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Problem 1

Prove the C-Hahn-Banach theorem using the R-Hahn-Banach theorem. In particular, you have to set up

the forgetful functor which maps a C-vector space to its underlying R-vector space to show:

Let X be a C-vector space, p : X → R be given such that

p(αx+ βy) ≤ |α|p(x) + |β|p(y) (x, y ∈ X;α, β ∈ C : |α|+ |β| = 1).

Let λ : Y → C linear where Y ⊆ X is a subspace, and such that

|λ(x)| ≤ p(x) (x ∈ Y ).

Then there exists Λ : X → C linear such that Λ|Y = λ and such that

|Λ(x)| ≤ p(x) (x ∈ X).

Solution

Proof. Let F : X → X̃ be the forgetful functor that sends X as a C-vector space to X as a R-vector space
(which we call X̃ for clarity). Define a functional λ̃ : Y → R (where Y is viewed as a subspace of X̃) via

λ̃(y) := Re(λ(y)) (y ∈ Y )

Then, it certainly holds that for all y ∈ Y , λ̃(y) = Re(λ(y)) ≤ |λ(y)| ≤ p(y). Furthermore, we may view

p : X̃ → R as a convex function in the sense that for all t ∈ [0, 1] and all x, y ∈ X̃ we have

p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y),

where the above holds by applying our original hypothesis on p with α = t and β = 1 − t. We are now all

set up to use the R-Hahn-Banach theorem, which produces a linear map Λ̃ : X̃ → R such that Λ̃|Y = λ̃ and

Λ̃ ≤ p on X̃.

From this, we may define the functional Λ : X → C via

Λ(x) = Λ̃(F (x))− iΛ̃(F (ix))

Λ is certainly linear since Λ̃ is linear and F is a linear map. Furthermore, for any y ∈ Y we have that

Λ(y) = Λ̃(y)− iΛ̃(iy) = Re(λ(y))− iRe(λ(iy)) = Re(λ(y)) + i Im(λ(y)) = λ(y)

The last thing we wish to show is that |Λ| ≤ p. To this end, let x ∈ X be arbitrary. There is some α ∈ C
such that |α| = 1 and αΛ(x) = |Λ(x)|. Since p(αx) = |α|p(x) = p(x) by assumption, we may observe that

|Λ(x)| = αΛ(x) = Λ(αx) = Re(Λ(αx)) = Λ̃(F (αx)) ≤ p(αx) = p(x),

where we were able to say that Λ(αx) = Re(Λ(αx)) because Λ(αx) = |Λ(x)| ∈ R. Since this holds for all

x ∈ X, it stands that |Λ| ≤ p over X. We see that Λ statisfies all our desired properties, and so we are done.
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Problem 2

A Banach space is called reflexive iff X ∼= X∗∗. Show that a Banach space X is reflexive iff X∗ is reflexive.

Solution

Proof. ( =⇒ ) Suppose first that X is reflexive. Let J : X → X∗∗ be the linear isometric injection

sending points in X to evaluation functionals at those points; by reflexitivity, J is surjective. Now, let

J∗ : X∗ → X∗∗∗ be the similar injection. We want to show that J∗ is surjective. To this end, let Λ ∈ X∗∗∗

be arbitrary. Then, Λ is a bounded and linear map from X∗∗ → C by definition. Thus, Λ ◦ J : X → C is

a bounded and linear map since J is isometric and linear. So, Λ ◦ J ∈ X∗. We claim that J∗(Λ ◦ J) = Λ,

which would prove surjectivity of J∗.

To see this, let λ ∈ X∗∗ be arbitrary. Then, J∗(Λ ◦ J)(λ) is equal to λ(Λ ◦ J) by definition. Further-

more, since λ ∈ X∗∗ and J : X → X∗∗ is surjective, λ = J(x) for some x ∈ X. Thus,

J∗(Λ ◦ J)(λ) = λ(Λ ◦ J) = J(x)(Λ ◦ J) = (Λ ◦ J)(x) = Λ(J(x)) = Λ(λ),

where for the third equality we used the definition of J , and for the second and last equalities we used that

λ = J(x). Since J∗(Λ ◦ J)(λ) = Λ(λ) for all λ ∈ X∗∗, we find that Λ ∈ range(J∗). Since this holds for all

Λ ∈ X∗∗∗, we see that J∗ is surjective, which means that X∗ is reflexive.

( ⇐= ) Suppose now that X∗ is reflexive. Let J : X → X∗∗ be the linear isometric injection sending points

in X to evaluation functionals at those points; we wish to show that J is surjective. Let J∗ : X∗ → X∗∗∗ be

the similar point evaluation map; we know that J∗ is an isometric bijection by reflexivity of X∗. Suppose

by way of contradiction that J were not surjective, or equivalently that J(X) ⊊ X∗∗. Let Λ0 ∈ X∗∗ \ J(X);

clearly, Λ0 is nonzero. Let Y := J(X) + CΛ0 denote the set of linear combinations of elements of J(X)

with Λ0. Then, Y ⊆ X∗∗ is a subspace of X∗∗ since J(X) is a subspace by linearity. Define a functional

Γ : Y → C via

Γ(λ+ αΛ0) = α ∀λ ∈ J(X) and ∀α ∈ C

Note that Γ is linear, since for all y1 := λ1 + α1Λ0 ∈ Y and y2 := λ2 + α2Λ0 ∈ Y and β1, β2 ∈ C, we have

Γ(β1y1 + β2y2) = Γ((β1λ1 + β2λ2) + (β1α1 + β2α2)) = β1α1 + β2α2 = β1Γ(y1) + β2Γ(y2)

Γ is also clearly continuous, as for any δ > 0 and α ∈ C we know

Γ−1(Bδ(α)) = J(X) + {γΛ0 : γ ∈ Bδ(α)}

The right element of the above sum is open since scalar multiplication is a homeomorphism, and so the

preimages through Γ of basic open sets are open. Thus, Γ ∈ Y ∗. By the Hahn-Banach theorem, we are then

able to extend it to some Λ ∈ X∗∗∗ with the same operator norm that agrees with Γ on Y . Thus, ΛJ(X) = 0

by construction, and so Λ(J(x)) = 0 for all x ∈ X. By surjectivity of J∗, there is some nonzero λ ∈ X∗ such

that Λ = J∗(λ) (note that λ must be nonzero since Γ was nonzero, which means Λ is nonzero). Thus, for all

x ∈ X it must be that

Λ(J(x)) = 0 =⇒ J∗(λ)(J(x)) = 0 =⇒ J(x)(λ) = 0 =⇒ λ(x) = 0,

where for the first implication we used the definition of λ, for the second we used the definition of J∗, and

for the last implication we used the definition of J . Since λ(x) = 0 for all x ∈ X, we see that λ is the zero

functional, a contradiction. Therefore, X must be reflexive.
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Problem 3

A pair of Banach spaces are called strictly dual iff ∃ map f : X → Y ∗ which is isometric, so that the induced

map f∗ : Y → X∗ is also isometric. Prove that if X and Y are strictly dual and X is reflexive, then Y = X∗

and X = Y ∗ using the Hahn-Banach theorem.

Solution

Proof. Let f : X → Y ∗ be the isometric map witnessing the strict duality between X and Y . Then, for

every x ∈ X and every y ∈ Y we know that f(x) ∈ Y ∗. We define the induced map f∗ : Y → X∗ via

f∗(y)(x) = f(x)(y) ∀x ∈ X and ∀y ∈ Y

Note that f must be linear to ensure that f∗(y) ∈ X∗ for all y. By assumption, f∗ is also isometric, and

we see that it too must be linear. Lastly, let J : X → X∗∗ be the isometric linear map for point evaluation,

which we know to be a bijection since X is reflexive.

Note that it suffices to prove that Y = X∗; if we are able to do so, then applying the result of Prob-

lem 2 we find that Y is also reflexive, and from there we would be able to apply symmetric logic with X

and Y switched to see that X = Y ∗. To prove that Y = X∗, it suffices to show that f∗ is bijective, as this

will show that it is an isometric vector space isomorphism, which would immediately give that Y and X∗

are equal as Banach spaces. So, we proceed in trying to show that f∗ is bijective.

f∗ is clearly injective, as linear isometries are always injective (if f∗(x) = 0 for some y ∈ Y , then

0 = ∥f∗(y)∥ = ∥y∥ =⇒ y = 0, and so f∗ has trivial kernel). Suppose by way of contradiction that

f∗ is not surjective, and so f∗(Y ) ⊊ X∗. Let Λ0 ∈ X∗ \ f∗(Y ). Define the space E := f∗(Y ) + CΛ0 ⊆ X∗;

then, E is a vector subspace of X∗ since f∗(Y ) is (by linearity of f∗) and since CΛ0 is (trivially). We per-

form the exact same construction as we did in the second half of Problem 2, where we construct a functional

Γ : E → C such that

Γ(λ+ αΛ0) = α ∀λ ∈ f∗(Y ) and ∀α ∈ C

By the exact same logic as in Problem 2, Γ is linear and continuous, and it is not the zero functional. So,

by the Hahn-Banach theorem, we are able to extend it to some nonzero Λ ∈ X∗∗ such that Λf∗(Y ) = 0. By

surjectivity of J , there is some nonzero x ∈ X such that Λ = J(x). Thus, we find that for all y ∈ Y ,

0 = Λ(f∗(y)) = J(x)(f∗(y)) = f∗(y)(x) = f(x)(y)

Since f(x)(y) = 0 for all y ∈ Y , we see that f(x) is the zero functional in Y ∗. This is a contradiction

since x was nonzero and f is isometric. Thus, f∗ must be surjective, and so it is an isometric vector space

isomorphism. Therefore, Y = X∗.

This result shows that Y is reflexive. Since the definition of strict duality is symmetric, we may apply

the above logic with X and Y switched (and f and f∗ switched) to see that X = Y ∗.
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Problem 4

Let S ⊆ L1([0, 1] → C) be a closed linear subspace. Suppose that S is such that f ∈ S implies f ∈ Lp([0, 1] →
C) for some p > 1 (we will call this the S-condition). Show that S ⊆ Lp([0, 1] → C) for some p > 1.

Solution

Proof. Let Lp denote Lp([0, 1] → C) for p ≥ 1 for notation. We note that Lp ⊆ Lq whenever q ≤ p.

Firstly, we note that since L1 is a Banach space and S ⊆ L1 is a closed subspace, then S equipped with the

L1 norm is itself a Banach space. For each N ∈ N, define

EN := {f ∈ S : f ∈ L1+ 1
N and ∥f∥

L1+ 1
N

≤ N}

We claim that EN is closed in S for each N . To see this, let {fn}n∈N ⊆ EN be a sequence of elements of EN

such that fn → f in the L1 norm for some f ∈ S; we may suppose without loss of generality that fn ≥ 0 for

all n by dealing with the positive and negative sides separately, as one does in the usual construction of the

Lebesgue integral. Then, we know that there is some subsequence {fnk
}k∈N ⊆ EN such that fnk

converges

to f pointwise a.e.. Thus, |fnk
|1+ 1

N converges pointwise a.e. to |f |1+ 1
N , and so∫

[0,1]

|f |1+ 1
N =

∫
[0,1]

lim inf
k→∞

|fnk
|1+ 1

N ≤ lim inf
k→∞

∫
[0,1]

|fnk
|1+ 1

N ≤ N
N+1
N ,

where the equality comes from the pointwise a.e. convergence of the subsequence, the first inequality is

Fatou’s lemma, and the last inequality uses that ∥fnk
∥
L1+ 1

N
=

(∫
[0,1]

|fnk
|1+ 1

N

) N
N+1 ≤ N by construction of

EN . So, ∥f∥
L1+ 1

N
≤ N , which means that f ∈ En and so En is closed in S (with the L1 norm).

Now, note that we may express

S =
⋃
N∈N

EN

To see this, let f ∈ S be arbitrary. There is some p > 1 for which f ∈ Lp by the S-condition. Let N ∈ N
be large enough that (∥f∥L1 + ∥f∥pLp)

N
N+1 ≤ N (which can be done since the LHS is eventually almost

constant). Then,

∥f∥
N+1
N

L1+ 1
N

=

∫
[0,1]

|f |1+ 1
N =

∫
[0,1]∩{|f |≤1}

|f |1+ 1
N +

∫
[0,1]∩{|f |>1}

|f |1+ 1
N

≤
∫
[0,1]∩{|f |≤1}

|f |+
∫
[0,1]∩{|f |>1}

|f |p

≤
∫
[0,1]

|f |+
∫
[0,1]

|f |p

= ∥f∥L1 + ∥f∥pLp ,

where the first inequality is because decreasing the exponent when |f | ≤ 1 and increasing it when |f | > 1

increases the value, and the second inequality is because the integrands are nonnegative. So

∥f∥
L1+ 1

N
≤ (∥f∥L1 + ∥f∥pLp)

N
N+1 ≤ N

So, f ∈ En, and therefore S ⊆
⋃

N∈NEN as desired. Since S is a Banach space, by the Baire Category

Theorem we must have some EN that is not nowhere dense. Since each EN is closed in S, that means that

EN has nonempty interior in S for some N . So, the set S ∩L1+ 1
N also has nonempty interior in S. However,

we know S ∩ L1+ 1
N to be a linear subspace of S clearly. Since proper subspaces always have empty interior

(I proved this lemma on the last problem set), we see that S ∩ L1+ 1
N cannot be a proper subspace, and so

S = S ∩ L1+ 1
N =⇒ S ⊆ L1+ 1

N . This completes the proof.
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Problem 5

Let L be the (unilateral) left shift operator on ℓ∞(N → R):

(Lψ)(n) ≡ ψ(n+ 1) (n ∈ N)

Prove that there exists a Banach limit, i.e. some Λ : ℓ∞(N → R) → R linear such that: (a) ΛL = Λ, (b)

lim inf
n

ψ(n) ≤ Λψ ≤ lim sup
n

ψ(n) (ψ ∈ ℓ∞)

Suggestion: Define the functional Λn via Λnψ := 1
n

∑n
j=1 ψ(n), the spaceM := {ψ ∈ ℓ∞ | (limn→∞ Λnψ) exists},

and the convex function p(ψ) := lim supn Λnψ.

Solution

Proof. Let X := ℓ∞(N → R) for notation. As the hint suggests, for each n ∈ N we define the averages

Λn : X → R via

Λn(ψ) :=
1

n

n∑
j=1

ψ(j)

and define

M := {ψ ∈ X : lim
n→∞

Λnψ exists} ⊆ X,

which we know to be a vector subspace by linearity of the limit (i.e. if the limit exists for ψ and ϕ, it certainly

exists for ψ + ϕ and αψ). Next, define the function p : X → R via

p(ψ) := lim sup
n→∞

Λn(ψ)

Note that p is convex since each Λn is convex (in fact it is linear), the supremum of a collection of convex

functions is convex, and the limit of a sequence of convex functions is also convex. Lastly, define the func-

tional λ : M → R via λ(ψ) = limn→∞ Λnψ, where we know the limit always exists by construction of M .

Clearly, λ is linear by linearity of the limit. Furthermore, λ = p over M , and so λ ≤ p|M trivially. So, we

may apply the Hahn-Banach theorem to get a linear functional Λ : X → R such that Λ ≤ p over X and

Λ|M = λ. We claim that Λ satisfies the desired properties and is the Banach limit we are looking for.

(a) We wish to show that Λ(Lψ) = Λ(ψ) for all ψ ∈ X. So, let ψ ∈ X be arbitrary. We know that

Λ(Lψ)− Λ(ψ) = Λ(Lψ − ψ) ≤ p(Lψ − ψ) = lim sup
n→∞

Λn(Lψ − ψ)

by linearity of Λ and the fact that Λ ≤ p. We may note that

|Λn(Lψ − ψ)| = 1

n

∣∣∣∣∣∣
n∑

j=1

Lψ(j)− ψ(j)

∣∣∣∣∣∣ = 1

n
|ψ(n+ 1)− ψ(1)| ≤ 2∥ψ∥X

n

via a telescoping sum and the fact that ∥psi∥X is a uniform upper bound on elements ψ by definition of ℓ∞.

So,

Λ(Lψ)− Λ(ψ) ≤ lim sup
n→∞

Λn(Lψ − ψ) ≤ lim sup
n→∞

|Λn(Lψ − ψ)| = 0

Similarly, we may find that

Λ(ψ)− Λ(Lψ) = Λ(ψ − Lψ) ≤ p(ψ − Lψ) = lim sup
n→∞

Λn(ψ − Lψ) ≤ lim sup
n→∞

|Λn(ψ − Lψ)| = 0
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Thus, Λ(Lψ) = Λ(ψ). Since this holds for all ψ ∈ X, (a) is proven.

(b) First, note that p(ψ) = lim supn→∞

(
1
n

∑n
j=1 ψ(j)

)
≤ lim supn→∞ ψ(n); this follows from the general

form for the Stolz-Cesaro theorem, or equivalently from the observation that the limsup of averages cannot be

larger than the limsup of elements in a sequence. Thus, since Λ ≤ p, we know that Λ(ψ) ≤ lim supn→∞ ψ(n)

for all ψ ∈ X. To see the other direction, let ψ ∈ X be arbitrary. Then, −ψ is also in X, and so we may

apply the recent result to see that

Λ(−ψ) ≤ lim sup
n→∞

−ψ(n) =⇒ −Λ(ψ) ≤ − lim inf
n→∞

ψ(n) =⇒ lim inf
n→∞

ψ(n) ≤ Λ(ψ)

So, for all ψ ∈ X we know

lim inf
n→∞

ψ(n) ≤ Λ(ψ) ≤ lim sup
n→∞

ψ(n),

proving (b).
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Problem 6

Prove that the closed unit ball of an infinite-dimensional Banach space is not compact.

Solution

Proof. Let X be an infinite-dimensional Banach space, and let B1 := {x ∈ X : ∥x∥ < 1} be the open

unit ball about the origin. Then, B1 ∈ Nbhd(0X). Suppose by way of contradiction that B1 is compact.

Therefore, X is locally compact since the origin has a neighborhood whose closure is compact. Since X is a

locally compact TVS, by Theorem 1.22 in Rudin we see that X has finite dimension. This contradicts the

infinite-dimensionality of X, and so B1 cannot be compact.

8



Evan Dogariu MAT 520: Problem Set 3 Problem 7

Problem 7

Prove that an infinite-dimensional Banach space cannot be spanned, as a vector space, by a countable subset.

Solution

Proof. Let X be an infinite-dimensional Banach space. Suppose by way of contradiction there were some

{xn}n∈N ⊆ X such that X = span{x1, x2, . . .}. Without loss of generality we may say that ∥xn∥ = 1, since

dividing each xn by its norm will not change the span. For each n ∈ N define the set

En := span{x1, x2, . . . xn}

Then, each En is a finite-dimensional subspace of X. Furthermore, for any x ∈ X, we know that x =∑N
k=1 αkxnk

(i.e. x is a linear combination of finitely many elements of the span), and so

x ∈ EnN
=⇒ x ∈

⋃
n∈N

En

Since this holds for all x ∈ X, we find that

X ⊆
⋃
n∈N

En =⇒ X =
⋃
n∈N

En

Therefore, X is an infinite-dimensional TVS that is a countable union of finite-dimensional subspaces; by

Problem 15 on problem set 2, we find that X is meagre. This is a contradiction since X is a Banach space

and so the Baire Category Theorem applies.
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