me surea

(supp(f+g .
) Esupp(f)+ supply.

) = S(fi+g) = f (f+ g) = Sf. + Sg ,
= ((f+g)

Taking the Sup over all such fig,
St + IgzS(Eg)

1) Take any 023-ffy bounded and supported on finite measure.

Consider fi=minif, 33 => Offset and F
. -3 #f bounded and supp(fi -supp(3)

and
g: = 3-f, =>

Ogg andg, bonded + support fiea

=> S3 = Sti +sil = Sti +Sg , of a
Taking the sup our 31 fig, SA+g)-Sf + Sg .

(ii) - (v) came naturally from the definition.
B

Q : We saw earlie the Bored Conregene Theorem ·

Can we remove eithe the
-

boundedness or finite support conditions?

It would be really nice if fuz0 and feet pointwise ae. .

> Steeff.
This is nottme: here are two examples :

& fr = Men
, w

=> fu + O pointise, but Ste = 1 HO-ff

&3 has a support of 10
,
0) (pushing mass to "I

② fu=u 10,] => Into poituse are
,

but St = /to= If

Efn3 is not uniformly bounded (local blomp of masuel - ↑
·

2
Theseareputtmuchthe to this theea inI S
Howeve

,
we do have the following :

(



Super important !
* Lenna /Fator's lenmal

Suppose (f)E fr20 ,
and futt pointwise are.

Then, If linit If = fliff limitfa

Pat: Take any Ozg If bounded and with support of finite mesue.

Consider
gn : = mindg,fr3 => OEgnifa

, In bounded
,

and supply - supply

Note that gutg pointise a . e ..
Bounded Convergence gives Sg. + Sg

Then
, IgnSe = Ig Stu S

Since get arbitrary, taking the sup over o yields Stehmiffn.
D

Al Collary1 .
8

It f
,
(fuln are measurable and non-negative,

fr +f pointwise are
.,

a fref
,
then Ste eff

* fut Streff lin Staff If

Howeve
,
linminfelines => luffe exists and earels If

D

* &orollary 1
.

9 : (Monotone Convergence Theorem]

If fnz0 measurable and faxf pointense ae,
,
the

St- + If.

&of: Apply Corollay 1
.
8 as fief An

.

B

* &rollary : (Exchanging Infinite Suns ur Integrals)

If an = 0 are measurable
,

the

: Sar



#f: Take Fear fr . Apply Montre Career
a

En theabou if o,
te the abou gas

->

k = 1

We can now do th general case of integration !

↓et : If fi" -C- ,
00] measurable

,
we say f is (Lebesgue) integrable

if If10 is integrable , as defined earlier. (i .
e . Sifko)

When is integrable, we define its /ebesguel integral by

St := Stt-Sf-
,

whe fie
mori for e o

f: = max[-f,20

Remarks:

① asredefiningf on a set of measure O doesn't change If
,

we allow f to be
undefined on a set of measure O.

② Sincef integrable=> ↑ finite valued are
, me can add integrable functions as the only

ambiguity in the sun is still on a set of measure 0.

& For thesereasons
,

we essentially are talking about equivale classes of functions
under furg > Fig a. e .

Prop# : The integral ofAble functions is lineer
,
additive monatoric

,
and satisfies

the Triangle inequality .

&roof: Follows from def. and non-negative case.

B

Aside: if fiRt & f= u + iv with u
,
r : /R"-IR

.

S

We say f is integrable if If =mid is integrable.
Since lul

,
Is If) and Ifzultul

,

the

↑ integrable Et u
,

U integrable

Naturally, we define

St : Su +iS



With a general integral definition
, we can go

ahead with :

Bearm1 . 13 : (Dominated Convergence)

Suppose (fuln measurable
,

and feet pointuse are.

Then
,
if I a suchintegrable g with Ifuldg ac .

Fr
, we have

9) f- f + 0 = Ste + If

Lecture2/27
Proof of dominated convergence: Set En := Ex : (x1,g(xzk] for k30

.

The
, g

.Hig are increasing non negative fas
.

So
,

if we fix 300
,

monotre

convergence gives Eka0 st Sg-Sg: 3 =Seg . Fix this 10

Conside Ef-HEBn ·

Each
one is bonded and on a set of finite measure.

Bonded convergen gies Ife-fl+ IN st FN
, -fe

↓ /ful + 1f)12g
-But for these n

. Slfe-fl =S + Sifif : a+ 2Sg + 3
Ea D

As a corollary, we prove (not in the book !) the following:

#ecen: (Detecting under the integralsa
↓

Suppose UGIR and f : UXI-IR is sit .

(i) x -> f(+,x) is integrable Ft

(ii) + itf(t
,
x) is differentiable Ex

,
wit continuous derivative

(iii) Eg integrable with leg for a . e . x t.

Then
, X1Et,x) is integrable Ft

,

and the map FCA = Sit do is

differentiable with FiH = SEC+,X)dx .

In other words, =
&f: X + E(t

,x) integrable is clear from domination .



Take (hr)EIR with he to
,

and look at

g (x) : = f(++h
,

x) - f(tx)
- E(,x)10 for + fixed .

Uk

The MUT gives ga = (Ex) - ECE) for some EECt
, th

=> 194) +g FK
. Continuity of gu+ 0 pointea

We can apply dominated convegue to get San + So = 0

But
Sg =

F(+ + ) - F(t)
-Shk

So, #tha-F(S
=> F differetiable with Ft) =S

I

Erop1. 12 :

Suppose F: /RV-IR is integrable. Then
,

Faso
, Hese are the two

things that ca

(i) JRs0 st. Sy If
no mas~ go wrong !at X

(ii) 760 st. mEc6 = Selflig
no mass accumulation

on
small sets

&af: (i) We've seen If1 . MBp(O + /f) as R+O allows monature comegue

=> SIA . /Brio + Sif = S1f · ↑Bricos +O

(ii) If1 · /Hens * If1 as New. Monitore converge implies that

7) N st
. Sift-Sift . Defens = Sift .

gifk3 a

So
,

if melcS
, Self=33 + Se(f . 191f1

N was fixed
,

so selecting S gives
a

B



S2 .
2 : The L'Space

We've seen that lebesque integrable functions from a vector space.

With the right 11 . 11
,

it forms a complete normed restor space.
-

# The vector space of Lequivalence classes of) Lebesque integrable functions f: IR"-IR

forms a normed reater space when endowed with the norm

IIfll :=Sif de

This space is called L'JITV).

Seproperties :

(i) llaf 1). = (a) IIflc FfzL'
,
acK

(ii) II f+gll = /Ifll + 11g/y Ff
, gzLl

(iii) Il flly = 0 f= 0 a .e .
c
Learni

(iv) difg) := llf-gl/ is a metic on L

This can be generalized.

&ef Let pe[l, d). The vector space of Lequivalence classes of measurable functions

fR"tR with SIfPar forms a normed reaten space when endowed with the norm

11 fllp := (S1+)
This space is called LP/IRV)

Remark : An 20 space is duel to an 29 space with to+ = /
-

Since Hilbert spaces are dual to themselves
, only 22 can be Hilbet.



#hearen: (Riesz-Fische

L'IIRY is complete (i
.
e . every larely sequence converges)

&af: Suppose (fn)
.
[L'IR") is Carchy · Conside any subseque (funk with

Spamming1) fani- Fully 22-k (Cabedoeb ewith En = 2 k)
Look at

f(x) := fu
,

() + &(fran(x) -fry(x) and
k= 1

9
:= Ifl + funfun

Clearly Ifleg ,
and

Sg = Sifn .
l + Self-ful ESI+ funiful :S

So
, g is integrable- get => Iflx a . e . F in L

Howe
,

since f is a telescoping som .

So
, l fuh) exists ac with f) asthe

pointwise limit a.2.

To upgede to funtf in L
,

note that If-funlzg FK

statinoff

a partial
sumDominated corege Yields Slf-ful + O Fentf in L

Since subsequece corregence => Sequere convege for Carchy, we are doe.
B

teate
If IfInEL'(IRU) and feet in 21

,

then I a subseque (fuils with

fr
,
-f poitrise a .e.

&of : futf in L = (fuln Carchy in L
,

so we can apply the first half of the previous

proof
.

B

Let A subset ALL'IRU) is dense if FFEL'(IRY) and 320
,

=get st. Ilf-glly c .



Theorem2 .

4 : The following subsets of L'IIRV) are dense :

(i) the simple functions thingwith
&technically , cando

sameef able
(ii) the step functions S Cont .,

(iii) <(IRV) - the continuous frctions which have compact support

Proof: WOLOG, by approximating real/imaginary parts separately suppose functions are real-valued .

-
S

Also
,

Wolo
, by splitting f = f++f and approximating separately, suppose functions are

-0.

(i) Theorem 4 .
1 Grew Chap . 1 => simple functions duse

.

(ii) All we must show is that step functions are dense in simple functions
,

and the result the
follows from(i) . So

,
all we must show is that step functions approximateMe for any measurable

E with m(E) < X
·

Theore 4.3 (iv) from Chap.1 => 7 closed rectangles /Ril with mCESUR.)e

The step In r ,

the works in the sense that IIHE-Mrilly a.

(iii) We WiS C(RV) is duse in the step frctions .
So

,
we want to approximate Mr for some

closed rectangle R of Quite measure .
For n=l

, simply
-

by linear interpolation .

-
- Y

& E

For geneal n
,

R = (a
,
b] x ..-

xCan
,

bu]
,

so take a product of the ID fis above.

B

& To prov things about 11
,

proce about a dense subset and pass the property
through a limit.

* From translational and scaling invoice of Lebesque measure
,

we can show through
simple functions that

· Spnf(x-1dx = & flat de the
IRV

· Spnflax) dr =t f(x) de Van o

IRV

· Sinf(-x) dr = Si f(x)d

If we write fult= f(x-h) for helRY
, clearly feet points as hto depends on

continuity of f
,

which isn't true FfEL'IR"). However
, fut

&
Prop .

2.5 :

If feL'Ru)
,
then fu +F in L'CIRY) as heO .

&of: Let 200 . Theore 2.(iii) => Jge(, (12) sit. Ilf-glyce .
We have

fu-f = (fn-gu)+ (n - 3) + (g-f) = Ilfn-fl Higalle + 119n-gly +1
= Ilf-gll, E



Note that llgn-glly = Sip(g(-2)-g(x))de Ferg-gll , 29 for some
h by bed.

convergence.

=> Ilfe-fll , <32
, completing the proof

D

S2 .3: Fubini's Theorem

& O When can we smap the order of integration?

② When can you compute a highe dim
. integral via separate

lowe-dim integrals?

Def. Let EER"XIR" have coordinates (x
,3)RxR2 We defin slices by

EY = EXEIR") (x, 3) +E3 and Ex := EyelR/(x]zE3
If filR"XIR"-> M

,
its slices are

fY(x) := f(x
, y) and fx(y) : = f(x,y)

N: We know slices of Bowl gets are Boel
.

However
,

it isn't true that Emeesuable

=> slices of E are Iconsider NXSO3 has measure O in 12
,

but N sucks in 1).

Note: It is not true that "f measurable=73 meesmabe"
.

However, almostevery slice
is measurable.

#theorem 3. 1 : (Fubini)

Suppose f is integrable on R
&
/

&2

.

Then
,
for are yelRa

(i) the Slice A3 is integrable an IRS

(ii) the map yet Spd.

FlAdx is integrable on
1R&

Moreover
, Sindia* = Sinde Sid,

f(x) de de

Swapping 7
, 3 gives

&de Sid.

f(x) de de = Sid. Sudfsdy dx

& As usual
,

WOLOG - is real valued
.
Let F be the set of all integrable functions

satisfying the conclusions of Frbini's there
.

We WiS LCIR*XIR
*) E/F

.

We perform a

monoture class argument.



#1 : If f
,
gef

,

the figef.

Proof: If A
,

B dnote the sets of masue O
away from which fig obey the conclusions,

-

then &a obey the conclusions away from AUB
,

and m(AUD) = 0

integrable any
from Aus
↓ Y

So
, (f+g)) = f3+ g3 = (f+g)3 is integrable for yEAUB . Similarly

,

Sig) = If +Sg = fiyff .

#2 : If (fnEF and faxf pointre as to same feL'[R4), the

fol-

&out: WOLOG
, Fr0 th by considering fo-f, . By montre convergens

Sian (Spa ,
frd) de = Spider - Sidraf

measure
O-

If integrable FytAr with mAn) = 0
,

the fr integrable UK
, Fy An := A

Montere couregue gives So ,

fr + Sat FyEA

So
, Span (Sid ,

Frd) dy - SialSia, del dy
But Spadafo e Shalfa ,

f) co Sat no fu ae. y

So
,
f3 integrable for a . e . y.

↓

hethe 36s
point in the prof, we have thatI is aloed rude file live

combinating and pointuse no othe . Iits

#3 : If E is a Gg set with finite measure
,

then MyEF .

: We build up from simple sets

· if E = Q , XQ2
,
the evey slice of E is measurable (its either 0 or a cube

Yopensuse
~ Maard and morou Sudde = IilIQ : Spa, SideTedd

or
at last

measurable

· if ECborday at some abe
,

then a .
e . Slice is empty /bounday is measur Of

and all the integrals are O Fubini holds => Heef .



· if E = finite union of cost disjoint cubes
,

we can write E as a disjoint union of

interiors and boundaries
. By the above two bullets andSe

,
MEEF.

· if E is open with frite measure
,

then There 1 .4(51 . 1) = EQ; Cortestunite
N ElSine Mr: - and MEE, gues that Def.

· if E is anyGo set at finite meone
, EPUs countable intersection of open sets.

Take any open set UFE with finite measure. The,

↑E Muru, decessing ef

Step1 : If E has measure O
,
then TEEF.

We can find a 6j-set OXE
with m(6) = 0

.3 says that to obeys Fubini . So,

Sind. (So Mo) = Spdrd.
To = m(s) = o

Sier SpdMolxsidy = Sird , Mo
,

is positive and integrates to 0
,
m(6)= 0 for me. x.

So
, ExE6x => m(Ex) = 0 for are x .

Then
,

Fae
.

SardMe = mCE = 0 and Sina.(indeMe(,3)dy)dr = I Ira,

m (Ex)du = 0

This shows Meef.

#5 :A13,
7 yeld that if E is measurable with finte measure

,
Meef.

#6 : StepIt5 gies
that all simple functions are in F.

Reall Theorem U
.1/31) stated that all

pos, integrable functions are increasing limits
of integrable functions all pos integrable fuctive are in F.

Since FfeL' , feft-f-for pos, integable fif; sel give that fef.

D

&k: Fubini's There (e
.g . swapping integuls) is always true for nonnegative measurable functions

las long as
the equality is understood that it could be 0:%)

.
This is Theorem 3.2.

The preet is esentially defie Fri= F .Magik
, Ifk3

= futf . Apply Fubini to each fr
,

and use monitore convergence.

The usefulness is as follows
. For genealf measurable:

2) check if Fell et Sivirda If an

(2) We can use Frbini on If1 since its positive !



The above remark means we can apply Frbini toHe.

-rollay3
.3 :

Suppose E@R
&

xR
&

is measurable. Then,

(i) a .
c . Slice E3

, Ex is measurable

(ii) the map yHtm(EY) is a measurable function
,

and

m (E) = Sinda m /E3) dy

Note: 1 In general, not every slice is measurable !

e.g. NXEOS LIT has measure O
,

but the she at yo is N.

② If EFEIXEz wher E
,
E,

Ez measurable
,

then m(ES) = m(E) for yeEr
and so m(E) = SmIE) dy = mCEm(E

In fact
,

E
,

En measurable=> E
,xE measurable by simple coverings by abes

(see Prop . 3 .
5-3. 6)

This discussion also proves :

(i) if fiREIR is measurable
,
the F:RIR-IR defied by F(x, g) = f(x)

is also measurable. This is because

& a3 = [fcabXIR" => SEcab measurable
-

measurable

(ii) if f:RV-IR is measurable
,
then F(x, g) = flxg) is measurable or M

Lovollay 3
. 8

·Suppose fit-10, 0] and set A = E(x
,g)EMXR : 0

. 13: f(x) 3 -
Then

,

(i) f is measurable #T A is measurable

(ii) if it's measurable
,
then St = m(1)

Dof:

(i) (=) Let F(x
,g := y-f(x) . Then

,
f measurable - measurable ·

A= 3y20315F203 => A measurable
-

measurable



(E) If A is measurable
,
the Corollary 3 .3 give that X 1+ m(Ax)

is measurable
,
but Ax = [0

,
f(x)] => m(Ax) = f(x)

.

So
,
- suds + m(Ax)

and f is this measurable.

(ii) Fubini gives

~ (A) = Smd-St
D

End of Chapter 2

& 3 : Integration & Differentiation

There are two natural questions:

& If fi[a
,
b) - IR is integrable, then with

F(x) : = f f(t)dz
Is F differentiable

,
and if so when is Fif lae ?

② If fila
,
3] EIR

,

what conditions ensure that exists are
,

and moreover

9 f (t)dz = f(b) -f(a)]

Note that the Center-Lebesque fo hadf= O ae
,

but fli-floil.

From Rieman integration,
we know thatD is true when f is continous and

② is true when fis C'

5) 3.1 : Differentiation of the Integral
t

Look at the quotient ↓
#- F() =S -St=fh

Writing I= [x,
xth]

,
we seek

=1#S f(x)de
This leads us to a more general setup . In general, in IRY

,
we can ask whether

load him ↓ Seflsde fixor
,

more m(E)->0 m(E)
generally Emeral ·

ball mundes .
Or,

teleE,

whichisolate

clorb not tre. take E is some rader

a whole segment .



So, the question is only interesting when E isolates a in its limit.

& Suppose feL'(IV) The Hardy-Littlewood maximal function off
,

denoted f*, is

↑P(x)
=SpSlfl - (the

worst average you
can get

you'd hope& is
mather

#heren: If feL'lie)
,

the if
we

ignore

He
s" andepler

this

chebyster
.

So,

(i) f* > measurable (ii) f* - a .e.
(iii) m(d* <3) :1 . 3.

& A with
f

,

it

a

week
L

B

estimate.

Pf:

(i) < **&3 is open :

if xeEf*c
,
f*x = - ball B at. xB and Selfldy

Suppose WOLOG that is open .
Then

, 79cO sit. Be(-B.
It zeBe(t) , the zeB = f

*

(a)-thSpif a

(ii) This follows from (iii)
.

(f+ = 0323f*38az0 = m(3 f* =03)1 Ifl
,.

3" Faso

=> m(3f*=3) = 0
.

(iii) Let +e 3f**3
.

The, as before
,
I open

ball By sit . By anda
We want logic along the lives that

Bis
overlap, so we

need

- a couring
here to del

(f+3= B
+ = m((f*) = Gm(Bx) = t [S

with His

x+ 4 f*]

~
(Viteli Covering Leave

, Elevate

# B : EB
, , .

. .,
Br3 is a finite collection of open balls in RY

,

then I disjoint
subcollection Bi

, , ,
. .

., Bir EB with

m (B :) 3 [m(Bi))
j=

Proofof lenma: -

----

..-
S 3x

over apping ga).
-Entitio

:Cadena BB spa W Bibi
· .
-



Far a ball B
,

withB for the concentre ball with 3 times the radive.

Take Bi to be the ball in B of largest radius. Set

B : = 3B : BeB and B1Bi 3
The

,
BeB = BEBi· Now

,
the

away B from B and conside BIB
Inductively repeat this: it terminates in finite time because each ituation removes one.

Let Bi
, . . ...

Bin be the chosen balls at each stage .
Since each BAB was throw

k -

away at some point, Jj st. BE =

UBE Bis
BeB

=> m(rB)= (= Bm
j= 1 j = 1

-
Note that for my compact K* Ch

, KEUB B :

Apply theheave to this collection of balls. The

=> m(k)em(B)(i)
j=

As Ka5f*3 is arbitury compact set
,
take the sup one all such K to

get
(iii).

Theorem 1.3 : (Lebesgue Diffectation Theorem

If feL'SIRY
,

the hi

~ B) Sflydy = f( fora.

BGX

& Fix 0. Conside

Es : = S ↓ Sfld-
BEX

If we can show m(Ec) = 0
,

we are done.

# so
.

We frow (Theorem 3
.
4 of S2) that -g continous with Ilf-gly.

Since
a continuous

,
we know lin

m (d)+0 Sg = g() for
B ball

Now, controlled by
sup

BrX gals to O
since

& continous->g)* -

mi (pf -f(x)= (p(f-g) + (B)(g -S() + g(x) - f(x)

=> husuff-f(x) (f-g*
(x + 0 + Ifxlm(B) = 0

BeX



Here
,

En = are of (f-g)*(x) > & or If(x)-g(x)k a

=> ELE FaUG whe Fri= E-g)*3 and 6 := Elfugla ?

We have :

-m(Fc)- gl , zo by Maximal function estimate (iii),

- m16c) : fill, by Chebyshe

=> m(Ec)=(+) S

2

Taking St0
, we get m(Ex) = 0

.

B

Latue3/22-

&emerks: 0 f* (x) = If(x)) a . c .

② fEL'IIRt is a global property ,
but Lebesgue differtation is local .

In fact
,

we only need to assuref is locally integrable
For example,

f(x) : =x clearly admits the Labesque Differetation
There

,

but it is not EC'
.

& A function f:RV-IR is locally integrable if FKEIRV compact
,

Sulfo
We say that felroc(RY) for such f.

Consequences

⑮Def. If EZIR" is measurable
, XEIR" is a Lebesgur point of E if

lim
m (B) + 0 MB)-

B ball

B5x

Consider applying LDT with f:= NEELloc(IRL), we get

&vollory 1
.

5 : If ECIRY is measurable,
the

(i) a .e .
+E is a Lobesque point of E

(ii) a .e . XKE is not a Lebesque point of E



Remark: His isn't that important, but it just says measurable

sets as nice and don't lose mass in
many places

② De IF fellRY) ,
the Lebesque set of f is all XEIR" st .

↳ strengtcan,
(i) If(x)k - (ii)li Sp / f() - f(x)d = 0

BFX

Lovollay1
.

6 : (Impened LDT)

If FeLe(Y) , then a .e . xeIT is in the Lebesque set of F .

* For each rea
,
if we apply LDT to If(x)--leL loc

,

we get JEr with measure O and

to fly-uldy = If- E
Bball

BGX

Set Ei= EaE = uIE = 0
. For aso.

If XEE and If(CO) (this happens a.c . since fellers)
,
the

&resit. (f(x)-rIca

=> Sp(fla)-f(x))dy = ntaSalf()-ridy+de

-niSp(f(s)-rIdy + E

Taking linsup,

limsup

· a

mid(p(f(a) - f(x))dy = (f(x) - 1) + aca
m(B) + 0

B =x

Taking 2 +O (and noting that linsup-limit since it's nonnegative and linsup = 0),
He result holds

.

B

Suce Lebesque points have better averaging properting the usual points, we can

use them to extend the seaveces of allowed sets.

(We want to exclude skinny rectangles = I and the like)

Def:
-

A collection of measurable sets SUc3a shrinks regularly to xelRY
low has bounded eccentricity at x) if

:7 O sit . Fla
,

I a ball Ba with reBa and 6· X

UaEBc and m (Uc) = cm(Bc) me



Remark: Scobess have bad. eccentricity
,
but in general Greetangles' don't.

Corollary 1 .
7 :

Suppose feLe(IRT) .

Then
,
if Saba shrinks regularly to x and x is a

Lebesque point off, the him ↓

/do muc Suafydy=

& Intra Sunfle)-f(x)dy) = iS(fly-fildy + 0
as + was a

Lobesgue point of f.

B

&

wark : Because are. X is in the Labesque set of fellow
,

often if we wat to

prove something holds are. we assure this are Lebesque points.

& 3 .
2 - Approximations to the Identify

& An approximation to the identity K is a family functions EKsEsco
from IRV-IR (typically

,
though not always nonnegative) that obey

(integrate to D (i) Sprks = 1 FS

(blows up as 50) (ii) Kg(x) : En USCO
,

ExelRY
,

and a Exed constant A

Ideas at ) (iii) Kg(x) = AS . Final #Sco
,

Exe

1

arces

↓ we 1

Picture:

#-
&

~

The language for such objects cames from the fact (which we will prove
that ** Kg cavages in various ways to as S + 0

.

~
probabili desig

(f* kj)(x) = f f(x - j)ko(z)dy = Fan(f(x-a)] + f(x)
18

as Sto ,
1Sa = ob + /

N: FrsO
,

the deay condition gives that mass concentrates at O via

Salks/d ASSe-d = Es -o as so



can
be aclived

Examples: by normalizing

① IfI is non-negative
,

bounded an 12
,

with supple)eB and Spr ,
the

Ks(x) : = t4(E) is an approx to the identity.

~ ,
,

, ...

② If
you take Y(X=)

for XIR
,
the the EKsEso

generatel from this an called the Poisson Kernel of the half-plane (ky(x)=)
(This is hom you solve the Laplacian

-
Ix1

③ If
you take Y(X) =+ T

for XEIRY
,
the the EKs3so(m)2

generated from this are called the heat Kernel

(This is how you solve the heat equation

Theorem2 .
1 :

If (kg]sso is an approximation to the identity and feL'LIRY
,

then

(f+ ks)(x) + f(x) as S + 0

for very Lebesque point of f (im particula,
E * Kg + & pointwise are .)

Note thatsive convolution is a sort of weighted average and Lubesque
points acrase nicely

,
this might be expected.

Rof: We have independent
of y

(pks)(x) - f(x) = Sf(x -j)ks(y)dy - SipfEks(y) dy
: Sp (f(x -3) - f(x)]ky(y) dy split Elsk3it

a

=> ((pks)(x) - f(x)) = Spr(f(x -y) - f(x)) . 1ks(ildy,
= S1f(x-y)-F()) . Ikslide+/If klly18 2Sclylz2k

+

S

-thisD



constantLookinatDouMihak)
:

Y

S( f(x- z) -f(x))dy

Since X is a Lebesgue point, this to as Sto.

Lecture3127-

Looking at Q
,

If) ySite-el= o
2kScly/c2

** S *lyk2kS

-ES fold

Defre &( :S fix-feldy. Our boad for all of ② isthe

②A2 (
As was the case in the estimate for D

,
we know $() + 0 as neo.

Furtherne
,

OC) is continuous over I
.

Also
, DSE/ + Ifxd :+Il

So
,

O is bonded
, say by soe / = B

.

For 900
, choose N St.
I

. Now clean 500 sufficiently well st. O(K) youa
fur kcN.

=> A2()A
= Azv(1 +B)E

Taking StO
,

tO as StO .

D

One can also proce L'carragee.

Theor2.3 :

Suppose FEL'(RT) and SkyBs is an approximation to the identity. The,

(i) FSco
,

E* kgeL'CIRY)
(ii) ll* kg)- flly +O as 6 t0 (ie

.
f*k + f 4)

Rat: on the next PSET i B



3. 3 .3 - Differentiability of Functions

We went to find broad conditions on F that ensure F(b)-Fla)= C de

/Minter says this might be the hardest thing we do in the coursel.

Some issues we expect :

·

even if F is continuou
,
I' may

not exist

· F' may exist a .e
.,

butF' may
not be integrable

To characterize possible F's
,

we went to characterize frective arising as indefinite integels.
We start by looking at functions of bounded variation (which is related to lengths ofcurve

and other geonetic things)

* Let WEIR be a curre
, parametrized by zCf) = (x(

,y(t) where x and
y

are

continuous .
We sayC is rectifiable if

supremem
over

· O

-·L(2) : = sup() · polygonal approximating

to the curve

1 11b
where the supremem is take over all partitions of the domain z : [a

,
b]-1

give by a = toct, ... - = b
.

We call 2/2) the length of U.

Thinking about rectifiability leads us to

_
alness

fine

# Suppose F : [a
,
b] + & EIR?

.

Consider a parttim (: = Eartoct, c ... tr = 33 of [a
.
b]

.

~
The variation of F writ . 1 is -Fl

We say F is of bonded variation (written FEBU((a,b])) if

Sup IF(t;) - F(ti-))0
partitions ( j= 1

Note: · whe talking about rectifiability at cures
,

we also assure continuity.-

For variation we don't

· If i is a parttia which refines 13 (contains more points)
,

the

variation w.

r
i
t

. - variation writ. (



Defi We say Het F : [c
,
3] + IR is

·

incrusing if x(y = F(x) = F()
· strictly increasing if

xy = F(x) < Fly)

Examples
-

& If F is incessing and bonded
,

then it is at bonded narration as

& (F(j) - F(tjn)) = G(F(t) - F(tj-))) = =(b) - F()

② If F is Lipschitz
,

then F is of bonded variation
.
In particular, if

F is differentiable everywhere with borded derivative,
the F is Lipschitz

-

=> boudsd variation

& Let F: Ca
,
b] - 1 be a fratin .

The
,
the total variation of Fan [a

,
x] with

xe(a
,
b) is

Tr (ax) : = partPaF(ti) - F(ti ,)) + 0

The positive variation is

Sup↑ (a
,x) : =

paration of &(F(t;) - F(tj-)) = 0

[a
,

x](+)
* Ei :

F(t)F(+3

The negative variation is

N (a
,
) : =pa ItOn

Lerna3 .
2 :

Suppose FEBV([a
,

b))
.
The

,
Exe[a, b],

definitions

-
outines

,

Sin
to

F(x) - F(a) = Pf(a,x) - Nf(a,x) and Te (a,
x) = Pf(a, x) + Nr(a, x) Her but

we
car

-

unde
for

pative

&af: Fix &30 . Using the definitives of Pf
, Ny as suprema,

one can find a partitem "
,

i
not

a : toct,
... +n = b sit.

(Pf(a,
x) - [(f(i) - F(t= i))) and (NF- - (f(+j) - F(tj-)))a

Now
, F(x-F(a)= (F(ti) -F(ii) = (F()) - F(ti)) -

- (F()) - F(t
,-1)) for all partitions

=> IF(x)-F(a)-(PF-NF)/ < 23
· Taking & to

,
the first result holds

.

For the second part, note that for any partition of [a, x],

& IF(t;) -F(tii)) = & (f(t)) - F(ti)) + 2 - (f(t)) - F(+, ,) = Pa + NE
1- )

(t)

Taking the supremom over all partitions, TEEPF+ Nf
.

Symmetrially
,

& (F(t)) - F(ti -)) + 2 - (F(tj) - F(t
, ,) = [ (F(j) - F(tj-1) ITE far all partitions

(t)
1- ) j

Using anoth gragment as abou
, PetNetLESTEPetNetTE .

The claim follows
y



This gives :

Ihear 3.3:

Let F : [a
,
33 + IR. The,

F is of bonded vaction E F= Fi-fc
,

where f
,

and fo are

increasing bounded functions

&f: (E) fifntBU([ab3) by Example 1
.

The result follows.

(t)) Set f
,
(x) : = Pf(a,

x) + F(a)
=> fi

, te bonded anch fi
,
fe insreeing since

fz(x) :=N
=

(a
,
x)

since FEBV([a
,
b]) Pf

,
No necessing

By Lamme 3
:
2
,

F= F
,-fe B

↓tre 3129-

&marks : · can get equivalet result for F: [a
,
b) -> & or IT by looking comparatuse

·

can also show that F continuous -> Trla, ) is continuous

A key result is then: (this is super deper important in solving PDEs
,

Soboler spaces, etcl
Klipschitz = BV = diffable is an important foundation for geometric measure theory

* Theorem 3
.
4 :

If F : [a
,
b] +IR is of bounded variation

,
then F is differentiable a.e.

#of: First
, assure that F is continuous as well

.

Anna3.
5: /Rising Sun Lemma

Suppose 6 : REM is continuous .
Set E:= Ex : 6(xthc 6(x) for some 2003.

If EF0
,

then E is Open in IR (as 6 is continuous)
,

and so

Elanba) is a conteste vio of dejoint ope interThe
,
for any

bonded (ax
,
bal we have Glan) = 6(b)

&ouf . Look at some Cap,bu)
.

We know an
,byCE since the intervals are not disjoint.

So
,
Glaxs6(ba)

. Suppose BWOC that Glan) > 6(b)
. By IVT

, 7 (an
,
bul

with 6(c) = Glan) + 61bx)
.

Choose c to be maximal with this property (something maxical

2

is a limit point, which much beabe but can't be be because 6(c)colbal).
But CEEE Jds with 6(d)c6(c)

.

But bakE, so 61b) 6) everything bigger then bab
.

But G(d > 6(b) = dabr
.

But the daba and G(d) > G(d > G(bu)
.

So
,

IUT

give that Jee(d
, ba) with Gle) = G(c)

.
But exa and a was selected maximally

i



The above proot also gives

Clay3 .6 :

Suppose now that 6 : %
,

b) + IR
.

The
,

if are could be a for one of the
intervals

,
in which case all we know is that 6(ax61ba)

Under the assumption that F is continuous
,

defie (1uF)(x):=-F(x)

Consider the 4 Dini numbers :

D
+

F(x) : = linsup (nF)(x) D F(x) := Mininf DuF)htO

DF(x) : = Rus (Auf D
_

F(x) := Minist (Al
Clearly

, DrIDT and DID as limits limsup.
We dan :

(i) D+ F(x) < are

(ii) D+ F(x) [D
_

F(x) for a . e . x

If we have these we can conclude the proof
,

since (ii) with -F(-x) give DF(x = D
+

F(x)
,

from which we could get D** D
_
=D2D+= D+

<x = DED+= D= D => differentiability a.e.

(ii) (ii)

Recall that F is continuous · Suppor WOLOG that it is also bounded and increasing-
because of Theorem 3

.
3.

can always do this whe

EBV

Fix 50 and consider Ev := EDTF > 23. .
One can show (on a PSET eventually

that Er is measurable. Now apply the Rising Sun Leave to G(x) = F(x)-UX.

The condition 6(xth)cG(x) E F(xth)-F(x)cUn -Fl
, W

So
, Er Plan ,

bal disjont open intervals whe Glan26(b) K

=> F(bk)- F(ax) = Ulbr-an) .
So

, monotonicity of measure yields
Sie

f increasing
and

we
we

summing
over sequate

of the
range

m(Er) = Embar, bu) = -( -F()) = t (F(x) - F(a)

Taking UtO
,

F bonded give m(Er) + o => [Df =03 Er Fr = DTF20 ae.

So
, claim (i) is proven.

For (ii) : fix R
,
rcO sit. Ron and consider

Er
,
~

= E = Ex : D+F(x)>Rad D
-

F(x) ]

If we can show m(Er
,) = 0 F Raw

, we can take a win over the nationals to cover the

converse of claim (ii)
,

and we are done
. Suppose Bloc that m(E) < 0.

First
, choose an open set UFE with m(U) < m(E) · I lit's clearly measurable).



Lecture4/3-
↓ oper in IR = U = V In disjoint open intervals

Applying the Rising Sun Laura to G(x) : = - F(x) +-(x) on In,
after reflecting back we get Plan,

ba) In oper disjoint
7

.
with F(b) - Flan) r(bx-ak

Now apply the Rising Sre Leave again to 6(x) : = F(x) - Rx on (ap
,
bu).

We get Vla, x)) Elanbu) st. F(bn-Flauj) = R(b; -and

F incusing FFSetU-
:Flb-an

But Er
.
-1 In Un by don . of ER and the Rising Sun Lemma.

Then
, m(En-) = [m(Err1In) = [m(Un) = Em(In)

M

=m(k) F .Bm(Er) = m(Ert
*

So
,
mIERr must Be 0

.

This
proces (ii)

,
and here the result

holds for continuous
,

bounded
, increasing functions-

D

We can now prove that F (which exists ac) is an L function :

Corollary 3.
7 :

I F is increasing ,
continuous

,

then F exists a . e
.,
F is nonnegative

F' is measurable
,

and

SF()d = F(b) - F(a)

If F bonded
,

the FEL'(a
,
b])

.

F increasing

#of: Consider the sequence of functions G(x))-F(x) 2"O
T

We know GutF pointwise ac. F nonnegative a
.
e . and measurable

Since G. :O
,

Fator's Lenna gives

gir limit
a



We compute 96= F(xd-d

a
- -

- F(b)
-

+ Fli

by continuity of F

=> luf Gn: G = (b)
B

Rek: The Cantor Lebesgue fretion FC0
,

13 + [0
, 1) was continuous

,

bounded
, increasing,

and with F(0)= 0
, F(l) = 1

.
But

,
also F=0 a . e.

=> IF # F(b)-F(a) .

So
, Corollary 3. 7 can't be equality without

more assumptions.

AbsoluteContinuity

For fel'((ab])
,

consider F(x) : Sf(tidt .

Since Fell faso 7800 st . meas = Self-e
=> (x -y(26 = (F(x) - F(y)) = 19 f(dt) = 2 = f uniformly continuous

In feat
, if lab,Grist andire

it,a

j = 1 j = 1

This is a strange continuity condition known as absolute continuity.

De F:[a
,
b] -R is absolutely continuous if Faso

,
7330 sit .

wherever

bGu
are disjointis (3)

the

Remarks & integrals of L'functions are absolutely continuous--

② absolute continuity => uniform continuity

③ absolute continuity on [a
,
b) = EBV((a, b])

In feet
,
totel/posted variation is also absolutely continuous



The main result is :

Theore 3
.

8 :

absatuso
↓

If F is absolutely continuous or Sab] and FEO are
,

then F is constant.

&of: Let E= EX : F(x) exists and FTA =03; by assruption,
MIE) : ba

.

Fix aso .
If XeE

,
we know=

For all 330, 7 an interval (ax
,
bx) =I containing + with

(by-ax) and (F(by) - F(ax)) + s(bx - ax)

We would like to sur these up and get variation[[(b-a)
,

but

there could be overlaps ! However
,

the intervals can be as small

as we like (given by 3), so we can use the finite version

of the Vitali Covering Lenna :

Leona3 .
9 : /Vitali Covering Lemma

Suppose E is a set of finite measure. Suppose
& is a Vitali cover (i . e. ExeE and Vaso,

JBzB ball w/ xEB and m (B) ca).

Then
, USO I finitely many bells B

, , . . .,
Be which

S

N
are disjoint and &. m(Bi) < m(E) - S Calmost cover El

&roof of Lemma : Take
an SculEce

<
Find a compact set EEE with

m (E) = 8. Compactress implies ECMUiteBi Applying our old covering lenna
,

(the 3x radius one

me find disjoint B
,..., Br

,

sit
. 32m(D)2mEl 18

.

(B) InlE) - S
i= 1

If Em(Bism(El-S,
we are dane

.
Otherwise,

ir

In this case
, consideE : m-Tell

in B which still form a Vitali core .
So

,
we

may repeat this agment to E2
,

and so forth

It we repeat this inductively,
at each stage we throw away measure :

/

After k steps
,

throw any
K&V ; as soon as K-me-S ,

we are done.

B

The interely ElaxblEreE forms a
Vitali corr of E Fix Sco

&

and apply the lemma: we get finely many disjoint interels

Ii = (ai
, bil for i = /, ..,

N sit.

· (bi-ai) = (b - c) - S · IF(bil- Flai)) = E(bi-ai)

=> (F(bi) -F(ai))(bi-c)Mb-c



But now
,
[a

,
b)) E Caisbil is a finite unive of disjoint interes [25,Ps)

whose total length is <8
.Choosing & appropriately ,

absolute continuity gives

(F(B) - F(a;)) + a

But now (f(*) -FG)) = & (F(b:) - F(ai)) + /F(B) - F(x;)) = a(b -a) + 2 F(a)= F(0)
i=1 j = 1

We can repeat this logic for all points. D

&mark: Here
,
Bi need not lie in E

.
Howeve

, one can proce
that

m (E) Bi) < 2 S

Give this
,

we can prove

* Theorem 3
.

11 : /Fundanetel There of Calculus?)

Suppose F is absolutely continuous an Ca
,
b]. Then,

(i) F' exists a
.a . (ii) F'eLl (iii) F(x) - F(a) = f F (4)d +

Conversely
,
if FeL'((a

,
b)) then J an absolutely continuous

function F with FEF' (in facts we can take F(x) = Sa fltd)

of: We have aled seen (i) and (ii)
. Conside 6(x) : S ECtdt.

We know G is absolutely continuous
,

and moreover that

6 = F a . e . by Lebesgun differentiation.

So, 6-F is absolutely continuous and (G-F) = 0 a. .e ..

By Theorem 3
.
8

,
6-F= constant => G = FrO= F(a) + 2 = C = -F(a)

=>S F ()dt = f(x) - F(a)

D

Diffectiability of Jump Functions

So for we have show that actious increasing
,

bonded frctions
are differentiable a.e

..
We wat to remove the continuity assumption.

Note that an increasing ,
bounded F has at most countably many discontinites

since every jump has a distinct national in the y-value · Write Sin for them.

If F has a discontivity at te
,

set F(xt : linFly) and Fixt = lin Fly
The jup is then an = Flan)-Flent .

y+ Xn

We also have F(x) = F(xct + Ende for some OneCo, B
. Define

jek: * >xn

G X(XnS
En + = Xn



The jump fruction of f is then JF(x) :=Jul as a parea as a sequence

series of partial Sets
↓ ↓

F bonded = deF(b)-Fle)20 dis converges absolute and uniformly

As continuity is pressured by uniform limits and jak) continuous away from An,

then J is continuous on [a
,b]\SxB

The man lenne is that F-JF isentous and increasing .
It's also bounded.

So
,

we know F-JF is differntiable a. e ..
To short is differentiable are

,
it suffices

to show Je is differntiable a.e.

If F has finitely many discontinuities this is obvious. For the infinite case
, we

use a sort of covering lenna where since Sanab-a ,
most ans will be

small and me can reduce to the finite case.

~

Remark : In measure there
, MC0 W(A) = 0 =M(A)=0

for a give

~ and any
fel, we onea

measure

I a sense
,
His is our chercteration of absolute continity

/
in ID

,
whe F(b) =S Fdx + C

So
, in 1D we have F abs, cant.

Et F(b)-Fle) abs
,

cat writ .

Lobesgue measure



SU : Hilbert Spaces
Millet

spaces are ancial because

· they are generalizations of finite-dim spaces to infinite-dim

maintaining soe rich structure such as Alganality and eagles

they allow for the framework of analysis to be applied
(e .g .

infinite suns)

&
A Hilbert space I or (H

,

6· 3) is a complete complex
inner product Space .

It has the following properties :

& It is a rector space over $(o-IR)

② (, 7 : 7x H + C is an inne product :

·Fi is a live functional on I feel get

· (f
,
f) O with equality iff F=

Write IIfI :=f) for the corresponding norm
.

③ It is complete writ. He metric d(f
,g) := Ilf-gll

&marks : 0 One can prove
that Carchy . Schwartz inequality holds :

(f
,
g)) = Il fll . Ilg11

② C . S. = IIfigl I/fll + 11g/ => 11 . /I is indeed a norm

③ we will only look atseparable I live
, has a countable dase subset)

Examp les
-
&KV is a Hilbert space with the usual ((z

, . . . .
7)

, (v, . .

.,
wn)) = Sziwi

Same withIRV

② [ (E) : = Ef meas
, supported an E

, Self >Pd 203
with (Egh : Sefg ,

EEI with MEL so

③ e(N) := Slaine : Gree
,

a
S

with ((a.)
,
(bn)) = & an e



Q La non-separable Tt) countable som !

(In = 3 fc + & St. EfEOS is countable and If <03xEIR

(fs): flgE ,

l:(

Constructing a Hilbet Space

& A senivince product is a relation 2 ... ) with the properties

(i) Eg,
Fi (figh is line (ii) [fig) : Taf) (iii) (f

,
f) : C

This is the sae as an inner product except (f
,
fi = 0 # f= 0

Li
.e . degeneracy)

We can can construct a Hilbert space from such a relation as follows :

⑦ Start with a nector space V and a

Semi-inne product (i)

② Dele N := Efer : <f
,
f) =03

.

The
,
NEV is a lineer subspace

& Defin Ho := V/N : equivalence classes of V under forg FageN
Note that we can deve an inner product or to by

(f
,gly : = (f+N

, s+ N) = (f+N
,
f+N) = 0 E fen

[f) = 0

So
, Ho satisfes D and Q .

Itnight not be complete however
-

We call such an to a pre-Hilbut space .

- an example of a pre-Hilbert
Ho-22

① Mater Ho complete . space
is the space functions

of Riemann
integrable

the veral

on
2.) with

#op .
2

.
7: (make it complete) inner

product

Gin (Ho
,
<) a pre-Hilbert space,

we ca find a

Hilbet space (7
, 4)) s i

t.

(i) Ho - H
(ii) (f

,g) (f
,go if figetto

(iii)Ho is deea in I

Furtheroe
,
this exterio is unine up to isomorphism.

We call this If the completion ofCo.

*roof" : Consider all Carchy Seques [fr3
.

= To· Define on equivale relation

Ef3rEfi3
.
Effa-fi + 0

.

LetIf be the cavir. classes .

D



Lecture3/17-
Last time

, we saw pre-tilbet spaces and orthogonality .

#h : From the previous proof, we saw Bessel's Inequality :

· 3e .3. atormal -> Bessels ineurality 11/12 GKf, eR

· Se
. In othora besis of Pargeval's identity 1If/ = [Kf, e : ) 12

Theaven2
.
4-

Every separable Hilbert space It has a countable outhonoral basis.

Roof:# separable => J a countable subset Sha that is dense
=>Span (EhaBu) is dense in 14

WOLOG assue h
, +O .

The
, inductively form a new subset Ehabe

as follows :

· h
,

= h,
· if hm span (3h, ..., ha3) ,

include has as the next element in Shade

Note that span/hihu) : spen(Shaba) since the elects we were theory
away we shads in the spar . Also

,
by construction

, Shade is linearly
independent. Running Gren-Schmidt Literatively normalize and subtract parallel comports),
we get ortorovel Efa3a which are outonmal with

Span (f).) = spa(3) = Span (f3n) = I

↑ D

heitsaying ever
ite sum

infr-
an

of fis

Remark: IfIt has a finite ONB
,

we sayI is finite-dimensional
.

Otherse,

it is infinite-dimensional
.

Unitary Mappings

& Weall U : F
,
+ He between two Hilbet spaces a unitary mapping if

(i) U is line (ii) U is bijective (iii) /IUCAIIn+= 11 Ely
,

Yet
,

In other words
,

U
preserves inner products ·



&marks : Do U unitery o hi is line bijection and

1) u
+ (Allyy

,

= ((u(u+ (F))) yy = 11f/l
=

F fett

=>i writing
and there

vifa

② We get that U is 1-Lipschitz" land an isonety) since (i) and (iii) mob

1) u (A -u(g) ((
++

= 114(f-g) (ly
,

= 11 f-g)/1+,

③Mic t
(f6) = t [11f+G11+ 11F- G(1 + >(116 - : F(r+ 116+ : =11)]

So, the inner product is induced by the worm this happens if 11.

satisfies Parallelogram LawI
1) F+ Gr + 11F -G11 = 2 (IIFIR+ 11611)&

# Hilbut spaces 1..
He are unitarily equivalent or unitarily isomorphic if

H
,= a unitey map U : + 72 · Clearly ,

this is an equivalence relation.

In fact
,

all separable Hillet spaces which are infinite-dimensional are untarily

equivalet to 1"(N).

&ovollay 2 .
5

Mytheinfinite disinea
Hilbert speces are unitarily equivalent

Proof: Fix #
,,
He such Hilbet spaces .

Pick ONBs Gen - H
,, EFBE The

-

XIf Felt
,

the f.gen ·

Defin U:,H by U(f)=Can
By the previous result

,
U is a bijection . Clearly

,
U is liner

. Also,

Ilui = I full =

are
= Ille

,

-
Parseval 1

In
a sense

,
we map balt be and linearly extend.



& U .U-Closed Subspaces and Orthogonal Projections

D A (lineat subspace S & H is a subset which itself is a reatur space .

(i . e . FigeS,
a

,Bec = <faBgeS)

Ex
① lives through origin in I

③Seventually always 0 Sequences' & 12(N)
& places through origin in I

& A closed subspace Se1+ is a subspace which is closed.

Li
. e . (fukES and futfeH = feS)

Every finite-dimerical subspace is closed
,

but not always for

inflte -dim (consider example ⑤ with fe = (1 , t
, ...,

to
,

0
, ...
) ES

,

but fu+ (1
, t

.
...
) eS)

Also
, every closed subspace of a Hilbert space is also a Hilbet space

with the induced inner product. Separability is also inherited (see pset 7)

The crucial property ofclosed subspaces is that they have (nearest-point
projection maps.

LemmaU .
1 : (Existence of orthogonal projection)

Let S be a closed subspace of a Hilbert space H.
-

Then for any felt :

A S

there is a closest

point ins
(i) EgoeS sit

.infllf-gll
= Ilf-yl ·

go

f-go is ortul (ii) UgES ,
f-go /g ,

i

. e . (f-90, 9) : 0

to S
,

i

. e . f-gotS

H

Further,go iseachtoff to S

We can defie the projection map Ps : # + S by Ps(f) : = go.

Proof : (i) : Set di= infllf-g11 . By definition of inf
,

we can find lgu). ES s . t.

geS
Ilf-g.

ll + d

We want to show 192)- is a Carchy sequence
to show that it converses.

The parallelogram law says :Kla+bIR + 11a-bl = 2 [lall" + 113112]



Applying this with a = fign
, befoge gives

1) If- Can+still + 11gn-gu/l" = 2 [IIf-sell + 1If-ge/12]
-

=UIIf- 19-g]-119-ge~Es in

249
So

, 19.3
. Cardy => gutge for some gett since It is complete.

S closed greats that 9xES . By continuity of the nor
, Ilf-gall-Ilf-gx1l

However
, by construction, Ilf-gull+ &

. Uniqueness of limits gives IIf-gell = d
.

(ii) &E nonzero
,

consider & - Eg for geS.
As goeges, we know

1)f- (gx - Eg))))infllf-hll = llf-ge = llf-g +Egllf-g

llf-ge+ allgI + 2 aRe(f-

ex, g) = Elg(+ zaRe(f-gx , g) = 0

It Re(f-gx
,g) were positive,

take a very small and negative ;

if Re(f-3x, 9) were regativ,
take a very small and positio;

either was we can get a contradiation
.

So
,

inorder for this to

hold Va
,

Re (f-Ex,g) = 0
.

Repeat this augment with gering to get In < f-gx , g) = 0

So
,
(f-9+,9) = 0

.

↑-or uniqueness , suppose we have greeS with Ilf-gell : IIf-gell = &
.

We would then have 9-ES -ge + 9-5

By Pythagores
, =Il(f+-=g + llgp-

=>119x-gall = O
da

=>Gr=

R

B

De: For SET subspace, defie its orthogonal complement of

by St := Sect : (f
,g) = 0 Ugess

Notes: · St i always a subspace
in

feat ,
its

·St is IIgll-Lipschitz
!

Carchy-Salways closed leve if iia
!

gives (ig) is continuous &gett, since

fu + f = ((fn
, g) - (f

, g)) = ((f--f
, g)) = 1 fl - 11g/l

-> O

=> K(fng) - (f
, g)) + 0 . So

, (fuln & St and futf
,

the EgeS
(f

,g) == fest

· S1St = 503

fesust = (f
,
f) = 0 = llfle=0 = f= 0



&hig
is a closed stospect of H Hilbut space,

the
-

H = SGSt be written

direct sum
all felt can

: Estfst- - vols as /

unin

feS,

fstest

#of : (Existuce) For
any felt, I ge as in heave U1

,

and f= ge + (f-gt&
ES est by

Lennan 4
.
/ (ii)

(Uniqueness) If f= a
, +an = b

,
+b,

with 9
.,

b . S, anbest = b =

b=> a
,

-b
,, b2-9ES1St = a .

= b
, an =Be

D

Def: For a closed subspace S
,

we can defie the orthogonal projection
of 1 onto S P : HtS by

Ps(f) : = Es
,

where f =E

Properties : · Ps is line
-

· P
,
(f) = f AfeS

· Ps(f) = 0 Fest
·IIPs(f)ll = /If)) => Ps continuous (11Ps(f-Pslg)ll = llPs(f-g)(lallf-g()

&mark: If Ger3k is any othonormal set
,

then the orthogonal
projection onto seaSen is P(A : (fen) en

& 4 .
5 : Linear Transformations

D If H
,
He or Hilbert spaces,

a linear transformation T: C, + Ha
is a function obeying

T(af+Bg) = aT(f) + BT(g) Vf
, g = 1

,
2
,
Bek

We also call T a (lineat operator

T is bounded ifIM : 0 sit . 11T(villa MIlull Frett
,

(i
. e . IIT (Ill : M E IIT(vill = M Flrll =1)

Pi The Copereta) nor of an operatur Tit. - He is the smallest M20

that wate
,

and is denoted

1)Top =
inf &Meo : llT(AlleMIull Frest3 = sup IITell

IIvll = 1



We kow a lineer operator T is continuous iff its continuous at O vie

shifting. But also :

Lemma :
-

If T is a liver operativ
,

the

↑Continuous Ef T barded

↓of: (E) FF T bounded
,
the if uner,

1) T(rn) -T(all = 1IT(re-vill - Mllm-vll -> 0

(E) Suppose Bo T is unbonded .
So

,

FM30
,

Ju s.
t.

115Crilk Mllull

Take Manz/ and get a scarce (v). El st. 11 Thrills all wall

=> Il T(n)/k1 .

SetWil Ell well = + => m + 0

↑ continuous => T(m) + T(0) = 0 => IITI will + 11011 =0
.

-Howe
,

11T(m)lls) kn. X

D

perhaps
ese

Def A liner functional I is a continuous linear operate

l : 1+ + C (forcetheala

E · FFEH
,

the map (f) is a liner fretical

A special f b speces is that allvery propertyofHilt this is the Riesz Representation Theoremline frctionals are of



Lecture 4/19-

* Eheoen: (Riesz Representation)

If I is a continuous linear fretional on It (Hilbert space),
the = a que ge it st .

(i.e. ItisBoopt is& (f) = (f
,g) YfeH

Proof: Let S:= Ef : 1) E) =03 be the Kernel of 1
.

Note that S is a subspace
-

since I is lineer
. Furthermore

,

S is closed because 1 is continuous.

Therefore
,
H = SoSt

.
If 1:0

,

take goo and we are doe
.

So
, suppose

S+H.
The

,
St ismonempty .

We WTS St is 1-dimensional.

It figeSt1303 (and so l()
,
1(g) + 0)

,
the we an write u = leg-fllg)

Then
, M(n) = l(f)((y) -1(f)((g) = 0 = ue S

.

Howeve
,

ne span f
,g = west

.

Thus, neS1St = u = 0 = fig are lively dependent=> St is 1-dimensional .

Now
,

take
an
hest with I/hll = 1

,

and take g := this h.
kfelt = Sost

,
fefstfst = 1(f) = M(fs) + 1(fst) = l(fst)

ES Est = O

Since dm)St) = 1
,

h spars St = Est : (fst
,

h) h

=> h(f) = (fst
,

h) l(4) = (fs+
,

lu)h) = (fs+ , g)
Since Estg = (fs

,g) = 0
,

the lif= (fst
,g) + [fs

, g) = /figh,
and we he done.

B

&mark:
0 If there were I such gis,

subject the and it must be 0.-

Uniqueness follows .

· It lif) = <f
,g), then IIellop = llgla+

Motivation: · Spectral there for Symmetric (normall matrices says they have an outhonormal

eigenbasis. In finite dms
, "symmetric" means At = A; we need an appropriate

notion for infrite-dim . We'd like to replace our definitions with san T
*

for

operators T s.t. <Tx,y) = [x
,
T*y) and **

=

T

.

We call this the adjoint of T

.



#theorem: (Adjoints exist

Let T:- # be a line operativ.
The

,
J a unique T* H+ +

obeying

(i) (T(A
,g) = (f

,

T
*(g)) Ffgett

(ii) 11 T*

Ilop = 11TII
op

(iii) <T*)* =T

Such T
*

is called the adjoint of T
.

We say
T is

symmetric or self-adjoint if TT*

&of For any fixed gett, define the continuous linea frctical

&g (f):= (Tf,g) fe H. Riest Representation gues a vie

↓
ge 1 st

. (g(f) = (fng) Ff
. If we define T*g) : hg,

we get (T(f)
, g) = (g(f) = (f

,
+*(g) (

It's easy to see linearity of Tt
.

Also
, se llAllos=SPACE, , ,

me get
IITlop = Sup KT(A

,g)) = sup (f
.

T*g))) = Sup 1+)
, f)) = 1IT#I or

IIfll
, IlgIl = / IIfll

, IlgIl = / 1Ifll
, IlgIl=

Last
, ((+*)

*
(f)

, g) = (f
,
T*(g) = (+*(g),f) = (g ,

+(f)) = (T(f)
,g)

Since (T** and T agree on all inner products, they are equal
D

&

Remarks : 0 Whe T is self-adjout, you can show
IITIop=

P

,
KTCE,I

② (ST)*: T
* g *

#they : It =
,

the L is selfradiant via integration by parts ! )

Bef: Suppose (Pal is an OB of 1. They an operator T: T+ It is

said to be diagonalized by (4), if

↑(a) = An Yk for some XeC ,
UK

In general, if U+O and TEC are st. TCH = x4
,

then 1 is an eigenvector
and I the corresponding eigenvalue.



EX If H= (CIRY and we defi T: H+ # by

[+(f)](x) : = Sir f(y)k(x, y) dy

then we call T an integral operator and k its kernel.

If KEL"(IRXIY)
,

the T is bounded and we call T a

Hilbert-Schmidt operator .

Compact Operators

For finite-dim sets
,

compactE closed and barded nt nder

In infinite-dim
,
nature : e. g. H= /(2) and seruce e. = (0,

...,
1,0, ...)

We have Hell= / En
,

but no corregece :

(Minter mentioned that we can proce fritzdo Et unit sple is compact writ. 11 . /1 topology)

say T is a compact operator if&Tlineropetoes th :

Whenever /feln is a bonded sequence in H
,

the sequence theHeis thecate
a

(T(f))
,
has a convergent subsequence.

3

Notes : OT compact => T bonded = T continuous

② identity map is not a compact operator on infinite-dim

(separable) Hilbert space

③ If rank (t) < -, then T is compact

I In a sense
,

compact operators are the closest we can get to finite - du objects. (E.g., T compact => J sequence of finite rank Operators (tn) with 11th-TI+
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#6
. 1 : (Properties of compact operates)

Suppose It is a Hilbert space and T: H-It is a

bounded operato (TEB(A). Then,

(i) if S :+H compact
,

the ST
,

TS are compact.

~
(ii) if (Thin compact and Th -T (i

.e . IIT-Tullop + 0)
,

then

bric
a( T is compact.

(iii) if T is compact
,

then I a sequence (Thin with each compact is "as close to finite

Tr having finite rank and Tht T ( rank T
as we can get, as finite rent

(iv) T compact # T* compact operators are dense in compact opentas

#of: (i) Recall that compact = sequence of bonded nectors has a

convergent subsecuce. Now
, Ifuln bounded in It implies

->(TfIn bonded Spart (STF), has convergent subsecuce
=> ST compact. For the other one, since T is continuous

S

a subsence (Sfuln will converge after applying
T

.
So

,
TS is compact.

(ii) Let (fuln Ba a Bounded sequence in 7.
We want to find

a convergent subsequent of (Tfuln
.

We use a diagonalization argument.

·T
, compact => J a convegat subservance (Tifulnzt

,

for save

A
,
EN infinite

· T2 compact => J a convegat subserve (Tfulnzt for save
2

2

AzEA ,
infinite

.
Since AzEA,,

(T
, fuhnetn converges also

-

Repeating inductively
,

we get NIA
, zAnz ...

sit. VNeN,

(Tifalneau , (Tufulneam , ..., (Trfulneau converge

Take the Adagorel : if he is the ntt element of An
,

set Fr : =Ek
By construction, (TrFi) courages

UK21.

Fix 350 . As (fuln is bonded
,

IIfull - 2
.

So
,

the triangle inequality gives

IITE-TEllallTEn-Tkll+ 11 Tk-Tafull + IITk-Tll

= IIT-Tall op Il Full + 11 TKE-TkFull + IITr-Top IIFull
ChooseK large enough that IIT-Tullop-3 . For this K

,
Fr

,
m large

we know IItrE-TrFulla (as (Tufic converges) .

So
, From large,



IITE-TEllzs . 2 + c + E . => (TF) is Caraly ,
and

So it converges Since It is a Hilbert space .
So

,

T is compact.

(iii) The idea is to project T auto the firsta elements of a basis

and take n + 0
. Take Sens be a basis.

Let Qn : = orthogonal projection ofI outo spandents
,

even
,
...

the fail of

His is

convert cea se
UThe

, g : Pare => Qg= are long lan +
to

an+
-

S

Suppose by way at contradiction that I/QuTIlop doesn't approach O as

n+ -
. The

, up to a subseque we have IIQnTllop = C > O

=> Eg.

with Ignll=1 and llQuTgulIIC Kn

But
,
T compact => Tara- gett for some subsequence ((gn), is borded).

But the
Qu9 = Qua(Tgna) + Qu(g-Tgun)

1l g-Tarall + O by definition at
g ,

and 1/Quag +0 from earlie
.

But llQuCTgm)/kzCo .

* So
, llQuTIlop + O

.

rank ~

Y

It Pr := orthogonal proj auto spande, ..., 23,

the Put Qu = xidett
and

11 PnT-TIlop = ll (Pn-F)TIlop = llQ_TIlop + O

(iv) IfT compact, by (iii)
,

llPuT-THlop + 0
.

Since adjorts have the same norm IISPuT-T)
*

llop - O
S

So
,

since Pr= Pr
,

11T*
Pn-T*.p+ 0

.

-

compact by def

of Pr

By (ii)
,

since compacts is inheited by limits
,

* compact,

If TV compart, then (T**-T is also compact .

D

&mark :
· If T is diagonalized wet some basis Bein and

-

Ten = Anem for some JEK
,

the

T compact #T1x + 0

· Hilbert-Schmidt operators are compact

on to the Spectral Theorem !



Theorem 6
.

2 : (Spectral There

Suppose It is a separable Hilbet space and TC+ It is a

compact, self-adjoint operator.

call Il
-

/

Hese

we symmetric
Then

,
J an autonormal basis Yerba of It consisting of eigenvectors

of T.

Moreover
,

if Tex = Tex ,

the JER and 1 + 0.

Coursely
,

if T is any operator defined on Seni in this was,

the T is

ompact and self-adjoint.

We call OCT) : =S
,

the spacture of To

Idea: We WTS that if S = spen Seigarators3 the S =H.
- S

Suppose BWOC S # H = H= SoSt with St + 303
·

The restructing Tlst : St-> St
,

if we can find an eigenvector
of T in St

S

we get a nice contradiction.
So, since St is itself a Hilbert space, the problem reduces to

finding a single eigerenter of a symmetric operator in a
Hilbert space.

Let's start with the easy parts .

huma6.
3 :

Suppose T is bonded and self-adjoint. Then
,

(i) X c o(t) = 1cIR

(ii) if fiffe are eigenectors of T with eigenvales 1
,
F12

,
the

f
,

fu

Proat of Lenna: (i) 1 <f
,

f) = ( &f
,
f) = < Tf

,
f) = (f

,
+f) = (f

,
xf) = T(f

,
f)

#to x= = Xer

(ii) 1
, (f

,
fz) : (1

,ffz) = (Tf
·
fz) : <f

,
Tfu) = <f, Xafz) = 12(f

,
fu)

-

5 (f
,f) = 0 = fit fr

D

~

hark : & eigurche Tf= If for some +O El (11-T) (A= 0EGE s



hab. T
is compet and 400. The,

dim (Ker(XI-T) = -

Moreover, for
any 130

,
the subspace spanned by eigenvectors

with eigenvalues >M is finite-dimensional.

In particular
,

if X
,

42, ...

E@CT)
,

then 1:
to

.

#roof of Lene : Suppose BLOC that drulker(11-T)) = 0
.

The
, we can take EPS, of outhonormal eignrectors

of T with eigenvalve 1
.

11 Yell : 1
,

T compact STYnYa has convergent subseque

But Thk = 14k = 114x-Afall = 111mmM+ 0.*

Using the above
,

and the feet that different eyespaces are orthogonal,
we are done .

hemma 6 .
5 :

Suppose TEO is compact and self-adjoint.
Then

, at least one of

1)Tllop ar-lltllop is an eigenvalve of T.

&roof of Lenna: We we the feat that for sef-adjust T
,

1)TIlop = SupEl(Tf
,
f)) : /fl= 13

In particular, SupE(tff) : /fll : B = /ITIlop or -ITIop
So

,
WOLOG suppose that = 11T11

,
othwise consider -T

.

By def of supremem ,
we can take (fuln with

II full = 1 and <Tfn
,
ful-> IITIlop =: 4

↑ compact = 7 (funE(fuln St . Tfun-gett
Note that goo,

since if g=0 ,
the Ther -o

=> ISTfra
,
fun)l IITfall . Il fall + O = IITIlop = 0

.

*

So
, g0. We claim that Tg= <g .

Observe that

1Tfun-Xfall" = IITful-21 Re[Tfna , fra] + 32Ilfall

-> IITIpIIfa - 24Refuk) +I
real b

. c . self-adjoint
= 222-21 (Tfnn

,
fun)

-> 0

So Tfun-Af +O = Ifru + g = T(ifun) + Tg
by continuity of T

.



We can now at last prove the Spectral There !

Proof of Spectral Theme : Let S := Spandegareators of 53
. By Lenne 6. 5,

↑ has an eigenvector => S + 0
.

We WiS S= · Suppose BWOC

that S&H . The
,
S@St = H with Sto a closed

, separable
Hilbert space .

Note that if feS
,

then TFES as T maps eigenvectors to eigenvectors.
# Fest

,
the UgeS

, (Tfg)== Tfg Ages e Tes
So

,

T
maps

St to St
.

Now
,

conside T= Tst : St+ St
.

T is also compact and self-adjoint.

Certainly
,
I' can't be O Since all elements of St would be eigenvectors.

--Since TFO
,

Lenna 6 . % shows that we have an eigenector rest of 1.
which is an eigenvector of T

. This eigennector would have to be in St

in S
,

which reas reS1st = v= 0. *

D

Remarki We claimed in the proof of leave 6.
5 that for self-adjoint

T

,
-

1)TIlop = SupEKTf
,
f)l : Ifll = 13 = :M

To see this
, by Goely-Schwarz

((+f
,
f) = 11 Tf11 . 1lfll = llTAll = IITIl

op

For the other direction
,

(Tf, g) = t
(T(f+g) ,

f+g) - (T(f- y) ,
f-g)[ 2+ i <T(f+ig)

, Frig) -i <T(f-ig), frig)

For self-adjust T
,

(Th
,
LTEIR

.
So

,

Re ((Tf g() = tu((T(f+g) ,

f+g) - (T(f- y) ,
f-g))]

=- [M((f+g(p + M(lf-g(12]

= in [2M11 fir+ 2 MIlglin]
gll= 1

M

Lastly ,
we wee a little twick

~
1(Tf

, g)) = ei(Tf
, g) = (if

,
e g) = Re(<+f

,eg) IM

In suprem, IITIlop =M .



Fun Stuffwr PDEs

The simplest PDE world have constant coefficiets
,

and be of the form

E L

L(u) = f
,

where
Klen &Ea multiple

rotation

[ Lef

x = x,4xed ... Indu
and at (c) = (c

.
1 + ... + (an

all partial derivative

So worl at O

If fin an
that

,
we can tele the Fre Treeform and get

↑ (3) = = for some polycoal P(3) :=& acli]
and the take inverse F.T. Crequires complex analysis to take the contour integral).

For more geneal functive
,

we get around this to find weak solutions (this is related to

Soboler spaces
S

Let us work on1 H open ,
and let C(1) be smooth + compact support.

Then
, Ci(M) =("(M) is duse

Also
, compact support measIf= 0 at Ex,

and so borday terrs varish in integration
2

by parts.
So, for YeCI

,
n

,
f = ((u) El

C
we get

S4((n) = Sf4 = (f
,π)

4((()n = (+4,i) = (n , (* (π)
: = L* 4

We
say UEL is a weak solution to the PDE (Cu)ef if

(u
,
(* (4)

,
= (f

,>12) FHECE (M)

#learn:
*

test freties

Suppose & EIRV is bonded and open .
Suppose I is a liner PBE

with constant coefficients,

Then
, I bounded operator K : (*(M)+ [2(2) st.

FfeL
,

n := k(f)

is the -que weak solution to (lu) = f
-

If we defi H := C& with (4
,4) = ((*(4)

,
L*(4) 22 ,

it's a Pre-Hildet space ! Applying Riesz Repesetation,

2)(4) = (f
,
u)
,

= (g ,
4)

y
= <L *

g ,
2*4)

,84e1t

In ada for u to be a week soh
, to Luif

,

u : = L*

g !



Defi A week deictive v of is a frction sit. O test frctions RECE
,

Sure = -Se Crobeys

& A Soboler speck WKe isthespaceof featurae

with k weak derivatives
,

Imm: (Relie Compectors Thm]
weak

derivative

Let Wi2 be Soboler space with now Kullwin" SluP+ ID
If (un), - Wir is bonded

,
then 7 subseque Cunnin st.

4. + 4 in 12

for some newir


