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Problem 1

Prove the C-Hahn-Banach theorem using the R-Hahn-Banach theorem. In particular, you have to set up
the forgetful functor which maps a C-vector space to its underlying R-vector space to show:
Let X be a C-vector space, p: X — R be given such that

plax + By) <lalp(x) +|Blp(y) (z,y € X;0,6 € C: ol + (6] =1).
Let A : Y — C linear where Y C X is a subspace, and such that
Az)| <plz) (zeY).
Then there exists A : X — C linear such that Aly = A and such that

[A@)| <p(z) (veX).

Solution

Proof. Let F : X — X be the forgetful functor that sends X as a C-vector space to X as a R-vector space
(which we call X for clarity). Define a functional A : Y — R (where Y is viewed as a subspace of X) via

AMy) :=Re(A(y)) (yeY)

Then, it certainly holds that for all y € Y, A(y) = Re(A(y)

) < |A(y)| < p(y). Furthermore, we may view
p: X — R as a convex function in the sense that for all ¢ € [0,1

] and all z,y € X we have

p(tz + (1 —t)y) < tp(x) + (1 —1)p(y),

where the above holds by applying our original hypothesis on p with a = ¢ and =1 —¢. We are now all
set up to use the R-Hahn-Banach theorem, which produces a linear map A : X — R such that Aly = A and
A <pon X.

From this, we may define the functional A : X — C via

A(z) = A(F(x)) — iA(F(ix))
A is certainly linear since A is linear and F is a linear map. Furthermore, for any y € Y we have that
Ay) = My) — iA(iy) = Re(A(y)) — i Re(A(iy)) = Re(A(y)) + i Im(A(y)) = Ay)

The last thing we wish to show is that |A| < p. To this end, let € X be arbitrary. There is some o € C
such that |a| =1 and aA(xz) = |[A(z)|. Since p(az) = |a|p(x) = p(x) by assumption, we may observe that

|A(2)] = a(z) = A(az) = Re(A(ax)) = A(F(ax)) < p(az) = p(x),

where we were able to say that A(ax) = Re(A(ax)) because A(az) = |A(z)| € R. Since this holds for all
x € X, it stands that |A] < p over X. We see that A statisfies all our desired properties, and so we are done.
]
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Problem 2

A Banach space is called reflexive iff X & X**. Show that a Banach space X is reflexive iff X* is reflexive.

Solution

Proof. ( = ) Suppose first that X is reflexive. Let J : X — X** be the linear isometric injection
sending points in X to evaluation functionals at those points; by reflexitivity, J is surjective. Now, let
J* X* — X be the similar injection. We want to show that J* is surjective. To this end, let A € X***
be arbitrary. Then, A is a bounded and linear map from X** — C by definition. Thus, Ao J : X — C is
a bounded and linear map since J is isometric and linear. So, Ao J € X*. We claim that J*(Ao J) = A,
which would prove surjectivity of J*.

To see this, let A € X** be arbitrary. Then, J*(A o J)(A) is equal to A(A o J) by definition. Further-
more, since A € X** and J : X — X** is surjective, A = J(z) for some x € X. Thus,

T(AoJ)A) = MAoJ) = J(@)(AoJ) = (Ao J)(x) = A(J(x)) = A(N),

where for the third equality we used the definition of J, and for the second and last equalities we used that
A = J(z). Since J*(Ao J)(A) = A()) for all A € X**, we find that A € range(J*). Since this holds for all
A € X*** we see that J* is surjective, which means that X* is reflexive.

( <= ) Suppose now that X* is reflexive. Let J : X — X** be the linear isometric injection sending points
in X to evaluation functionals at those points; we wish to show that J is surjective. Let J* : X* — X*** be
the similar point evaluation map; we know that J* is an isometric bijection by reflexivity of X*. Suppose
by way of contradiction that J were not surjective, or equivalently that J(X) C X**. Let Ag € X**\ J(X);
clearly, Ag is nonzero. Let Y := J(X) 4+ CAg denote the set of linear combinations of elements of J(X)
with Ag. Then, Y C X** is a subspace of X** since J(X) is a subspace by linearity. Define a functional
I':Y — Cvia
FA+al))=a VAeJ(X)andVaeC

Note that I' is linear, since for all y; := Ay + a1 Ag € Y and 2 := Ao + asAg € Y and f1, B2 € C, we have

I'(Bryr + Bayz) = T((BiA1 + faA2) + (Bron + Pac)) = frag + Pace = S1T(y1) + B2T(y2)

T" is also clearly continuous, as for any § > 0 and o € C we know
I~ (Bs(a)) = J(X) + {vAo : 7 € Bs(a)}

The right element of the above sum is open since scalar multiplication is a homeomorphism, and so the
preimages through I' of basic open sets are open. Thus, I' € Y*. By the Hahn-Banach theorem, we are then
able to extend it to some A € X*** with the same operator norm that agrees with I' on Y. Thus, A j(x) =0
by construction, and so A(J(x)) = 0 for all z € X. By surjectivity of J*, there is some nonzero A € X* such
that A = J*(\) (note that A must be nonzero since I' was nonzero, which means A is nonzero). Thus, for all
x € X it must be that

AJ(x)=0 = J"N)(J(2)=0 = Jx)(N\) =0 = A=) =0,

where for the first implication we used the definition of A, for the second we used the definition of J*, and
for the last implication we used the definition of J. Since A(x) = 0 for all z € X, we see that A is the zero
functional, a contradiction. Therefore, X must be reflexive. m
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Problem 3

A pair of Banach spaces are called strictly dual iff 3 map f : X — Y™ which is isometric, so that the induced
map f*:Y — X* is also isometric. Prove that if X and Y are strictly dual and X is reflexive, then ¥ = X*
and X = Y™ using the Hahn-Banach theorem.

Solution

Proof. Let f: X — Y™ be the isometric map witnessing the strict duality between X and Y. Then, for
every € X and every y € Y we know that f(z) € Y*. We define the induced map f*:Y — X* via

[fy)@)=f(z)(y) VreXandVyeY

Note that f must be linear to ensure that f*(y) € X* for all y. By assumption, f* is also isometric, and
we see that it too must be linear. Lastly, let J : X — X** be the isometric linear map for point evaluation,
which we know to be a bijection since X is reflexive.

Note that it suffices to prove that Y = X*; if we are able to do so, then applying the result of Prob-
lem 2 we find that Y is also reflexive, and from there we would be able to apply symmetric logic with X
and Y switched to see that X = Y™*. To prove that Y = X™, it suffices to show that f* is bijective, as this
will show that it is an isometric vector space isomorphism, which would immediately give that ¥ and X*
are equal as Banach spaces. So, we proceed in trying to show that f* is bijective.

f* is clearly injective, as linear isometries are always injective (if f*(z) = 0 for some y € Y, then
0= 1w = llyl = vy =0, and so f* has trivial kernel). Suppose by way of contradiction that
f* is not surjective, and so f*(Y) C X*. Let Ag € X*\ f*(Y). Define the space E := f*(Y) + CAy C X*;
then, F is a vector subspace of X* since f*(Y) is (by linearity of f*) and since CAq is (trivially). We per-
form the exact same construction as we did in the second half of Problem 2, where we construct a functional
I': E — C such that

IF'A+alg)=a Yre f(Y)and VaeC

By the exact same logic as in Problem 2, T" is linear and continuous, and it is not the zero functional. So,
by the Hahn-Banach theorem, we are able to extend it to some nonzero A € X** such that As.yy = 0. By
surjectivity of J, there is some nonzero x € X such that A = J(x). Thus, we find that for all y € Y,

0=A(f"(y) = J(@)(f* () = f(y)(x) = f(2)(y)

Since f(z)(y) = 0 for all y € Y, we see that f(z) is the zero functional in Y*. This is a contradiction
since x was nonzero and f is isometric. Thus, f* must be surjective, and so it is an isometric vector space
isomorphism. Therefore, Y = X*.

This result shows that Y is reflexive. Since the definition of strict duality is symmetric, we may apply
the above logic with X and Y switched (and f and f* switched) to see that X =Y*. m




Evan Dogariu MAT 520: Problem Set 3 Problem 4

Problem 4

Let S C L'([0,1] — C) be a closed linear subspace. Suppose that S is such that f € S implies f € L?([0,1] —
C) for some p > 1 (we will call this the S-condition). Show that S C L?([0,1] — C) for some p > 1.

Solution

Proof. Let L? denote L?([0,1] — C) for p > 1 for notation. We note that L? C L? whenever ¢ < p.

Firstly, we note that since L' is a Banach space and S C L! is a closed subspace, then S equipped with the
L' norm is itself a Banach space. For each N € N, define

Ey:={feS: feL'™~ and|f|, .y <N}

We claim that Ey is closed in S for each N. To see this, let {f, }nen € En be a sequence of elements of Ey
such that f,, — f in the L' norm for some f € S; we may suppose without loss of generality that f,, > 0 for
all n by dealing with the positive and negative sides separately, as one does in the usual construction of the
Lebesgue integral. Then, we know that there is some subsequence {f,, }xen C En such that f,, converges
to f pointwise a.e.. Thus, |fnk|1+% converges pointwise a.e. to |f|1+%, and so

/ |fI =/ liminf | £, "% < hminf/ [ TF < NTR
[0,1] [0,1] koo oo Jio)
where the equality comes from the pointwise a.e. convergence of the subsequence, the first inequality is

N
ek = (f[o . | o |1+%) " < N by construction of
En. So, Hf||L1+% < N, which means that f € E,, and so E,, is closed in S (with the L' norm).

Fatou’s lemma, and the last inequality uses that || f,, ||

Now, note that we may express

S={J En

NeN
To see this, let f € S be arbitrary. There is some p > 1 for which f € LP by the S-condition. Let NV € N
N
be large enough that (||f| 1 + [|f]|7,) ¥ < N (which can be done since the LHS is eventually almost

constant). Then,
Ni1 1 ES ES
15 = [ = | fed | s
LN (0,1] [0,1]n{]fI<1} [0,1]n{|f1>1}
<[ a1+ e
[0,1]n{lfI<1} [0,1]n{|fI>1}

<[ e[ e
[0,1] [0,1]
= 17l + 11,

where the first inequality is because decreasing the exponent when |f| < 1 and increasing it when |f| > 1

increases the value, and the second inequality is because the integrands are nonnegative. So

N
Il ey < Uflle +1fI7) YT < N

So, f € Ey,, and therefore S C |Jycy En as desired. Since S is a Banach space, by the Baire Category
Theorem we must have some En that is not nowhere dense. Since each E is closed in S, that means that
E'n has nonempty interior in S for some N. So, the set SN L'~ also has nonempty interior in S. However,

we know S N L+~ to be a linear subspace of S clearly. Since proper subspaces always have empty interior
(I proved this lemma on the last problem set), we see that S N LY~ cannot be a proper subspace, and so
S=SNLY~Y = §C L'~. This completes the proof. m
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Problem 5

Let L be the (unilateral) left shift operator on ¢*°(N — R):

(Ly)(n) =¢(n+1) (neN)
Prove that there exists a Banach limit, i.e. some A : {*°(N — R) — R linear such that: (a) AL = A, (b)

limninf¢(n) < A <limsupy(n) (¢ € £)

Suggestion: Define the functional A, via A,¢) := 1 Z?:I (n), the space M = {1 € £° | (limy, 00 Ant)) exists},
and the convex function p(v) := lim sup,, A,1).

Solution

Proof. Let X := (>*°(N — R) for notation. As the hint suggests, for each n € N we define the averages
A, : X — Rvia

and define
M:={peX: lim A, exists} C X,
n—oo

which we know to be a vector subspace by linearity of the limit (i.e. if the limit exists for ¢ and ¢, it certainly
exists for 1 + ¢ and at). Next, define the function p : X — R via

p(1) = limsup A, (1)
n—oo

Note that p is convex since each A, is convex (in fact it is linear), the supremum of a collection of convex
functions is convex, and the limit of a sequence of convex functions is also convex. Lastly, define the func-
tional A : M — R via A(¢) = lim,, 00 Apt), where we know the limit always exists by construction of M.
Clearly, A is linear by linearity of the limit. Furthermore, A\ = p over M, and so A < p|ps trivially. So, we
may apply the Hahn-Banach theorem to get a linear functional A : X — R such that A < p over X and
Alp = A We claim that A satisfies the desired properties and is the Banach limit we are looking for.

(a) We wish to show that A(Ly) = A(¢) for all p € X. So, let ¢» € X be arbitrary. We know that

A(Lp) = A(p) = MLy — ¥) < p(Lep — ) = limsup Ay (Ly) — )

n—oo

by linearity of A and the fact that A < p. We may note that

2||llx

1| , N
[An (L) = )| = — 1> Lu(§) = ()| = ~|e(n+1) = (1)) < =
j=1
via a telescoping sum and the fact that ||psi||x is a uniform upper bound on elements 1 by definition of £>°.
So,
A(Ly) = A(¥) < limsup A (Ltp — ) < limsup [Ay (L — )] =0

n—oo n— oo

Similarly, we may find that

AW) = ML) = AW = L) < (v — L) = limsup A, (1 = Lif) < lim sup | A (4 = Ly)| = 0

n—oo
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Thus, A(Ly) = A(¢). Since this holds for all ¢ € X, (a) is proven.

(b) First, note that p(v)) = limsup,,_, ., (% Z?Zl ¢(j)> < limsup,,_, ., ¥(n); this follows from the general
form for the Stolz-Cesaro theorem, or equivalently from the observation that the limsup of averages cannot be
larger than the limsup of elements in a sequence. Thus, since A < p, we know that A(¢) < limsup,,_, . ¥(n)
for all ¥ € X. To see the other direction, let ¢ € X be arbitrary. Then, — is also in X, and so we may
apply the recent result to see that

A(=0) < limsup—p(n) = —A() < —lminf p(n) = liminf y(n) < AW)

So, for all ¢ € X we know
liminf¥(n) < A(y) < limsup ¥ (n),

n—0o0 n—00

proving (b). m
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Problem 6

Prove that the closed unit ball of an infinite-dimensional Banach space is not compact.

Solution

Proof. Let X be an infinite-dimensional Banach space, and let By := {z € X : ||z|| < 1} be the open
unit ball about the origin. Then, B; € Nbhd(0x). Suppose by way of contradiction that B; is compact.
Therefore, X is locally compact since the origin has a neighborhood whose closure is compact. Since X is a
locally compact TVS, by Theorem 1.22 in Rudin we see that X has finite dimension. This contradicts the
infinite-dimensionality of X, and so B; cannot be compact. m
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Problem 7

Prove that an infinite-dimensional Banach space cannot be spanned, as a vector space, by a countable subset.

Solution

Proof. Let X be an infinite-dimensional Banach space. Suppose by way of contradiction there were some
{Zp}nen C X such that X = span{zy, z2,...}. Without loss of generality we may say that ||z,| = 1, since
dividing each x,, by its norm will not change the span. For each n € N define the set

E, :=span{zy,29,...2,}

Then, each F, is a finite-dimensional subspace of X. Furthermore, for any x € X, we know that x =
Ziv:l Ty, (l.e. x is a linear combination of finitely many elements of the span), and so

relb,, = r€ U E,
neN
Since this holds for all z € X, we find that
X C U E, — X = U E,
neN neN

Therefore, X is an infinite-dimensional TVS that is a countable union of finite-dimensional subspaces; by
Problem 15 on problem set 2, we find that X is meagre. This is a contradiction since X is a Banach space
and so the Baire Category Theorem applies. m




