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Problem 1

Prove that any norm-closed convex bounded subset of a reflexive Banach space is weakly compact.

Solution

Proof. Let X be a reflexive Banach space, and let K ⊆ X be norm-closed, convex, and norm-bounded. We

start with the following lemma.

Lemma 1. Let C ⊆ X be a norm-closed and convex subset of a normed vector space X. Then, C is

weakly-closed (closed in the weak topology on X).

Proof of Lemma 1. Note that norm-open balls are clearly convex by the triangle inequality. Since

the norm topology on X is generated by norm-open balls, it follows that X with the norm topology is

locally-convex. By Theorem 3.12 in Rudin, since C is convex we know that the norm-closure of C equals its

weak-closure. Norm-closure of C then guarantees that C is also weakly-closed, as desired.

Certainly, Lemma 1 gives that K is weakly-closed. Now, norm-boundedness gives some M < ∞ such

that ∥x∥ ≤ M for all x ∈ K. Write

Br := {x ∈ X : ∥x∥ ≤ r}

to be the norm-closed ball of radius r in X (and so K ⊆ BM ), and

B∗∗
r := {Λ ∈ X∗∗ : ∥Λ∥ ≤ r}

to be the norm-closed ball of radius r in X∗∗. Recall the definition of the weak-* topology on X∗∗ to be

the initial topology generated by J∗(X∗), where J∗ : X∗ → X∗∗∗ is the canonical point evaluation map.

Also, the weak topology on X∗∗ is the initial topology generated by X∗∗∗. Since X is reflexive, we know by

Problem 2 on the Problem Set 3 that X∗ is reflexive, and so J∗(X∗) = X∗∗∗. What this means is that the

weak and weak-* topologies on X∗∗ must be equivalent.

Now, the Banach-Alaoglu theorem tells us that B∗∗
1 is compact in the weak-* topology on X∗∗. Since

X∗∗ equipped with the weak-* topology is a TVS and so scaling is a weak-* homeomorphism, we find that

B∗∗
M is also weak-* compact. By the previous discussion, reflexivity guarantees that B∗∗

M is also compact in

the weak topology on X∗∗. Now, let J : X → X∗∗ be the canonical point evaluation map. Since it is linear

and isometric (and therefore bounded), we know that J is continuous with respect to the norms on X and

X∗∗. Therefore, for all λ ∈ X∗∗∗ we have that λ ◦ J : X → C is continuous w.r.t. the norm topology on

X, and so λ ◦ J ∈ X∗. Since bounded linear functionals are continuous in the weak topology, this means

that λ ◦ J is continuous w.r.t. the weak topology on X. Since this holds for all λ ∈ X∗∗∗, we see that

J : X → X∗∗ is continuous w.r.t. the weak topologies on both X and X∗∗. Since B∗∗
M is weakly-compact in

X∗∗, its preimage J−1(B∗∗
M ) is therefore weakly-compact in X. However, since J is isometric and invertible

(by reflexivity), we have that J−1(B∗∗
M ) = BM . Thus, BM is compact in the weak topology on X.

So, we have seen that K is weakly-closed, BM is weakly-compact, and K ⊆ BM . Since closed subsets

of compact sets are compact, this reveals that K is weakly-compact, and the proof is complete.
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Problem 5

Let X be an infinite-dimensional Banach space, and define

S := {x ∈ X | ∥x∥ = 1}.

Show that the weak-closure of S is

B := {x ∈ X | ∥x∥ ≤ 1}.

Solution

Proof. (⊆) We first show that B ⊆ clw(S). Let x ∈ B be arbitrary. Let U ∈ Nbhdw(x) (i.e. U is a weak

neighborhood of x). Then, for some ϵ > 0 and some λ1, . . . , λm ∈ X∗ we know that

x ⊆ x+

m⋂
j=1

λ−1
j (Bϵ(0C)) ⊆ U

since the sets {λ−1(Bδ(0C))}λ∈X∗,
δ>0

form a local subbasis at 0X for the weak topology. Define

V :=

m⋂
j=1

λ−1
j (Bϵ(0C))

Certainly, V is open in the weak topology on X, as it is an intersection of continuous, linear preimages of

open sets in C; therefore, x+ V is also weakly-open. Since x+ V is a nonempty, weakly-open subset of an

infinite-dimensional Banach space, it is not bounded in norm; in particular, there exists some y ∈ x+V such

that ∥y∥ > 1.

Next, we claim that V is convex. To this end, let a, b ∈ V and α, β ∈ C with |α| + |β| ≤ 1. Then, for

all j = 1, . . . ,m we know that

|λj(αa+ βb)| = |αλj(a) + βλj(b)| ≤ |α| · |λj(a)|+ |β| · |λj(b)|
< |α|ϵ+ |β|ϵ = ϵ(|α|+ |β|)) ≤ ϵ,

where we used the triangle inequality and the fact that a, b ∈ V =⇒ |λj(a)|, |λj(b)| < ϵ by construction.

So, |λj(αa+ βb)| < ϵ for all j, and so αa+ βb ∈ V . Since this holds for all such selections of a, b, α, and β,

we see that V is convex. Certainly, this also means that x+ V is convex.

So, we have that x, y ∈ x + V ⊆ U , where ∥x∥ ≤ 1, ∥y∥ > 1, and x + V is convex. So, the line seg-

ment connecting x and y must pass through S (the segment is a connected set originating in B and ending

outside the norm-closure of B, and so it must intersect the norm-boundary of B, which is S). By con-

vexity we know that this line lies in the set x + V . So, there must exists some w ∈ (x + V ) ∩ S ⊆ U ∩ S.

In particular, U∩S is nonempty. Since this holds for all U ∈ Nbhdw(x) for all x ∈ B, we find that B ⊆ clw(S).

(⊇) We now wish to show that clw(S) ⊆ B. Note that B is clearly convex by the triangle inequality.

By Lemma 1, norm-closure of B implies that B is weakly-closed. Since B ⊇ S is weakly-closed, we know by

the topological definition of a closure as the smallest closed superset that

clw(S) ⊆ B

This proves the reverse direction.
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Problem 7

Use (xy)n = x(yx)n−1y to show that r(xy) = r(yx).

Solution

Proof. We will simply show that r(xy) ≤ r(yx), as the reverse direction will then follow from a symmetric

argument. We apply Gelfand’s formula and submultiplicativity of the norm to see that

r(xy) = lim
n→∞

∥(xy)n∥1/n = lim
n→∞

∥x(yx)n−1y∥1/n ≤ lim
n→∞

(
∥x∥1/n · ∥y∥1/n · ∥(yx)n−1∥1/n

)
,

Now, the limits limn→∞ ∥x∥1/n and limn→∞ ∥y∥1/n both exist and equal 1, and so we can use multiplicativity

of the limit to see that

lim
n→∞

(
∥x∥1/n · ∥y∥1/n · ∥(yx)n−1∥1/n

)
= lim

n→∞
(∥x∥1/n) · lim

n→∞
(∥y∥1/n) · lim

n→∞

(
∥(yx)n−1∥1/n

)
= lim

n→∞

(
∥(yx)n−1∥1/n

)
= lim

n→∞

((
∥(yx)n−1∥1/(n−1)

)(n−1)/n
)

We know that the limit of a composition of functions is the composition of limits when the outer function is

continuous at the inner limit. Since (·)(n−1)/n is continuous for all n, we see that

lim
n→∞

((
∥(yx)n−1∥1/(n−1)

)(n−1)/n
)

= lim
k→∞

(
lim
n→∞

(
∥(yx)n−1∥1/(n−1)

)(k−1)/k
)

= lim
k→∞

(r(yx))(k−1)/k

= r(yx),

where we used Gelfand’s formula again to get to the second line. So, r(xy) ≤ r(yx) and, symmetrically,

r(yx) ≤ r(xy). This proves the desired result.
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Problem 8

Show that if x, xy ∈ GA, then y ∈ GA.

Solution

Proof. We know by definition of an inverse and the associative identity that

(xy)−1(xy) = 1 =⇒
(
(xy)−1x

)
y = 1,

and so y has a left inverse (namely, (xy)−1x). Next, we may see that

(xy)(xy)−1x = x =⇒ x−1xy(xy)−1x = 1 =⇒ y(xy)−1x = 1,

where we used the invertibility of x. So, y has a right inverse (namely, (xy)−1x again). Thus, y is invertible.
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Problem 9

Show that if xy, yx ∈ GA then x, y ∈ GA.

Solution

Proof. We need only show that x ∈ GA, since then we would be able to use Problem 8 to see that y ∈ GA
as well. To this end, observe that

(xy)(xy)−1 = 1 =⇒ x(y(xy)−1) = 1

So, y(xy)−1 is a right inverse for x. Similarly,

(yx)−1(yx) = 1 =⇒ ((yx)−1y)x = 1,

and so (yx)−1y is a left inverse for x. Therefore, x is invertible, and the proof is complete.
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Problem 10

On the Banach space X := ℓ2(N → C), define the right shift operator R ∈ B(X) by

(Ra)n :=

{
an−1 n ≥ 2

0 n = 1

and the left shift operator L ∈ B(X) by

(La)n = an+1 ∀n ∈ N

Calculate RL and LR. Conclude that one may have xy = 1 but yx ̸= 1 in a Banach algebra.

Solution

Proof. Let a ∈ X be arbitrary. Then, for all n ∈ N we have that

((RL)a)n = (R(La))n =

{
an n ≥ 2

0 n = 1

since for all n ≥ 2 we have that (La)n = an+1, and so ((RL)a)n = an. However, we find that ((RL)a)1 = 0

by definition of R, leading to the above calculation.

By contrast, for all n ∈ N we have that

((LR)a)n = (L(Ra))n = (Ra)n+1 = an,

since for all n it holds that (Ra)n+1 = an. So, LR is the identity map, but RL is not.

Viewing B(X) as a Banach algebra and letting x = L and y = R, we see that xy = 1 but yx ̸= 1.
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Problem 12

Show that if z ∈ C \ {0}, then z ∈ σ(xy) if and only if z ∈ σ(yx). i.e.,

σ(xy) ∪ {0} = σ(yx) ∪ {0}.

Find an example where σ(xy) ̸= σ(yx).

Solution

Proof. Suppose that z ∈ C \ {0} and z ∈ σ(xy). Then, xy − z1 /∈ GA by definition of the spectrum.

Clearly, this also means that 1 − x
z y /∈ GA since GA is closed under nonzero scalar multiplication. The

result from Problem 11 tells us that 1 − y x
z /∈ GA, and so yx − z /∈ GA. Thus, z ∈ σ(yx). We may apply

symmetric with x and y switched to prove the converse, and so we see that for z ∈ C \ {0} we have that

z ∈ σ(xy) ⇐⇒ z ∈ σ(yx).

To find an example where σ(xy) ̸= σ(yx), let x = L and y = R be the left and right shift elements

of the Banach algebra A := B(ℓ2(N → C)) from Problem 10. The result of that problem shows that

LR = 1 =⇒ LR ∈ GA, yet RL ̸= 1. In fact, the computations we made there revealed that RL /∈ GA
since it is not injective (it sends both (0, 0, . . .) and (1, 0, . . .) to the zero element). Thus, 0 ∈ σ(RL) but

0 /∈ σ(LR). The spectra of LR and RL are therefore not equal.
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Problem 13

Define A := C2([0, 1] → C), the space of functions with continuous second derivative. Define, for a, b > 0,

∥f∥ := ∥f∥∞ + a∥f ′∥∞ + b∥f ′′∥∞.

Show that A is a Banach space. Show that A is a Banach algebra (with pointwise multiplication) iff a2 ≥ 2b.

You may consider the functions x 7→ x and x 7→ x2.

Solution

Proof. Clearly, A is a vector space. We verify that the defined norm is indeed a norm.

1. We note that ∥f∥ ≥ ∥f∥∞ since the other terms are nonnegative, and so if ∥f∥ = 0 then ∥f∥∞ =

0 =⇒ f = 0. Thus, ∥ · ∥ is positive definite.

2. Let α ∈ C. Then, for all f ∈ A,

∥αf∥ = ∥αf∥∞ + a∥(αf)′∥∞ + b∥(αf)′′∥∞ = |α|∥f∥∞ + |α| · a∥f ′∥∞ + |α| · b∥f ′′∥∞ = |α|∥f∥

by linearity of the derivative and homogeneity of ∥ · ∥∞, and so ∥ · ∥ is homogenous.

3. For all f, g ∈ A,

∥f + g∥ = ∥f + g∥∞ + a∥(f + g)′∥∞ + b∥(f + g)′′∥∞
= ∥f + g∥∞ + a∥f ′ + g′∥∞ + b∥f ′′ + g′′∥∞
≤ ∥f∥∞ + ∥g∥∞ + a∥f ′∥∞ + a∥g′∥∞ + b∥f ′′∥∞ + b∥g′′∥∞
= ∥f∥+ ∥g∥

by the linearity of the derivative and the triangle inequality on ∥ · ∥∞, and so ∥ · ∥ satisfies the triangle

inequality.

Now, we wish to show that A is complete in the ∥ · ∥ norm. To this end, let {fn}n ⊆ A be Cauchy in

this norm. Since ∥g∥ ≥ ∥g∥∞, ∥g∥ ≥ a∥g′∥∞, and ∥g∥ ≥ b∥g′′∥∞ for all g ∈ A, we see that the sequences

{fn}n, {f ′
n}n, and {f ′′

n}n are also Cauchy in the ∥ · ∥∞ norm when viewed as elements of C0([0, 1] → C).
We know that C0([0, 1] → C) is complete in the ∥ · ∥∞ norm, and so we find that fn → f , f ′

n → g, and

f ′′
n → h for some f, g, h ∈ C0([0, 1] → C), where the aforementioned convergences are with respect to the

∥ · ∥∞ norm. Since fn → f uniformly and f ′
n → g uniformly, we see that f ′ = g by a well-known result about

uniform convergence of derivatives. Similarly, f ′′ = g′ = h. So, for any ϵ > 0 we may find a N0 large enough

that ∥fn − f∥∞ < ϵ
3 ∀n > N0, a N1 large enough that ∥f ′

n − f ′∥∞ < ϵ
3a ∀n > N1, and a N2 large enough

that ∥f ′′
n − f ′′∥∞ < ϵ

3b ∀n > N2. Letting N := max{N0, N1, N2}, we see that for all n > N ,

∥fn − f∥ = ∥fn − f∥∞ + a∥f ′
n − f ′∥∞ + b∥f ′′

n − f ′′∥∞ < ϵ

Therefore, fn → f in the ∥ · ∥ norm for some f with continuous second derivative, and the space with this

norm is therefore complete.

Now, the only extra property necessary for A with pointwise multiplication to be a Banach algebra is

for submultiplicativity of the norm. We show that A has this property iff a2 ≥ 2b.

( =⇒ ) Suppose that a2 < 2b. Then, letting f(x) = x be an element of A, we see that

∥f∥ = ∥(x 7→ x)∥ = ∥(x 7→ x)∥∞ + a∥(x 7→ 1)∥∞ + b∥(x 7→ 0)∥∞ = 1 + a
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and

∥f2∥ = ∥(x 7→ x2)∥ = ∥(x 7→ x2)∥∞ + a∥(x 7→ 2x)∥∞ + b∥(x 7→ 2)∥∞ = 1 + 2a+ 2b

So,

∥f∥2 = (1 + a)2 = 1 + 2a+ a2 < 1 + 2a+ 2b = ∥f2∥

If submultiplicativity of the norm had held, we would have had ∥f2∥ ≤ ∥f∥2; so, A is not a Banach algebra

in the case that a2 < 2b.

( ⇐= ) Suppose now that a2 ≥ 2b. Then, for all f, g ∈ A, the product rule grants that

∥fg∥ = ∥fg∥∞ + a∥fg′ + f ′g∥∞ + b∥fg′′ + 2f ′g′ + f ′′g∥∞

We note that the ∥·∥∞ norm is submultiplicative, since for h1, h2 ∈ A we have ∥h1h2∥∞ = sup[0,1]{|h1|·|h2|} ≤
sup[0,1]{|h1|} · sup[0,1]{|h2|} = ∥h1∥∞ · ∥h2∥∞. For notation, let Fj := ∥f (j)∥∞ and Gj := ∥g(j)∥∞ for

j = 0, 1, 2. Then,

∥fg∥ ≤ F0G0 + aF0G1 + aF1G0 + bF0G2 + 2bF1G1 + bF2G0

≤ F0G0 + aF0G1 + aF1G0 + bF0G2 + a2F1G1 + bF2G0

≤ F0G0 + aF0G1 + aF1G0 + bF0G2 + a2F1G1 + bF2G0 + abF1G2 + abF2G1 + b2F2G2

= (F0 + aF1 + bF2)(G0 + aG1 + bG2)

= ∥f∥ · ∥g∥,

where the first line applies submultiplicativity of ∥ · ∥∞, the second line comes from the 2b ≤ a2 assumption,

and the third line follows because we added nonnegative terms, and the last lines are algebraic manipulation.

Since this holds for all f, g ∈ A, the norm is submultiplicative and A is a Banach algebra.
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Problem 14

Show that if z ∈ ∂σ(x) then x− z1 ∈ ∂GA.

Solution

Proof. Suppose that z ∈ ∂σ(x), and so z ∈ ∂ρ(x) since ρ(x) = σ(x)C is open. Then, there exists

{zn}n∈N ⊆ ρ(x) such that zn → z in C. For each n ∈ N define

yn := x− zn1

Since zn ∈ ρ(x), we know that yn ∈ GA for each n. Since σ(x) is closed and contains its boundary, z ∈ σ(x)

and so y := x− z1 /∈ GA. However, we have that

∥y − yn∥ = ∥(x− z1)− (x− zn1)∥ = ∥(zn − z)1∥ = |zn − z|,

which goes to 0 as n → ∞. Thus, yn → y in norm. So, any open neighborhood of y must intersect both GC
A

(since y ∈ GC
A) and GA (since a sequence of elements of GA converges to y). Thus, y ∈ ∂GA as we wanted to

show.
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Problem 15

Let x ∈ ∂GA. Show there exists some {yn}n ⊆ A with ∥yn∥ = 1 and

lim
n→∞

xyn = lim
n→∞

ynx = 0.

Try to characterize the type of Banach algebras in which there are such elements x (which are called

topological divisors of zero).

Solution

Proof. Let x ∈ ∂GA. Then, there exists a sequence {xn}n ⊆ GA such that xn → x in the norm. For each

n ∈ N, define

yn :=
x−1
n

∥x−1
n ∥

Clearly, each yn is unit norm. Furthermore, we know that for all n

∥xyn∥ = ∥xnyn + (x− xn)yn∥ =

∥∥∥∥ 1

∥x−1
n ∥

1+ (x− xn)yn

∥∥∥∥
≤ 1

∥x−1
n ∥

+ ∥(x− xn)yn∥

≤ 1

∥x−1
n ∥

+ ∥x− xn∥,

where for the first line we used the definition of yn, for the second line we used the triangle inequality, and

for the third line we used submultiplicativity of the norm and the fact that ∥yn∥ = 1. By Lemma 10.17

in Rudin, we know that ∥x−1
n ∥ → ∞ as n → ∞. By the fact that xn → x in the norm, we know that

∥x− xn∥ → 0 as n → ∞. Together, these and the above reveal that

lim
n→∞

∥xyn∥ = 0 =⇒ lim
n→∞

xyn = 0

Similar logic shows that

∥ynx∥ = ∥ynxn + yn(x− xn)∥ =

∥∥∥∥ 1

∥x−1
n ∥

1+ yn(x− xn)

∥∥∥∥
≤ 1

∥x−1
n ∥

+ ∥x− xn∥ → 0,

and so

lim
n→∞

xyn = lim
n→∞

ynx = 0

In the general case, any divisor of 0 is automatically a topological divisor of 0. The only way for there to be

no more topological divisors of 0 is if ∂GA \{divisors of 0} is empty. This happens if and only iff all elements

that don’t divide 0 are invertible, or equivalently if A \ {divisors of 0} ⊆ GA. However, the Gelfand-Mazur

theorem tells us that such Banach algebras are isometrically isomorphic to C.
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Problem 17

Show that if x ∈ A is nilpotent (i.e., ∃n ∈ N with xn = 0) then σ(x) = {0}.

Solution

Proof. Let x ∈ A be nilpotent with exponent n. We first show that x cannot be invertible. To this end,

suppose by way of contradiction that x ∈ GA. Then, x−1x = xx−1 = 1. We will prove by induction that

this means that xk ∈ GA for all k ∈ N. The base case holds for k = 1; so, suppose by way of induction that

xk ∈ GA and let y = (xk)−1 be its inverse. Then,

xk+1(x−1y) = xk(xx−1)y = xky = 1

and

(yx−1)xk+1 = y(x−1x)xk = yxk = 1

So, xk+1 has a left and right inverse, and so xk+1 ∈ GA. By induction, we see that xk ∈ GA for all k ∈ N,
which in particular means that xn ∈ GA. However, we know xn = 0 /∈ GA since 0 cannot be invertible. This

yields a contradiction, and so we find that x /∈ GA. Therefore, x− 01 /∈ GA =⇒ 0 ∈ σ(x).

Now, note that Gelfand’s formula gives that

r(x) = inf
k∈N

∥xk∥1/k

Since ∥xk∥ = 0 for k ≥ n and ∥xk∥ ≥ 0 for all k in general, we see that this infimum must equal 0. So,

r(x) = sup
z∈σ(x)

|z| = 0,

by definition of the spectral radius, which necessarily means that there are no nonzero elements in the

spectrum of x. Thus, σ(x) = {0}.
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Problem 18

Show that r is upper semicontinuous.

Solution

Proof. Let x0 ∈ A be arbitrary, and let p ∈ R be such that p > r(x0). We want to show that there is a

U ∈ Nbhd(x0) such that r(x) < p for all x ∈ U , as that will show that r is upper semicontinuous at x0.

Let q ∈ R be such that r(x0) < q < p. Define Bq(0C) ⊆ C to be the open ball of radius q in the com-

plex plane; then, σ(x0) ⊆ Bq(0C) since r(x0) = supz∈σ(x0) |z| < q. Define

L := sup
z/∈Bq(0C)

∥(x0 − z1)−1∥

and

U := BL(x0) ≡ {x ∈ A : ∥x− x0∥ < L} ⊆ A

to be the open ball of radius L around x0 (in particular, it is open in the norm topology on A). By Theorem

10.20 in Rudin (with Ω = Bq(0C)) we see that σ(x) ⊆ Bq(0C) for all x ∈ U . Thus, for all x ∈ U we know

that r(x) ≤ q < p. To reiterate, there is a neighborhood U of x0 such that r(x) < p for all x ∈ U , and so r.

Since this can be done for all p > r(x0), we find that r is upper semicontinuous at x0. Since this holds for

an arbitrary x0 ∈ A, the result is proven.
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