MAT 520: Problem Set 4

Due on October 6, 2023

Professor Jacob Shapiro

Evan Dogariu Collaborators: None

Prove that any norm-closed convex bounded subset of a reflexive Banach space is weakly compact.

Solution

Proof. Let X be a reflexive Banach space, and let $K \subseteq X$ be norm-closed, convex, and norm-bounded. We start with the following lemma.

Lemma 1. Let $C \subseteq X$ be a norm-closed and convex subset of a normed vector space X. Then, C is weakly-closed (closed in the weak topology on X).

Proof of Lemma 1. Note that norm-open balls are clearly convex by the triangle inequality. Since the norm topology on X is generated by norm-open balls, it follows that X with the norm topology is locally-convex. By Theorem 3.12 in Rudin, since C is convex we know that the norm-closure of C equals its weak-closure. Norm-closure of C then guarantees that C is also weakly-closed, as desired. \blacksquare

Certainly, Lemma 1 gives that K is weakly-closed. Now, norm-boundedness gives some $M < \infty$ such that $||x|| \leq M$ for all $x \in K$. Write

$$
B_r := \{ x \in X : ||x|| \le r \}
$$

to be the norm-closed ball of radius r in X (and so $K \subseteq B_M$), and

$$
B^{**}_r := \{ \Lambda \in X^{**}: \ \|\Lambda\| \leq r \}
$$

to be the norm-closed ball of radius r in X^{**} . Recall the definition of the weak-* topology on X^{**} to be the initial topology generated by $J^*(X^*)$, where $J^*: X^* \to X^{***}$ is the canonical point evaluation map. Also, the weak topology on X^{**} is the initial topology generated by X^{***} . Since X is reflexive, we know by Problem 2 on the Problem Set 3 that X^* is reflexive, and so $J^*(X^*) = X^{***}$. What this means is that the weak and weak- $*$ topologies on X^{**} must be equivalent.

Now, the Banach-Alaoglu theorem tells us that B_1^{**} is compact in the weak-* topology on X^{**} . Since X^{**} equipped with the weak-* topology is a TVS and so scaling is a weak-* homeomorphism, we find that B_M^{**} is also weak-^{*} compact. By the previous discussion, reflexivity guarantees that B_M^{**} is also compact in the weak topology on X^{**} . Now, let $J: X \to X^{**}$ be the canonical point evaluation map. Since it is linear and isometric (and therefore bounded), we know that J is continuous with respect to the norms on X and X^{**} . Therefore, for all $\lambda \in X^{***}$ we have that $\lambda \circ J : X \to \mathbb{C}$ is continuous w.r.t. the norm topology on X, and so $\lambda \circ J \in X^*$. Since bounded linear functionals are continuous in the weak topology, this means that $\lambda \circ J$ is continuous w.r.t. the weak topology on X. Since this holds for all $\lambda \in X^{***}$, we see that $J: X \to X^{**}$ is continuous w.r.t. the weak topologies on both X and X^{**} . Since B^{**}_M is weakly-compact in X^{**} , its preimage $J^{-1}(B_M^{**})$ is therefore weakly-compact in X. However, since J is isometric and invertible (by reflexivity), we have that $J^{-1}(B_M^{**}) = B_M$. Thus, B_M is compact in the weak topology on X.

So, we have seen that K is weakly-closed, B_M is weakly-compact, and $K \subseteq B_M$. Since closed subsets of compact sets are compact, this reveals that K is weakly-compact, and the proof is complete. \blacksquare

Let X be an infinite-dimensional Banach space, and define

$$
S := \{ x \in X \mid ||x|| = 1 \}.
$$

Show that the weak-closure of S is

$$
B := \{ x \in X \, | \, ||x|| \le 1 \}.
$$

Solution

Proof. (⊆) We first show that $B \subseteq cl_w(S)$. Let $x \in B$ be arbitrary. Let $U \in \text{Nbhd}_w(x)$ (i.e. U is a weak neighborhood of x). Then, for some $\epsilon > 0$ and some $\lambda_1, \ldots, \lambda_m \in X^*$ we know that

$$
x \subseteq x + \bigcap_{j=1}^{m} \lambda_j^{-1}(B_{\epsilon}(0_{\mathbb{C}})) \subseteq U
$$

since the sets $\{\lambda^{-1}(B_\delta(0_\mathbb{C}))\}_{\lambda \in X^*$, form a local subbasis at 0_X for the weak topology. Define

$$
V := \bigcap_{j=1}^{m} \lambda_j^{-1}(B_{\epsilon}(0_{\mathbb{C}}))
$$

Certainly, V is open in the weak topology on X , as it is an intersection of continuous, linear preimages of open sets in C; therefore, $x + V$ is also weakly-open. Since $x + V$ is a nonempty, weakly-open subset of an infinite-dimensional Banach space, it is not bounded in norm; in particular, there exists some $y \in x + V$ such that $||y|| > 1$.

Next, we claim that V is convex. To this end, let $a, b \in V$ and $\alpha, \beta \in \mathbb{C}$ with $|\alpha| + |\beta| \leq 1$. Then, for all $j = 1, \ldots, m$ we know that

$$
|\lambda_j(\alpha a + \beta b)| = |\alpha \lambda_j(a) + \beta \lambda_j(b)| \le |\alpha| \cdot |\lambda_j(a)| + |\beta| \cdot |\lambda_j(b)|
$$

$$
< |\alpha| \epsilon + |\beta| \epsilon = \epsilon (|\alpha| + |\beta|)) \le \epsilon,
$$

where we used the triangle inequality and the fact that $a, b \in V \implies |\lambda_i(a)|, |\lambda_i(b)| < \epsilon$ by construction. So, $|\lambda_i(\alpha a + \beta b)| < \epsilon$ for all j, and so $\alpha a + \beta b \in V$. Since this holds for all such selections of a, b, α , and β , we see that V is convex. Certainly, this also means that $x + V$ is convex.

So, we have that $x, y \in x + V \subseteq U$, where $||x|| \le 1$, $||y|| > 1$, and $x + V$ is convex. So, the line segment connecting x and y must pass through S (the segment is a connected set originating in B and ending outside the norm-closure of B , and so it must intersect the norm-boundary of B , which is S). By convexity we know that this line lies in the set $x + V$. So, there must exists some $w \in (x + V) \cap S \subseteq U \cap S$. In particular, $U \cap S$ is nonempty. Since this holds for all $U \in \text{Nbhd}_w(x)$ for all $x \in B$, we find that $B \subseteq cl_w(S)$.

(2) We now wish to show that $cl_w(S) \subseteq B$. Note that B is clearly convex by the triangle inequality. By Lemma 1, norm-closure of B implies that B is weakly-closed. Since $B \supseteq S$ is weakly-closed, we know by the topological definition of a closure as the smallest closed superset that

$$
\mathrm{cl}_w(S) \subseteq B
$$

This proves the reverse direction. \blacksquare

Use $(xy)^n = x(yx)^{n-1}y$ to show that $r(xy) = r(yx)$.

Solution

Proof. We will simply show that $r(xy) \le r(yx)$, as the reverse direction will then follow from a symmetric argument. We apply Gelfand's formula and submultiplicativity of the norm to see that

$$
r(xy) = \lim_{n \to \infty} \|(xy)^n\|^{1/n} = \lim_{n \to \infty} \|x(yx)^{n-1}y\|^{1/n} \le \lim_{n \to \infty} \left(\|x\|^{1/n} \cdot \|y\|^{1/n} \cdot \|(yx)^{n-1}\|^{1/n} \right),
$$

Now, the limits $\lim_{n\to\infty}||x||^{1/n}$ and $\lim_{n\to\infty}||y||^{1/n}$ both exist and equal 1, and so we can use multiplicativity of the limit to see that

$$
\lim_{n \to \infty} (||x||^{1/n} \cdot ||y||^{1/n} \cdot ||(yx)^{n-1}||^{1/n}) = \lim_{n \to \infty} (||x||^{1/n}) \cdot \lim_{n \to \infty} (||y||^{1/n}) \cdot \lim_{n \to \infty} (||(yx)^{n-1}||^{1/n})
$$

$$
= \lim_{n \to \infty} (||(yx)^{n-1}||^{1/n})
$$

$$
= \lim_{n \to \infty} (||(yx)^{n-1}||^{1/n})
$$

We know that the limit of a composition of functions is the composition of limits when the outer function is continuous at the inner limit. Since $(\cdot)^{(n-1)/n}$ is continuous for all n, we see that

$$
\lim_{n \to \infty} \left(\left(\| (yx)^{n-1} \|^{1/(n-1)} \right)^{(n-1)/n} \right) = \lim_{k \to \infty} \left(\lim_{n \to \infty} \left(\| (yx)^{n-1} \|^{1/(n-1)} \right)^{(k-1)/k} \right)
$$
\n
$$
= \lim_{k \to \infty} (r(yx))^{(k-1)/k}
$$
\n
$$
= r(yx),
$$

where we used Gelfand's formula again to get to the second line. So, $r(xy) \leq r(yx)$ and, symmetrically, $r(yx) \leq r(xy)$. This proves the desired result. \blacksquare

Show that if $x, xy \in \mathcal{G}_{\mathcal{A}}$, then $y \in \mathcal{G}_{\mathcal{A}}$.

Solution

Proof. We know by definition of an inverse and the associative identity that

$$
(xy)^{-1}(xy) = \mathbb{1} \implies ((xy)^{-1}x) y = \mathbb{1},
$$

and so y has a left inverse (namely, $(xy)^{-1}x$). Next, we may see that

$$
(xy)(xy)^{-1}x = x \implies x^{-1}xy(xy)^{-1}x = 1 \implies y(xy)^{-1}x = 1,
$$

where we used the invertibility of x. So, y has a right inverse (namely, $(xy)^{-1}x$ again). Thus, y is invertible.

Show that if $xy, yx \in \mathcal{G}_{\mathcal{A}}$ then $x, y \in \mathcal{G}_{\mathcal{A}}$.

Solution

Proof. We need only show that $x \in \mathcal{G}_\mathcal{A}$, since then we would be able to use Problem 8 to see that $y \in \mathcal{G}_\mathcal{A}$ as well. To this end, observe that

$$
(xy)(xy)^{-1} = 1 \implies x(y(xy)^{-1}) = 1
$$

So, $y(xy)^{-1}$ is a right inverse for x. Similarly,

$$
(yx)^{-1}(yx) = 1 \implies ((yx)^{-1}y)x = 1,
$$

and so $(yx)^{-1}y$ is a left inverse for x. Therefore, x is invertible, and the proof is complete.

On the Banach space $X := \ell^2(\mathbb{N} \to \mathbb{C})$, define the right shift operator $R \in \mathcal{B}(X)$ by

$$
(Ra)_n := \begin{cases} a_{n-1} & n \ge 2 \\ 0 & n = 1 \end{cases}
$$

and the left shift operator $L \in \mathcal{B}(X)$ by

$$
(La)_n = a_{n+1} \quad \forall n \in \mathbb{N}
$$

Calculate RL and LR. Conclude that one may have $xy = 1$ but $yx \neq 1$ in a Banach algebra.

Solution

Proof. Let $a \in X$ be arbitrary. Then, for all $n \in \mathbb{N}$ we have that

$$
((RL)a)_n = (R(La))_n = \begin{cases} a_n & n \ge 2 \\ 0 & n = 1 \end{cases}
$$

since for all $n \geq 2$ we have that $(La)_n = a_{n+1}$, and so $((RL)a)_n = a_n$. However, we find that $((RL)a)_1 = 0$ by definition of R, leading to the above calculation.

By contrast, for all $n \in \mathbb{N}$ we have that

$$
((LR)a)_n = (L(Ra))_n = (Ra)_{n+1} = a_n,
$$

since for all *n* it holds that $(Ra)_{n+1} = a_n$. So, LR is the identity map, but RL is not.

Viewing $\mathcal{B}(X)$ as a Banach algebra and letting $x = L$ and $y = R$, we see that $xy = \mathbb{1}$ but $yx \neq \mathbb{1}$. Ē

Show that if $z \in \mathbb{C} \setminus \{0\}$, then $z \in \sigma(xy)$ if and only if $z \in \sigma(yx)$. i.e.,

 $\sigma(xy) \cup \{0\} = \sigma(yx) \cup \{0\}.$

Find an example where $\sigma(xy) \neq \sigma(yx)$.

Solution

Proof. Suppose that $z \in \mathbb{C} \setminus \{0\}$ and $z \in \sigma(xy)$. Then, $xy - z \mathbb{1} \notin \mathcal{G}_{\mathcal{A}}$ by definition of the spectrum. Clearly, this also means that $1 - \frac{x}{z}y \notin \mathcal{G}_{\mathcal{A}}$ since $\mathcal{G}_{\mathcal{A}}$ is closed under nonzero scalar multiplication. The result from Problem 11 tells us that $1 - y\frac{x}{z} \notin \mathcal{G}_{\mathcal{A}}$, and so $yx - z \notin \mathcal{G}_{\mathcal{A}}$. Thus, $z \in \sigma(yx)$. We may apply symmetric with x and y switched to prove the converse, and so we see that for $z \in \mathbb{C} \setminus \{0\}$ we have that $z \in \sigma(xy) \iff z \in \sigma(yx)$.

To find an example where $\sigma(xy) \neq \sigma(yx)$, let $x = L$ and $y = R$ be the left and right shift elements of the Banach algebra $\mathcal{A} := \mathcal{B}(\ell^2(\mathbb{N} \to \mathbb{C}))$ from Problem 10. The result of that problem shows that $LR = \mathbb{1} \implies LR \in \mathcal{G}_A$, yet $RL \neq \mathbb{1}$. In fact, the computations we made there revealed that $RL \notin \mathcal{G}_A$ since it is not injective (it sends both $(0, 0, ...)$ and $(1, 0, ...)$ to the zero element). Thus, $0 \in \sigma(RL)$ but $0 \notin \sigma(LR)$. The spectra of LR and RL are therefore not equal.

Define $\mathcal{A} := C^2([0,1] \to \mathbb{C})$, the space of functions with continuous second derivative. Define, for $a, b > 0$,

$$
||f|| := ||f||_{\infty} + a||f'||_{\infty} + b||f''||_{\infty}.
$$

Show that A is a Banach space. Show that A is a Banach algebra (with pointwise multiplication) iff $a^2 \geq 2b$. You may consider the functions $x \mapsto x$ and $x \mapsto x^2$.

Solution

Proof. Clearly, A is a vector space. We verify that the defined norm is indeed a norm.

- 1. We note that $||f|| \ge ||f||_{\infty}$ since the other terms are nonnegative, and so if $||f|| = 0$ then $||f||_{\infty} =$ $0 \implies f = 0$. Thus, $\|\cdot\|$ is positive definite.
- 2. Let $\alpha \in \mathbb{C}$. Then, for all $f \in \mathcal{A}$,

$$
\|\alpha f\| = \|\alpha f\|_{\infty} + a\|(\alpha f)'\|_{\infty} + b\|(\alpha f)''\|_{\infty} = |\alpha| \|f\|_{\infty} + |\alpha| \cdot a \|f'\|_{\infty} + |\alpha| \cdot b \|f''\|_{\infty} = |\alpha| \|f\|
$$

by linearity of the derivative and homogeneity of $\|\cdot\|_{\infty}$, and so $\|\cdot\|$ is homogenous.

3. For all $f, g \in \mathcal{A}$,

$$
||f + g|| = ||f + g||_{\infty} + a||(f + g)'||_{\infty} + b||(f + g)''||_{\infty}
$$

= $||f + g||_{\infty} + a||f' + g'||_{\infty} + b||f'' + g''||_{\infty}$
 $\leq ||f||_{\infty} + ||g||_{\infty} + a||f'||_{\infty} + a||g'||_{\infty} + b||f''||_{\infty} + b||g''||_{\infty}$
= $||f|| + ||g||$

by the linearity of the derivative and the triangle inequality on $\|\cdot\|_{\infty}$, and so $\|\cdot\|$ satisfies the triangle inequality.

Now, we wish to show that A is complete in the $\|\cdot\|$ norm. To this end, let $\{f_n\}_n \subseteq A$ be Cauchy in this norm. Since $||g|| \ge ||g||_{\infty}$, $||g|| \ge a||g'||_{\infty}$, and $||g|| \ge b||g''||_{\infty}$ for all $g \in \mathcal{A}$, we see that the sequences $\{f_n\}_n, \{f'_n\}_n$, and $\{f''_n\}_n$ are also Cauchy in the $\|\cdot\|_{\infty}$ norm when viewed as elements of $C^0([0,1] \to \mathbb{C})$. We know that $C^0([0,1] \to \mathbb{C})$ is complete in the $\|\cdot\|_{\infty}$ norm, and so we find that $f_n \to f$, $f'_n \to g$, and $f''_n \to h$ for some $f, g, h \in C^0([0,1] \to \mathbb{C})$, where the aforementioned convergences are with respect to the $\|\cdot\|_{\infty}$ norm. Since $f_n \to f$ uniformly and $f'_n \to g$ uniformly, we see that $f'=g$ by a well-known result about uniform convergence of derivatives. Similarly, $f'' = g' = h$. So, for any $\epsilon > 0$ we may find a N_0 large enough that $||f_n - f||_{\infty} < \frac{\epsilon}{3} \forall n > N_0$, a N_1 large enough that $||f'_n - f'||_{\infty} < \frac{\epsilon}{3a} \forall n > N_1$, and a N_2 large enough that $||f''_n - f''||_{\infty} < \frac{\epsilon}{3b} \forall n > N_2$. Letting $N := \max\{N_0, N_1, N_2\}$, we see that for all $n > N$,

$$
||f_n - f|| = ||f_n - f||_{\infty} + a||f'_n - f'||_{\infty} + b||f''_n - f''||_{\infty} < \epsilon
$$

Therefore, $f_n \to f$ in the $\|\cdot\|$ norm for some f with continuous second derivative, and the space with this norm is therefore complete.

Now, the only extra property necessary for A with pointwise multiplication to be a Banach algebra is for submultiplicativity of the norm. We show that A has this property iff $a^2 \geq 2b$.

 (\implies) Suppose that $a^2 < 2b$. Then, letting $f(x) = x$ be an element of A, we see that

$$
||f|| = ||(x \to x)|| = ||(x \to x)||_{\infty} + a||(x \to 1)||_{\infty} + b||(x \to 0)||_{\infty} = 1 + a
$$

and

$$
||f^2|| = ||(x \mapsto x^2)|| = ||(x \mapsto x^2)||_{\infty} + a||(x \mapsto 2x)||_{\infty} + b||(x \mapsto 2)||_{\infty} = 1 + 2a + 2b
$$

So,

$$
||f||2 = (1+a)2 = 1 + 2a + a2 < 1 + 2a + 2b = ||f2||
$$

If submultiplicativity of the norm had held, we would have had $||f^2|| \le ||f||^2$; so, A is not a Banach algebra in the case that $a^2 < 2b$.

(\Leftarrow) Suppose now that $a^2 \ge 2b$. Then, for all $f, g \in \mathcal{A}$, the product rule grants that

$$
||fg|| = ||fg||_{\infty} + a||fg' + f'g||_{\infty} + b||fg'' + 2f'g' + f''g||_{\infty}
$$

We note that the $\|\cdot\|_{\infty}$ norm is submultiplicative, since for $h_1, h_2 \in \mathcal{A}$ we have $\|h_1h_2\|_{\infty} = \sup_{[0,1]} \{|h_1|\cdot|h_2|\} \le$ $\sup_{[0,1]} \{|h_1|\} \cdot \sup_{[0,1]} \{|h_2|\} = \|h_1\|_{\infty} \cdot \|h_2\|_{\infty}$. For notation, let $F_j := \|f^{(j)}\|_{\infty}$ and $G_j := \|g^{(j)}\|_{\infty}$ for $j = 0, 1, 2$. Then,

$$
||fg|| \le F_0G_0 + aF_0G_1 + aF_1G_0 + bF_0G_2 + 2bF_1G_1 + bF_2G_0
$$

\n
$$
\le F_0G_0 + aF_0G_1 + aF_1G_0 + bF_0G_2 + a^2F_1G_1 + bF_2G_0
$$

\n
$$
\le F_0G_0 + aF_0G_1 + aF_1G_0 + bF_0G_2 + a^2F_1G_1 + bF_2G_0 + abF_1G_2 + abF_2G_1 + b^2F_2G_2
$$

\n
$$
= (F_0 + aF_1 + bF_2)(G_0 + aG_1 + bG_2)
$$

\n
$$
= ||f|| \cdot ||g||,
$$

where the first line applies submultiplicativity of $\|\cdot\|_{\infty}$, the second line comes from the $2b \leq a^2$ assumption, and the third line follows because we added nonnegative terms, and the last lines are algebraic manipulation. Since this holds for all $f, g \in \mathcal{A}$, the norm is submultiplicative and \mathcal{A} is a Banach algebra.

Show that if $z \in \partial \sigma(x)$ then $x - z \mathbb{1} \in \partial \mathcal{G}_A$.

Solution

Proof. Suppose that $z \in \partial \sigma(x)$, and so $z \in \partial \rho(x)$ since $\rho(x) = \sigma(x)^C$ is open. Then, there exists ${z_n}_{n\in\mathbb{N}} \subseteq \rho(x)$ such that $z_n \to z$ in \mathbb{C} . For each $n \in \mathbb{N}$ define

 $y_n := x - z_n 1$

Since $z_n \in \rho(x)$, we know that $y_n \in \mathcal{G}_{\mathcal{A}}$ for each n. Since $\sigma(x)$ is closed and contains its boundary, $z \in \sigma(x)$ and so $y := x - z \mathbb{1} \notin \mathcal{G}_{\mathcal{A}}$. However, we have that

$$
||y - y_n|| = ||(x - z_1) - (x - z_n 1)|| = ||(z_n - z_1)1|| = |z_n - z|,
$$

which goes to 0 as $n \to \infty$. Thus, $y_n \to y$ in norm. So, any open neighborhood of y must intersect both $\mathcal{G}_{\mathcal{A}}^C$ (since $y \in \mathcal{G}_{\mathcal{A}}^C$) and $\mathcal{G}_{\mathcal{A}}$ (since a sequence of elements of $\mathcal{G}_{\mathcal{A}}$ converges to y). Thus, $y \in \partial \mathcal{G}_{\mathcal{A}}$ as we wanted to show. \blacksquare

Let $x \in \partial \mathcal{G}_A$. Show there exists some $\{y_n\}_n \subseteq A$ with $||y_n|| = 1$ and

$$
\lim_{n \to \infty} xy_n = \lim_{n \to \infty} y_n x = 0.
$$

Try to characterize the type of Banach algebras in which there are such elements x (which are called topological divisors of zero).

Solution

Proof. Let $x \in \partial \mathcal{G}_\mathcal{A}$. Then, there exists a sequence $\{x_n\}_n \subseteq \mathcal{G}_\mathcal{A}$ such that $x_n \to x$ in the norm. For each $n \in \mathbb{N}$, define

$$
y_n := \frac{x_n^{-1}}{\|x_n^{-1}\|}
$$

Clearly, each y_n is unit norm. Furthermore, we know that for all n

$$
||xy_n|| = ||x_ny_n + (x - x_n)y_n|| = \left\| \frac{1}{||x_n^{-1}||} \mathbb{1} + (x - x_n)y_n \right\|
$$

\n
$$
\leq \frac{1}{||x_n^{-1}||} + ||(x - x_n)y_n||
$$

\n
$$
\leq \frac{1}{||x_n^{-1}||} + ||x - x_n||,
$$

where for the first line we used the definition of y_n , for the second line we used the triangle inequality, and for the third line we used submultiplicativity of the norm and the fact that $||y_n|| = 1$. By Lemma 10.17 in Rudin, we know that $||x_n^{-1}|| \to \infty$ as $n \to \infty$. By the fact that $x_n \to x$ in the norm, we know that $||x - x_n|| \to 0$ as $n \to \infty$. Together, these and the above reveal that

$$
\lim_{n \to \infty} ||xy_n|| = 0 \implies \lim_{n \to \infty} xy_n = 0
$$

Similar logic shows that

$$
||y_nx|| = ||y_nx_n + y_n(x - x_n)|| = \left\| \frac{1}{||x_n^{-1}||} \mathbb{1} + y_n(x - x_n) \right\|
$$

$$
\leq \frac{1}{||x_n^{-1}||} + ||x - x_n|| \to 0,
$$

and so

$$
\lim_{n \to \infty} xy_n = \lim_{n \to \infty} y_n x = 0
$$

In the general case, any divisor of 0 is automatically a topological divisor of 0. The only way for there to be no more topological divisors of 0 is if $\partial \mathcal{G}_\mathcal{A} \setminus \{$ divisors of 0} is empty. This happens if and only iff all elements that don't divide 0 are invertible, or equivalently if $\mathcal{A} \setminus \{\text{divisors of } 0\} \subseteq \mathcal{G}_{\mathcal{A}}$. However, the Gelfand-Mazur theorem tells us that such Banach algebras are isometrically isomorphic to \mathbb{C} .

Show that if $x \in A$ is nilpotent (i.e., $\exists n \in \mathbb{N}$ with $x^n = 0$) then $\sigma(x) = \{0\}.$

Solution

Proof. Let $x \in A$ be nilpotent with exponent n. We first show that x cannot be invertible. To this end, suppose by way of contradiction that $x \in \mathcal{G}_\mathcal{A}$. Then, $x^{-1}x = xx^{-1} = \mathbb{1}$. We will prove by induction that this means that $x^k \in \mathcal{G}_{\mathcal{A}}$ for all $k \in \mathbb{N}$. The base case holds for $k = 1$; so, suppose by way of induction that $x^k \in \mathcal{G}_\mathcal{A}$ and let $y = (x^k)^{-1}$ be its inverse. Then,

$$
x^{k+1}(x^{-1}y) = x^k(xx^{-1})y = x^ky = 1
$$

and

$$
(yx^{-1})x^{k+1}=y(x^{-1}x)x^k=yx^k=\mathbb{1}
$$

So, x^{k+1} has a left and right inverse, and so $x^{k+1} \in \mathcal{G}_{\mathcal{A}}$. By induction, we see that $x^k \in \mathcal{G}_{\mathcal{A}}$ for all $k \in \mathbb{N}$, which in particular means that $x^n \in \mathcal{G}_\mathcal{A}$. However, we know $x^n = 0 \notin \mathcal{G}_\mathcal{A}$ since 0 cannot be invertible. This yields a contradiction, and so we find that $x \notin \mathcal{G}_{\mathcal{A}}$. Therefore, $x - 0 \mathbb{1} \notin \mathcal{G}_{\mathcal{A}} \implies 0 \in \sigma(x)$.

Now, note that Gelfand's formula gives that

$$
r(x) = \inf_{k \in \mathbb{N}} \|x^k\|^{1/k}
$$

Since $||x^k|| = 0$ for $k \geq n$ and $||x^k|| \geq 0$ for all k in general, we see that this infimum must equal 0. So,

$$
r(x) = \sup_{z \in \sigma(x)} |z| = 0,
$$

by definition of the spectral radius, which necessarily means that there are no nonzero elements in the spectrum of x. Thus, $\sigma(x) = \{0\}$.

Show that r is upper semicontinuous.

Solution

Proof. Let $x_0 \in A$ be arbitrary, and let $p \in \mathbb{R}$ be such that $p > r(x_0)$. We want to show that there is a $U \in \text{Nbhd}(x_0)$ such that $r(x) < p$ for all $x \in U$, as that will show that r is upper semicontinuous at x_0 .

Let $q \in \mathbb{R}$ be such that $r(x_0) < q < p$. Define $B_q(0_{\mathbb{C}}) \subseteq \mathbb{C}$ to be the open ball of radius q in the complex plane; then, $\sigma(x_0) \subseteq B_q(0_\mathbb{C})$ since $r(x_0) = \sup_{z \in \sigma(x_0)} |z| < q$. Define

$$
L := \sup_{z \notin B_q(0_\mathbb{C})} ||(x_0 - z \mathbb{1})^{-1}||
$$

and

$$
U := B_L(x_0) \equiv \{ x \in \mathcal{A} : \quad ||x - x_0|| < L \} \subseteq \mathcal{A}
$$

to be the open ball of radius L around x_0 (in particular, it is open in the norm topology on A). By Theorem 10.20 in Rudin (with $\Omega = B_q(0_{\mathbb{C}})$) we see that $\sigma(x) \subseteq B_q(0_{\mathbb{C}})$ for all $x \in U$. Thus, for all $x \in U$ we know that $r(x) \le q < p$. To reiterate, there is a neighborhood U of x_0 such that $r(x) < p$ for all $x \in U$, and so r. Since this can be done for all $p > r(x_0)$, we find that r is upper semicontinuous at x_0 . Since this holds for an arbitrary $x_0 \in \mathcal{A}$, the result is proven. ■