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Evan Dogariu MAT 520: Problem Set 5 Problem 1

Problem 1

Prove Fekete’s lemma: If {an}n∈N ⊆ R is sub-additive, then limn→∞
1
nan exists and equals infn∈N

1
nan.

Solution

Proof. Let {an}n be sub-additive. Let s∗ := infn∈N
1
nan. We wish to show that lim infn→∞

1
nan ≥ s∗ and

lim supn→∞
1
nan ≤ s∗, as this will complete the proof.

For the first part, let k ∈ N. Then, it always holds that

inf
n>k

1

n
an ≥ inf

n∈N

1

n
an = s∗

since the infimum is over a smaller index set. Taking the limit as k → ∞, we see that

lim inf
n→∞

1

n
an ≥ s∗

For the second part, let ϵ > 0 be arbitrary. By definition of the infimum, there must be some N ∈ N such

that 1
N aN < s∗ + ϵ. For all n > N , we may write n = Nq+ r for some q ∈ N and r ∈ {0, . . . , N − 1}. Define

A := max
r∈{0,...,N−1}

ar < ∞

Then, for all n > N we have that

1

n
an =

1

n
aNq+r ≤ 1

n
(qaN + ar) ≤

1

n
(Nq(s∗ + ϵ) +A) =

Nq

n
(s∗ + ϵ) +

A

n
,

where we used sub-additivity for the first inequality. Note that n = Nq + r =⇒ Nq = n− r ∈ (n−N,n].

So, if s∗ > 0 we find that for all n > N ,

1

n
an ≤ n

n
(s∗ + ϵ) +

A

n
= s∗ + ϵ+

A

n
,

whereas if s∗ ≤ 0 we find that

1

n
an ≤ n−N

n
(s∗ + ϵ) +

A

n
= s∗ + ϵ+

A−N(s∗ + ϵ)

n

Since A
n → 0 and A−N(s∗+ϵ)

n → 0 as n → ∞, this tells us that in either case

lim sup
n→∞

1

n
an ≤ s∗ + ϵ

Since this holds for all ϵ > 0, we find that

lim sup
n→∞

1

n
an ≤ s∗

as desired. So, the limit exists and equals s∗, and the proof is complete.
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Problem 2

Let R : C → C be a rational function, i.e.,

R(z) = p(z) +

n∑
k=1

q∑
l=1

ck,l(z − zk)
−l

where p is a polynomial, n ∈ N, and {zk}k, {ck,l}k,l ⊆ C. Let now a ∈ A such that {zk}nk=1 ⊆ ρ(a). Assume

further that we choose some σ(a) ⊆ Ω ∈ Open(C) such that R is holomorphic on Ω, and γj : [s, t] → Ω,

j = 1, . . . ,m a collection of m oriented loops which surround σ(a) within Ω, such that

1

2πi

m∑
j=1

∮
γj

1

z − λ
dz =

{
1 λ ∈ σ(a)

0 λ /∈ Ω
.

Using Lemma 6.26 in the lecture notes (= Lemma 10.24 in Rudin) show that R(a) obeys the Cauchy integral

formula, in the sense that

p(a) +

n∑
k=1

q∑
l=1

ck,l(a− zk1)
−l =

1

2πi

m∑
j=1

∮
γj

R(z)(z1− a)−1 dz.

Solution

Proof. To start, we know that zk /∈ Ω for all k since R is holomorphic on Ω and so Ω can’t contain any

poles of R. Let RHS denote the right hand side of the given expression. Substituting in the definition of R,

RHS =
1

2πi

m∑
j=1

∮
γj

[
p(z) +

n∑
k=1

q∑
l=1

ck,l(z − zk)
−l

]
(z1− a)−1 dz

=
1

2πi

m∑
j=1

∮
γj

p(z)(z1− a)−1dz +

n∑
k=1

q∑
l=1

ck,l
1

2πi

m∑
j=1

∮
γj

(z − zk)
−l(z1− a)−1dz,

where we used the linearity of the integral. For each k and l, we know that zk ∈ ρ(a) and the set of loops

surrounds σ(a) within C \ {zk} (since Ω ⊆ C \ {zk}). So, for each k and l we may apply the result of Lemma

6.26 from the lecture notes to see that

1

2πi

m∑
j=1

∮
γj

(z − zk)
−l(z1− a)−1dz = (a− zk1)

−l

Also, we may apply the polynomial functional calculus to see that

1

2πi

m∑
j=1

∮
γj

p(z)(z1− a)−1dz = p(a)

For the above, we would show this by changing the loops {γj}j to simply ∂BR(0) for some R > ∥a∥ (which

wouldn’t alter the value of the integral since this new loop still surrounds σ(a)), after which we may apply

equation (7) in the proof of Theorem 10.13 in Rudin. All in all, this tells us that

RHS = p(a) +

n∑
k=1

q∑
l=1

ck,l(a− zk1)
−l ≡ LHS,

exactly as desired.

3



Evan Dogariu MAT 520: Problem Set 5 Problem 3

Problem 3

Let A be such that there exists some a ∈ A with σ(a) not connected. Show that A then contains some

non-trivial idempotent (an element b ∈ A with b2 = b /∈ {0,1}).

Solution

Proof. Let a ∈ A be such that σ(a) is not connected. Let Ω ∈ Open(C) contain a connected component

of σ(a). Let Ω̃ ∈ Open(C) be such that Ω ∩ Ω̃ = ∅ and σ(a) ⊆ Ω ⊔ Ω̃ (i.e. Ω̃ contains σ(a) \ Ω). Then,

σ(a) ∩ Ω ̸= ∅ and σ(a) ∩ Ω̃ ̸= ∅ since they both contain components of σ(a).

Now, define a function f : Ω ⊔ Ω̃ → C via

f(z) :=

{
1 z ∈ Ω

0 z ∈ Ω̃

Then, f2 = f over Ω ⊔ Ω̃. The map f is holomorphic on Ω ⊔ Ω̃, since it is holomorphic on each of the two

disjoint open sets. We may therefore apply the functional calculus and give meaning to f(a). Since the func-

tional calculus produces an algebra homomorphism, we know that f(a)f(a) = (f2)(a) = f(a). Therefore,

f(a)2 = f(a), and so f(a) is an idempotent. We now wish to show that it is nontrivial.

We know that f(λ) = 0 for all λ ∈ σ(a) ∩ Ω̃, which is nonempty by construction. Then, by Theorem

10.28(a) we have that f(a) is not invertible in A. So, f(a) ̸= 1. Note that we may apply the exact same

reasoning with the function g : Ω ⊔ Ω̃ → C given by g := 1− f (i.e. g is 1 on Ω̃ and 0 on Ω). Then, g(a) is

also idempotent and not equal to 1, and we now know by the functional calculus that

f(a) + g(a) = (f + g)(a) = (z 7→ 1)(a) = 1 =⇒ f(a) = 1− g(a),

where we used that f +g is the constant 1 function. Since g(a) ̸= 1, we find that f(a) is nonzero. Therefore,

f(a) is an idempotent such that f(a) /∈ {0,1}, as desired.
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Problem 4

Assume that {an}n∈N ⊆ A is a sequence such that ∃ limn an =: a ∈ A. Let Ω ∈ Open(C) contain a

component of σ(a). Show that σ(an) ∩ Ω ̸= ∅ for all sufficiently large n.

Solution

Proof. We start with the following lemma proving continuity of functions produced by the functional

calculus.

Lemma 1. Let a ∈ A and let Ω ∈ Open(C) be such that σ(a) ⊆ Ω. Let f : Ω → C be holomorphic and

bounded. Let ϵ > 0. Then, there exists a δ > 0 such that for all b ∈ A with ∥a−b∥ < δ, it holds that σ(b) ⊆ Ω

and

∥f(a)− f(b)∥ ≤ ϵ

Proof of Lemma 1. Let ϵ > 0. Let {γ1, . . . , γm} be a system of simple nonintersecting closed loops that

together encircle σ(a) within Ω. Denote by |γj | the length of the jth loop (which is finite), by int(γj) ∈
Open(C) the interior of the region enclosed by the jth loop, and by im(γj) ⊆ C the image of the jth loop.

We know that over the ranges im(γj) of these loops (which are compact), the map z 7→ ∥(z1 − a)−1∥ is

continuous, and so it attains a maximum. Define

M := max
j∈{1,...,m}

sup
z∈im(γj)

∥(z1− a)−1∥ < ∞

to be the resulting max over all the curves. Define L := maxj∈{1,...,m} |γj | to be the max curve length. Write

A = supz∈Ω |f(z)| < ∞ to be an upper bound for |f | over Ω.

Now, if we let U :=
⋃m

j=1 int(γj) be the overall region enclosed by the system of loops, we know that

U is open and σ(a) ⊆ U ⊆ Ω. Let η :=
[
supz∈UC ∥(a− z1)−1∥

]−1
> 0. By Theorem 10.20 in Rudin, for all

b ∈ A with ∥a− b∥ < η we have that σ(b) ⊆ U and so the same loops {γj}j that surround σ(a) also surround

σ(b). We may now define

δ := min

{
η,

1

2M
,

2πϵ

2mLM2A

}
> 0

Let b ∈ A be such that ∥a − b∥ < δ. As mentioned earlier, we know that σ(b) is surrounded by the loops

{γj}j in Ω. Furthermore, for all z ∈
⋃m

j=1 im(γj) we have by construction of M that

∥(z1− a)− (z1− b)∥ = ∥b− a∥ < min

{
1

2M
,

2πϵ

2mLM2A

}
≤ 1

2∥(z1− a)−1∥
min

{
1,

2πϵ

mLA∥(z1− a)−1∥

}
By the bound used in the end of the proof of Claim 6.6 in the lecture notes, we see that for all z ∈

⋃m
j=1 im(γj)

it is true that

∥(z1− a)−1 − (z1− b)−1∥ <
2πϵ

mLA

So, when ∥a− b∥ < δ,

∥f(a)− f(b)∥ ≤ 1

2π

m∑
j=1

∮
γj

|f(z)| · ∥(z1− a)−1 − (z1− b)−1∥

≤ 1

2π

m∑
j=1

|γj | · sup
z∈im(γj)

{
|f(z)| · ∥(z1− a)−1 − (z1− b)−1∥

}
≤ 1

2π
·m · L ·A · 2πϵ

mLA
= ϵ,
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where we used the triangle inequality in the first line, the ML lemma (Lemma 6.14 from lecture notes) in

the second, and in the third line we applied our earlier definitions. This proves the lemma.

Now, let Ω̃ ∈ Open(C) be such that σ(a) ⊆ Ω ⊔ Ω̃ where Ω ∩ Ω̃ = 0; we may do this because Ω con-

tains a component of, but not all of, σ(a). Define a function f : Ω ⊔ Ω̃ → {0, 1} via

f(z) :=

{
1 z ∈ Ω

0 z ∈ Ω̃

We see that f is holomorphic on Ω ⊔ Ω̃ since for any point in Ω ⊔ Ω̃, there is a neighborhood of that point

on which f is constant. We may therefore apply the functional calculus.

Lemma 2. Let b ∈ A be such that σ(b) ⊆ Ω ⊔ Ω̃. Then, letting f be defined as above, it holds that

σ(b) ∩ Ω = ∅ ⇐⇒ f(b) = 0

Proof of Lemma 2. ( =⇒ ) Suppose that σ(b)∩Ω = ∅. Then, we may encircle σ(b) with loops contained

entirely within Ω̃. Since f(z) = 0 for all z ∈ Ω̃, we see that f(b) = 0 clearly.

( ⇐= ) Suppose now that σ(b) ∩ Ω ̸= ∅. If σ(b) ∩ Ω̃ = ∅ then f(b) = 1 ̸= 0 by the functional calculus;

so, suppose that σ(b) ∩ Ω̃ ̸= ∅. Then, since f(λ) = 0 for all λ ∈ σ(b) ∩ Ω̃ (which is nonempty), Theorem

10.28(a) in Rudin gives that f(b) is not invertible in A. So, f(b) ̸= 1. Defining the function g : Ω ⊔ Ω̃ → C
via g := 1− f , identical logic shows that g(b) ̸= 1. However, f(b) + g(b) = (f + g)(b) = 1 by the functional

calculus. In particular, this shows that f(b) ̸= 0. So, in all cases we see that σ(b) ∩ Ω ̸= ∅ =⇒ f(b) ̸= 0,

proving the lemma.

We are now ready to complete the proof of the problem statement. Since σ(a) ∩ Ω ̸= ∅ by construc-

tion, we know that f(a) ̸= 0 by Lemma 2. Define ϵ := ∥f(a)∥ > 0. Then, since f is bounded we may apply

Lemma 1 to get δ > 0. Since an → a in norm, there is a N ∈ N such that for all n > N ,

∥a− an∥ < δ =⇒ ∥f(a)∥ = ϵ > ∥f(a)− f(an)∥ ≥ ∥f(a)∥ − ∥f(an)∥ =⇒ ∥f(an)∥ > 0 =⇒ f(an) ̸= 0,

where we used the reverse triangle inequality. Applying Lemma 2 again shows that for all n > N , σ(an)∩Ω ̸=
∅. We are done.
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Problem 5

Let X,Y be two Banach spaces and A,B be two bounded linear operators on X,Y respectively. Let

T ∈ B(X → Y ). Show that the following two assertions are equivalent:

(a) TA = BT .

(b) Tf(A) = f(B)T for any f : C → C holomorphic in some open set U which contains σ(A) ∪ σ(B).

Solution

Proof. ( =⇒ ) Suppose that TA = BT . Let f : C → C be holomorphic in some open set U containing

σ(A) ∪ σ(B). Let {γ1, . . . , γm} be a system of simple nonintersecting closed loops that together encircle

σ(a)∪σ(b) within U . Then, applying the holomorphic functional calculus, linearity of T , and the discussion

in Remark 10.22 of Rudin,

Tf(A) =
1

2πi

m∑
j=1

T

∮
γj

f(z)(z1X −A)−1dz =
1

2πi

m∑
j=1

∮
γj

f(z)T (z1X −A)−1dz

Let z /∈ σ(A) ∪ σ(B) ⇐⇒ z ∈ ρ(A) ∩ ρ(B) be arbitrary. Then,

T = T (z1X −A)(z1X −A)−1

= zT (z1X −A)−1 − TA(z1X −A)−1

= zT (z1X −A)−1 −BT (z1X −A)−1

= (z1Y −B)T (z1X −A)−1

Left multiplying by (z1Y −B)−1, we find that

(z1Y −B)−1T = T (z1X −A)−1

We may apply this identity inside our earlier integral to see that

Tf(A) =
1

2πi

m∑
j=1

∮
γj

f(z)(z1Y −B)−1Tdz

Again using the discussion in Remark 10.22 of Rudin, we can factor out the T on the right to get

Tf(A) =

 1

2πi

m∑
j=1

∮
γj

f(z)(z1Y −B)−1dz

T = f(B)T,

where we know that the above integral evaluates to f(B) since the loops γj encircle σ(B) by assumption.

( ⇐= ) Suppose (b). If we let f be the identity map sending z 7→ z, then f is holomorphic on all of

C, which is open and certainly contains σ(A) ∪ σ(B). Furthermore, we know f(A) = A and f(B) = B.

Thus,

Tf(A) = f(B)T =⇒ TA = BT

as desired.
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