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Evan Dogariu MAT 520: Problem Set 6 Problem 1

Problem 1

Show that H := ℓ2(N → C) is a Hilbert space: define an inner product on it and show that the induced

metric is complete.

Solution

Proof. We define the inner product as follows: for any φ,ψ ∈ H, if we let φn and ψn denote the nth

coordinates,

⟨φ,ψ⟩ =
∞∑

n=1

φnψn

Note that this is C-linear in the second slot, anti-C-linear in the first slot (and so sesquilinear), and satisfies

⟨φ,ψ⟩ = ⟨ψ,φ⟩ via the properties of complex conjugation. Furthermore, ⟨φ,φ⟩ =
∑∞

n=1 |φn|2, and so it

equals 0 if and only if φn = 0 ∀n, or equivalently if φ = 0. Therefore, it is a valid inner product and turns

H into an inner product space.

To see that it is complete in the norm metric induced by this inner product, let {φ(k)}k∈N ⊆ H be a

sequence that is Cauchy w.r.t. the norm (we use upper indices to label the vectors and lower indices for the

coordinates of the vectors). Let ϵ > 0. Then, there is some M such that for all m, k > M ,

ϵ > ∥φ(m) − φ(k)∥2 =

∞∑
n=1

|φ(m)
n − φ(k)

n |2,

where φ
(k)
n refers to the nth coordinate of φ(k) ∈ H. Since each element of this sum is nonnegative, we see

that for all n ∈ N,
|φ(m)

n − φ(k)
n |2 < ϵ

In particular, the sequence {φ(k)
n }k ⊆ C is Cauchy in C, and so converges to some φn ∈ C. Construct the

vector φ := (φ1, φ2, . . .). We must show that φ ∈ ℓ2(N → C) and also that φ(k) → φ in the norm on H. Let

M ∈ N be such that for all m, k > M ,

∥φ(k) − φ(m)∥2 =

∞∑
n=1

|φ(k)
n − φ(m)

n |2 < ϵ

Then, for each N ∈ N, we certainly have

N∑
n=1

|φ(k)
n − φ(m)

n |2 < ϵ

Since φ
(m)
n → φn as m→ ∞ for each n, we may use the continuity of | · | in C and the linearity of limits to

see that

lim
m→∞

N∑
n=1

|φ(k)
n − φ(m)

n |2 =

N∑
n=1

|φ(k)
n − φn|2 < ϵ

Since this holds for every N ∈ N, it will hold in the limit (the sum increases with N , and so it is monotonic

and has a limit). Thus,

∥φ(k) − φ∥2 =

∞∑
n=1

|φ(k)
n − φn|2 < ϵ

Firstly, this shows by the reverse triangle inequality (which may be applied elementwise) that∣∣∣∥φ∥ − ∥φ(k)∥
∣∣∣ ≤ ∥φ(k) − φ∥ <

√
ϵ =⇒ ∥φ∥ ≤ ∥φ(k)∥+

√
ϵ <∞,

and so φ ∈ H. Furthermore, as this holds for all k > M , we find that φ(k) → φ in the norm on H. So, every

Cauchy sequence converges in ∥ · ∥ to an element of H.
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Evan Dogariu MAT 520: Problem Set 6 Problem 2

Problem 2

Show that H := L2(R) (with the Lebesgue measure) is a Hilbert space: define an inner product on it and

show that the induced metric is complete.

Solution

Proof. We define the inner product as follows: for any f, g ∈ H,

⟨f, g⟩ =
∫
R
f(x)g(x)dx

Note that this is C-linear in the second slot, anti-C-linear in the first slot (and so sesquilinear), and satisfies

⟨f, g⟩ = ⟨g, f⟩ via the properties of complex conjugation. Furthermore, ⟨f, f⟩ =
∫
R |f(x)|2dx, and so it equals

0 if and only if f(x) = 0 a.e., or equivalently if f is the 0 element of H. Therefore, it is a valid inner product

and turns H into an inner product space.

To see that it is complete in the norm metric induced by this inner product, let {fn}n∈N ⊆ H be a se-

quence that is Cauchy w.r.t. the norm on H. Then, we may inductively construct a subsequence {fnk
}k∈N

such that

∥fnk+1
− fnk

∥ ≤ 2−k

by repeated application of the Cauchy criterion with ϵk = 2−k. Let us define

f := fn1 +

∞∑
k=1

(fnk+1
− fnk

)

and

g := |fn1
|+

∞∑
k=1

|fnk+1
− fnk

|

Then, for each K ∈ N we have that∥∥∥∥∥|fn1 |+
K∑

k=1

|fnk+1
− fnk

|

∥∥∥∥∥ ≤ ∥fn1∥+
K∑

k=1

∥fnk+1
− fnk

∥ ≤ ∥f1∥+
K∑

k=1

2−k ≤ ∥fn1∥+ 1,

where the first inequality is the triangle inequality and the second comes from our subsequence selection.

Since this holds for all K and the sequence of functions |fn1
| +
∑K

k=1 |fnk+1
− fnk

| is increasing in K and

approaches g pointwise, monotone convergence grants that∥∥∥∥∥|fn1
|+

K∑
k=1

|fnk+1
− fnk

|

∥∥∥∥∥→ ∥g∥ =⇒ ∥g∥ ≤ ∥fn1
∥+ 1 <∞,

and so g ∈ H. Since |f | ≤ g by the triangle inequality, this means that ∥f∥ <∞ and so f ∈ H as well. Now,

we note that by the telescoping sum,

fnK+1
= fn1

+

K∑
k=1

(fnk+1
− fnk

)

In other words, fnK+1
is the Kth partial sum, and so fnk

(x) → f(x) pointwise a.e. as k → ∞. Furthermore,

since

|f − fnK
|2 =

∣∣∣∣∣
∞∑

k=K

(fnk+1
− fnk

)

∣∣∣∣∣
2

≤ g2

Problem 2 continued on next page. . . 3



Evan Dogariu MAT 520: Problem Set 6 Problem 2 (continued)

for all K, we can apply dominated convergence since
∫
g2 <∞ to see that

lim
k→∞

∫
R
|f(x)− fnk

(x)|2dx =

∫
R

lim
k→∞

|f(x)− fnk
(x)|2dx = 0

since fnk
→ f pointwise a.e.. Thus, fnk

approaches f in the norm. To see that fn → f in the norm, let

ϵ > 0. By the Cauchy criterion, there is some N ∈ N such that for all n,m > N , ∥fn − fm∥ < ϵ
2 . Let k be

large enough that both nk > N and ∥fnk
− f∥ < ϵ

2 . Then, for all n > N we have by the triangle inequality

that

∥fn − f∥ ≤ ∥fn − fnk
∥+ ∥fnk

− f∥ ≤ ϵ

2
+
ϵ

2
= ϵ

Since such an N exists for all ϵ, we see that fn → f in the norm. So, every Cauchy sequence converges in

the norm to some element of H, and H is therefore complete in this norm.
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Evan Dogariu MAT 520: Problem Set 6 Problem 3

Problem 3

Let B(H) be the Banach algebra of bounded linear operators on H. Show (in a concrete example, e.g.,

H = C2) that B(H) is not a Hilbert space by showing the operator norm violates the parallelogram law.

Solution

Proof. Let H = C2. We wish to find A,B ∈ B(H) for which

∥A+B∥2 + ∥A−B∥2 ̸= 2∥A∥2 + 2∥B∥2,

as this would violate the parallelogram law (note that this is the operator norm on B(H)). Let A denote

the orthogonal projection onto the first coordinate (i.e. A(z1, z2) = (z1, 0)) and B be the similar orthogonal

projection onto the second coordinate. Then, ∥A∥ = ∥B∥ = 1 since there exist unit vectors whose norm is

preserved. However, we see that for all (z1, z2) ∈ H,

(A+B)(z1, z2) = (z1, 0) + (0, z2) = (z1, z2)

and

(A−B)(z1, z2) = (z1, 0)− (0, z2) = (z1,−z2)

Clearly, ∥A+B∥ = ∥A−B∥ = 1 then, since they both preserve the norm. Therefore,

2 = ∥A+B∥2 + ∥A−B∥2 ̸= 2∥A∥2 + 2∥B∥2 = 4,

and so B(H) with the operator norm cannot be made into a Hilbert space.
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Evan Dogariu MAT 520: Problem Set 6 Problem 4

Problem 4

Show that if M ⊆ H is a closed vector subspace of it then (M⊥)⊥ =M .

Solution

Proof. (⊇) Note first that (M⊥)⊥ ⊃ M , since for every φ ∈ M we have ⟨φ,ψ⟩ = 0 for all ψ ∈ M⊥, and so

φ ∈ (M⊥)⊥.

(⊆) We know that (M⊥)⊥ is closed since orthogonal complements are closed. Now, suppose by way of

contradiction that (M⊥)⊥ ̸⊆ M . Then, there must be some element φ ∈ (M⊥)⊥ \M . Since M is a closed

subspace, we may decompose H = M ⊕M⊥, which means that φ decomposes into φ = φM + φM⊥ with

φM ∈ M and φM⊥ ∈ M⊥. Then, since φ ∈ (M⊥)⊥ by assumption and φM ∈ (M⊥)⊥ by the fact that

M ⊆ (M⊥)⊥, we get

φM⊥ = φ− φM =⇒ φM⊥ ∈ (M⊥)⊥

since (M⊥)⊥ is a vector subspace. So, we find that

φM⊥ ∈M⊥ ∩ (M⊥)⊥ =⇒ ⟨φM⊥ , φM⊥⟩ = 0 =⇒ ∥φM⊥∥ = 0 =⇒ φM⊥ = 0

Therefore, φ = φM =⇒ φ ∈M , contradicting our selection of φ. So, (M⊥)⊥ ⊆M .
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Evan Dogariu MAT 520: Problem Set 6 Problem 5

Problem 5

Show that if {φn}n∈N is a sequence of pairwise orthogonal vectors in H, then the following are equivalent:

(a)
∑

n∈N φn exists in ∥ · ∥H.

(b)
∑

n∈N ∥φn∥2H <∞.

(c) For any ψ ∈ H,
∑

n∈N⟨ψ,φn⟩H exists.

Solution

Proof. (a =⇒ c) Suppose that
∑

n∈N φn exists and is equal to φ ∈ H. Let ψ ∈ H be arbitrary. Then,

letting Sn :=
∑n

j=1 ⟨ψ,φj⟩ ∈ C denote the partial sums, we have that for all m > n,

|Sm − Sn| =

∣∣∣∣∣∣
m∑

j=n+1

⟨ψ,φj⟩

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
〈
ψ,

m∑
j=n+1

φj

〉∣∣∣∣∣∣ ≤ ∥ψ∥

∥∥∥∥∥∥
m∑

j=n+1

φj

∥∥∥∥∥∥ ,
where the first inequality is the triangle inequality in C and the second is Cauchy-Schwartz. Let ϵ > 0. We

know that the sequence
{∑n

j=1 φj

}
n∈N

, is Cauchy since it converges to φ, and so there is an N large enough

that for all m > n > N ,

ϵ

∥ψ∥
>

∥∥∥∥∥∥
 m∑

j=1

φj

−

 n∑
j=1

φj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑

j=n+1

φj

∥∥∥∥∥∥
For such m > n > N , we therefore have that

|Sm − Sn| ≤ ∥ψ∥ ϵ

∥ψ∥
= ϵ,

and so the sequence {Sn}n is Cauchy in C. Since C is complete, this means that the sequence of partial

sums converges. Therefore,
∑∞

j=1 ⟨ψ,φj⟩ exists. This holds for all ψ ∈ H.

(c =⇒ b) Suppose (c). For each N ∈ N, define AN : H → C via AN (ψ) =
∑N

n=1 ⟨ψ,φn⟩. This is

certainly linear; since the inner product is continuous w.r.t. the first slot then AN ∈ B(H → C). Also, for

a fixed ψ ∈ H the sequence {ANψ}N∈N is convergent by assumption of (c), and so it is bounded. In other

words,

sup
N∈N

AN (ψ) <∞

Since this holds for all ψ ∈ H, we may apply Banach-Steinhaus (uniform boundedness) to see that

S := sup
N∈N

∥AN∥B(H→C) <∞

For each N ∈ N we have that

AN

(
N∑

k=1

φk

)
=

N∑
k,n=1

⟨φk, φn⟩ =
N∑

n=1

⟨φn, φn⟩ =
N∑

n=1

∥φn∥2

However, we know that∣∣∣∣∣AN

(
N∑

k=1

φk

)∣∣∣∣∣
2

≤ S2

∥∥∥∥∥
N∑

k=1

φk

∥∥∥∥∥
2

= S2

〈
N∑

k=1

φk,

N∑
n=1

φn

〉
= S2

N∑
k=1

∥φk∥2,
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Evan Dogariu MAT 520: Problem Set 6 Problem 5

where the inequality follows from the bound on operator norm of AN and the last equality follows from

pairwise orthogonality. Combining these two, we see that for all N ∈ N,(
N∑

n=1

∥φn∥2
)2

≤ S2

(
N∑

n=1

∥φn∥2
)

=⇒
N∑

n=1

∥φn∥2 ≤ S2

(Note that if all the φn are 0 then the above holds trivially). So, since this holds for all N ∈ N and the

sequence
{∑N

n=1 ∥φn∥2
}
N

is monotonically increasing and so has a limit, we see that

∞∑
n=1

∥φn∥2 ≤ S2 <∞

(b =⇒ a) Suppose now that
∑∞

n=1 ∥φn∥2 < ∞. Let Sn :=
∑n

j=1 φj ∈ H denote the partial sums.

Then, for all m > n,

∥Sm − Sn∥ =

∥∥∥∥∥∥
m∑

j=n+1

φj

∥∥∥∥∥∥ =

〈
m∑

j=n+1

φj ,

m∑
j=n+1

φj

〉
=

m∑
j,k=n+1

⟨φj , φk⟩ ,

where for the last equality we used the sesquilinearity of ⟨·, ·⟩. Since {φj} is pairwise orthogonal, we see that

⟨φj , φk⟩ = 0 unless j = k. So,

∥Sm − Sn∥ =

m∑
j=n+1

⟨φj , φj⟩ =
m∑

j=n+1

∥φj∥2

Since the sequence of partial sums of the squared norms
{∑n

j=1 ∥φj∥2
}

converges by assumption, we know

that it is Cauchy. Let ϵ > 0. Then, there is an N large enough that for all m > n > N ,

ϵ >

∣∣∣∣∣∣
 m∑

j=1

∥φj∥2
−

 n∑
j=1

∥φj∥2
∣∣∣∣∣∣ =

m∑
j=n+1

∥φj∥2

So, for such m > n > N we have that ∥Sm −Sn∥ < ϵ. Therefore, {Sn}n ⊆ H is Cauchy; since H is complete

this means that the sum converges in norm. Therefore,
∑∞

j=1 φn exists.
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Evan Dogariu MAT 520: Problem Set 6 Problem 6

Problem 6

Show that if {φn}n∈N ⊆ H is an arbitrary sequence of vectors, then (a) implies (c). Find an example where

(c) does not imply (a).

Solution

Proof. Note that in the proof of Problem 5, when we showed (a) =⇒ (c) we made no use of pairwise

orthogonality. So, that proof actually holds this more general case.

To find an example where (c) does not imply (a), let H := ℓ2(N → C). Let {ej}j∈N denote the standard

position basis on H. Define a sequence of vectors {φn}n∈N ⊆ H via

φn :=

{
e1 n = 1

en − en−1 n > 1

Then, for each N ∈ N we know that
N∑

n=1

φn = eN

by a telescoping sum. For any ψ ∈ H we then have that

N∑
n=1

⟨ψ,φn⟩ = ψN =⇒ lim
N→∞

N∑
n=1

⟨ψ,φn⟩ = lim
N→∞

ψN = 0,

where we used that ψ is square summable and so must have decaying coefficients. So, the sequence {φn}n
satisfies (c).

However, we will show that it does not satisfy (a) by showing that the sequence of partial sums {
∑n

k=1 φk}n
is not Cauchy in H. In particular, we note that for all m > n,∥∥∥∥∥

(
m∑

k=1

φk

)
−

(
n∑

k=1

φk

)∥∥∥∥∥ = ∥em − en∥ =
√
2

So, the partial sums always stay a fixed distance away, and cannot converge in norm. Therefore, (a) cannot

hold for this sequence.
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Evan Dogariu MAT 520: Problem Set 6 Problem 7

Problem 7

Let N ∈ N and let α ∈ C be such that αN = 1 ̸= α2. Show that for all φ,ψ ∈ H,

⟨ψ,φ⟩ = 1

N

N∑
n=1

αn∥φ+ αnψ∥2

Show also that

⟨ψ,φ⟩ = 1

2π

∫
[−π,π]

eiθ∥φ+ eiθψ∥2dθ

Solution

Proof. Firstly, note that αN = 1 =⇒ 1 = |αN | = |α|N =⇒ |α| = 1. We have that

∥φ+ αnψ∥2 = ∥φ∥2 + ∥αnψ∥2 + ⟨φ, αnψ⟩+ ⟨αnψ,φ⟩
= ∥φ∥2 + ∥ψ∥2 + ⟨φ, αnψ⟩+ ⟨αnψ,φ⟩

Plugging this in to the right hand side, we see

1

N

N∑
n=1

αn∥φ+ αnψ∥2 = (∥φ∥2 + ∥ψ∥2)
N∑

n=1

αn

N
+

1

N

N∑
n=1

αn(⟨φ, αnψ⟩+ ⟨αnψ,φ⟩)

= (∥φ∥2 + ∥ψ∥2)

(
N∑

n=1

αn

N

)
+

1

N

N∑
n=1

(
〈
φ, α2nψ

〉
+
〈
|αn|2ψ,φ

〉
)

Since |α| = 1, this equals

= (∥φ∥2 + ∥ψ∥2)

(
N∑

n=1

αn

N

)
+ ⟨ψ,φ⟩+ ⟨φ,ψ⟩ ·

(
N∑

n=1

α2n

N

)

We note that since α2 ̸= 1, then α ̸= 1, and so

1 +

N−1∑
n=1

αn = 1 + α+ α2 + . . .+ αN−1 =
1− αN

1− α
= 0 =⇒

N−1∑
n=1

αn = −1

So,
∑N

n=1 α
n = 0. Similarly,

1 +

N−1∑
n=1

α2n = 1 + (α2) + (α2)2 + . . .+ (α2)N−1 =
1− (α2)N

1− α2
=

1− (αN )2

1− α2
= 0 =⇒

N−1∑
n=1

α2n = −1

Therefore, since α2N = 1, we see that
∑N

n=1 α
2n = 0 as well. Thus,

1

N

N∑
n=1

αn∥φ+ αnψ∥2 = ⟨ψ,φ⟩

as desired.

The proof of the next part will go similarly. We have

∥φ+ eiθψ∥2 = ∥φ∥2 + ∥ψ∥2 +
〈
φ, eiθψ

〉
+
〈
eiθψ,φ

〉
So, ∫

[−π,π]

eiθ∥φ+ eiθψ∥2dθ = (∥φ∥2 + ∥ψ∥2)
∫
[−π,π]

eiθdθ +

∫
[−π,π]

〈
φ, e2iθψ

〉
dθ +

∫
[−π,π]

⟨ψ,φ⟩ dθ,

Problem 7 continued on next page. . . 10



Evan Dogariu MAT 520: Problem Set 6 Problem 7 (continued)

where we used that eiθ = e−iθ. We note that∫
[−π,π]

eiθdθ =
1

i
[eiθ]π−π =

1

i
(−1− (−1)) = 0

Note that θ 7→
〈
φ, e2iθψ

〉
is a continuous map, and so it is Riemann integrable. For any partition of this

into a finite Riemann sum, we will be able to bring the sum into the inner product. By continuity of the

iner product w.r.t. scalar multiplication of one of the vectors, we get that∫
[−π,π]

〈
φ, e2iθψ

〉
dθ =

〈
φ,

(∫
[−π,π]

e2iθdθ

)
ψ

〉

We compute ∫
[−π,π]

e2iθdθ =
1

2i
[e2iθ]π−π =

1

2i
(1− 1) = 0

In total, we find that ∫
[−π,π]

eiθ∥φ+ eiθψ∥2dθ = 0 + 0 +

∫
[−π,π]

⟨ψ,φ⟩ = 2π ⟨ψ,φ⟩

Therefore,

⟨ψ,φ⟩ = 1

2π

∫
[−π,π]

eiθ∥φ+ eiθψ∥2dθ

as desired.
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Evan Dogariu MAT 520: Problem Set 6 Problem 8

Problem 8

Let {φn}n∈N, {ψn}n∈N ⊆ {ξ ∈ H : ∥ξ∥ ≤ 1} be sequences such that ⟨φn, ψn⟩ → 1 in C. Show that

lim
n→∞

∥φn − ψn∥ = 0

Solution

Proof. We know that

∥φn − ψn∥2 = ⟨φn − ψn, φn − ψn⟩ = ∥φn∥2 + ∥ψn∥2 − ⟨φn, ψn⟩ − ⟨ψn, φn⟩ ≤ 2− ⟨φn, ψn⟩ − ⟨ψn, φn⟩

We note that since conjugation z 7→ z is continuous in C,

lim
n→∞

⟨ψ,φ⟩ = lim
n→∞

⟨φ,ψ⟩ = lim
n→∞

⟨φ,ψ⟩ = 1 = 1

We have that

0 ≤ ∥φn − ψn∥2 ≤ 2− ⟨φn, ψn⟩ − ⟨ψn, φn⟩

The right hand side approaches 0 as n→ ∞. So, by the squeeze theorem,

lim
n→∞

∥φn − ψn∥2 = 0 =⇒ lim
n→∞

∥φn − ψn∥ = 0

as desired.
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Evan Dogariu MAT 520: Problem Set 6 Problem 9

Problem 9

Suppose that {φn}n∈N ⊆ H converges weakly to some φ ∈ H; that is, ⟨ξ, φn⟩ → ⟨ξ, φ⟩ ∀ξ ∈ H. Assume

further that ∥φn∥ → ∥φ∥ in R. Show that

lim
n→∞

∥φn − φ∥ = 0

Solution

Proof. We know that

∥φn − φ∥2 = ⟨φn − φ,φn − φ⟩ = ∥φn∥2 + ∥φ∥2 − ⟨φn, φ⟩ − ⟨φ,φn⟩

Letting ξ = φ, we apply weak convergence to see that

lim
n→∞

⟨φ,φn⟩ = ⟨φ,φ⟩ = ∥φ∥2

As in Problem 8, continuity of complex conjugation gives that ⟨φn, φ⟩ → ∥φ∥2 as well. In total, we use the

convergence of the norms to see that

lim
n→∞

(
∥φn∥2 + ∥φ∥2 − ⟨φn, φ⟩ − ⟨φ,φn⟩

)
= ∥φ∥2 + ∥φ∥2 − ∥φ∥2 − ∥φ∥2 = 0

So, the first equality grants that

lim
n→∞

∥φn − φ∥2 = 0 =⇒ lim
n→∞

∥φn − φ∥ = 0

as desired.
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Problem 10

Let V be a (not-necessarily-complete) inner product space and let {φn}n∈N ⊆ V be an orthonormal set. Fix

a ψ ∈ V and define the functional F : CN → R via

F (α1, . . . , αN ) =

∥∥∥∥∥ψ −
N∑

n=1

αnφn

∥∥∥∥∥
Show that F is minimized with the choice of αn = ⟨φn, ψ⟩.

Solution

Proof. Note that

F (α1, . . . , αN ) = ∥ψ∥2 +

∥∥∥∥∥
N∑

n=1

αnφn

∥∥∥∥∥
2

−

〈
ψ,

N∑
n=1

αnφn

〉
−

〈
N∑

n=1

αnφn, ψ

〉

By orthonormality, we know that ∥∥∥∥∥
N∑

n=1

αnφn

∥∥∥∥∥
2

=

N∑
n=1

|αn|2

Expanding the first inner product via linearity, we find that〈
ψ,

N∑
n=1

αnφn

〉
=

N∑
n=1

αn ⟨ψ,φn⟩

Similarly, 〈
N∑

n=1

αnφn, ψ

〉
=

N∑
n=1

αn ⟨ψ,φn⟩

Therefore, we have

F (α1, . . . , αN ) = ∥ψ∥2 +
N∑

n=1

(
|αn|2 − 2Re(αn ⟨ψ,φn⟩)

)
,

where Re(·) denotes the real component of a complex number. So, to minimize F , we must for each n select

the αn minimizing

Sn(α) := |α|2 − 2Re(α ⟨ψ,φn⟩)

If ⟨ψ,φn⟩ = 0, then this is minimized when α = 0 as well; so, suppose ⟨φn, ψ⟩ ≠ 0. Without loss of generality,

write α = z ⟨φn, ψ⟩ for some z ∈ C. Then,

Sn(α) = |z|2| ⟨φn, ψ⟩ |2−2Re(z ⟨φn, ψ⟩ ⟨ψ,φn⟩) = |z|2| ⟨φn, ψ⟩ |2−2| ⟨φn, ψ⟩ |2 Re(z) = | ⟨φn, ψ⟩ |2
(
|z|2 − 2Re(z)

)
Thus, the expression is minimized for the choice of z minimizing |z|2−2Re(z). Clearly, we want z to be real.

As such, we seek the z ∈ R minimizing z2 − 2z, which we know to be z = 1 since it is a convex parabola.

The above reasoning tells us that Sn(α) is minimized at α = ⟨φn, ψ⟩. Therefore, since

F (α1, . . . , αN ) = ∥ψ∥2 +
N∑

n=1

Sn(αn),

we find that F is minimized for the choice of αn = ⟨φn, ψ⟩.
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