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Evan Dogariu MAT 425: Final Exam Problem 1

Problem 1

Solution

Proof of (a).

Let C ⊂ [0, 1] denote the usual Cantor set. Let S := {x ∈ R : | sin(x)| ∈ C}. Now, let

S0 := S ∩
[
0,

π

2

)
=
{
x ∈

[
0,

π

2

)
: | sin(x)| ∈ C

}
Note that for x ∈

[
0, π

2

)
we have that | sin(x)| = sin(x), and that sin(·) on this domain is a strictly increasing

and bijective function from
[
0, π

2

)
→ [0, 1). As such, it has an inverse function arcsin : [0, 1) →

[
0, π

2

)
. We

know from elementary calculus that arcsin (restricted to the domain [0, 1)) is continuous and differentiable

everywhere with

arcsin′(t) =
1√

1− t2

So, since 1√
1−t2

∈ L1([0, 1)) (we know that
∫ 1

0
1√
1−t2

dt = π
2 < ∞), we can apply the second part of Theorem

3.11 from Chapter 3 to see that

arcsin(x) =

∫
[0,x]

1√
1− t2

dt

As such, this grants that arcsin is absolutely continuous. Now, let ϵ > 0. Let δ be such that for all finite

collections of disjoint intervals {(ak, bk)}Nk=1 we have

N∑
k=1

(bk − ak) < δ =⇒
N∑

k=1

| arcsin(bk)− arcsin(ak)| < ϵ

We know that the Cantor set C is compact and has measure 0. So, there must exist an open set U ⊃ C such

that m(U) < δ by the definition of Lebesgue measurability. Since U ⊂ R, we know that we can express U

as a countable union of disjoint open intervals {(ak, bk)}k∈N. The union of these intervals is an open cover

of C; since C is compact, there must therefore be a finite subcover {(ak, bk)}Nk=1 such that

C ⊂
N⋃

k=1

(ak, bk)

Firstly, note that as
⋃N

k=1(ak, bk) ⊂ U , monotonicity of measure grants

N∑
k=1

(bk − ak) = m

(
N⋃

k=1

(ak, bk)

)
≤ m(U) < δ

So, by the absolute continuity of arcsin, we have that

N∑
k=1

| arcsin(bk)− arcsin(ak)| < ϵ

Now, note that the image of the Cantor set under arcsin is precisely equal to S0; in other words, S0 =

arcsin(C). As such, we see that

S0 ⊂ arcsin

(
N⋃

k=1

(ak, bk)

)
The right hand side is the image of an open set under a continuous map, and is thus open and therefore

measurable. On the interval [0, 1), we know that arcsin is strictly increasing (the derivative exists everywhere

is always > 0). This means that each interval (ak, bk) gets mapped to the interval (arcsin(ak), arcsin(bk)),

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 425: Final Exam Problem 1 (continued)

and that the images of the intervals are all disjoint (ak > bj for k > j implies that arcsin(ak) > arcsin(bj),

and so the images of nonoverlapping intervals can’t overlap). This tells us that

S0 ⊂ arcsin

(
N⋃

k=1

(ak, bk)

)
=

N⋃
k=1

(arcsin(ak), arcsin(bk))

Taking the exterior measure of both sides and applying monotonicity of the exterior measure,

m∗(S0) ≤ m

(
N⋃

k=1

(arcsin(ak), arcsin(bk))

)
=

N∑
k=1

| arcsin(bk)− arcsin(ak)| < ϵ,

where the ϵ bound was derived earlier using the absolute continuity of arcsin. So,

m∗(S0) ≤ ϵ

for all ϵ > 0, which means that S0 is measurable with m(S0) = 0. Now, note that by the oddness and

periodicity of sin(·), the function | sin(x)| is periodic in the sense that:

| sin(x)| = | sin(kπ + x)| = | sin(kπ − x)| ∀k ∈ Z

So, if we define for all n ∈ Z the set

Sn := S ∩
[
nπ

2
,
(n+ 1)π

2

)
=

{
x ∈

[
nπ

2
,
(n+ 1)π

2

)
: | sin(x)| ∈ C

}
,

then we see that Sn is a translate of S0 for all n ∈ Z (i.e. Sn = S0 +
nπ
2 ), which means that m(Sn) = 0 by

the translation invariance of the Lebesgue measure. So, as S =
⊔

n∈Z Sn (here,
⊔

denotes a disjoint union),

we get that

m(S) ≤
∑
n∈Z

m(Sn) =
∑
n∈Z

0 = 0

Therefore, m(S) = 0.

Proof of (b). Let E ⊂ Rn be measurable with finite measure. Suppose f : E → R is measurable and

finite a.e.. For each n ∈ N, define

En := {x ∈ E : f(x) ∈ [−n, n]} = f−1([−n, n])

Each En is certainly measurable since is is the preimage of an interval under a measurable function. Fur-

thermore, En ⊂ En+1 as f(x) ∈ [−n, n] =⇒ f(x) ∈ [−(n + 1), n + 1], and so (En)n is a monotonically

increasing sequence of sets. Let G := {x ∈ E : |f(x)| = +∞} be the set of points over which f is infinite;

then, m(G) = 0. For all x ∈ E \G we have that |f(x)| < ∞, which means that f(x) ∈ [−n, n] for some large

enough n. This then gives that, since En ⊂ E for all n,

E \G ⊂
∞⋃

n=1

En ⊂ E

We know that m(E \ G) = m(E), as m(G) = 0 and both E and G are measurable. By monotonicity of

measure and Corollary 3.3(i) of Chapter 1 (measure of limit of monotonic sets), we then have

m(E) = m(E \G) ≤ lim
n→∞

m(En) ≤ m(E) =⇒ lim
n→∞

m(En) = m(E)

In particular, this means that

m(E \ En) → 0 as n → ∞,

Problem 1 continued on next page. . . 3



Evan Dogariu MAT 425: Final Exam Problem 1 (continued)

as m(E \ En) = m(E)−m(En) → 0. Let ϵ > 0. Then, there must be an N such that

m(E \ EN ) < ϵ

Also, EN is measurable by our earlier reasoning and

sup
x∈EN

|f(x)| ≤ N < ∞

by construction of (En)n. So, we have found a measurable set EN such that m(E \EN ) < ϵ and f is bounded

on EN . This proves the desired result.

Proof of (c). Suppose that E ⊂ R is measurable with m(E) = 0. Let f ≡ +∞ on E, and be 0

elsewhere (the value of f on EC doesn’t change the integral over E). Note that f is measurable since for

all reals a ∈ R we find that {f < a} must be either ∅ or EC , both of which are measurable sets; so f is a

non-negative, measurable function. Now, recall that we define
∫
E
f by∫

E

f := sup
g

∫
R
g,

where the supremum runs over all measurable functions g such that 0 ≤ g ≤ f · 1E over R and g is bounded

and supported on a set of finite measure. Clearly, since 0 ≤ g ≤ f · 1E , we see that g ≡ 0 on EC , and so

supp(g) ⊂ E. This means that for all such g, each of which are bounded above (say by Mg), we have∫
R
g =

∫
E

g ≤ Mg

∫
E

1 = Mg ·m(E) = 0,

where the first equality used that supp(g) ⊂ E and the inequality is because of the boundedness of g. Since

g is non-negative,
∫
R g ≥ 0, which means that

∫
R g = 0 for all qualifying g. Since every such g integrates to

0, the supremum of all their integrals must also be 0, and so∫
E

f = 0

Proof of (d). Suppose that g : [a, b] → R is monotone increasing. We want to show that g is mea-

surable. To this end, let c ∈ R be arbitrary, and let

Ec := {x ∈ [a, b] : g(x) < c} = {g < c}

Now, note that if a point x ∈ Ec, then for all y < x we have

g(y) ≤ g(x) =⇒ c > g(x) ≥ g(y) =⇒ y ∈ Ec,

where we used the monotonicity of g and the definition of Ec. Since having an element of Ec means that all

smaller elements of [a, b] are also in Ec, then Ec must be either the empty set or an interval of the form [a, d)

or [a, d] for some d ∈ [a, b]. All of these possibilities are measurable, and so Ec certainly must be measurable.

Since Ec := {g < c} is measurable for all c ∈ R, then g is measurable as desired.

Proof of (e). Suppose that (fn)n∈N is a sequence of measurable, non-negative functions that decreases to

a function f (i.e. fn ↘ f , and so f is measurable and non-negative). We want to show that

lim
n→∞

∫
fn =

∫
f

Problem 1 continued on next page. . . 4



Evan Dogariu MAT 425: Final Exam Problem 1 (continued)

To this end, define a new sequence of functions given by

gn := f1 − fn for all n ∈ N

Clearly, each gn is measurable. We also know that g1 ≡ 0 and gn → f1 − f pointwise. Furthermore, since

fn ≥ fn+1, then f1 − fn ≤ f1 − fn+1, and so gn ≤ gn+1. So, (gn)n is an increasing sequence of measurable

functions that increases to gn ↗ f1− f . Since g1 ≡ 0, then all of the gn’s are non-negative. This means that

we can apply the monotone convergence theorem (Corollary 1.9 from Chapter 2) directly to (gn)n and find

that

lim
n→∞

∫
gn =

∫
(f1 − f)

Plugging in the form of gn and using the linearity of the Lebesgue integral, we get that∫
f1 − lim

n→∞

∫
fn =

∫
f1 −

∫
f

Rearranging,

lim
n→∞

∫
fn =

∫
f

So, the result of the monotone convergence theorem does indeed hold for decreasing sequences of non-negative

functions.

Proof of (f). Suppose that g : [0, 1] → [0, 1] is measurable and that f : [0, 1] → R is continuous.

Let E := {x ∈ [0, 1] : g(x) = 1} be the preimage of 1 under E; we know E is measurable because g is a

measurable function and E = [0, 1] \ {g < 1}, both of which are measurable sets. Now, for all x ∈ E, we

know that g(x)n = 1 for all n by construction of E, and so limn→∞ g(x)n = 1. Next, for all x /∈ E we have

g(x) ∈ [0, 1) =⇒ lim
n→∞

g(x)n = 0

So, for each x ∈ [0, 1] the limit limn→∞ g(x)n exists, and in fact gn → 1E pointwise. Since f is continuous

and therefore inherits limits, we know that

lim
n→∞

f(g(x)n) = f
(
lim
n→∞

g(x)n
)
= f(1E(x)) for all x ∈ [0, 1]

By properties 2 and 5 of measurable functions, we know that f ◦ gn is measurable for all n. Now, note that

the image f([0, 1]) is the image of a compact set under a continuous map, and is therefore compact and thus

bounded. So, f is a bounded function, say by |f(y)| ≤ M for all y ∈ [0, 1]. Then, for all x ∈ [0, 1] and for all

n ∈ N,
g(x) ∈ [0, 1] =⇒ g(x)n ∈ [0, 1] =⇒ |f(g(x)n)| ≤ M

So, we have a sequence of functions (f ◦ gn)n∈N such that |f ◦ gn| ≤ M on [0, 1] for all n. Since the constant

function M is integrable on [0, 1] (
∫
[0,1]

|M | = M < ∞), M is therefore a dominating function for this

sequence. So, we can apply dominated convergence to find that

lim
n→∞

∫
[0,1]

f(g(x)n)dx =

∫
[0,1]

lim
n→∞

f(g(x)n) =

∫
[0,1]

f(1E(x))dx,

where the first equality comes from Theorem 1.13 and the second uses our earlier calculation of the limit.

Now, for x ∈ E we know that f(1E(x)) = f(1), while for x /∈ E we know that f(1E(x)) = f(0). This tells

us that, since m([0, 1] \ E) = 1−m(E),

lim
n→∞

∫
[0,1]

f(g(x)n)dx = f(1) ·m(E) + f(0) · (1−m(E)) = f(0) +m(E) · [f(1)− f(0)],

where E := g−1({1}) = {x ∈ [0, 1] : g(x) = 1}.
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Evan Dogariu MAT 425: Final Exam Problem 2

Problem 2

Let E ⊂ Rn be measurable. A family F of measurable functions on E is said to be uniformly integrable over

E if for each ϵ > 0, there exists δ > 0 such that for all f ∈ F , whenever A ⊂ E is measurable with m(A) < δ,

we have
∫
A
|f | < ϵ.

Solution

Proof of (a). Suppose that {fk}Nk=1 is a finite collection of measurable functions, each of which is integrable

over E. Let ϵ > 0 be arbitrary. By Proposition 1.12(ii) of Chapter 2, for each k there exists a δk > 0 such

that whenever A ⊂ E is measurable, we have

m(A) < δk =⇒
∫
A

|fk| < ϵ

Let δ = mink∈{1,...,N} δk; since there are finitely many δk’s this minimum is attained, and so δ > 0. Fur-

thermore, for all fk ∈ F , if A ⊂ E is measurable with m(A) < δ ≤ δk then
∫
A
|fk| < ϵ by construction of

δk. Since such a δ exists that works for all fk ∈ F and the above logic applies for all ϵ, we see that F is

uniformly integrable over E.

Proof of (b). This statement is not true. As a counterexample, let F denote the family of functions

{fn}n∈N where each fn : [0, 1] → R is given by

fn(x) := n · 1[0, 1
n ]

In other words, fn(x) =

{
n x ≤ 1

n

0 else
. Then, each fn is certainly measurable (it is a simple function) and we

find that ∫
[0,1]

|fn| = n

∫
[0, 1

n ]

1 = n · 1
n
= 1 for all n ∈ N

So, F is an example of a family of measurable functions from [0, 1] → R such that for all f ∈ F ,∫
[0,1]

|f | ≤ 1

We wish to show that F is not uniformly integrable over [0, 1]. To this end, suppose by way of contradiction

that F is uniformly integrable over [0, 1]. Then, let δ > 0 be the value such that whenever A ⊂ E is

measurable with m(A) ≤ δ we know that for all f ∈ F ,∫
A

|f | < 1

2

Let N > 1
δ , and let A := [0, 1

N ]. Then, m(A) = 1
N < δ, and so it should be that

∫
A
|f | < 1

2 for all f ∈ F by

our selection of δ. However, note that∫
A

|fN | =
∫
[0, 1

N ]

N · 1[0, 1
N ] =

∫
[0, 1

N ]

N = 1 ≮
1

2
,

where fN ∈ F . This is an obvious contradiction, and so this F is not uniformly integrable over [0, 1].

Proof of (c). Let E ⊂ Rn be a measurable set of finite measure. Suppose F = {fk}k∈N is uniformly

integrable over E and that fk → f pointwise a.e. on E for some f . First, we wish to show that f is

Problem 2 continued on next page. . . 6



Evan Dogariu MAT 425: Final Exam Problem 2 (continued)

integrable. Note that, since {|fk|}k∈N is a sequence of non-negative functions and |fk| → |f | pointwise a.e.

(| · | is continuous and fk → f), Fatou’s lemma gives that∫
E

|f | ≤ lim inf
k→∞

∫
E

|fk|

Let ϵ > 0, and let δ > 0 be such that for all measurable A ⊂ E with m(A) < δ we know∫
A

|fk| < ϵ ∀fk ∈ F

(such a δ is guaranteed by the uniform integrability criterion). Write E :=
⊔N

n=1 En where each En is

measurable with m(En) < δ (we can do this because E has finite measure, and so it can be covered by a

finite disjoint union of sets each of measure < δ). Then, for all k we have∫
E

|fk| =
N∑

n=1

∫
En

|fk| ≤
N∑

n=1

ϵ = Nϵ

by the uniform integrability property and our selection of the En’s. Since
∫
E
|fk| ≤ Nϵ holds for all k, we

find that

lim inf
k→∞

∫
E

|fk| < ∞ =⇒
∫
E

|f | < ∞,

and so f is integrable.

Let ϵ > 0 be arbitrary, and let δ > 0 be selected as before. Now, since f is integrable, Proposition 1.12(ii)

yields a δ′ > 0 such that for all measurable A ⊂ E with m(A) < δ′ we know
∫
A
|f | < ϵ. Let δ̃ := min{δ, δ′}.

By Egorov’s Theorem (since m(E) < ∞ and fk is measurable ∀k), there exists a closed set Aδ̃ ⊂ E such

that m(E \Aδ̃) ≤ δ̃ and fk → f uniformly on Aδ̃. Let K be such that for all k > K we know that

|fk(x)− f(x)| ≤ ϵ ∀x ∈ Aδ̃

(we know such a K exists by uniform convergence). So, we can say that for all k > K,∫
E

|fk − f | =
∫
A

δ̃

|fk − f |+
∫
E\A

δ̃

|fk − f |

≤
∫
A

δ̃

|fk − f |+
∫
E\A

δ̃

|fk|+
∫
E\A

δ̃

|f |

≤
∫
A

δ̃

ϵ+

∫
E\A

δ̃

|fk|+
∫
E\A

δ̃

|f |

≤

(∫
A

δ̃

ϵ

)
+ ϵ+ ϵ

= (m(Aδ̃) + 2) · ϵ
≤ (m(E) + 2) · ϵ,

where in the second line we used the triangle equality, in the third line we used the fact that fk → f uniformly

on Aδ̃, in the fourth line we used the fact that m(E \Aδ̃) ≤ δ̃ = min{δ, δ′} as well as the definitions of δ and

δ′ to bound the integrals of |fk| and |f |, respectively, over E \Aδ̃, and in the last line we used that Aδ̃ ⊂ E

and the monotonicity of measure. So, for each ϵ there exists an K such that for all k > K,∫
E

|fk − f | ≤ (m(E) + 2) · ϵ

Problem 2 continued on next page. . . 7



Evan Dogariu MAT 425: Final Exam Problem 2 (continued)

Since m(E) < ∞ and does not depend on ϵ, we can take ϵ to 0 and find that

lim
k→∞

∫
E

|fk − f | = 0 =⇒
∣∣∣∣∫

E

fk −
∫
E

f

∣∣∣∣→ 0 =⇒
∫
E

fk →
∫
E

f

as desired (the first implication is because of the triangle inequality
∣∣∫

E
(fk − f)

∣∣ ≤ ∫
E
|fk − f | → 0).

Proof of (d). Both results from part (c) can fail when m(E) ≮ ∞. We will produce counterexam-

ples for both results in the setting E = R =⇒ m(E) = ∞.

Firstly, let F = {fk}k∈N be the family of functions fk : E → R given by

fk := 1[−k,k] ∀k ∈ N

To see that F is indeed uniformly integrable over E, let ϵ > 0 be arbitrary and let δ := ϵ. Then, for any

measurable A ⊂ E with m(A) < δ, for all k ∈ N we get∫
A

|fk| =
∫
A

1[−k,k] =

∫
A∩[−k,k]

1 = m(A ∩ [−k, k]) ≤ m(A) < δ = ϵ,

where we used that A∩ [−k, k] ⊂ A and the monotonicity of measure. Since this holds for all k, we find that

F is indeed uniformly integrable over E. However, note that fk → 1E pointwise a.e. over E (this is because

for each x ∈ E and all k > |x| we have fk(x) = 1E(x) = 1). The function 1E is not integrable over E since∫
E
|1E | = m(E) = ∞, and so the first conclusion from part (c) doesn’t hold for this example.

Next, let F = {fk}k∈N be the family of functions fk : E → R given by

fk :=
1

2k
· 1[−k,k] ∀k ∈ N

To see that F is indeed uniformly integrable over E, let ϵ > 0 be arbitrary and let δ := ϵ. Then, for any

measurable A ⊂ E with m(A) < δ, for all k ∈ N we get∫
A

|fk| =
∫
A

1

2k
· 1[−k,k] =

∫
A∩[−k,k]

1

2k
≤
∫
A∩[−k,k]

1 = m(A ∩ [−k, k]) ≤ m(A) < δ = ϵ,

where we used that 1
2k ≤ 1 and A∩ [−k, k] ⊂ A. Since this holds for all k, we find that F is indeed uniformly

integrable over E. However, note that for all x ∈ E,

|fk(x)| ≤
1

2k
=⇒ lim

k→∞
fk(x) = 0

So, fk → f pointwise, where f ≡ 0 is the zero function. We can compute that for all k ∈ N,∫
E

fk =

∫
E

1

2k
· 1[−k,k] =

1

2k
·m([−k, k]) =

1

2k
· 2k = 1

So,
∫
E
fk = 1 for all k but

∫
E
f ≡ 0, which means that

∫
E
fk ↛

∫
E
f (a sequence of 1’s cannot approach 0).

Therefore, the second conclusion from part (c) doesn’t hold for this example.

8
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Problem 3

Solution

Throughout this solution, functions in L2(E) are real-valued.

Proof of (a). Let E ⊂ Rn be measurable with m(E) < ∞. Suppose that (fn)n is a bounded se-

quence in L2(E) and f ∈ L2(E). We will present the answers in the order that they are asked on the

exam sheet, but for clarity and to avoid circular logic we make clear here that the order that these are

proved in is (iii), (i), (ii), and then (iv). This allows us to make use of results from (iii) in the proof of (i).

(i) Suppose first that (P1) holds, in which case fn → f in L2(E). We will show that (P2) and (P3)

hold for certain subsequences of (fn)n (though perhaps not for the same subsequence). As n → ∞,

||fn − f ||2L2(E) → 0 =⇒
∫
E

|fn − f |2 → 0

Let ϵ > 0. For each k, we can find an element of the sequence nk such that∫
E

|fnk
− f |2 ≤ ϵ2

k

Recall Chebyshev’s Identity, which was proven in Problem 1 on PSET 3 and states that for non-negative,

integrable g,

m({g > α}) ≤ 1

α

∫
g,

where α > 0. We apply this for each k with α = ϵ2 and g := |fnk
− f |2, which is certainly non-negative and

integrable. Then,

m
({

|fnk
− f |2 > ϵ2

})
≤ 1

ϵ2
·
∫
E

|fnk
− f |2 ≤ 1

k
∀k ∈ N

Equivalently,

m ({|fnk
− f | > ϵ}) ≤ 1

k
∀k ∈ N

The above tells us that

m({x ∈ E : |fnk
(x)− f(x)| > ϵ}) → 0 as k → ∞

Since this holds for all ϵ > 0, we have proven exactly the criterion for convergence in measure to f as k → ∞.

So, there exists a subsequence (fnk
)k ⊂ (fn)n such that (P3) holds. Now, applying the result from part (iii),

which states that a sequence converging in measure to f has a subsequence that converges pointwise a.e.

to f , we find that there is a subsubsequence (fnkj
)j ⊂ (fnk

)k ⊂ (fn)n such that (P2) holds; i.e. fnkj
→ f

pointwise a.e. on E as j → ∞. To sum up, we see that if (P1) holds, then there exists a subsequence of

(fn)n for which (P2) holds and also a subsequence of (fn)n for which (P3) holds.

(ii) Suppose that fn → f pointwise a.e. on E. We will first prove that there exists a subsequence for

which (P3) holds, and then we will construct a counterexample in this setting such that no subsequence can

have property (P1). To prove the first part, we will apply Egorov’s Theorem. Let ϵ > 0 be arbitrary, and let

δ > 0 also be arbitrary. Then, as m(E) < ∞ and all the fn’s are measurable with fn → f pointwise a.e. on

E, we can find a closed set Aδ ⊂ E such that m(E \Aδ) < δ and fn → f uniformly on Aδ. Now, by uniform

convergence we can find a N ∈ N such that for all n > N we have

|fn(x)− f(x)| ≤ ϵ ∀x ∈ Aδ

Problem 3 continued on next page. . . 9



Evan Dogariu MAT 425: Final Exam Problem 3 (continued)

Then, for all n > N we find that

{|fn − f | > ϵ} ⊂ E \Aδ =⇒ m({|fn − f | > ϵ} < δ

Since such an N exists for all δ, taking δ → 0 implies that

lim
n→∞

m({|fn − f | > ϵ} = 0

Since this statement holds for all ϵ > 0, we find that fn → f in measure as well (importantly, the whole

sequence converges in measure and not just a subsequence; we will use this later).

Now, we will construct a counterexample for which (P1) doesn’t hold for any subsequence. Let E = [0, 1]

and consider the sequence of functions (fn)n given by

fn(x) :=
√
n · 1[0, 1

n ](x)

(this is a similar counterexample to the one we used in Problem 2(b)). Firstly, note that each fn ∈ L2(E)

and that the sequence is bounded in L2(E), as

||fn||2L2(E) =

∫
E

|fn|2 = n

∫
E

1[0, 1
n ] = n ·m

([
0,

1

n

])
= 1,

where we used that [0, 1
n ] ⊂ E for all n ∈ N. So, the sequence (fn)n is indeed a bounded sequence in L2(E).

We claim that fn → 0 pointwise a.e. on E, yet that fn ↛ 0 in L2(E). To see the first part, let x ∈ E be

nonzero and arbitrary. Then, for all n > 1
x we have that x > 1

n , which means that x /∈ [0, 1
n ] and therefore

that fn(x) = 0. So, we find that

lim
n→∞

fn(x) = 0

Since this holds for all nonzero x ∈ E, we find that fn → 0 pointwise a.e. on E. However, for every n we

have already seen that

||fn − 0||L2(E) = ||fn||L2(E) = 1,

which means that no subsequence of (fn)n can converge to 0 (since any subsequence will not decay in norm

to 0). Therefore, we have constructed a counterexample where (P1) cannot hold for any subsequence of

(fn)n, yet fn → f ≡ 0 pointwise a.e..

(iii) Suppose that fn → f in measure. We will first show that (P2) holds for a certain subsequence of

(fn)n, and then we will construct a counterexample to show that (P1) need not hold for any subsequence.

For every ϵ > 0 we have

m({x ∈ E : |fn(x)− f(x)| > ϵ}) → 0 as n → ∞

For each k, define the measurable set

G(k)
n :=

{
|fn − f | > 1

k

}
Then, limn→∞ m(G

(k)
n ) = 0 for all k by the criterion for convergence in measure with ϵ = 1

k . This means

that for each k there exists an element nk such that

m
(
Gk

nk

)
≤ 1

2k

So,
{
Gk

nk

}
k∈N is a countable family of measurable subsets of E for which

∞∑
k=1

m
(
Gk

nk

)
≤

∞∑
k=1

1

2k
= 1 < ∞

Problem 3 continued on next page. . . 10
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Let

G := lim sup
k→∞

Gk
nk

= {x ∈ E : x ∈ Gk
nk

for infinitely many k}

The Borel-Cantelli Lemma, which was proven as Problem 5 on PSET 1, states that in precisely this setting

we have that G is measurable and that m(G) = 0. Now, note that this means that for almost every x, we

know that x /∈ G and so x ∈ Gk
nk

for only finitely many k. For each x /∈ G for which aforementioned property

holds, let kx be the largest k such that x ∈ Gk
nk
. Then, for all k > kx we know that x /∈ Gk

nk
. Equivalently,

for x /∈ G and all k > kx,

|fnk
(x)− f(x)| ≤ 1

k

Taking k → ∞ for all x /∈ G, we find that limk→∞ fnk
(x) = f(x). Since x /∈ G for a.e. x ∈ E, we find that

this subsequence {fnk
}k converges pointwise a.e. on E, and so (P2) holds for a subsequence of (fn)n.

Now, we will construct a counterexample for which (P1) doesn’t hold for any subsequence. Let E = [0, 1]

and consider the sequence of functions (fn)n given by

fn(x) :=
√
n · 1[0, 1

n ](x)

(this is the same counterexample we just used for (ii)). Firstly, note that each fn ∈ L2(E) and that the

sequence is bounded in L2(E), as

||fn||2L2(E) =

∫
E

|fn|2 = n

∫
E

1[0, 1
n ] = n ·m

([
0,

1

n

])
= 1,

where we used that [0, 1
n ] ⊂ E for all n ∈ N. So, the sequence (fn)n is indeed a bounded sequence in L2(E).

We claim that fn → 0 in measure, yet that fn ↛ 0 in L2(E). To see the first part, note that fn(x) can only

take values in {0, n}. So, for all ϵ and all n > ϵ we have that for all x ∈ E,

|fn(x)− 0| > ϵ ⇐⇒ fn(x) = n ⇐⇒ x ∈
[
0,

1

n

]
So, for all ϵ > 0 we know that for large enough n,

m({x ∈ E : |fn(x)− 0| > ϵ}) = m

([
0,

1

n

])
=

1

n

Then, for all ϵ > 0, we can take the limit as n → ∞ to see that

m({x ∈ E : |fn(x)− 0| > ϵ}) → 0 as n → ∞

So, fn → 0 in measure. However, for every n we have already seen that

||fn − 0||L2(E) = ||fn||L2(E) = 1,

which means that no subsequence of (fn)n can converge to 0 (since any subsequence will not decay in norm

to 0). Therefore, we have constructed a counterexample where (P1) cannot hold for any subsequence of

(fn)n, yet fn → f ≡ 0 in measure.

(iv) Note that the property
∫
E
fng →

∫
E
fg for all g ∈ L2(E) is equivalent to the weak convergence

property that ⟨fn, g⟩L2(E) → ⟨f, g⟩L2(E) for all g ∈ L2(E). We first show that there exists a sequence

(fn)n of functions for which the given property holds, but there is no subsequence of (fn)n for which (P1)

holds. To construct this, let {φk}k∈N be an orthonormal basis for L2(E), which we know to be a separable,

infinite-dimensional Hilbert space. Consider the sequence (φk)k; this sequence clearly has unit norm for all

Problem 3 continued on next page. . . 11
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k. Furthermore, we know that this has no convergent subsequence since no subsequence can be Cauchy;

indeed, for any m ̸= n we have that

||φn − φm||2L2(E) = ||φn||2L2(E) + ||φm||2L2(E) − 2Re ⟨φn, φm⟩L2(E) = 2,

and so no subsequence can meet the Cauchy criterion. However, we do have that ⟨φkn
, g⟩L2(E) → ⟨f, g⟩L2(E)

for some f ∈ L2(E) and some subsequence (φkn
)n by the result of Problem 9 from PSET 7, which stated

that all sequences of unit vectors in an infinite-dimensional separable Hilbert space have a weakly con-

vergent subsequence. Define the sequence (fn)n by fn := φkn for each n ∈ N. We then have that

⟨fn, g⟩L2(E) → ⟨f, g⟩L2(E) for all g ∈ L2(E), yet that no subsequence of (fn)n can converge in L2(E) to

anything, let alone to f . So, in this setting there is no subsequence for which (P1) holds, yet (fn)n has the

weak convergence property.

Suppose now that E = [0, 2π]. We will now show that there exists a sequence (fn)n of functions for

which the given weak convergence property holds, but there is no subsequence of (fn)n for which (P2) holds.

To see this, let fn := cos(−nx) for all n ∈ N; then, fn ∈ L2(E) clearly since | cos |2 ≤ 1 and 1 is integrable

over [0, 2π]. Let g ∈ L2(E) be arbitrary. Note that the identity function 1 ∈ L2(E) as
∫
E
|1|2 = m(E) < ∞.

So, we can use Cauchy-Schwartz to note that since ||g||L2(E) < ∞,∫
E

|g| = ⟨|g|, 1⟩L2(E) ≤ || |g| ||L2(E) · ||1||L2(E) = m(E) · ||g||L2(E) < ∞

So, g ∈ L1(E). Then, we have that∫
E

fng =

∫
E

g(x) cos(−nx)dx =

∫
E

g(x)Re(e−inx)dx = Re

(∫
E

g(x)e−inxdx

)
,

where we used that the real part of an integral is the integral of the real part (this property is inherited from

finite summations via the definition of an integral in terms of simple functions). Now, by the first result from

Problem 6 of PSET 5, which states that if g ∈ L1(E) then
∫
E
g(x)e−inxdx → 0 as |n| → ∞, we know that∫

E
fng → 0 as n → ∞. Since this holds for all g ∈ L2(E), we find that

∫
E
fng =

∫
E
0g for all g ∈ L2(E),

which means that (fn)n converges weakly to the function 0. However, there is no subsequence of (fn)n that

converges pointwise a.e. to 0. To see this, suppose by way of contradiction there was some subsequence

(fnk
)k that converged pointwise a.e. to 0. Then, for almost every x ∈ E, we would have that cos(−nx) → 0

as n → ∞; by the Cauchy criterion, this would imply that for any ϵ > 0 there exists an N ∈ N large enough

that | cos(−nx)− cos(−mx)| < ϵ for all n,m > N . Then, since this property holds for a.e. x ∈ E, we should

have that for all n,m > N , ∫
E

(cos(−nx)− cos(−mx))2dx ≤
∫
E

ϵ2 = 2πϵ2

However, for any n ̸= m, we can compute that∫
E

(cos(−nx)− cos(−mx))2dx =

∫
E

cos2(nx)dx+

∫
E

cos2(mx)dx− 2

∫
E

cos(nx) cos(mx)dx

The first two integrals on the right hand side both evaluate to π for n,m ∈ N, and the third integral evaluates

to 0 for n ̸= m. So, since 2π ≰ 2πϵ2 for some ϵ, we arrive at a contradiction. Thus, no subsequence of

(fn)n can converge pointwise a.e. to 0. So, even though (fn)n has the given weak convergence property, no

subsequence can satisfy (P2).

We will reuse the previous counterexample to also show that (P3) cannot hold for any subsequence of

(fn)n for (fn)n defined as in the previous paragraph (i.e. fn(x) = cos(−nx)). Suppose by way of contra-

diction that some subsequence (fnk
)k converges in measure to 0. Then, using the result from part (iii), we

Problem 3 continued on next page. . . 12
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see that convergence in measure of (fnk
)k implies that there is some subsequence (fnkj

)j that converges

pointwise a.e. to 0. However, from the previous paragraph we know that no subsequence of (fn)n converges

pointwise to 0. This is a contradiction, and so we find that no subsequence of (fn)n can satisfy (P3).

Proof of (b). Suppose now that m(E) = ∞. We can be sure that only the affirmative answers from

(a)(i)-(iv) will change, as none of the counterexamples that were made when m(E) < ∞ relied on finiteness

of E, and so their proofs carry over directly to the case when m(E) = ∞. If you are unconvinced of this, note

that we used the same counterexample for (ii) and (iii)’s (P1), which is certainly unchanged if m(E) = ∞
as all we require is that [0, 1

n ] ⊂ E for all n ∈ N. Next, the (P1) counterexample from (iv) uses results that

hold for all infinite-dimensional Hilbert spaces, and so finiteness of E is irrelevant. For the (P2) and (P3)

counterexamples from (iv) (which are the same counterexample), it actually does change when m(E) = ∞,

as we no longer can apply Problem 6 of PSET 5 since we no longer know that g ∈ L2(E) =⇒ g ∈ L1(E).

However, we can simply multiply fn by 1[0,2π] for each n, which ensures that our computation of
∫
fng = 0

can still be done for all g ∈ L2(E) (just with g · 1[0,2π] ∈ L1([0, 2π] being used in the application of Problem

6 of PSET 5 instead). The rest of the reasoning for those counterexamples (namely, that no subsequence of

(fn)n converges to 0) still holds when m(E) = ∞ if we multiply fn by 1[0,2π] as discussed earlier. So, since

all our counterexamples are either unchanged or fixable when m(E) = ∞, we only need to investigate how

the affirmative answers (which are (P2) and (P3) in (a)(i), (P3) in (a)(ii), and (P2) in (a)(iii)) change.

The logic in (a)(iii)’s (P2) proof that convergence in measure implies a subsequence converges pointwise

a.e. makes no use of finiteness of E, and so that result still stands. Furthermore, nowhere in the proof of

(a)(i)’s two affirmative results do we use that m(E) < ∞, and so those results hold too (we do make use of

(a)(iii)’s result about (P2), but we just saw that that holds as well); so, (P2) and (P3) in (a)(i) hold.

We claim that the (P3) result from (a)(ii) does not hold. To see this, let E = R and let fn := 1[n,n+1)

for all n ∈ N. Then, for each x ∈ E we find that fn(x) = 0 for all n > x, and so fn → 0 pointwise everywhere

in E. However, no subsequence of (fn)n can converge in measure to 0, since for all ϵ < 1 and every n ∈ N
we have that

m({x ∈ E : |fn(x)− 0| > ϵ}) = m({x ∈ E : x ∈ [n, n+ 1)}) = m([n, n+ 1)) = 1,

which means that this quantity cannot decay to 0 along any subsequence. So, the (P3) result from (a)(ii)

does not hold.

Proof of (c). Suppose that E ⊂ Rn is measurable and m(E) < ∞. For any two measurable func-

tions g, h on E, define

ρ(g, h) :=

∫
E

|g − h|
1 + |g − h|

Let (fk)k be a sequence of measurable functions that is bounded in L2(E), and let f be a measurable func-

tion. We want to show that fk → f in measure on E if and only if ρ(fk, f) → 0.

( =⇒ ) Suppose first that fk → f in measure on E. Fix ϵ > 0 to be arbitrary. For each k, define

Ek := {x ∈ E : |fk(x)− f(x)| > ϵ}

Then, we know that m(Ek) → 0 as k → ∞ by the criterion for convergence in measure. So, there exists a

K ∈ N such that for all k > K we have

m(Ek) < ϵ

Problem 3 continued on next page. . . 13
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For all k > K we can write

ρ(fk, f) =

∫
E

|fk − f |
1 + |fk − f |

=

∫
Ek

|fk − f |
1 + |fk − f |

+

∫
E\Ek

|fk − f |
1 + |fk − f |

≤
∫
Ek

1 +

∫
E\Ek

|fk − f |
1 + |fk − f |

≤ ϵ+

∫
E\Ek

|fk − f |
1 + |fk − f |

≤ ϵ+

∫
E\Ek

ϵ

1 + |fk − f |

≤ ϵ+

∫
E\Ek

ϵ

= (m(E \ Ek) + 1) · ϵ ≤ (m(E) + 1) · ϵ,

where for the second line we split the integral, in the third line we used that |fk−f |
1+|fk−f | ≤ 1 always (denominator

is larger than numerator), in the fourth line we used that m(Ek) < ϵ for all such k, in the fifth line we used

that |fk − f | ≤ ϵ over E \ Ek by construction of Ek, in the sixth line we used that 1 + |fk − f | ≥ 1, and in

the last line we used that E \ Ek ⊂ E and the monotonicity of the Lebesgue measure. So, we find that for

every ϵ > 0 there exists a K such that for all k > K we have

ρ(fk, f) ≤ (m(E) + 1) · ϵ

Since m(E) is finite and doesn’t depend on ϵ, we can take ϵ → 0 to see that

ρ(fk, f) → k as k → ∞

as desired.

( ⇐= ) Suppose now that ρ(fk, f) → 0 as k → ∞. Note that for all k and all x, we have that∣∣∣∣ |fk(x)− f(x)|
1 + |fk(x)− f(x)|

∣∣∣∣ ≤ 1

So, the constant function 1 is a dominating function for the integrand. Since m(E) < ∞, we see that

||1||2L2(E) =

∫
E

|1|2 =

∫
E

1 = m(E) < ∞,

and so
∣∣∣ |fk(x)−f(x)|
1+|fk(x)−f(x)|

∣∣∣ is dominated by an integrable function. So, by the dominated convergence theorem,

0 = lim
k→∞

ρ(fk, f) = lim
k→∞

∫
E

|fk − f |
1 + |fk − f |

=

∫
E

lim
k→∞

(
|fk(x)− f(x)|

1 + |fk(x)− f(x)|

)
dx

We can be sure that for all x ∈ E we have that limk→∞

(
|fk(x)−f(x)|

1+|fk(x)−f(x)|

)
≥ 0 since it is the limit of non-

negative terms. So, we can apply Proposition 1.6(vi) of Chapter 2 to see that

lim
k→∞

(
|fk(x)− f(x)|

1 + |fk(x)− f(x)|

)
= 0 for a.e. x ∈ E

For such x, we know that limk→∞ |fk(x) − f(x)| ∈ [0,∞], and we want to show that it equals 0. First,

suppose by way of contradiction that the limit equals +∞. Then,

lim
k→∞

(
|fk(x)− f(x)|

1 + |fk(x)− f(x)|

)
= lim

k→∞

(
1

1 + 1
|fk(x)−f(x)|

)
=

1

1 + limk→∞
1

|fk(x)−f(x)|
=

1

1 + 0
= 1 ̸= 0,
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which is a contradiction. So, limk→∞ |fk(x) − f(x)| < ∞. If limk→∞ |fk(x) − f(x)| = M for some M ̸= 0,

then we would have that

lim
k→∞

(
|fk(x)− f(x)|

1 + |fk(x)− f(x)|

)
=

M

1 +M
̸= 0,

which is again a contradiction. So, this means that

lim
k→∞

|fk(x)− f(x)| = 0 for a.e. x ∈ E

as well. This reveals that fk → f pointwise a.e. on E. Now, note that in the proof of (a)(ii) above, we

actually showed that if fn → f pointwise a.e. then fn → f in measure (importantly, the whole sequence

converges in measure, and not just a subsequence). We can apply this here to see that fk → f in measure

on E, and so we are done.
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Problem 4

Solution

Proof of (a). Let the total variation of a function g : [a, b] → R be denoted by

Tg := sup

N∑
j=1

|g(tj)− g(tj−1)|,

where the supremum is over all partitions of [a, b]. Suppose that {fn}n∈N from [a, b] → R is a sequence with

fn → f pointwise everywhere on [a, b]. Now, let a = t0 < t1 < ... < tN = b be an arbitrary partition of [a, b].

By definition of total variation as a supremum, we know that for all n ∈ N
N∑
j=1

|fn(tj)− fn(tj−1)| ≤ Tfn

Taking the lim inf as n → ∞ of both sides,

lim inf
n→∞

Tfn ≥ lim inf
n→∞

N∑
j=1

|fn(tj)− fn(tj−1)|

=

N∑
j=1

lim inf
n→∞

(|fn(tj)− fn(tj−1)|)

=

N∑
j=1

|f(tj)− f(tj−1)|,

where we are allowed to switch the lim inf with the summation in the second line because the summation is

finite, and the third line comes from the fact that fn → f everywhere (and that | · | is continuous). So, we

know that for any arbitrary partition of [a, b],

N∑
j=1

|f(tj)− f(tj−1)| ≤ lim inf
n→∞

Tfn

This bound will hold after taking a supremum over all partitions of [a, b], and so

Tf = sup

N∑
j=1

|f(tj)− f(tj−1)| ≤ lim inf
n→∞

Tfn

as desired.

Proof of (b). Suppose that F : [a, b] → R is increasing. Clearly, F is bounded on [a, b] because F

increasing =⇒ F (a) ≤ F (x) ≤ F (b) ∀x ∈ [a, b]. By Lemma 3.12 of Chapter 3, we know that F has at

most countably many discontinuities; let us label them {xn}n∈N. At each discontinuity xn, we know that

there is a jump

αn := F (x+
n )− F (x−

n )

such that

F (x+
n ) = F (x−

n ) + αn and F (xn) = F (x−
n ) + θnαn

for some collection {θn}n. Let us construct the jump function given by

FJ(x) :=

∞∑
n=1

αnjn(x), where jn(x) :=


0 x < xn

θn x = xn

1 x > xn

Problem 4 continued on next page. . . 16
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Clearly, FJ is increasing as more jn(x)’s will be nonzero as we increase x and αn ≥ 0 for all n. Also, by

our construction of the jump function, we know that F ′
J exists a.e. and is 0 where it exists (this comes from

Theorem 3.14). We know from Lemma 3.13 and the remarks above that result that because F is increasing

and bounded on [a, b], then the difference F − FJ is increasing and continuous on [a, b]. We will denote this

difference by C; i.e. C : [a, b] → R is a continuous, increasing function such that

C(x) := F (x)− FJ(x) ∀x ∈ [a, b]

Now, we know from Example 1 in Section 3.1 of Chapter 3 that because F is increasing, bounded, and real-

valued on [a, b], then it is of bounded variation. So, by Theorem 3.4, F ′ exists a.e. on [a, b]. By Corollary

3.7, C ′ therefore exists a.e., is non-negative and measurable, and satisfies∫
[a,b]

C ′ ≤ C(b)− C(a) =⇒
∫
[a,b]

|C ′| < ∞,

which tells us that C ′ is integrable. Note that, by linearity of the derivative, we know that for almost every

x ∈ [a, b],

F ′(x) = C ′(x) + F ′
J(x) = C ′(x),

and so F ′ itself is non-negative almost everywhere, measurable, and integrable (here, we used the fact that

F ′
j = 0 a.e.). As such, let us define a function FA : [a, b] → R given by

FA(x) :=

∫
[a,x]

F ′

Since F ′ is non-negative a.e., we see that FA must be increasing (when y > x, FA(y)−FA(x) =
∫
(x,y]

F ′ ≥ 0).

Furthermore, by construction we have that FA is absolutely continuous (see the last remark on page 128 of

Stein). Lastly, we know by the statements in Theorem 3.11 that F ′
A = F ′ a.e..

To conclude, let us define a function FC : [a, b] → R by

FC := F − FJ − FA = C − FA

Since C was continuous and FA is absolutely continuous (and therefore continuous), FC is certainly contin-

uous as well. Furthermore, by linearity of the derivative (and the fact that F ′, F ′
J , and F ′

A exist a.e.), for

a.e. x ∈ [a, b] we have

F ′
C(x) = F ′(x)− F ′

J(x)− F ′
A(x) = F ′(x)− 0− F ′(x) = 0,

where we used that F ′
A = F ′ a.e. and that F ′

J = 0 a.e.. So, F ′
C = 0 a.e.. The last thing we wish to show is

that FC is increasing. To that end, for every x, y ∈ [a, b] with x < y we have

FC(y)− FC(x) = C(y)− C(x)− FA(y) + FA(x)

≥ FA(x)− FA(y) +

∫
[x,y]

C ′

= FA(x)− FA(y) +

∫
[x,y]

F ′

=

∫
[a,x]

F ′ −
∫
[a,y]

F ′ +

∫
[x,y]

F ′

=

∫
[a,y]

F ′ −
∫
[a,y]

F ′ = 0,

where for the second line we used Corollary 3.7 (because C = FA + FC is increasing and continuous), for

the third line we used that C ′ = F ′ a.e., for the fourth line we used our defintion of FA, and for the last line

Problem 4 continued on next page. . . 17



Evan Dogariu MAT 425: Final Exam Problem 4 (continued)

we used properties of integrals. So, FC(y) ≥ FC(x) whenever y > x, which means that FC is increasing. To

sum up, we have written

F = C + FJ = FA + FC + FJ ,

where FA, FC , FJ are all increasing, FA is absolutely continuous, FC is continuous with F ′
C = 0 a.e., and FJ

is a jump function.

To see the uniqueness (up to additive constants) of this form for F , suppose that there exists two de-

compositions

F = FA + FC + FJ = GA +GC +GJ ,

where the component functions have the desired properties. Firstly, note that

GJ − FJ = FA + FC −GA −GC

The left hand side is a jump function and is discontinuous at precisely its jump points, while the right hand

side is a combination of continuous functions and therefore has no discontinuities. So, GJ − FJ must be a

jump function with no jumps, and therefore must be constant.

Next, observe that

GA − FA = FC + FJ −GC −GJ

The left hand side is an absolutely continuous function (the difference of two absolutely continuous functions is

absolutely continuous by application of the triangle inequality on the |f(tj)−f(tj−1)| part of the criterion for

absolute continuity). All of the involved functions are increasing on a closed interval and therefore bounded,

which means they are of bounded variation and so differentiable a.e.. Then, we can take a derivative to see

that

G′
A − F ′

A = F ′
C + F ′

J −G′
C −G′

J = 0 a.e.,

where we used that F ′
C , F

′
J , G

′
C , G

′
J = 0 a.e.. By Theorem 3.8, since GA − FA is absolutely continuous and

(GA − FA)
′ = 0 a.e., then FA and GA differ by a constant as well.

So, we know that FA and GA differ by a constant, as do FJ and GJ . Then, as

GC − FC = FA −GA + FJ −GJ ,

we find that GC − FC must be constant as well. So, the constructed FA, FC , FJ are unique up to additive

constants.

Proof of (c). Suppose that F,G are absolutely continouous on [a, b]. Then, they are both continu-

ous; since [a, b] is compact, it must be that both F and G are bounded over [a, b], say by |F (x)| ≤ MF and

|G(x)| ≤ MG for all x ∈ [a, b]. Then, for any set of disjoint intervals {(ak, bk)}Nk=1,

N∑
k=1

|(FG)(bk)− (FG)(ak)| =
N∑

k=1

|F (bk) ·G(bk)− F (ak) ·G(ak)|

=

N∑
k=1

|F (bk) ·G(bk)− F (ak) ·G(bk) + F (ak) ·G(bk)− F (ak) ·G(ak)|

≤
N∑

k=1

|F (bk) ·G(bk)− F (ak) ·G(bk)|+
N∑

k=1

|F (ak) ·G(bk)− F (ak) ·G(ak)|

=

N∑
k=1

|G(bk)| · |F (bk)− F (ak)|+
N∑

k=1

|F (ak)| · |G(bk)−G(ak)|

Problem 4 continued on next page. . . 18
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≤ MG

N∑
k=1

|F (bk)− F (ak)|+MF

N∑
k=1

|G(bk)−G(ak)|,

where in the second line we added and subtracted the same value (F (ak) ·G(bk)), in the third line we used

the triangle inequality, and in the last line we applied the boundedness of F and G.

Now, let ϵ > 0. By absolute continuity of F , there exists a δF > 0 such that whenever
∑N

k=1(bk − ak) < δF ,

then
∑N

k=1 |F (bk)−F (ak)| < ϵ
2MG

. Similarly, there exists a δG > 0 such that whenever
∑N

k=1(bk−ak) < δG,

then
∑N

k=1 |G(bk) − G(ak)| < ϵ
2MF

. Let δ := min{δF , δG}. Then, whenever
∑N

k=1(bk − ak) < δ, by our

earlier derivation we find that

N∑
k=1

|(FG)(bk)− (FG)(ak)| ≤ MG · ϵ

2MG
+MF · ϵ

2MF
= ϵ

Since such a result holds for all ϵ > 0, FG is indeed absolutely continuous.

Now, by Theorem 3.8, (FG)′ exists a.e.. By the product rule,

(FG)′ = FG′ + F ′G

Finally, by Theorem 3.11,

F (b)G(b)− F (a)G(a) =

∫
[a,b]

(FG)′ =

∫ b

a

F (x)G′(x)dx+

∫ b

a

F ′(x)G(x)dx,

from which the desired result follows.
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Problem 5

Solution

Throughout this solution, H will denote an infinite-dimensional, separable, complex Hilbert space.

Proof of (a). Suppose that {φα}α∈A is an orthonormal subset of H. We can then compute that for

any α ̸= β, we have

||φα − φβ ||2H = ⟨φα − φβ , φα − φβ⟩H = ||φα||2 + ||φβ ||2 − 2Re ⟨φα, φβ⟩H = 2

Since H is separable, there exists a countable dense subset, say E ⊂ H. By density of E, we know that for

every α ∈ A there exists an xα ∈ E such that

||φα − xα||H <
1

2

It can be shown that the mapping α 7→ xα must be injective. To see this, suppose by way of contradiction

that it is not injective; that is, suppose by way of contradiction that xα = xβ for two α ̸= β. Then, by the

triangle inequality we have

||φα − φβ ||H = ||φα − xα + xα − xβ + xβ − φβ ||H ≤ ||φα − xα||H + ||xα − xβ ||H + ||φβ − xβ ||H

By the selection of {xα}α∈A ⊂ E and the fact that xα = xβ , we find that

||φα − φβ ||H ≤ 1

2
+ 0 +

1

2
= 1,

which is a contradiction since ||φα − φβ ||H =
√
2 > 1 when α ̸= β. So, the mapping from A → {xα}α∈A

that sends α 7→ xα must be injective. Suppose by way of contradiction that A is uncountable. Then, since

this mapping is injective and it has an uncountable domain, the range {xα}α∈A must also be uncountable.

However, {xα}α∈A ⊂ E and E is countable. This is a contradiction, and so we find that A must be at most

countable.

Proof of (b). Let {en}n∈N be an orthonormal basis for H. For bounded operators T : H → H de-

fine

N(T ) :=

( ∞∑
n=1

||T (en)||2H

) 1
2

Suppose first that for some bounded operator T , we have N(T ) < ∞. Let ϵ > 0. For each k ∈ N, define
by Pk the projection operator onto the span of the first k basis vectors (in other words, Pk is the projection

operator onto the closed subspace span{en}kn=1). Then, for each k ∈ N we know that PkT is a finite-rank

bounded operator (its range is finite-dimensional), and is therefore compact (this is stated on page 188 of

Stein). Now, since N(T )2 < ∞, the sum
∑∞

n=1 ||T (en)||2H must converge, which means that its tail must get

arbitrarily small. So, there exists some N ∈ N such that for all k > N ,

∞∑
n=k+1

||T (en)||2H < ϵ

We can compute that for all k > N ,

||PkT − T ||op = sup{||(PkT − T )v||H : ||v||H = 1}

(This form of ||S||op = sup{||Sv||H : ||v||H = 1} is precisely the result of Problem 8(a) on PSET 7). Now,

for any unit vector v ∈ H with ||v||H = 1, write v =
∑∞

n=1 anen. Then, Parseval’s identity reads

1 = ||v||2H =

∞∑
n=1

|an|2,
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from which we derive that |an| ≤ 1 for all n. Now,

(PkT − T )v = Pk

( ∞∑
n=1

anT (en)

)
−

∞∑
n=1

anT (en)

=

k∑
n=1

anT (en)−
∞∑

n=1

anT (en)

= −
∞∑

n=k+1

anT (en)

So,

||(PkT − T )v||H =

∥∥∥∥∥
∞∑

n=k+1

anT (en)

∥∥∥∥∥
H

≤
∞∑

n=k+1

|an| · ||T (en)||H ≤
∞∑

n=k+1

||T (en)||H,

where for the second to last inequality we used the triangle inequality and for the last inequality we used

that |an| ≤ 1 for all n (note that to apply the triangle inequality we would really want to apply it finitely

and take the limit; continuity of || · ||H ensures that things go well though). So, for all k > N , because the

tail sum is arbitrarily small, we find that for all unit vectors v,

||(PkT − T )v||H < ϵ

So, taking the supremum over all unit vectors, we find that for k > N , ||PkT − T ||op ≤ ϵ Since such an N

exists for all ϵ > 0, we find that ||PkT −T ||op → 0 as k → ∞. So, (PkT )k is a sequence of compact operators

that converges in the operator norm to T . By Proposition 6.1(ii) of Chapter 4, we find that T is compact as

desired.

The converse, however, is not always true. Let T : H → H be the linear operator defined on the orthonormal

basis {en}n∈N by

T (en) =
1√
n
en

T is definitely bounded, as for all vectors f =
∑∞

n=1 anen ∈ H we have

||Tf ||2H =

∥∥∥∥∥
∞∑

n=1

anT (en)

∥∥∥∥∥
2

H

=

∥∥∥∥∥
∞∑

n=1

1√
n
anen

∥∥∥∥∥
2

H

=

∞∑
n=1

|an|2

n
≤

∞∑
n=1

|an|2 = ||f ||2H,

which means that ||T ||op ≤ 1 (we applied Parseval’s identity for the third and fourth equalities). Now, the

result of Problem 1 from PSET 8 tells us that for a bounded operator S on a separable Hilbert space that

is diagonal with respect to an orthonormal basis (i.e. Sφk = λkφk for an orthonormal basis {φk}k), S is

compact if and only if |λk| → 0. Our constructed T satisfies these conditions (it is bounded and each en is

an eigenvector of T with eigenvalue 1√
n
), and so we find that since

∣∣∣ 1√
n

∣∣∣→ 0 as n → ∞, then T is compact.

However, we can compute that

N(T )2 =

∞∑
n=1

||T (en)||2H =

∞∑
n=1

∥∥∥∥ 1√
n
en

∥∥∥∥2
H

=

∞∑
n=1

1

n
= +∞

In particular, we have constructed a compact operator T : H → H such that N(T ) ≮ ∞, and so the converse

does not always hold.

Proof of (c). Suppose that U : H → H is a unitary operator.
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(i) Let S := {f ∈ H : U(f) = f} denote the set of U -invariant vectors of H. Certainly S is a subspace, since

for all f, g ∈ S and all α, β ∈ C we have

U(f) = f and U(g) = g =⇒ U(αf + βg) = αU(f) + βU(g) = αf + βg =⇒ αf + βg ∈ S

To see that S is closed, let {fk}k∈N ⊂ S be a sequence of vectors in S, and suppose that fk → f for some

f ∈ H. We want to show that f ∈ S. Note that since U is unitary, then it is bounded (it has operator norm

1), and so U is therefore continuous. So, U inherits limits in the sense that

lim
k→∞

U(fk) = U

(
lim
k→∞

fk

)
Because fk ∈ S =⇒ U(fk) = fk for all k, we get

lim
k→∞

fk = U

(
lim
k→∞

fk

)
=⇒ f = U(f),

where we used that fk → f . So, f ∈ S and therefore S is a closed subspace of H.

Suppose now that f ∈ S and g ∈ H are arbitrary. We know that f ∈ S =⇒ f = U(f). Then,

⟨U(g)− g, f⟩H = ⟨U(g), f⟩H − ⟨g, f⟩H
= ⟨U(g), U(f)⟩H − ⟨g, f⟩h
= ⟨g, f⟩H − ⟨g, f⟩H = 0,

where in the second line we used that f ∈ S =⇒ f = U(f), and in the third line we used that U preserves in-

ner products (this can be seen by noting that U is an isometry and applying the result of Problem 10(a) from

PSET 7, which states that if T is an isometry then ⟨Tf, Tg⟩ = ⟨f, g⟩ ∀f, g). So, we achieve the desired result.

(ii) Let P denote the projection operator onto the closed subspace S from the previous part. We want

to show that for all f ∈ H,

lim
n→∞

1

n

n−1∑
k=0

Uk(f) = P (f)

To this end, let f ∈ H be arbitrary. Because S is a closed subspace, we can perform the orthogonal

decomposition H = S ⊕ S⊥, and so f = f1 + f2 for some f1 ∈ S and some f2 ∈ S⊥. Since f1 ∈ S, then

P (f1) = f1 = Uk(f1) for all k, and so

1

n

n−1∑
k=0

Uk(f1) =
1

n

n−1∑
k=0

f1 = f1 = P (f1) ∀n ∈ N =⇒ lim
n→∞

1

n

n−1∑
k=0

Uk(f1) = P (f1)

Next, note that, by part (i) we have that for all g ∈ S,

⟨U(f2)− f2, g⟩H = 0

This means that U(f2) − f2 ∈ S⊥; since f2 ∈ S⊥ and S⊥ is a subspace, we find that U(f2) ∈ S⊥ as well.

Similar logic applied to U(f2) instead of f2 shows that U2(f2) ∈ S⊥. Proceeding inductively, we find that

Uk(f2) ∈ S⊥ for all k. This means that for all n, we have that 1
n

∑n−1
k=0 U

k(f2) ∈ S⊥. Let

g = lim
n→∞

1

n

n−1∑
k=0

Uk(f2)
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Because S⊥ is a closed subspace and g is the limit of a sequence in S⊥, we know that g ∈ S⊥. On the other

hand, since U is continuous, we can bring the limit outside and apply the linearity of U to see that

U(g) = U

(
lim

n→∞

1

n

n−1∑
k=0

Uk(f2)

)
= lim

n→∞

1

n

n−1∑
k=0

Uk+1(f2) = lim
n→∞

1

n

n∑
k=1

Uk(f2)

So, because the norm || · ||H is continuous (which means we can bring the limit outside),

||U(g)− g||H = lim
n→∞

1

n

∥∥∥∥∥
n∑

k=1

Uk(f2)−
n−1∑
k=0

Uk(f2)

∥∥∥∥∥
H

= lim
n→∞

1

n
||Un(f2)− f2||H

≤ lim
n→∞

1

n
(||Un(f2)||H + ||f2||H)

= lim
n→∞

1

n
(||f2||H + ||f2||H)

= 0,

where the first line comes from our definition of g and expression for U(g), the second line cancels like terms

in the sum, the third line applies the triangle inequality, the fourth line makes use of the fact that U preserves

norms, and the last line simply takes the limit. This means that U(g) = g, which tells us that g ∈ S by

definition of S. However, we had already found that g ∈ S⊥, which means that g ∈ S ∩ S⊥ =⇒ g = 0.

Therefore, since f2 ∈ S⊥ =⇒ P (f2) = 0, we get that

lim
n→∞

1

n

n−1∑
k=0

Uk(f2) = g = 0 = P (f2)

So, linearity of Uk and P grant that

lim
n→∞

1

n

n−1∑
k=0

Uk(f) = lim
n→∞

1

n

n−1∑
k=0

Uk(f1) + lim
n→∞

1

n

n−1∑
k=0

Uk(f2) = P (f1) + P (f2) = P (f)

Since this holds for all f ∈ H, we are done.

Proof of (d). We will construct an operator T that does not attain its operator norm. Let {φn}n∈N
be an orthonormal basis for H. Define T : H → H on the basis by

T (φn) =

(
1− 1

n

)
φn

and extend linearly. Now, let f ∈ H be an arbitrary nonzero vector; if we write f =
∑∞

n=1 anφn, then

||Tf ||2H =

∥∥∥∥∥
∞∑

n=1

anTφn

∥∥∥∥∥
2

H

=

∥∥∥∥∥
∞∑

n=1

an

(
1− 1

n

)
φn

∥∥∥∥∥
2

H

=

∞∑
n=1

|an|2 ·
(
1− 1

n

)2

,

where the last equality is an application of Parseval’s identity. Note that
(
1− 1

n

)2
< 1 for all n ∈ N, and so

||Tf ||2H <

∞∑
n=1

|an|2 = ||f ||2H ∀ nonzero f ∈ H

This holds for all nonzero vectors f (because for such f one of the an’s must be nonzero), and so ||T ||op ≤ 1

(this automatically grants that T is bounded). However, note that

||Tφn||H = 1− 1

n
∀n ∈ N,
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which means that supn∈N ||Tφn||H = 1. Using the equivalent definition for operator norm provided in

Problem 8(a) on PSET 7, we get

||T ||op = sup{||Tf ||H : ||f ||H = 1} ≥ sup{||Tφn||H : n ∈ N} = 1

Therefore, ||T ||op must equal 1. Then, in order for T to attain its operator norm there must be a nonzero

vector v such that ||Tf ||H = ||f ||H. However, we saw already that for all nonzero vectors f ,

||Tf ||H < ||f ||H

So, T does not attain its operator norm, and the construction is complete.
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