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Evan Dogariu MAT 520: Problem Set 9 Problem 1

Problem 1

Prove Weyl’s criterion for the spectrum of an operator. Let A = A∗ ∈ B(H) be given. We have λ ∈ σ(A) iff

there exists some {φn}n∈N with ∥φn∥ = 1 such that

lim
n→∞

∥(A− λ1)φn∥ = 0

Solution

Proof. ( =⇒ ) Suppose that λ ∈ σ(A). We know that A has no residual spectrum since it is self-adjoint

(Theorem 9.21 in the lecture notes), and so λ is either in the point or continuous spectrum. Suppose first

that λ ∈ σp(A), in which case there is some ψ ∈ H such that (A−λ1)ψ = 0. Letting {φn}n be the constant

sequence φn := ψ
∥ψ∥ , we trivially have the result

lim
n→∞

∥(A− λ1)φn∥ = ∥ψ∥∥(A− λ1)ψ∥ = 0

The only other option is that λ ∈ σc(A), in which case A− λ1 is injective with dense image. In particular,

the image of A− λ1 cannot be closed, since then it would be surjective and invertible and λ wouldn’t be in

the spectrum at all. Therefore, Lemma 7.20 in the lecture notes tells us that A− λ1 is not bounded below,

and so there does not exist an ϵ > 0 for which∥∥∥∥(A− λ1)

(
ψ

∥ψ∥

)∥∥∥∥ ≥ ϵ (ψ ∈ ker(A− λ1)⊥ = H)

Thus, for all n ∈ N there is a φn ∈ H such that ∥φn∥ = 1 and ∥(A− λ1)φn∥ < 1
n . Choosing such a φn for

each n ∈ N yields a sequence of unit vectors {φn}n for which

∥(A− λ1)φn∥ <
1

n
∀n =⇒ lim

n→∞
∥(A− λ1)φn∥ = 0

as desired.

( ⇐= ) We will show this direction by contrapositive. So, suppose now that λ /∈ σ(A), which implies

0 /∈ σ(A − λ1) =⇒ 0 /∈ σ
(
(A− λ1)2

)
by the spectral mapping theorem. Since (A − λ1)2 = |A − λ1|2 by

self-adjointness, we find that 0 /∈ σ
(
|A− λ1|2

)
. By Lemma 7.20 in the lecture notes, there exists some ϵ > 0

such that

∥(A− λ1)ψ∥ ≥ ϵ∥ψ∥ (ψ ∈ ker(A− λ1)⊥)

However, since λ /∈ σ(A) we know that A− λ1 is invertible and therefore has trivial kernel, meaning that

∥(A− λ1)ψ∥ ≥ ϵ∥ψ∥ (ψ ∈ H)

In particular, for every sequence {φn}n with ∥φn∥ = 1 we know that

∥(A− λ1)φn∥ ≥ ϵ∥φn∥ = ϵ,

which cannot go to 0 in norm.

2



Evan Dogariu MAT 520: Problem Set 9 Problem 2

Problem 2

Let A ∈ B(H) be compact, and {φn}n ⊆ H converge weakly (in the sense of the Banach space weak topology

on H) to some φ ∈ H. Show that Aφn → Aφ in norm.

Solution

Proof. Suppose φn → φ weakly. Then, for all continuous linear λ : H → C, we know that λ(φn) → λ(φ) in

C. For all ψ ∈ H, we know

⟨ψ,Aφn⟩ = ⟨A∗ψ,φn⟩

Since ⟨A∗ψ, ·⟩ is a continuous linear functional on H by boundedness of ∥A∗ψ∥, weak convergence tells us

that

⟨A∗ψ,φn⟩ → ⟨A∗ψ,φ⟩ =⇒ ⟨ψ,Aφn⟩ → ⟨ψ,Aφ⟩

As this holds for all ψ ∈ H and by Riesz representation all continuous linear functionals are of the form

⟨ψ, ·⟩, we find that Aφn → Aφ weakly. Suppose by way of contradiciton that Aφn ̸→ Aφ in norm. Then,

there is an ϵ > 0 and a subsequence {Aφnk
}k such that ∥Aφnk

−Aφ∥ ≥ ϵ for all k. By compactness of A, the

subsequence {Aφnk
}k itself contains a convergent subsubsequence {Aφnkj

}j , which we know by selection

converges to some ϕ ̸= Aφ. So, as j → ∞ we see that Aφnkj
→ ϕ in norm, implying that Aφnkj

→ ϕ

weakly. However, Aφn → Aφ weakly implies that Aφnkj
→ Aφ weakly as well. Since ϕ ̸= Aφ, this is a

contradiciton.
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Evan Dogariu MAT 520: Problem Set 9 Problem 3

Problem 3

Determine whether the following operators are compact or not (and prove what you think):

(a) 1.

(b) u⊗ v∗ for some u, v ∈ H.

(c) On the Banach space X = C([0, 1] → C) with ∥ · ∥∞, let A : X → X be given by

(Aφ)(x) =

∫
[0,1]

K(x, y)φ(y) dy,

where K : [0, 1]2 → C is some continuous function.

(d) A := 1
1+X2 on ℓ2(Z), where X is the position operator given by

(Xψ)(n) ≡ nψ(n) (n ∈ Z, ψ ∈ ℓ2(Z)),

and we employ the holomorphic functional calculus to define A.

Solution

Proof. (a) 1 is not compact in an infinite-dimensional Banach space. This can be seen immediately since

the image of the unit ball is the unit ball, which we know to be compact if and only if the space is finite-

dimensional. So, by Lemma 9.33 in the lecture notes, 1 is not compact when the space is infinite-dimensional

since it sends a bounded set to a set with noncompact closure.

(b) Fix two u, v ∈ H and define A ∈ B(H) via A := u ⊗ v∗. Equivalently, A(ψ) ≡ ⟨v, ψ⟩u. Note that

the image of this operator is contained in span{u}, which is a space of dimension 1. So, A is a rank-1

operator; in particular, it is finite-rank and therefore compact.

(c) A is clearly linear, and it is bounded since

|(Aφ)(x)| ≤ sup
x,y∈[0,1]

|K(x, y)|
∫
[0,1]

|φ(y)|dy ≤ sup
x,y∈[0,1]

|K(x, y)|∥φ∥ =⇒ ∥A∥ ≤ sup
x,y∈[0,1]

|K(x, y)| <∞,

which follows because K is continuous on a compact domain. To see that A is compact, let F ⊆ X be a

bounded set of elements of X (i.e. ∥f∥∞ < M ∀f ∈ F); we will show that A(F) ⊆ X is compact. To

do so, we will show that every sequence in A(F) contains a convergent subsequence. Note that A(F) is

clearly uniformly bounded since F is. So, if we can show that A(F) is uniformly equicontinuous, then every

sequence of functions in A(F) will be both uniformly bounded and uniformly equicontinuous, which by the

Arzela-Ascoli theorem means that each one will have a uniformly converging subsequence. Therefore, to

prove that A is compact it suffices to show that A(F) is uniformly equicontinuous.

To this end, let ϵ > 0 be arbitrary. Let δ > 0 be such that |(x1, y1) − (x2, y2)| < δ =⇒ |K(x1, y1) −
K(x2, y2)| < ϵ

3M , which exists by continuity of K. Then, for all f ∈ F and all a, b ∈ [0, 1] with |a− b| < δ,

we have that

|(Af)(a)− (Af)(b)| =

∣∣∣∣∣
∫
[0,1]

(K(a, y)−K(b, y))f(y)dy

∣∣∣∣∣
≤

∫
[0,1]

|K(a, y)−K(b, y)||f(y)|dy

≤ ϵ

3M

∫
[0,1]

|f(y)|dy ≤ ϵ

3M
M =

ϵ
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Evan Dogariu MAT 520: Problem Set 9 Problem 3 (continued)

For any g ∈ AF , we know g is the uniform limit of functions in AF and so there is a f ∈ F such that

∥g −Af∥∞ < ϵ
3 . Thus, for all a, b ∈ [0, 1] with |a− b| < δ,

|g(a)− g(b)| ≤ |g(a)− (Af)(a)|+ |(Af)(a)− (Af)(b)|+ |(Af)(b)− g(b)|

≤ ∥g −Af∥∞ +
ϵ

3
+ ∥Af − g∥∞ < ϵ

So, since our choice of δ does not depend on g, a, or b, we see that AF is a uniformly equicontinuous fam-

ily of functions. Since it is also uniformly bounded, Arzela-Ascoli tells us that it is sequentially compact

in the ∥·∥∞ topology, and so it is compact in X. Since this holds for all bounded F , we see that A is compact.

(d) It is clear from the properties of the functional calculus that A is a multiplication operator given by

(Aψ)(n) =
1

1 + n2
ψ(n) (n ∈ Z, ψ ∈ ℓ2(Z))

By Claim 9.38 in the lecture notes, since ⟨δn, Aδn⟩ ≡ 1
1+n2 → 0 as |n| → ∞ (where {δn}n∈Z is the standard

position basis), we may realize A as a norm limit of finite-rank operators. Thus, A is compact.
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Problem 4

On H⊕H, let

H :=

[
0 S∗

S 0

]
for some S ∈ B(H). Find the polar decomposition of H.

Solution

Proof. Note that

|H|2 = H∗H =

[
S∗S 0

0 SS∗

]
=

[
|S|2 0

0 |S∗|2

]
,

and so

|H| =
[
|S| 0

0 |S∗|

]
Write the polar decomposition of S to be S = U |S| for some partial isometry U ∈ B(H) with ker(U) = ker(S).

Note that

(U |S|U∗)2 = U |S|U∗U |S|U∗ = U |S||U |2|S|U∗ = S|U |2S∗

We want to show that S|U |2 = S on H. Let M := ker(|U |2). By Lemma 7.18 in the notes, we know

that M = ker(|U |2) = ker(U) = ker(S). Furthermore, since U is a partial isometry, |U |2 is a self-adjoint

projection onto M⊥. We may decompose H = M ⊕M⊥. Let ψ ∈ H be arbitrary, and so we may write

ψ = ψM + ψM⊥ with ψM ∈M and ψM⊥ ∈M⊥. So,

S|U |2ψ = S|U |2ψM + S|U |2ψM⊥ = SψM⊥ = Sψ

Since |U |2ψM⊥ = ψM⊥ and Sψ = SψM⊥ . Since this holds for all ψ, we see that S|U |2 = S. Therefore,

(U |S|U∗)2 = SS∗ = |S∗|2

By the uniqueness of square roots, we find that

|S∗| = U |S|U∗ = US∗

So,

|H| =
[
|S| 0

0 US∗

]
Now, define an operator V on H⊕H via

V :=

[
0 U∗

U 0

]
To see that V is a partial isometry, we compute

|V |2 = V ∗V =

[
0 U∗

U 0

] [
0 U∗

U 0

]
=

[
U∗U 0

0 UU∗

]
=

[
|U |2 0

0 |U∗|2

]
Since both |U |2 and |U∗|2 are self-adjoint projections, so is |V |2, and thus V is a partial isometry. We note

that

V |H| =
[

0 U∗US∗

U |S| 0

]
=

[
0 |U |2S∗

S 0

]
We have already shown that S|U |2 = S; taking the adjoint shows that |U |2S∗ = S∗. Therefore,

V |H| =
[
0 S∗

S 0

]
= H

Thus, H = V |H| is the polar decomposition of H.
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Problem 5

Show that an idempotent is compact if and only if it is of finite rank.

Solution

Proof. ( =⇒ ) Suppose that A is idempotent and compact. We claim that im(A) = ker(A − 1). To show

the first inclusion, suppose that φ ∈ im(A), and so φ = Aψ for some ψ ∈ H. Then, Aφ = A2ψ = Aψ = φ

because A2 = A, and so φ ∈ ker(A−1). Therefore, im(A) ⊆ ker(A−1). Conversely, if φ ∈ ker(A−1), then

Aφ = φ =⇒ φ ∈ im(A), and so im(A) = ker(A− 1).

Now, suppose by way of contradiction that A is not finite rank. Then, dim(ker(A− 1)) = dim(im(A)) = ∞.

So, ker(A − 1) is a closed and infinite-dimensional subspace of H, which means it is itself an infinite-

dimensional Hilbert space. Let {φn}n∈N be an orthonormal basis of ker(A − 1). As {φn}n is a bounded

sequence, we know that {Aφn}n must have a convergent subsequence by compactness of A. However, since

each φn ∈ ker(A−1), we know that Aφn = φn for all n. Together, these facts tell us that {φn}n must itself

have a convergent subsequence. This is impossible, since for all n ̸= m we know

∥φn − φm∥2 = ∥φn∥2 + ∥φm∥2 − 2Re {⟨φn, φm⟩} = 2 ̸→ 0

by orthonormality. So, no subsequence of {φn}n is Cauchy, which yields a contradiction. Therefore, A must

be finite rank.

( ⇐= ) Suppose that A is finite rank. Then, it is trivially compact.
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Evan Dogariu MAT 520: Problem Set 9 Problem 6

Problem 6

Show that no nonzero multiplication operator on H := L2([0, 1]) is compact.

Solution

Proof. Let A be a compact multiplication operator on L2([0, 1]). Then, there is some F ∈ H such that for

any f ∈ H we have

(Af)(x) = F (x)f(x)

Suppose by way of contradiction that F is not the zero element of H. Then, letting λ denote the Lebesgue

measure on R, there is an ϵ > 0 for which λ({x ∈ [0, 1] : |F (x)| ≥ ϵ}) > 0. For this ϵ, define E := {x ∈
[0, 1] : |F (x)| ≥ ϵ}. Consider the set S ⊆ H given by

S := {f ∈ H : f(x) = 0 for a.e. x ∈ [0, 1] \ E}

S is certainly a vector space. To see that S is closed, let {fn}n ⊆ S be a sequence that converges in the

H-norm to some f ∈ H. Then, for any δ > 0 we may find an n ∈ N large enough that

δ > ∥fn − f∥2 =

∫ 1

0

|fn(x)− f(x)|2dx ≥
∫
[0,1]\E

|fn(x)− f(x)|2dx =

∫
[0,1]\E

|f(x)|2dx

Since this holds for any δ > 0, we see that
∫
[0,1]\E |f |2 = 0, and so f is 0 a.e. on [0, 1] \ E. Therefore,

f ∈ S, which shows that S is closed, and so S is a Banach space in its own right. We claim that S is infinite

dimensional. Since λ(E) > 0 we know that E is uncountable, and so there is a bijection Ψ : [0, 1] → E. Then,

we have that S ∼= L2(E, λ) ∼= L2([0, 1], λ#Ψ) where λ#Ψ is the pullback measure λ#Ψ(V ) = λ(Ψ−1(V )). In

particular, S has the same dimensionality as L2([0, 1], λ#Ψ) and is therefore an infinite-dimensional Banach

space. Furthermore, we certainly have that A(S) ⊆ S, and so we may consider the bounded linear operator

A|S : S → S. We claim that A|S is surjective. To see this, note that for any f ∈ S, we also have

that the function g sending x 7→ 1
F (x)f(x) is in S (it certainly is supported on E, and it is in L2 since

| 1
F (x)f(x)| ≤

1
ϵ |f(x)| on E, and so ∥g∥ ≤ ∥f∥

ϵ < ∞). Since (Ag)(x) = F (x) 1
F (x)f(x) = f(x) over E, we see

that A|Sg = f . Since this holds for all f ∈ S, the map A|S is surjective. By the open mapping theorem, it

is therefore open. It is also compact by compactness of A. Let B := {f ∈ S : ∥f∥ < 1} denote the open

unit ball in S. Then, A|S(B) ⊆ S is an open set with compact closure by the openness and compactness

of A|S respectively. This is a contradiction, since no open set in an infinite-dimensional Banach space may

have compact closure.
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Problem 7

Show that if A ∈ B(H) is compact and {en}n is an ONB then ∥Aen∥ → 0. Find a counter-example of the

converse.

Solution

We first show that en → 0 weakly. Let ψ ∈ H be arbitrary. By Theorem 7.27 in the lecture notes,

∥ψ∥2 =
∑
n∈N

| ⟨en, ψ⟩ |2 <∞

So, since the sum converges and each element is nonnegative, ⟨en, ψ⟩ → 0. Since this holds for all ψ, we know

that en → 0 weakly. Therefore, by Problem 2, we find that Aen → A0 = 0 in norm. Equivalently, ∥Aen∥ → 0.

Now, we construct a counterexample to the converse by exhibiting a Hilbert space H, an orthonormal

basis {en}n of H, and an operator A ∈ B(H) for which ∥Aen∥ → 0 yet A is not compact. To do so, for each

m ∈ N let Hm := Rm be the m-dimensional Euclidean space with the Euclidean inner product. Define

H :=
⊕
m∈N

Hm

to be our Hilbert space with the direct sum inner product. For each m, let {ẽ(m)
j }mj=1 ⊆ Hm be an ONB of

Hm. Let

e
(m)
j := (. . . , 0, ẽ

(m)
j , 0, . . .) ∈ H

be the element of H with ẽ
(m)
j in the mth coordinate and 0’s everywhere else. Then, we find that⋃

m∈N
{e(m)
j : j ∈ {1, . . . ,m}}

is an ONB for H. Lastly, for each m ∈ N define the operator Am ∈ B(Hm) via the m×m matrix

Am :=
1

m

1 . . . 1
...

. . .
...

1 . . . 1


with respect to the basis {ẽ(m)

j }j of Hm. We note that Am is idempotent for all m, as

A2
m =

1

m2

m . . . m
...

. . .
...

m . . . m

 = Am

Define the operator A ∈ B(H) via A :=
⊕

m∈NAm, i.e. A acts on H by applying Am coordinatewise. Then,

A is clearly also idempotent. Furthermore, observe that for each e
(m)
j , we have that

Ae
(m)
j = (. . . , 0, Amẽ

(m)
j , 0, . . .) =

1

m

m∑
j=1

e
(m)
j

Thus,

∥Ae(m)
j ∥2 =

1

m2

∥∥∥∥∥∥
m∑
j=1

e
(m)
j

∥∥∥∥∥∥
2

=
1

m2

m∑
j=1

∥e(m)
j ∥2 =

1

m2
·m =

1

m
,

Problem 7 continued on next page. . . 9



Evan Dogariu MAT 520: Problem Set 9 Problem 7 (continued)

where the second equality holds by orthogonality. Thus, as m → ∞, we have that ∥Ae(m)
j ∥ → 0. If we let

{en}n be the ONB of H enumerated as {e(1)1 , e
(2)
1 , e

(2)
2 , e

(3)
1 , . . . , e

(m)
1 , e

(m)
2 , . . .}, then it holds that ∥Aen∥ → 0

as n → ∞. However, A cannot be compact since it is idempotent and not finite-rank (see Problem 5). To

see that A is not finite-rank, note that for any k ∈ N we have that
⊕k+1

m=1Am has k + 1-dimensional range,

and so A cannot have finite-dimensional range. So, A ∈ B(H) is not compact yet ∥Aen∥ → 0 for an ONB

{en}n of H.
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