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Evan Dogariu MAT 520: Problem Set 8 Problem 1

Problem 1

Let P,Q be two orthogonal projections onto closed subspacesM,N in a Hilbert space H such that [P,Q] = 0.

Write P⊥ := 1− P and Q⊥ := 1−Q.

(a) Show P⊥, Q⊥, PQ, P +Q− PQ and P +Q− 2PQ are orthogonal projections.

(b) What is the relation between the projections in the previous item and M,N?

Solution

Proof. (a) Note that (PQ)∗ = Q∗P ∗ = QP = PQ since P and Q are self-adjoint and QP − PQ = 0 by

assumption. Therefore, all of the operators of interest are self-adjoint, and so we just need to show that they

are all idempotent.

(P⊥ and Q⊥) We show it for P⊥, since the result for Q⊥ will follow. Now, we may decompose H =M⊕M⊥.

For all ψ ∈ H, we may write ψ = ψM + ψM⊥ with ψM ∈M and ψM⊥ ∈M⊥. So,

P⊥(ψ) = ψ − Pψ = ψM⊥

Therefore, P⊥ is the projection onto the closed subspace M⊥.

(PQ) Note that

(PQ)2 = PQPQ = PPQQ = PQ

since QP = PQ and P,Q are idempotent. So, PQ is also idempotent.

(P +Q− PQ) We compute

(P +Q− PQ)2 = P 2 + PQ− P 2Q+QP +Q2 −QPQ− PQP − PQ2 + (PQ)2

= P + PQ− PQ+ PQ+Q− PQ− PQ− PQ+ (PQ)2

= P +Q− PQ

(P +Q− 2PQ) We compute

(P +Q− 2PQ)2 = P 2 + PQ− 2P 2Q+QP +Q2 − 2QPQ− 2PQP − 2PQ2 + (2PQ)2

= P + PQ− 2PQ+ PQ+Q− 2PQ− 2PQ− 2PQ+ 4(PQ)2

= P +Q− 2PQ

(b) P⊥ and Q⊥ are the orthogonal projections onto the closed subspacesM⊥ and N⊥, respectively. We claim

PQ is the orthogonal projection onto M ∩N , or equivalently that PQψ = ψ ⇐⇒ ψ ∈M ∩N . To see this,

note that ψ = PQψ ∈ im(P ) =M and similarly ψ = QPψ ∈ im(Q) = N , and so ψ = PQψ =⇒ ψ ∈M∩N .

Conversely, if ψ ∈M ∩N , then Pψ = ψ and Qψ = ψ, and so PQψ = ψ.

Next, we claim that im(P + Q − PQ) = M ⊕ N . Clearly, M ⊕ N is closed. So, for any ψ ∈ H we

may uniquely write ψ = ψM + ψN + ψr for ψM ∈M , ψN ∈ N , and ψr ∈ (M ⊕N)⊥ =M⊥ ∩N⊥. We have

that Pψ = ψM+PψN and Qψ = QψM+ψN . Thus, PQψ = PQψM+PψN = QPψM+PψN = QψM+PψN .

So,

(P +Q− PQ)ψ = ψM + PψN +QψM + ψN −QψM − PψN = ψM + ψN

We see that P + Q − PQ removes the (M ⊕ N)⊥ part of ψ. Therefore, P + Q − PQ is the orthogonal

projection onto the closed subspace M ⊕N .

Problem 1 continued on next page. . . 2



Evan Dogariu MAT 520: Problem Set 8 Problem 1 (continued)

Lastly, note that

P +Q− 2PQ = P − PQ+Q−QP = PQ⊥ +QP⊥

We know that [P,Q⊥] = [Q,P⊥] = 0 since [P,Q] = 0, and so PQ⊥ is the orthogonal projection ontoM ∩N⊥

and QP⊥ is the orthogonal projection onto M⊥ ∩N . By Problem 6 on Problem Set 7, we know that since

the sum of these self-adjoint projections is another self-adjoint projection, the spaces must be orthogonal.

Therefore, we see that P +Q− 2PQ is an orthogonal projection onto the closed subspace

(M ∩N⊥)⊕ (M⊥ ∩N)

3



Evan Dogariu MAT 520: Problem Set 8 Problem 2

Problem 2

Let P,Q be two orthogonal projections onto closed subspaces M,N in a Hilbert space H. Show that

s-lim
n→∞

(PQ)n

exists and is the orthogonal projection onto M ∩N .

Solution

Proof. Observe that for any n,

(PQ)n = PQPQ . . . PQ = P (QPQ)(QPQ) . . . (QPQ) = P (QPQ)n−1

So, we know that

s-lim
n→∞

(PQ)n = P s-lim
n→∞

(QPQ)n

and that these strong limits exist or don’t exist together. We claim that

s-lim
n→∞

(QPQ)n

exists and is the orthogonal projection onto M ∩N , from which the problem’s result will follow immediately.

Let A := QPQ. Then, A∗ = Q∗P ∗Q∗ = QPQ = A, and so A is self-adjoint. Also, ∥A∥ ≤ ∥Q∥∥P∥∥Q∥ ≤ 1.

Lemma 1. Let A ∈ B(H) be positive with ∥A∥ ≤ 1. Then, An strongly converges to the orthogonal projection

onto ker(A− 1).

Proof of Lemma. As A is self-adjoint, we may apply the measurable functional calculus. Since A is

positive with ∥A∥ ≤ 1, we know that σ(A) ⊆ [0, 1]. Let fn : [0, 1] → R be given by fn(λ) = λn and

χ : [0, 1] → R be given by χ{1}(x) =

{
1 x = 1

0 else
. Then, over σ(A) we see that fn → χ{1} pointwise and

∥fn∥∞ ≤ 1 < ∞. So, the measurable functional calculus (Theorem VII.2(d) in Reed & Simon) gives that

fn(A) → χ{1}(A) strongly. Therefore, A
n → χ{1}(A) strongly. Lastly, we know that χ{1}(A) is the orthogo-

nal projection onto ker(A−1) by Theorem 12.29 in Rudin (which states that ker(A−λ1) = im(χ{λ}(A))).

In light of the above lemma, all we must show is that ker(QPQ− 1) =M ∩N . Clearly, for any ψ ∈M ∩N
we have that QPQψ = ψ, and so M ∩ N ⊆ ker(QPQ − 1). To see the other direction, suppose that

ψ ∈ ker(QPQ− 1) in which case QPQψ = ψ. Then,

∥ψ∥ = ∥QPQψ∥ ≤ ∥Qψ∥ ≤ ∥ψ∥

and so ∥Qψ∥ = ∥ψ∥. Similarly, ∥Pψ∥ = ∥ψ∥. However, the Pythagorean theorem tells us that

∥ψ∥2 = ∥Pψ∥2 + ∥(1− P )ψ∥2 =⇒ (1− P )ψ = 0 =⇒ Pψ = ψ =⇒ ψ ∈M

and similarly Qψ = ψ =⇒ ψ ∈ N . Therefore, ψ ∈M ∩N and we are done.
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Evan Dogariu MAT 520: Problem Set 8 Problem 3

Problem 3

Let A ∈ B(H). Show that the set of λ ∈ σ(A) such that λ is not an eigenvalue of A and im(A−λ1) is closed
but not the whole of H is an open subset of C.

Solution

Proof. Write

S := {λ ∈ σ(A) : ker(A− λ1) = {0} and im(A− λ1) = im(A− λ1) ̸= H}

Let λ ∈ S be arbitrary. By Lemma 7.20 in the lecture notes, since the image of A − λ1 is closed, there is

some ϵ > 0 such that for all φ ∈ ker(A− λ1)⊥, we have

∥(A− λ1)φ∥ ≥ ϵ∥φ∥

However, since A− λ1 is injective by definition of S, ker(A− λ1)⊥ = H. So, we get that

∥(A− λ1)φ∥ ≥ ϵ∥φ∥ (∀φ ∈ H)

Define δ := ϵ
2 > 0 and suppose by way of contradiction that Bδ(λ) ̸⊆ S. Then, there is some γ ∈ C with

|γ − λ| < δ and γ /∈ S. We have that for all φ ∈ H,

ϵ∥φ∥ ≤ ∥(A− λ1)φ∥ = ∥((A− γ1) + (γ1− λ1))φ∥
≤ ∥(A− γ1)φ∥+ |γ − λ|∥φ∥

≤ ∥(A− γ1)φ∥+ ϵ

2
∥φ∥,

where the second line comes from the triangle inequality and the third uses our selection of δ. So,

∥(A− γ1)φ∥ ≥ ϵ

2
∥φ∥ (∀φ ∈ H)

From this, we see that (A − γ1)φ = 0 =⇒ ∥φ∥ = 0 and so A − γ1 has trivial kernel. Also, Lemma 7.20

grants that im(A − γ1) is closed. So, since γ /∈ S it must be that im(A − γ1) = H. So, A − γ1 is both

injective and surjective, which means it’s invertible. We will show that this ends in a contradiction.

To this end, let φ ∈ H be arbitrary, and let ψ := (A− γ1)−1φ. By the bound from earlier,

|(A− γ1)ψ∥ ≥ ϵ

2
∥ψ∥ =⇒ ∥(A− γ1)−1φ∥ ≤ 2

ϵ
∥φ∥

Since this holds for all φ ∈ H, we find that

∥(A− γ1)−1∥op ≤ 2

ϵ
=⇒ ϵ

2
≤ ∥(A− γ1)−1∥−1

op

Let Tγ := A− γ1 and Tλ := A− λ1 for notation. Then, δ ≤ ∥T−1
γ ∥−1

op and so

∥Tγ − Tλ∥op = ∥(λ− γ)1∥op = |λ− γ| < δ ≤ ∥T−1
γ ∥−1

op

So, Tλ ∈ B∥T−1
γ ∥−1

op
(Tγ) ⊆ B(H). Thus, by the logic in the proof of Claim 6.6 in the notes (openness of GA for

Banach algebra A), this means that Tλ is also invertible, and so λ /∈ σ(A). This is obviously a contradiction,

and so we find that Bδ(λ) ⊆ S. Since such a neighborhood exists for all λ ∈ S, we have shown that S is

open in C.
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Evan Dogariu MAT 520: Problem Set 8 Problem 4

Problem 4

Define the numerical range N(A) of A ∈ B(H) via

N(A) := {⟨ψ,Aψ⟩ : ψ ∈ H and ∥ψ∥ = 1} .

(a) Show that

σ(A) ⊆ N(A)

(b) Find an example where N(A) is not closed and

σ(A) ̸⊆ N(A)

(c) Find an example where

σ(A) ̸= N(A) = N(A)

Solution

Proof. (a) Consider any λ ∈ C. Note that σ(A)− λ = σ(A− λ1) by the spectral mapping theorem. Simi-

larly, λ ∈ N(A) ⇐⇒ there is a unit vector ψ s.t. ⟨ψ,Aψ⟩ = λ ⇐⇒ ⟨ψ, (A− λ1)ψ⟩ = 0. So, N(A)− λ =

N(A−λ1). Since H is a TVS and so translation is homeomorphic, we see that N(A)−λ = N(A− λ1). All

this goes to show that it suffices to prove that 0 ∈ σ(A) =⇒ 0 ∈ N(A), since we could apply the same logic

to A− λ1 to get the result for any λ. We proceed.

Suppose that 0 ∈ σ(A). If we have 0 ∈ σp(A), then there is a nonzero ψ ∈ H such that Aψ = 0, and

so 〈
ψ

∥ψ∥
, A

ψ

∥ψ∥

〉
= 0 =⇒ 0 ∈ N(A)

and we are done. If instead we have that 0 ∈ σr(A), then Claim 9.20 in the notes shows that 0 ∈ σp(A
∗).

So, there is some nonzero ψ ∈ H such that A∗ψ = 0, and so〈
ψ

∥ψ∥
, A

ψ

∥ψ∥

〉
=

〈
A∗ ψ

∥ψ∥
,
ψ

∥ψ∥

〉
= 0 =⇒ 0 ∈ N(A)

So, suppose that 0 ∈ σc(A), the only other option. In this case, we know that im(A) is not closed in H.

So, by Lemma 7.20 in the notes, for all ϵ > 0 there is a φ ∈ H such that ∥Aφ∥ < ϵ∥φ∥. Thus, for all

ϵ > 0 there exists a unit vector ψ = φ
∥φ∥ ∈ H such that ∥Aψ∥ < ϵ. Therefore, for all ϵ > 0 we may apply

Cauchy-Schwartz to see that

| ⟨ψ,Aψ⟩ | ≤ ∥ψ∥∥Aψ∥ = ∥Aψ∥ < ϵ

So, for all ϵ > 0 there is a λ ∈ N(A) with |λ| < ϵ, which certainly means that 0 ∈ N(A). We see that in any

case, 0 ∈ N(A), proving the result.

(b) Consider the example where H is separable and A is the multiplication operator defined on an or-

thonormal basis {φj}j∈N via

Aφj :=
1

j
φj

and extended linearly. This is clearly a bounded linear operator, and so A ∈ B(H). Since each φj is an

eigenvector with eigenvalue 1
j , we see that 1

j ∈ σ(A) for all j ∈ N. Since σ(A) is closed, this also means that

0 ∈ σ(A). Furthermore, for each j we have that

⟨φj , Aφj⟩ =
〈
φj ,

1

j
φj

〉
=

1

j
∥φj∥2 =

1

j
=⇒ 1

j
∈ N(A)

Problem 4 continued on next page. . . 6



Evan Dogariu MAT 520: Problem Set 8 Problem 4 (continued)

since ∥φj∥ = 1. However, we claim that 0 /∈ N(A). Suppose by way of contradiction that there were some

ψ ∈ H with ∥ψ∥ = 1 and ⟨ψ,Aψ⟩ = 0. By Theorem 7.27 in the notes, we can express

ψ =
∑
j∈N

⟨φj , ψ⟩φj

By continuity of A, we may distribute it into the infinite sum to see

Aψ =
∑
j∈N

⟨φj , ψ⟩Aφj =
∑
j∈N

⟨φj , ψ⟩
j

φj

So, we see that

0 = ⟨ψ,Aψ⟩ =
∑
j∈N

⟨φj , ψ⟩
⟨φj , ψ⟩
j

=
∑
j∈N

1

j
| ⟨φj , ψ⟩ |2

Since this sum of nonnegative terms equals 0, each term must also be 0, and so

⟨φj , ψ⟩ = 0 ∀j ∈ N =⇒ ∥ψ∥2 =
∑
j∈N

| ⟨φj , ψ⟩ |2 = 0,

where the implication follows from the other part of Theorem 7.27. This contradicts that ∥ψ∥ = 1, and so

0 /∈ N(A). Thus, N(A) is not closed and σ(A) ̸⊆ N(A).

(c) Let H be an arbitrary Hilbert space, M ⊊ H a nonempty proper closed subspace, and P be the or-

thogonal projection operator onto M . We know that σ(P ) ⊆ {0, 1} by Claim 8.20 in the notes. However,

we claim that N(P ) = [0, 1]. Firstly, note that P 2 = P ∗ = P =⇒ P = |P |2, and so P is positive. By

Lemma 9.5 in the notes, N(P ) ⊆ [0,∞). Next, note that by Problem 27 on Problem Set 7, self-adjointness

of P tells us that 1 = ∥P∥ = sup{|z| : z ∈ N(P )}, and so N(P ) ⊆ [0, 1]. For the reverse inclusion,

suppose that λ ∈ [0, 1]. Let v ∈ M be a unit vector and w ∈ M⊥ be a unit vector orthogonal to v. Define

ψ :=
√
λv +

√
1− λw. Then, we have that

∥ψ∥2 =
〈√

λv +
√
1− λw,

√
λv +

√
1− λw

〉
= λ∥v∥2 + (1− λ)∥w∥2 +2

〈√
λv,

√
1− λw

〉
= λ+ (1− λ) = 1,

where this follows since v ⊥ w and ∥v∥ = ∥w∥ = 1. So, ψ is a unit vector. Furthermore,

⟨ψ, Pψ⟩ =
〈√

λv +
√
1− λw,

√
λv
〉
= ∥

√
λv∥2 = λ,

where the above again follows since v ⊥ w and ∥v∥ = 1. So, λ ∈ N(P ). Since this holds for all λ ∈ [0, 1], we

find that N(P ) = [0, 1]. Therefore, N(P ) is closed but not equal to σ(P ).
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Evan Dogariu MAT 520: Problem Set 8 Problem 5

Problem 5

Show that if A ∈ B(H) has A = A∗ then∥∥(A− z1)−1
∥∥ ≤ 1

| Im {z} |
(∀z ∈ C : | Im {z} | > 0)

Solution

Proof. Let z ∈ {w ∈ C : | Im {w} | > 0} be arbitrary. Noting that A = A∗ =⇒ σ(A) ⊆ R, we see that z is

not in the spectrum, which means that A − z1 is indeed invertible. To proceed, let φ ∈ H be an arbitrary

vector with ∥φ∥ = 1. In Lemma 10.2 in the notes, we derived that

Im {z}
∥∥(A− z1)−1φ

∥∥2 = Im
{〈
φ, (A− z1)−1φ

〉}
Taking the magnitude of both sides,

| Im {z} |
∥∥(A− z1)−1φ

∥∥2 =
∣∣Im{〈φ, (A− z1)−1φ

〉}∣∣
We note that by Cauchy-Schwartz and the fact that | Im {γ} | ≤ |γ| for all γ ∈ C, we have∣∣Im{〈φ, (A− z1)−1φ

〉}∣∣ ≤ ∣∣〈φ, (A− z1)−1φ
〉∣∣ ≤ ∥φ∥∥(A− z1)−1φ∥ = ∥(A− z1)−1φ∥,

where the last equality follows since φ is a unit vector. So, we find that

| Im {z} |
∥∥(A− z1)−1φ

∥∥2 ≤ ∥(A− z1)−1φ∥

Since φ ̸= 0 =⇒ (A− z1)−1φ ̸= 0 by invertibility, and so we divide and see that

| Im {z} |
∥∥(A− z1)−1φ

∥∥ ≤ 1

Thus, ∥∥(A− z1)−1φ
∥∥ ≤ 1

| Im {z} |
Since this holds for all unit vectors φ ∈ H, we find the operator norm bound∥∥(A− z1)−1

∥∥ ≤ 1

| Im {z} |

As this holds for all z ∈ {w ∈ C : | Im {w} | > 0}, we have proven the desired result.
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Evan Dogariu MAT 520: Problem Set 8 Problem 6

Problem 6

Show that if A ∈ B(H) is an isometry then im(A) is closed in H.

Solution

Proof. Suppose that A ∈ B(H) is an isometry. Then, we know that

∥Aφ∥ = ∥φ∥ (∀φ ∈ H)

So, we clearly have that

∥Aφ∥ ≥ ∥φ∥
(
∀φ ∈ (kerA)⊥

)
By Lemma 7.20 in the notes, this gives us that im(A) ∈ Closed(H).
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Evan Dogariu MAT 520: Problem Set 8 Problem 7

Problem 7

Define H := L2([0, 1] → C). Let V ∈ B(H) be given by

V (ψ) :=

∫ ·

0

ψ (∀ψ ∈ H)

(a) Show that V is well-defined (it is a bounded linear map) with

V ∗(ψ) =

∫ 1

·
ψ (∀ψ ∈ H)

(b) Show that the spectral radius r(V ) equals 0 and that σ(V ) = {0}.

(c) Show that ∥V ∥ = 2
π .

Solution

Proof. For this problem, note that H ⊆ L1([0, 1] → C) since the domain [0, 1] is finite measure. By

Holder’s inequality, ∥f∥L1 ≤ ∥f∥L2 for all f ∈ H. We apply this estimate in this problem often to see that∫ 1

0
|f | ≤ ∥f∥H.

(a) We note that for α ∈ C and ψ,φ ∈ H, we have that for all x ∈ [0, 1],

V (αψ + φ)(x) =

∫ x

0

(αψ + φ) = α

∫ x

0

ψ +

∫ x

0

φ = αV (ψ)(x) + V (φ)(x)

by linearity of the integral, and so V (αψ+φ) = αV (ψ) + V (φ) and V is linear. To show boundedness, note

that for all ψ ∈ H,

∥V ψ∥2 =

∫ 1

0

dx

∣∣∣∣∫ x

0

ψ

∣∣∣∣2 ≤
∫ 1

0

dx

(∫ x

0

|ψ|
)2

≤
∫ 1

0

dx

(∫ 1

0

|ψ|
)2

=

(∫ 1

0

|ψ|
)2

By an application of Holder’s inequality (∥ · ∥L1 ≤ ∥ · ∥Lp), we know that for all ψ ∈ H,∫ 1

0

|ψ| ≤ ∥ψ∥,

where the above norm is the H norm. Thus,

∥V ψ∥ ≤ ∥ψ∥,

and so V is a bounded operator. To see the adjoint result, define W ∈ B(H) to be

W (ψ) :=

∫ 1

·
ψ (ψ ∈ H),

where we know that W is bounded and linear by identical logic to the above. Now, observe that for all

ψ,φ ∈ H,

⟨ψ, V φ⟩ =
∫ 1

0

ψ(x)

∫ x

0

φ(t)dtdx =

∫ 1

0

∫ x

0

ψ(x)φ(t)dtdx

For each x ∈ [0, 1], define χx := χ[0,x] to be the indicator function of the interval [0, x]. Then,

⟨ψ, V ϕ⟩ =
∫ 1

0

∫ 1

0

χx(t)ψ(x)φ(t)dtdx

Problem 7 continued on next page. . . 10



Evan Dogariu MAT 520: Problem Set 8 Problem 7 (continued)

By Tonelli’s theorem, we compute∫ 1

0

∫ 1

0

|χx(t)ψ(x)φ(t)|dtdx =

∫ 1

0

∫ 1

0

|χx(t)ψ(x)φ(t)|dxdt

≤
∫ 1

0

|φ(t)|
∫ 1

0

|ψ(x)|dxdt

≤ ∥ψ∥
∫ 1

0

|φ(t)|dt

≤ ∥ψ∥∥φ∥ <∞

where we again used the Holder estimate
∫ 1

0
|ψ(x)|dx ≤ ∥ψ∥. Since this is finite, we may apply Fubini’s

theorem and switch the order of integration, getting

⟨ψ, V φ⟩ =
∫ 1

0

∫ 1

0

χx(t)ψ(x)φ(t)dxdt =

∫ 1

0

φ(t)

(∫ 1

0

χx(t)ψ(x)dx

)
dt

We note that χx(t) = 1 if and only if t ≤ x, and otherwise it is 0. So, χx(t) = χ[t,1](x), and so∫ 1

0

χx(t)ψ(x)dx =

∫ 1

t

ψ(x)dx =

∫ 1

t

ψ(x)dx = (Wψ)(t)

Plugging this in,

⟨ψ, V φ⟩ =
∫ 1

0

ϕ(t)(Wψ)(t)dt = ⟨Wψ,φ⟩

Since this holds for all ψ,φ ∈ H, we have that V ∗ =W as desired.

(b) For all n ∈ N and all φ ∈ H,

∥V nφ∥2 =

∫ 1

0

∣∣∣∣∫ x

0

dtn

∫ tn

0

dtn−1 . . . dt2

∫ t2

0

φ(t1)dt1

∣∣∣∣2 dx
≤
∫ 1

0

(∫ x

0

dtn

∫ tn

0

dtn−1 . . . dt2

∫ t2

0

|φ(t1)|dt1
)2

dx

≤
∫ 1

0

(∫ x

0

dtn

∫ tn

0

dtn−1 . . . dt2

∫ 1

0

|φ(t1)|dt1
)2

dx

≤
∫ 1

0

(∫ x

0

dtn

∫ tn

0

dtn−1 . . . dt2∥φ∥
)2

dx

= ∥φ∥2
∫ 1

0

(∫ x

0

dtn

∫ tn

0

dtn−1 . . .

∫ t3

0

dt2

)2

dx

= ∥φ∥2
∫ 1

0

(
xn−1

(n− 1)!

)2

dx =
∥φ∥2

(n− 1)!2

∫ 1

0

x2n−2dx

=
∥φ∥2

(n− 1)!2
1

2n− 1
,

where we used a Holder estimate for the third inequality. Since this holds for all φ ∈ H, we find that

∥V n∥ ≤ 1

(n− 1)!
√
2n− 1

≤ 1

(n− 1)!
=

n

n!

Note that (n!)2 = (1(n))(2(n − 1))(3(n − 2)) . . . (n(1)) =
∏n−1

k=0(k + 1)(n − k). We know (k + 1)(n − k) =

nk + n− k(k + 1). Since n ≥ k + 1, we see that (k + 1)(n− k) ≥ nk + n− kn = n. Thus,

(n!)2 ≥
∏
k

= 0n−1n = nn =⇒ (n!)1/n ≥
√
n

Problem 7 continued on next page. . . 11



Evan Dogariu MAT 520: Problem Set 8 Problem 7 (continued)

So,

∥V n∥1/n ≤ n1/n√
n

We know that n1/n → 1 as n→ ∞, and so

lim
n→∞

∥V n∥1/n = 0

Thus, by Gelfand’s formula, r(V ) = 0 and therefore σ(V ) = {0} (the spectrum is nonempty and can only

contain 0).

(c) Let K(x, t) := χ[0,x](t). Then, we have that

(V ψ)(x) =

∫ x

0

ψ(t)dt =

∫ 1

0

K(x, t)ψ(t)dt

Certainly, K ∈ L2([0, 1]× [0, 1]), and so V is a Hilbert-Schmidt integral operator and is therefore compact.

So, |V |2 = V ∗V is a compact, positive operator. The Riesz-Schauder theorem tells us that r(|V |2) is the

magnitude of the largest eigenvalue, since the spectrum of |V |2 is discrete and can only accumulate at 0 (in

particular, a magnitude of r(|V |2) is attained by some eigenvalue). Since |V |2 is self-adjoint, we know that

∥V ∥2 = ∥|V |2∥ = r(|V |2) by the C∗ identity, and so we seek the magnitude of the largest eigenvalue. To

this end, suppose that ψ is an eigenvector of |V |2 with eigenvalue λ ̸= 0 (since |V |2 is positive, then λ > 0).

Then, for a.e. x ∈ [0, 1] we have that

λψ(x) = (V ∗V ψ)(x) =

∫ 1

x

(∫ t

0

ψ(s)ds

)
dt

Note that

|ψ(y)− ψ(x)| ≤ 1

|λ|

∫ y

x

∣∣∣∣∫ t

0

ψ(s)ds

∣∣∣∣ dt ≤ 1

|λ|

∫ y

x

∫ t

0

|ψ(s)|dsdt

Using our favorite Holder estimate
∫ t

0
|ψ(s)|ds ≤

∫ 1

0
|ψ(s)|ds ≤ ∥ψ∥, we see that

|ψ(y)− ψ(x)| ≤ ∥ψ∥
|λ|

|y − x|

In particular, ψ is Lipschitz and so differentiable a.e.. Taking a derivative of our initial expression, we see

that

λψ′(x) = −
∫ x

0

ψ(s)ds

From this we see that ψ′(0) = 0. Applying very similar logic, as above, we have that

|ψ′(y)− ψ′(x)| ≤ 1

|λ|

∫ y

x

|ψ(s)|ds

ψ is Lipschitz, and so continuous, which means it is bounded on [0, 1], i.e. |ψ(s)| ≤ M < ∞ for s ∈ [0, 1].

Therefore ψ′ is M
|λ| -Lipschitz, which means that ψ′ is a.e. differentiable. So, we may take another derivative

and see that for a.e. x ∈ [0, 1],

λψ′′(x) = −ψ(x) =⇒ ψ(x) = C1 cos(x/
√
λ) + C2 sin(x/

√
λ)

for some constants C1, C2. We know that ψ′(0) = 0, and so C2 = 0. Also, since (V ∗V ψ)(1) = 0 we have

ψ(1) = 0. Therefore,

cos(1/
√
λ) = 0 =⇒ 1√

λ
=

(
k +

1

2

)
π for some k ∈ N

Problem 7 continued on next page. . . 12
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The above holds for any k ∈ N (note that we cannot have k < 1
2 since the LHS is positive), and so we seek

the k that maximizes λk. We write

λk =

(
2

(2k + 1)π

)2

=⇒ max
k∈N

{λk} =
4

π2

Therefore, r(|V |2) = 4
π2 and we get our answer that ∥V ∥ = 2

π .

13
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Problem 8

Let F : ℓ2(Z) → L2(S1) be the Fourier series given by

ℓ2(Z) ∋ ψ 7→

(
[0, 2π] ∋ k 7→

∑
n∈Z

e−iknψn =: ψ̂(k)

)

Let A ∈ B(ℓ2(Z)) be the discrete Laplacian:

A = R+R∗,

where R is the bilateral right shift operator.

Rδn := δn+1 (∀n ∈ Z)

and {δn}n∈Z is the standard basis of ℓ2(Z). Calculate

FAF∗ ∈ B(L2(S1))

Solution

Proof. Write H1 := ℓ2(Z) and H2 := L2(S1) for notation. For each n ∈ Z, define φn ∈ H2 via φn(x) = e−inx

for x ∈ [0, 2π]. We know by elementary Fourier analysis that {φn}n∈Z is an orthonormal basis of H2

(assuming the inner product is normalized by 1
2π ). Then, letting {δn}n∈Z denote the standard orthonormal

basis of H1, we see that

F(δn) = φn (n ∈ Z)

So, F is unitary. For any f ∈ H1, we may express

f =
∑
n∈Z

⟨φn, f⟩φn,

where this convergence is in the H2 norm. Applying F∗, we get that

F∗f =
∑
n∈Z

⟨φn, f⟩ δn,

where this convergence is in the H1 norm since F∗ preserves the norm. Applying A,

(AF∗)(f) =
∑
n∈Z

⟨φn, f⟩ (δn+1 + δn−1)

Applying F again,

(FAF∗)(f) =
∑
n∈Z

⟨φn, f⟩ (φn+1 + φn−1) =
∑
n∈N

⟨φn+1 + φn−1, f⟩φn,

where we shifted indices to get the second sum. This convergence is again in the H2 norm. Consider the

function g ∈ H2 given by g(x) = 2 cos(x)f(x) (which is certainly in H2 since | cos(x)| ≤ 1). We claim that

g = (FAF∗)(f), or equivalently that as N → ∞,∥∥∥∥∥g −
N∑

n=−N

⟨φn+1 + φn−1, f⟩φn

∥∥∥∥∥
H2

→ 0

To see this, note that g =
∑

n∈Z ⟨φn, g⟩φn in norm, and so by the triangle inequality,∥∥∥∥∥g −
N∑

n=−N

⟨φn+1 + φn−1, f⟩φn

∥∥∥∥∥
H2

≤

∥∥∥∥∥∥
∑

|n|>N

⟨φn, g⟩φn

∥∥∥∥∥∥
H2

+

∥∥∥∥∥
N∑

n=−N

(⟨φn, g⟩ − ⟨φn+1 + φn−1, f⟩)φn

∥∥∥∥∥
H2

Problem 8 continued on next page. . . 14
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To see that the second term is actually always 0, we apply the Pythagorean identity to see∥∥∥∥∥
N∑

n=−N

(⟨φn, g⟩ − ⟨φn+1 + φn−1, f⟩)φn

∥∥∥∥∥
2

H2

=

N∑
n=−N

| ⟨φn, g⟩ − ⟨φn+1 + φn−1, f⟩ |2

For each n, we may compute that since g(x) = 2 cos(x)f(x),

⟨φn, g⟩ − ⟨φn+1 + φn−1, f⟩ =
1

2π

∫
[0,2π]

einx2 cos(x)f(x)− (ei(n+1)x + ei(n−1)x)f(x)dx

=
1

2π

∫
[0,2π]

einxf(x)(2 cos(x)− (eix + e−ix))dx

Since eix + e−ix = 2 cos(x) for all x, this integral is identically 0. Therefore, we find that∥∥∥∥∥g −
N∑

n=−N

⟨φn+1 + φn−1, f⟩φn

∥∥∥∥∥
H2

≤

∥∥∥∥∥∥
∑

|n|>N

⟨φn, g⟩φn

∥∥∥∥∥∥
H2

=

∥∥∥∥∥g −
N∑

n=−N

⟨φn, g⟩φn

∥∥∥∥∥
H2

We know that the sum g =
∑

n∈Z ⟨φn, g⟩φn converges in norm, and so the right hand side of the above

inequality must go to 0. Thus, (FAF∗)(f) = g. Since this holds for each f ∈ H2, we find that FAF∗ ∈ B(H2)

is the multiplication operator by the map [0, 2π] ∋ θ → 2 cos(θ).
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