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Problem 1

Let P, @ be two orthogonal projections onto closed subspaces M, N in a Hilbert space H such that [P, Q] = 0.
Write P :=1— P and Qt :=1— Q.

(a) Show P+, Q*, PQ,P +Q — PQ and P + Q — 2PQ are orthogonal projections.

(b) What is the relation between the projections in the previous item and M, N7

Solution

Proof. (a) Note that (PQ)* = Q*P* = QP = P(Q since P and @ are self-adjoint and QP — PQ = 0 by
assumption. Therefore, all of the operators of interest are self-adjoint, and so we just need to show that they
are all idempotent.

(P+ and Q1) We show it for P+, since the result for @+ will follow. Now, we may decompose H = M & M.
For all ¢ € H, we may write ¢ = s + ¥y, with ¢y € M and ¥, € M+, So,

PH()) =4 — Py =thpe

Therefore, P is the projection onto the closed subspace M.

(PQ) Note that
(PQ)* = PQPQ = PPQQ = PQ

since QP = PQ@ and P, (Q are idempotent. So, PQ is also idempotent.

(P + Q@ — PQ) We compute

(P+Q—PQ)*=P?+ PQ - P’Q+ QP+ Q*— QPQ — PQP — PQ? + (PQ)?
=P+ PQ—-PQ+PQ+Q—PQ—PQ— PQ+ (PQ)?
=P+Q-PQ

(P+ Q@ — 2PQ) We compute

(P+Q —2PQ)? = P> + PQ — 2P?Q + QP + Q* — 2QPQ — 2PQP — 2PQ? + (2PQ)?
=P+ PQ—-2PQ+ PQ+Q —2PQ — 2PQ — 2PQ + 4(PQ)?
=P+Q-2PQ

(b) P+ and Q* are the orthogonal projections onto the closed subspaces M+ and N1, respectively. We claim
PQ is the orthogonal projection onto M N N, or equivalently that PQy = ¢ <= ¢ € M N N. To see this,
note that ¢ = PQv € im(P) = M and similarly ¢ = QP¢ € im(Q) = N, and soy = PQy = ¢ € MNN.
Conversely, if ¢ € M N N, then Py = and Q¢ = 1, and so PQy = .

Next, we claim that im(P + Q — PQ) = M @& N. Clearly, M & N is closed. So, for any ¢ € H we
may uniquely write ¢ = ¥ + Yy + ¥, for s € M,y € N, and ¥, € (M @ N)* = M+ N N+. We have
that Py = ¢y + Py and QY = QY +9n. Thus, PQY = PQYy+ P = QPYy+Pin = Qv+ PYn.
So,

(P+Q—PQ)Y =Yy + PN + Q¥m + N — Qm — PN =Y + N

We see that P 4+ Q — PQ removes the (M @ N)* part of 1. Therefore, P + Q — PQ is the orthogonal
projection onto the closed subspace M @ N.

Problem 1 continued on next page. .. 2
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Lastly, note that
P+Q—-2PQ=P—-PQ+Q—QP=PQ*++QP*+

We know that [P, Q] = [@Q, P*] = 0 since [P, Q] = 0, and so PQ* is the orthogonal projection onto M NN+
and QP is the orthogonal projection onto M+ N N. By Problem 6 on Problem Set 7, we know that since
the sum of these self-adjoint projections is another self-adjoint projection, the spaces must be orthogonal.
Therefore, we see that P + @ — 2P(@ is an orthogonal projection onto the closed subspace

(MNNY) e (M*+NN)
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Problem 2
Let P, Q be two orthogonal projections onto closed subspaces M, N in a Hilbert space H. Show that
(P9

exists and is the orthogonal projection onto M N N.

Solution

Proof. Observe that for any n,
(PQ)" = PQPQ...PQ = P(QPQ)(QPQ)...(QPQ) = P(QPQ)""

So, we know that
s-lim(PQ)" = Ps-lim(QPQ)"
n—oo

n—oo

and that these strong limits exist or don’t exist together. We claim that

s-lim (QPQ)"

n—oQ

exists and is the orthogonal projection onto M NN, from which the problem’s result will follow immediately.
Let A:= QPQ. Then, A* = Q*P*Q* = QPQ = A, and so A is self-adjoint. Also, [|A|| < |Q|IP|IIQ| < 1.

Lemma 1. Let A € B(H) be positive with ||A|| < 1. Then, A™ strongly converges to the orthogonal projection
onto ker(A — 1).

Proof of Lemma. As A is self-adjoint, we may apply the measurable functional calculus. Since A is
positive with ||A]| < 1, we know that o(A) C [0,1]. Let f, : [0,1] — R be given by f,(A) = A" and

1 =1

X : [0,1] — R be given by x1;(z) = . Then, over o(A) we see that f, — x{1 pointwise and

0 else

[Ifnlloo <1 < co. So, the measurable functional calculus (Theorem VII.2(d) in Reed & Simon) gives that
Jn(A) = xq13(A) strongly. Therefore, A™ — x113(A) strongly. Lastly, we know that x{13(A) is the orthogo-
nal projection onto ker(A—1) by Theorem 12.29 in Rudin (which states that ker(A—A1) = im(x{x}(A4))). =

In light of the above lemma, all we must show is that ker(QPQ — 1) = M N N. Clearly, for any v € M NN
we have that QPQvy = v, and so M NN C ker(QPQ — 1). To see the other direction, suppose that
¥ € ker(QPQ — 1) in which case QPQ = 1. Then,

[Pl = 1QPQYI < [[Qv]l < |4l
and so [|Qy|| = ||¢||. Similarly, || P|| = ||¢||. However, the Pythagorean theorem tells us that
WP = IPYI° + (L = PYIP* = (L=Ppp=0 = PY=vy = veM

and similarly Q¢ =9 = 1 € N. Therefore, 1y € M N N and we are done. m
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Problem 3

Let A € B(H). Show that the set of A € 0(A4) such that \ is not an eigenvalue of A and im(A — A1) is closed
but not the whole of H is an open subset of C.

Solution

Proof. Write
S:={A€co(4): ker(A— A1) = {0} and im(A — A1) = im(A — A1) # H}

Let A € S be arbitrary. By Lemma 7.20 in the lecture notes, since the image of A — A1 is closed, there is
some € > 0 such that for all ¢ € ker(A — A1)+, we have

(A= AL)eo|| = el
However, since A — A1 is injective by definition of S, ker(A — A1)+ = H. So, we get that
[(A=AD)g|l > ellell (Yo € H)

Define § := § > 0 and suppose by way of contradiction that Bs(\) € S. Then, there is some v € C with
|v — Al < d and v ¢ S. We have that for all p € H,

ellell < 1A = A0)g]l = (A = 71) + (11 = AD))ee|
< (A=)l + Iy = Al
< (4=l + 5ol

where the second line comes from the triangle inequality and the third uses our selection of . So,
€
I(A=D)el = Sllel (Vo eH)

From this, we see that (A —~v1)p =0 = |l¢|| = 0 and so A — 1 has trivial kernel. Also, Lemma 7.20
grants that im(A — 1) is closed. So, since v ¢ S it must be that im(A — 1) = H. So, A — ~1 is both
injective and surjective, which means it’s invertible. We will show that this ends in a contradiction.

To this end, let ¢ € H be arbitrary, and let ¢ := (A — 1)~ !p. By the bound from earlier,

(4 =09l > vl = (4 - 71)"ell < 2l
Since this holds for all ¢ € H, we find that
A=) op < 2 = £ <A - 1))
Let T := A — 41 and Ty := A — AL for notation. Then, § < ||T5;!||;,} and so
1Ty = Tallop = I(X = M Lllop = A = <6 < T35,

So, Ty € BHT;lngpl (Ty) € B(H). Thus, by the logic in the proof of Claim 6.6 in the notes (openness of G 4 for
Banach algebra A), this means that T is also invertible, and so A ¢ o(A). This is obviously a contradiction,
and so we find that Bs(A) € S. Since such a neighborhood exists for all A € S, we have shown that S is
openin C. m
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Problem 4

Define the numerical range N(A) of A € B(H) via
N(A) :={(W,Ay): v e H and ||¢| =1}.

(a) Show that

o(4) € N(4)
(b) Find an example where N(A) is not closed and

o(A) £ N(4)

(¢) Find an example where

o(A) # N(4) = N(4)

Solution

Proof. (a) Consider any A € C. Note that 6(A) — A = 0(A — A1) by the spectral mapping theorem. Simi-
larly, A € N(A) <= there is a unit vector ¢ s.t. (¢, AY) = <= (¢, (A—A1)¢) =0. So, N(A) — A =
N(A—AlL). Since H is a TVS and so translation is homeomorphic, we see that N(A) — A = N(4A — AL). All
this goes to show that it suffices to prove that 0 € 0(A) = 0 € N(A), since we could apply the same logic
to A — A1 to get the result for any A\. We proceed.

Suppose that 0 € o(A). If we have 0 € 0,(A), then there is a nonzero ¥ € H such that Ay = 0, and

SO
P P
—— A— ) = A
<|w||’ ||w> 0= 0eN4)

and we are done. If instead we have that 0 € 0,(A4), then Claim 9.20 in the notes shows that 0 € 0,(A4%).
So, there is some nonzero v € H such that A*y = 0, and so

Y 1/1>_<*%/1 ¢>_
LA VN={A V=0 0eN(A
<w||’ Tl ol ) =0 = 0 NA)

So, suppose that 0 € o.(A), the only other option. In this case, we know that im(A) is not closed in H.
So, by Lemma 7.20 in the notes, for all € > 0 there is a ¢ € H such that ||Ap| < €ll¢|. Thus, for all
€ > 0 there exists a unit vector ¢ = ﬁ € H such that ||Avy| < e. Therefore, for all € > 0 we may apply
Cauchy-Schwartz to see that

| (@, Ap) [ < 9 [Il A9 = [[A9]| < e
So, for all € > 0 there is a A € N(A) with |A| < e, which certainly means that 0 € N(A). We see that in any

case, 0 € N(A), proving the result.

(b) Consider the example where #H is separable and A is the multiplication operator defined on an or-
thonormal basis {¢;};en via
PR
i j‘PJ
and extended linearly. This is clearly a bounded linear operator, and so A € B(#). Since each ¢, is an
eigenvector with eigenvalue %, we see that jl € o(A) for all j € N. Since o(A) is closed, this also means that
0 € 0(A). Furthermore, for each j we have that

1 1, 5, 1 1
@i, Ap; :<90»7.%0'>:- pil*=- = -eN(4
(05, Apj) 5259 ) = Slesll =5 7 ENM)

Problem 4 continued on next page. .. 6



Evan Dogariu MAT 520: Problem Set 8 Problem 4 (continued)

since ||¢;|| = 1. However, we claim that 0 ¢ N(A). Suppose by way of contradiction that there were some
¥ € H with ||¢|| = 1 and (¢, AY) = 0. By Theorem 7.27 in the notes, we can express
=2 {(05¥)¢;
JEN

By continuity of A, we may distribute it into the infinite sum to see

A = "), 0) Ap; = ZW%

JEN JEN

So, we see that

0= (6. 4%) = Y- T a1 2 5 2 (05,09 P

jEN J jEN

Since this sum of nonnegative terms equals 0, each term must also be 0, and so

() =0Vj €N = [[v]* = [(g;,¥) > =0,

JjEN

where the implication follows from the other part of Theorem 7.27. This contradicts that ||t = 1, and so
0¢ N(A). Thus, N(A) is not closed and o(A)  N(A).

(c) Let H be an arbitrary Hilbert space, M C H a nonempty proper closed subspace, and P be the or-
thogonal projection operator onto M. We know that o(P) C {0,1} by Claim 8.20 in the notes. However,
we claim that N(P) = [0,1]. Firstly, note that P2 = P* = P = P = |P|?, and so P is positive. By
Lemma 9.5 in the notes, N(P) C [0,00). Next, note that by Problem 27 on Problem Set 7, self-adjointness
of P tells us that 1 = ||P|| = sup{|z| : 2z € N(P)}, and so N(P) C [0,1]. For the reverse inclusion,
suppose that A € [0,1]. Let v € M be a unit vector and w € M~ be a unit vector orthogonal to v. Define
¥ = vV v ++v1 = Aw. Then, we have that

)% = <\&v VT —ww, vV + VI — )\w> = AJv)2 + (1= \)[w]? +2 <\Fm, 1— )\w> A+ (1-N) =1,
where this follows since v L w and ||v|| = ||w|| = 1. So, ¥ is a unit vector. Furthermore,
(i, Py) = <\f)\v + V1 - dw, \Av> = [[Vv]|? = A,

where the above again follows since v L w and ||v|| = 1. So, A € N(P). Since this holds for all A € [0, 1], we
find that N(P) = [0, 1]. Therefore, N(P) is closed but not equal to o(P). ®
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Problem 5

Show that if A € B(H) has A = A* then
1
(A-21)Y| < ——— (Vz€C: |Im{z}| >0)
a1 < e B

Solution

Proof. Let z € {w € C: |Im{w}| > 0} be arbitrary. Noting that A = A* — o(A) C R, we see that z is
not in the spectrum, which means that A — 21 is indeed invertible. To proceed, let ¢ € H be an arbitrary
vector with ||¢|| = 1. In Lemma 10.2 in the notes, we derived that

12 _
Im {z} H(A —z1) 1<pH =Im {<g0, (A—21) 1<p>}
Taking the magnitude of both sides,
12 _
[Im {2} | |(A = 21) " e||” = [Im {(p, (A = 21) ') }|
We note that by Cauchy-Schwartz and the fact that |Im {y}| < |v| for all v € C, we have
Im { (0, (A = 21) ') }] < [{o, (A = 21) 7o) | < [l@lllI(A = 21) ool = [I(A - 21) o],
where the last equality follows since ¢ is a unit vector. So, we find that
-1 2 1

[Im {z} | [|(A - 21)"Ye||” < [I(A - 21) " |

Since p #0 = (A — z1)~ 1y # 0 by invertibility, and so we divide and see that
| Im {z} | [|(A — z]l)*lgo” <1

Thus,

-1 1
(A= 21)"Y| < T (7]

Since this holds for all unit vectors ¢ € H, we find the operator norm bound

1

=070 ey

As this holds for all z € {w € C: |Im{w}| > 0}, we have proven the desired result. ®
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Problem 6

Show that if A € B(H) is an isometry then im(A) is closed in H.

Solution

Proof. Suppose that A € B(H) is an isometry. Then, we know that

[Aell = llell (Ve e H)

So, we clearly have that
| Al > el (th IS (kerA)L)

By Lemma 7.20 in the notes, this gives us that im(A) € Closed(#). =
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Problem 7
Define H := L%([0,1] — C). Let V € B(H) be given by
V)= [ (wen

(a) Show that V is well-defined (it is a bounded linear map) with
1
viw = [ v wen

(b) Show that the spectral radius (V') equals 0 and that o(V) = {0}.

(c) Show that ||V = 2.

Solution

Proof. For this problem, note that # C L!([0,1] — C) since the domain [0,1] is finite measure. By
Holder’s inequality, || f||z: < || f|lz2 for all f € H. We apply this estimate in this problem often to see that

INTIES T

(a) We note that for a € C and ¢, ¢ € H, we have that for all z € [0, 1],

V(o +¢)(x) = /j(m Fy) = a/: b+ / o = aV($)(x) + V(o))

by linearity of the integral, and so V(ay + ¢) = aV (¢) + V() and V is linear. To show boundedness, note

that for all ¢ € H,
/was/oldx(/om¢>2§/01dx</01|w|) (/Olhm)

2 2

1
velP :/ dz
0

By an application of Holder’s inequality (|| - ||z1 < || - ||z»), we know that for all ¢ € H,

1
/ 1wl < 1ol
0

Vel < 1,

and so V is a bounded operator. To see the adjoint result, define W € B(H) to be

where the above norm is the H norm. Thus,

1
W () :/ b (b en),

where we know that W is bounded and linear by identical logic to the above. Now, observe that for all
Vv,peH,

(Y, V) = /Olw(x)/om o(t)dtdr = /01 /Ow (x)p(t)dtd

For each x € [0,1], define x, := X|o,2] to be the indicator function of the interval [0, z]. Then,

1 1 -
(Y, Vo) = /0 /0 Xz (1) (x)p(t)dtd

Problem 7 continued on next page. .. 10
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By Tonelli’s theorem, we compute

/ / e (@08 ldtde = / / e (@)l
< / o (0) / 6

1
<14l / () dt
< Illlell < oo

where we again used the Holder estimate fol |(z)|dz < |]9||. Since this is finite, we may apply Fubini’s
theorem and switch the order of integration, getting

. V) = / / etz = | o) (/ 1xx<t>(x>da:> d

We note that x,(t) = 1 if and only if ¢ < x, and otherwise it is 0. So, x.(t) = X[¢,1](z), and so

/01 X (0)()dz = [de - W “ron

1
w.Ve) = [ oeTWaIma = (W,
0
Since this holds for all ¥, ¢ € H, we have that V* = W as desired.

Plugging this in,

(b) For all n € N and all ¢ € H,

tn

to
el = | it [ dtar ... dts / o(t)dts "

2

(ot )
[ (Lo i)
< [([ e [ s o) a
=l [ ([t [t [ dt2>2d:z:
:”*””2/0 (- 1>!> dz(nMw/d”G

ez 1
(n—1)122n -1’
where we used a Holder estimate for the third inequality. Since this holds for all ¢ € H, we find that
" 1 1 n
Ve < < =

m—DW2n—1_"(n-1! =

Note that (n!)? = (1(n))(2(n — 1))3(n — 2)) ... (n(1)) = [Ti—a(k + 1)(n — k). We know (k + 1)(n — k) =
nk+mn —k(k +1). Since n > k + 1, we see that (k + 1)(n — k) > nk +n — kn = n. Thus,

(n)? > H =0""ln=n" = ()" >n
k

Problem 7 continued on next page. .. 11
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So,
||Vn||1/n < n

We know that n*/™ — 1 as n — oo, and so
lim ||[V"Y™ =0
n—oo

Thus, by Gelfand’s formula, (V) = 0 and therefore o(V) = {0} (the spectrum is nonempty and can only
contain 0).

(c) Let K(x,t) := X[o,¢)(t). Then, we have that

x):/o w(t)dt:/o K (2, )t dt

Certainly, K € L?([0,1] x [0,1]), and so V is a Hilbert-Schmidt integral operator and is therefore compact.
So, |[V|? = V*V is a compact, positive operator. The Riesz-Schauder theorem tells us that »(|V|?) is the
magnitude of the largest eigenvalue, since the spectrum of |V|? is discrete and can only accumulate at 0 (in
particular, a magnitude of r(|V'|?) is attained by some eigenvalue). Since |V|? is self-adjoint, we know that
V]2 = [[[VI?]| = r(]V]?) by the C* identity, and so we seek the magnitude of the largest eigenvalue. To
this end, suppose that 1 is an eigenvector of |V|? with eigenvalue A # 0 (since |V|? is positive, then A > 0).
Then, for a.e. = € [0, 1] we have that

(@) = (VV) (o /(/w ds)dt

Y t 1 Yy t
/Ow(s)ds dtgm/x /O |4 (s)|dsdt

Using our favorite Holder estimate fg [t(s)|ds < fol [t(s)|ds < ||¢||, we see that

||w||| 2
RY

Note that

[U(y) — (@) <

[¥(y) —¥(x)] <

In particular, v is Lipschitz and so differentiable a.e.. Taking a derivative of our initial expression, we see

that ”
— /0 P(s)ds

From this we see that ¢)'(0) = 0. Applying very similar logic, as above, we have that

! ! L s)|ds
/) =@ < 57 [ Il

¥ is Lipschitz, and so continuous, which means it is bounded on [0, 1], i.e. |¥(s)] < M < oo for s € [0,1].
Therefore v’ is Llpschltz which means that 1’ is a.e. differentiable. So we may take another derivative
and see that for a e. x €[0,1],

M () = —(x) = () = Cy cos(z/VA) + Cysin(z/VA)

for some constants Cq,Cy. We know that ¢’(0) = 0, and so Cy = 0. Also, since (V*V)(1) = 0 we have
(1) = 0. Therefore,
1

cos(1/VA) =0 = 7

1
= <k+2>7rforsomek€N

Problem 7 continued on next page. .. 12
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The above holds for any k& € N (note that we cannot have k < % since the LHS is positive), and so we seek
the k that maximizes \,. We write

Ak = LQ:ma{/\}—i
P\ @+ D S

2

s

Therefore, r(|V|?) = 2% and we get our answer that ||V = |

13



Evan Dogariu MAT 520: Problem Set 8 Problem 8

Problem 8

Let F : (%(Z) — L*(S') be the Fourier series given by

TMVAIERTESS ([07 2] 5 k— Z e tknap, = 1&(1@‘))

nez

Let A € B(¢?(Z)) be the discrete Laplacian:
A=R+ R",

where R is the bilateral right shift operator.

Rb,, :=0nt1 (Vn€Z)
and {8, }nez is the standard basis of ¢2(Z). Calculate

FAF* € B(L*(SY))

Solution

Proof. Write H; := ¢%(Z) and H, := L?(S') for notation. For each n € Z, define ¢,, € Hs via @, (z) = e~
for z € [0,27]. We know by elementary Fourier analysis that {y,}ncz is an orthonormal basis of Ha
(assuming the inner product is normalized by %) Then, letting {4, }nez denote the standard orthonormal

basis of H1, we see that
F(on)=pn (neZ)

So, F is unitary. For any f € H1, we may express
F=2 (o fen,
ne”Z
where this convergence is in the Ho norm. Applying F*, we get that
FF = {@n,f)on,
nez
where this convergence is in the 71 norm since F* preserves the norm. Applying A,
(AF)F) =D (pns £) Gng1 + 0n1)
ne”Z
Applying F again,
(FAF)F) =D (pn: ) (1 + 1) = D (Pt + n1, f) ¢n,
ne”z neN

where we shifted indices to get the second sum. This convergence is again in the o norm. Consider the
function g € Hs given by g(x) = 2cos(z)f(x) (which is certainly in Hy since | cos(z)| < 1). We claim that
g = (FAF%)(f), or equivalently that as N — oo,

—0

N
9— Z (@nt1+@n—1, f) on
n=—N 7_[2

To see this, note that g = >, (¢n,g) ¢n in norm, and so by the triangle inequality,

N

9= Y (Pni1+on1,f)en
n=—N

N

> (pn 9) = (Pns1 + €1, £))on

n=—N

<> (emgden|| +

Ho In|>N Ho

Ho

Problem 8 continued on next page. .. 14
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To see that the second term is actually always 0, we apply the Pythagorean identity to see

N 2

> (ens9) = (Pns1 + a1, F))on

n=—N

N
= ) 1 {n9) = (Pns1 +on-1, )
HQ n=—N

For each n, we may compute that since g(x) = 2 cos(z) f(z),

1 ) . )
(Pns9) = (Pnt1 + Pn-1, f) = %/[ ] "2 cos(xz) f(x) — (/DT 4 DTy £ () dy
0,27
1 ) . .
= — e f(x)(2cos(z) — (e + e~ ))dx
2m [0,27]

Since €' + e~ = 2cos(x) for all z, this integral is identically 0. Therefore, we find that

N

9= > (Pns1+¢n-1,f)on
n=—N

N

9= Y (#n:9) #n

n=—N

< >0 (emgden|| =

Ho In|>N Hs

Ho

We know that the sum g = Y, (¢n,9) ¢n converges in norm, and so the right hand side of the above
inequality must go to 0. Thus, (FAF*)(f) = g. Since this holds for each f € Hs, we find that FAF* € B(Hz)
is the multiplication operator by the map [0,27] > 0 — 2cos(6). =

15



