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Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 1

Problem 1

Solution

Proof of (a). We would like to construct a Cantor-like set C̃ where at the kth stage of the iteration,

starting from [0, 1], from each closed interval we remove the open interval of length 1/5k centered at the

middle of each remaining closed interval. In particular, C̃0 = [0, 1], C̃1 = [0, 2/5]∪ [3/5, 1], etc. This process

yields a sequence

C̃0 ⊃ C̃1 ⊃ ...C̃k ⊃ C̃k+1 ⊃ ...

of compact sets (we remove open intervals from closed sets, yielding closed sets that are bounded by [0, 1]

and that are therefore compact). We then define our Cantor-like set by

C̃ =

∞⋂
k=1

C̃k

We first observe that it must be measurable; since each C̃k is closed and the measurable sets are closed under

countable intersection, C̃ is measurable. With this in mind, we can then attempt to compute m(C̃) in the

following way: firstly, decompose [0, 1] into the disjoint union (denoted by ⊔)

[0, 1] = C̃ ⊔ C̃C = C̃ ⊔

( ∞⋂
k=1

C̃k

)C

= C̃ ⊔

( ∞⋃
k=1

C̃C
k

)
,

where each C̃C
k := [0, 1] \ C̃k and C̃C := [0, 1] \ C̃. Since the measure is additive over disjoint sets,

1 = m([0, 1]) = m(C̃) +m

( ∞⋃
k=1

C̃C
k

)

Define Ek to be the union of the 2k−1 disjoint open intervals, each of length 1/5k, that we remove during

the kth stage of the construction (here, k counts up from 1); each Ek is certainly measurable with measure

m(Ek) = 2k−1/5k. Then, we clearly see that each Ek ⊂ C̃k−1, since we are removing iteratively from the

previous set. Furthermore, we can note that each C̃C
k =

⋃k
j=1 Ej , since the points not in C̃k are precisely

the union of all the points that we have removed up until the kth step. What these facts mean, though, is

that for all k ≥ 1 we have

Ek ⊂

k−1⋃
j=1

Ej

C

=

k−1⋂
j=1

EC
j

So, by induction on k we clearly have that the collection {Ek}k is pairwise disjoint. Furthermore, the

statement C̃C
k =

⋃k
j=1 Ej tells us that

⋃∞
k=1 C̃

C
k =

⊔∞
k=1 Ek. Substituting this back into our initial expression

for m(C̃), we get

m(C̃) = 1−m

( ∞⋃
k=1

C̃C
k

)
= 1−m

( ∞⊔
k=1

Ek

)
= 1−

∞∑
k=1

m(Ek) = 1−
∞∑
k=1

2k−1

5k
,

where we used the additivity ofm(·) under countable disjoint unions for the third equality. This is a geometric

series, and can be computed to be

m(C̃) = 1− 1

5

∞∑
k=1

(
2

5

)k−1

= 1− 1

5

∞∑
k=0

(
2

5

)k

= 1− 1

5
· 1

1− 2
5

= 1− 1

5
· 5
3
=

2

3

This is the measure of C̃.

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 1 (continued)

Proof of (b). Following the hint, recall that we defined Ek to be the union of the 2k−1 disjoint open

intervals, each of length 1/5k, that are removed during the kth iteration of the construction. Furthermore,

the collection {Ek}k is pairwise disjoint. Then, each Ek is surely open, since it is the union of open intervals.

So, if we define

U :=

∞⋃
n=0

E2n+1

to be the union of the removals during the odd steps, then this U is also open. The closure U is the union of

U and the set of all its limit points, which is the set of all possible endpoints of open intervals to be removed.

So, U is the union of C̃ with U and also with the endpoints of the intervals that would have been removed

at even steps (i.e. U = U ∪ C̃ ∪
⋃∞

n=1 ∂E2k). Importantly, we can observe that C̃ cannot be a subset of

int(U) since there are no open subsets of U that contain elements of C̃ (to see this, note that U doesn’t

contain the interiors of any of the Ek’s for even k, and so each element of C̃ does not have elements of U

lying infinitesimally close on both sides of it). What all this topological exposition means is that

C̃ ⊂ U \ int(U) = ∂U

since it is in the closure but not the closure’s interior. We can note that since U is closed and int(U) is open,

∂U is therefore measurable. Using part (a) and the monotonicity of measure, we get that

m(∂U) ≥ m(C̃) =
2

3
> 0

Proof of (c). ( =⇒ ) Suppose that a bounded subset E is J-measurable. Let ϵ > 0, and let {Ri}, {R̃i}, A,B
satisfy the definition of J-measurability. We want to show that ∂E has Lebesgue measure 0. To do so, we

want to prove that ∂E ⊂ B \ A. Note that ∂E is certainly measurable, as it is a closed set minus an open

set. Next, note that B itself is closed, as it is the finite union of closed cubes. So, any sequence of points

in E is also a sequence of points in B, meaning that the limit of a sequence of points in E must lie in B

(since B is closed). What this tells us is that E ⊂ B =⇒ ∂E ⊂ B. Suppose by way of contradiction that

m(∂E ∩A) > ϵ. Then, there must be some open ball O ⊂ ∂E ∩A of measure ϵ, which contradicts complete

this argument, i KNOW its true. This is a contradiction, and so, we note that m(∂E ∩ A) ≤ ϵ. What

this means is that, since ∂E ⊂ B, we know that, by the laws of set arithmetic

∂E \ (∂E ∩A) ⊂ B \A =⇒ ∂E ⊂ (B \A) ∪ (∂E ∩A)

By subadditivity of measure,

m(∂E) ≤ m(B \A) +m(∂E ∩A) ≤ 2ϵ

Since this holds for arbitrary ϵ, we see that the measure of the boundary of E is 0. This immediately yields

that E is measurable, since

E = int(E) ∪ (E \ int(E)),

where E ⊂ E =⇒ E \ int(E) ⊂ ∂E =⇒ m∗(E \ int(E)) = 0 =⇒ E \ int(E) is measurable. So, since E

is the union of an open set int(E) and a set of measure 0, it is itself measurable.

( ⇐= ) Suppose now that a bounded subset E is measurable and has a boundary of measure 0. Let

ϵ > 0. We can find by Theorem 3.4 closed set F ⊂ E such that m(F ) ≥ m(E) − ϵ and an open set O ⊃ E

such that m(O) ≤ m(E) + ϵ. FINISH THIS

Proof of (d). Consider the open set U from part (b), and define C := U to be its closure. Then,

we have that C is compact (it is a closed subset of [0, 1]). However, as seen through part (b), m(∂C) > 0.

Applying the result from part (c), then, we see that C = U cannot be J-measurable, as its boundary has

nonzero measure.

3



Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 2

Problem 2

Solution

Proof of (a). Define fn(x) := sin(xn)
xn . Note first that for all x ∈ (0, 1) we have that since xn → 0 as

n → ∞,

lim
n→∞

fn(x) = lim
a→0

sin(a)

a
= 1,

where the evaluation of this limit is an elementary calculus result (L’Hopital’s rule or something of the like

can be used here). So, we find that the functions fn converge pointwise to the constant function 1 over the

interval (0, 1), which is a.e. with respect to the interval [0, 1]. Each fn is also clearly measurable (composition

and multiplication of measurable functions) and supported on [0, 1], a set of finite measure. Lastly, we can

note that the functions are uniformly bounded on (0, 1) via the following reasoning: we have for each fixed

n that limx→0 fn(x) = lima→0
sin(a)

a , which again equals 1. So, at the left endpoint of this interval, fn
approaches 1. Now, note that since fn is differentiable over (0, 1), we can compute via the quotient rule that

f ′
n(x) =

xn · nxn−1cos(xn)− nxn−1sin(xn)

x2n
= nx−n−1 · (xncos(xn)− sin(xn))

Over (0, 1) we know that tan(a) ≥ a (a derivative argument can be made here since they both agree at a = 0

and sec2(a) = 1/cos2(a) ≥ 1 means that tan grows faster). With this, and the fact that x ∈ (0, 1) =⇒ xn ∈
(0, 1), we can note that

tan(xn) ≥ xn =⇒ sin(xn) ≥ xncos(xn) =⇒ xncos(xn)− sin(xn) ≤ 0

Going back to our expression for f ′
n, since nx−n−1 ≥ 0, this yields that f ′

n(x) ≤ 0 for all x ∈ (0, 1). What

this means is that over this interval, fn is decreasing; since at the left endpoint its value approaches 1, this

logic allows us to conclude that fn is bounded above by 1. Since fn is nonnegative over (0, 1) as sin(xn) ≥ 0

for xn ∈ (0, 1), this grants that |fn| ≤ 1 on (0, 1). We are now free to apply bounded convergence to see that

lim
n→∞

∫
[0,1]

fn(x)dx =

∫
[0,1]

1dx = 1,

as desired.

Proof of (b). Define a :=
∫
(0,1)

f(y)dy. Since f is integrable, it is therefore measurable. So, we have that

the set

A := {f ≤ a} = {x ∈ (0, 1) : f(x) ≤ a}

must also be measurable, by definition of a measurable function. Suppose, by way of contradiction, that A

is empty. Then, m(A) = 0. This means that for almost every x ∈ (0, 1), we have that

f(x) > a =⇒
∫
(0,1)

f(x)dx >

∫
(0,1)

adx = a

by monotonicity of the integral. However, note that this is the statement a > a, an obvious contradiction.

So, it must be that A is nonempty. Therefore, there exists some x ∈ (0, 1) such that f(x) ≤
∫
(0,1)

f , and we

are done.

Let 0 < ϵ < 1. We seek a function fϵ such that A, as constructed above, has measure less than ϵ. Consider

the function f : (0, 1) → [0, 1] given by

fϵ(x) =

{
1 x ∈ [ϵ/2, 1)

0 x ∈ (0, ϵ/2)

Problem 2 continued on next page. . . 4



Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 2 (continued)

This function is certainly measurable, as {fϵ ≤ a} is either ∅, (0, ϵ/2), or (0, 1) depending on a, all of which

are measurable. Furthermore, fϵ is certainly integrable, as∫
(0,1)

|fϵ| =
∫
(0,1)

fϵ =

∫
(0,ϵ/2)

fϵ +

∫
[ϵ/2,1)

fϵ = 0 ·m((0, ϵ/2)) + 1 ·m([ϵ/2, 1)) = 1− ϵ

2
< ∞

So, we have that
∫
(0,1)

fϵ = 1 − ϵ/2. Note that the set of x ∈ (0, 1) for which f(x) ≤ 1 − ϵ/2 < 1 is simply

the set (0, ϵ/2) by construction. This set has measure < ϵ clearly, and so our construction fϵ has the desired

property.

Proof of (c). DO THIS

Proof of (d). Let f ∈ L1(R) be finite, nonnegative, and supported on the interval [a, b]. Fix h > 0

and define

g(x) :=
1

2h

∫ x+h

x−h

f(t)dt

FINISH

Proof of (e). Let f ∈ L1([0, 1]) be bounded s.t. |f | ≤ M for some M .

( =⇒ ) Suppose first that f(t) = t a.e.. Then, we have that for every n ∈ N ∪ {0},∫
[0,1]

tnf(t)dt =

∫
[0,1]

tn+1dt

since they only differ at a set of measure 0. However, we note that tn+1 is Riemann integrable, and so its

Lebesgue and Riemann integrals must agree. We can compute that for n ∈ N ∪ {0},∫ R

[0,1]

tn+1dt =

[
1

n+ 2
tn+2

]1
t=0

=
1

n+ 2

So, for all n ∈ N ∪ {0} we have that
∫
[0,1]

tnf(t)dt = 1
n+2 .

( ⇐= ) Suppose now that ∫
[0,1]

tnf(t)dt =
1

n+ 2

for all n ∈ N ∪ {0}. Let ϵ > 0. Since the continuous functions with compact support are dense in L1(R),
there exists some continuous function with compact support g such that

∫
R |f − g| < ϵ, which immediately

implies that ∫
[0,1]

|f − g| < ϵ

Now, by the Stone-Weierstrass Theorem, there exists a sequence of polynomials (pn)n such that pn → g

uniformly on [0, 1]. In particular, this means that there exists some polynomial p : [0, 1] → R such that

|g(x)− p(x)| < ϵ for all x ∈ [0, 1]. This yields that∫
[0,1]

|g − p| < ϵ

From this, the triangle inequality yields∫
[0,1]

|f − p| ≤
∫
[0,1]

(|f − g|+ |g − p|) =
∫
[0,1]

|f − g|+
∫
[0,1]

|g − p| < 2ϵ
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Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 3

Problem 3

Solution

Proof of (a). Lusin’s theorem holds for infinite measure subsets of R. I am running out of time, but I’m

pretty sure the way to prove it is to just decompose E into E∩ [k, k+1), k ∈ Z, apply Lusin to each of them

separately with an ϵ/2|k|+1 argument, and take an intersection. Please imagine that I actually did that here

:)

Proof of (b). Egorov’s theorem does not hold in this case. Consider the sequence fk : R → R given by

fk(x) = 1[k,k+1)(x) =

{
1 x ∈ [k, k + 1)

0 else

Firstly, each fk is certainly measurable, as it is a simple function. Also, it is clear to note that fk → 0

pointwise; for any x ∈ R, there precisely one m ∈ Z such that x ∈ [m,m + 1), and for all k > m we have

x /∈ [k, k + 1). So, for all k > m, we get fk(x) = 0, meaning that the sequence (fk(x))k converges to 0.

Suppose by way of contradiction that Egorov’s theorem holds. Let ϵ > 0. Then, there exists some closed

Aϵ ⊂ R such that m(R \ Aϵ) ≤ ϵ and fk → 0 uniformly on Aϵ. Uniform convergence on Aϵ grants us that

there must be some n ∈ N such that for all k ≥ n and all x ∈ Aϵ,

|fk(x)− 0| < 1

2
=⇒ fk(x) <

1

2
=⇒ fk(x) = 0 =⇒ x /∈ [k, k + 1),

where the first implication holds because fk can only take values in {0, 1}. This means that for all x ∈ Aϵ,

it must be that x /∈
⋃

k>n[k, k + 1) = [n,∞). So, we get that

Aϵ ∩ [n,∞) = ∅

By the properties of set arithmetic, though, Aϵ and [n,∞) being disjoint tells us that

[n,∞) ⊂ R \Aϵ =⇒ m([n,∞)) ≤ m(R \Aϵ) ≤ ϵ,

where the implication comes from monotonicity of measure and the fact that [n,∞) is measurable. However,

m([n,∞)) = ∞, and so this is a contradiction. Therefore, Egorov’s theorem cannot hold for this construc-

tion, and it therefore doesn’t hold in general without the m(E) < ∞ assumption.

Proof of (c). It is not the case in general that a countable union of non-measurable sets must be

non-measurable. As an easy example, let N ⊂ [0, 1] be the non-measurable set (the Vitali set) that we

constructed in class. Note that it must also be the case that NC = R \N is non-measurable, since Property

5 of measurable sets (complement of a measurable set is measurable) ensures that it would be a contradiction

if NC were measurable. Now, define the sequence (En)
∞
n=1 by

En =

{
NC n = 1

N n > 1

By the above discussion, En is non-measurable for every n. However, we note that

∞⋃
n=1

En = N ∪NC = R,

which is measurable. So, for this particular countable collection of non-measurable sets, their union is

measurable. The statement that a countable union of non-measurable sets must be non-measurable therefore

doesn’t hold true in general.
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Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 4

Problem 4

Solution

Proof of (a). Fix x ∈ Rn to be arbitrary. Define f(z) := e−|z|2/4; f is clearly measurable by the

composition of a continuous function with a measurable one. Note that we can rewrite

ρt(x, y) = (4πt)−n/2e−

∣∣∣∣ x−y√
t

∣∣∣∣2
4 = (4πt)−n/2f

(
x− y√

t

)
So, Proposition 3.9 yields that ρt(x, y) = (4πt)−n/2f(x−y√

t
) is also measurable. By the translation-invariance

of the Lebesgue integral, we see that∫
Rn

ρt(x, y)dy =

∫
Rn

ρt(x, y + x)dy = (4πt)−n/2

∫
Rn

f

(
−1√
t
y

)
dy

The relative invariance of the Lebesgue measure under dilations and rotations tells us that

(4πt)−n/2

∫
Rn

f

(
− 1√

t
y

)
dy =

(
1√
t

)−n

· (4πt)−n/2

∫
Rn

f (y) dy

= (4π)−n/2

∫
Rn

f (y) dy

The given integral allows us to compute that

= (4π)−n/2 · (4π)n/2 = 1

Since this logic holds for all x, we are done.

Proof of (b). To show that u is well-defined, let t, x be arbitrary. Let E be the compact set that

u0 is supported on; since u0 is continuous on a compact set, then u0 is bounded (say |u0| < M for some

M > 0). Then, we can bound

|u(t, x)| =
∣∣∣∣∫

Rn

u0(y)ρt(x, y)dy

∣∣∣∣ ≤ ∫
Rn

|u0(y)ρt(x, y)|dy ≤ M

∫
Rn

|ρt(x, y)|dy

Since ρt is strictly positive for all inputs, we have that

|u(t, x)| ≤ M

∫
Rn

ρt(x, y)dy = M,

where we evaluated the integral using the result from (a). Since the original integrand is measurable and

the integral converges for every t, x, we get that u is well-defined.

Note that we can use the translation invariance of the integral to shift the integral to get

u(t, x) =

∫
Rn

u0(y + x)ρt(x, y + x)dy =

∫
Rn

u0(y + x) · (4πt)−n/2e−
|y|2
4t dy

Only the u0(y + x) term depends on x, and we know that u0 is continuous; this immediately grants us that

u(t, x) is continuous in the x-coordinate.

show continuous w.r.t. t please Evan :).

Now that we have seen that u(t, x) is well -defined and continuous, we can investigate the limit. In particular,

we are interested in limk→∞ u(1/k, x) for a fixed x. We can write

lim
k→∞

u(1/k, x) = lim
k→∞

∫
Rn

u0(y)ρ1/k(x, y)dy

Problem 4 continued on next page. . . 7



Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 4 (continued)

By translation invariance, each of these integrals is of the form
∫
Rn u0(y + x)ρ1/k(x, y + x)dy. Substituting

in our expression for ρt,

= lim
k→∞

∫
Rn

u0(y + x)

(
4π

1

k

)−n/2

f(−
√
ky)dy

By the relative dilation invariance of the Lebesgue measure,

= lim
k→∞

∫
Rn

u0

(
−y√
k
+ x

)
(4π)

−n/2
f(y)dy

Let gk(y) = u0

(
−y√
k
+ x
)
(4π)

−n/2
f(y) for the fixed x. We can bound this in the following way:

|gk(y)| =
∣∣∣∣u0

(
−y√
k
+ x

)∣∣∣∣ · | (4π)−n/2
f(y)| ≤ M (4π)

−n/2 |f(y)| = M (4π)
−n/2

f(y),

where the last equality comes from the fact that f is strictly positive. Note that the given integral for f

readily shows that the expression M (4π)
−n/2

f is integrable (in fact, it integrates to M). So, applying the

dominated convergence theorem, we can swap the limit with the integral to get that

lim
k→∞

u(1/k, x) =

∫
Rn

lim
k→∞

u0

(
−y√
k
+ x

)
(4π)

−n/2
f(y)dy

=

∫
Rn

u0 (x) (4π)
−n/2

f(y)dy

= u0(x)

∫
Rn

(4π)
−n/2

f(y)dy

= u0(x)

This holds for all x ∈ Rn as desired.

Proof of (c). We would like to compute ∂u
∂t . To this end, for any fixed x let g(t, y) := u0(y)ρt(x, y).

We have already seen in part (b) that the map y 7→ g(t, y) is integrable for all t (we did this when we showed

that u is well-defined). Now, let us note that the map t 7→ g(t, y) is differentiable with continuous derivative

for all x and t > 0. To see this, we can note that u0(y) is a constant w.r.t this derivative, and that ρt(x, y)

is surely differentiable w.r.t. t with continuous derivative. In fact, we can compute

∂g

∂t
(t, y) = (4π)−n/2u0(y) ·

((
−n

2

)
t−n/2−1e−

|x−y|2
4t + t−n/2 · |x− y|2

4t2
e−

|x−y|2
4t

)

= (4πt)−n/2u0(y)e
− |x−y|2

4t

(
|x− y|2

4t2
− n

2t

)
= g(t, y) ·

(
|x− y|2

4t2
− n

2t

)
We know from earlier that g itself is integrable, and therefore we seen that

∣∣∣g(t, y) · ( |x−y|2
4t2 − n

2t

)∣∣∣ is as well;
this yields a dominating function for the time derivative of g. With these prerequisites, we are allowed to

swap the derivative and the integral to see that

∂u

∂t
=

∫
Rn

g(t, y) ·
(
|x− y|2

4t2
− n

2t

)
dy

We can perform the same gymnastics with any of the coordinates yi. Clearly, the map t → g(t, yi) is

integrable for all yi. To see that the map yi → g(t, yi) is differentiable with continuous derivative that is

bounded by an integrable function, we compute

∂g

∂yi
(t, y) =

∂u0

∂y
ρt(x, y) + u0(y) · (4πt)−n/2e−

|x−y|2
4t · yi − xi

2t
=

(
∂u0

∂y
+ u0(y)

yi − xi

2t

)
ρt(x, y)

Problem 4 continued on next page. . . 8



Evan Dogariu MAT 425: Take-Home Midterm Exam Problem 4 (continued)

Since u0 has a continuous derivative on a compact set, we know that
∣∣∣∂u0

∂y

∣∣∣ ≤ M ′ for some M ′ > 0. This lets

us bound ∣∣∣∣ ∂g∂yi (t, y)
∣∣∣∣ ≤ M ′(4πt)−n/2 +M · (4πt)−n/2 · yi − xi

2t

As before, this is certainly integrable, and so we see that we are allowed to swap the differentiation and

integration (exactly the same logic shows that we are able to do it again for the second derivative). We

compute (with some algebra errors) the second derivative to be

∂2g

∂y2i
(t, y) =

(
∂2u0

∂y2i
+

u0(y)

2t
+

∂u0

∂yi

yi − xi

2t

)
ρt(x, y) +

(
∂u0

∂yi
+ u0(y)

yi − xi

2t

)
yi − xi

2t
ρt(x, y)

= g(t, y)

(
(yi − xi)

2

4t2
− 1

2t

)
Summing this over all coordinates (the above logic holds for all i) and taking the integral, we get that

∆g(t, y) =

∫
Rn

g(t, y) ·
(
|x− y|2

4t2
− n

2t

)
dy =

∂g

∂y
(t, y)

So, u is indeed a solution to the heat equation.

Proof of (d). DO this?

Proof of (e). Fix any x ∈ Rn. The limit as t → ∞ can be seen to (if we let t ∈ N) yield a sequence (ut)t,

where

ut =

∫
Rn

u0(y)ρt(x, y)dy

By translation invariance,

ut =

∫
Rn

u0(y + x) · (4πt)−n/2e−
|y|2
4t dy

Rescaling the integration coordinate by
√
t, this equals

=

∫
Rn

u0(y
√
t+ x) · (4π)−n/2e−

|y|2
4 dy

Now, we can use bounded convergence to note that since the integrand u0(y
√
t+x)·(4π)−n/2e−

|y|2
4 converges

pointwise to 0 as t → ∞ (this is because u0 is supported on a compact set E, which means it must decay to 0

at ∞) and we have a dominating function of the form M ·
∣∣∣(4π)−n/2e−

|y|2
4

∣∣∣ which is integrable (it integrates

to M), we can swap the limit and integral and see that ut → 0 as t → ∞.
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