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Evan Dogariu MAT 520: Problem Set 2 Problem 1

Problem 1

Let a normed vector space (X, ∥ · ∥) be given. Show that there exists some sesquilinear inner product

⟨·, ·⟩ : X2 → C which is compatible with the norm, in the sense that

∥x∥ =
√
⟨x, x⟩ (x ∈ X)

if and only if the norm satisfies (any one of the equivalent) parallelogram identity. Here is one version which

I like:

∥x+ y∥2 + ∥x− y∥2 ≤ 2∥x∥2 + 2∥y∥2 (x, y ∈ X).

(This is phrased as an inequality rather than equality since the other direction of the inequality is always

true, so there is nothing to verify. Show this first).

Solution

Proof. I have done this proof before. Thank you for giving us the option to not have to do it again. :)
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Problem 2

Let an inner-product vector space (X, ⟨·, ·⟩) be given. Prove the Cauchy-Schwarz inequality

|⟨x, y⟩| ≤ ∥x∥∥y∥

Solution

Proof. I have done this proof before. Thank you for giving us the option to not have to do it again. :)
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Problem 3

Two norms ∥ · ∥1 , ∥ · ∥2 on a normed space X are called equivalent iff ∃ a, b ∈ (0,∞) such that

a∥x∥1 ≤ ∥x∥2 ≤ b∥x∥1 (∀x ∈ X)

Show that all norms on Cn are equivalent.

Solution

Proof. Clearly, norm equivalence is an equivalence relation, and so it suffices to show that all norms are

equivalent to one fixed norm. Let ∥ · ∥1 be the 1-norm on Cn, and let ∥ · ∥ be some arbitrary other norm; we

want to show that they are equivalent. Let e1, . . . , en denote any basis of Cn, and let b := max1≤i≤n ∥ei∥.
Then, for every z =

∑n
i=1 ziei ∈ Cn we know by the triangle inequality and homogeneity that

∥z∥ =

∥∥∥∥∥
n∑

i=1

ziei

∥∥∥∥∥ ≤
n∑

i=1

∥ziei∥ =

n∑
i=1

|zi| · ∥ei∥ ≤ b

n∑
i=1

|zi| = b∥z∥1

From here, we may see that for all z, w ∈ Cn,

|∥z∥ − ∥w∥| ≤ ∥z − w∥ ≤ b∥z − w∥1,

and so the norm function ∥ · ∥ is b-Lipschitz w.r.t. the ∥ · ∥1 norm and is therefore continuous in the ∥ · ∥1
norm topology. Also, the unit sphere S := {x ∈ Cn : ∥x∥1 = 1} is compact in the ∥ · ∥1 norm topology,

and so the ∥ · ∥ function attains its minimum. Then, there is some x ∈ S such that a := ∥x∥ ≤ ∥y∥ for all

y ∈ S. We know a > 0 since x ̸= 0 (this is because 0 /∈ S). Lastly, for any z ∈ Cn we know by homogeneity

that

∥z∥ = ∥z∥1 ·
∥∥∥∥ z

∥z∥1

∥∥∥∥ ≥ a∥z∥1,

where we used that z
∥z∥1

∈ S =⇒
∥∥∥ z
∥z∥1

∥∥∥ ≥ a. So, for all z ∈ Cn we have that

a∥z∥1 ≤ ∥z∥ ≤ b∥z∥1,

and thus ∥ · ∥ is equivalent to ∥ · ∥1. Therefore, all norms on Cn are equivalent.
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Problem 4

Let X be a Banach space which is Banach w.r.t. two different norms, ∥ · ∥1 and ∥ · ∥2. Assume that

∥ · ∥1 ≤ C∥ · ∥2 for some C ∈ (0,∞). Show that there exists a D ∈ (0,∞) such that ∥ · ∥2 ≤ D∥ · ∥1.

Solution

Proof. Let X1 denote the Banach space (X, ∥·∥1) and X2 the Banach space (X, ∥·∥2). Consider the identity
map i : X2 → X1 sending x 7→ x; it is certainly bijective and linear. We show that i is also continuous. Let

x ∈ X2 be arbitrary and let ϵ > 0. Then, letting δ := ϵ
C , we have that for all y ∈ X2 with ∥x− y∥2 < δ,

∥i(x)− i(y)∥1 = ∥x− y∥1 ≤ C∥x− y∥2 < Cδ = ϵ

So, the identity map from X2 → X1 is continuous, which means that i ∈ B(X2 → X1). Since i is surjective,

we may apply the Open Mapping Theorem to see that i is also an open map. Since i is a bijective, continuous,

and open map, it is a homeomorphism, which means that i−1 ∈ B(X1 → X2). Letting D denote the operator

norm of i−1 in B(X1 → X2), we find by the result of Problem 5 that for all x ∈ X1,

∥i−1(x)∥2 ≤ D∥x∥1 =⇒ ∥x∥2 ≤ D∥x∥1

as desired.

In words, since the identity map is continuous, the topology on X1 refines the topology on X2. Since

the identity map from X1 → X2 (i.e. i−1) is also continuous, the topology on X2 refines that of X1; so, they

must be equivalent.
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Problem 5

Show that if A : X → Y is a bounded linear map between Banach spaces then

∥Ax∥Y ≤ ∥A∥op∥x∥X (x ∈ X).

Solution

Proof. We know by definition of the operator norm as a supremum that for all z ∈ B1(0X) (the closed unit

ball),

∥Az∥Y ≤ ∥A∥op

Let x ∈ X be arbitrary. Then,

∥Ax∥Y = ∥x∥X ·
∥∥∥∥ 1

∥x∥X
Ax

∥∥∥∥
Y

= ∥x∥X ·
∥∥∥∥A( x

∥x∥X

)∥∥∥∥
Y

≤ ∥x∥X∥A∥op,

where for the first equality we used homogeneity, for the second we used linearity of A, and for the third we

used that x
∥x∥X

∈ B1(0X).
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Problem 6

Show that if A,B : X → X are bounded linear maps on a Banach space, then

∥AB∥op ≤ ∥A∥op∥B∥op

Solution

Proof. Let x ∈ X be an arbitrary vector with ∥x∥ ≤ 1. Then, by definition of the operator norm as a

supremum we know that

∥Bx∥ ≤ ∥B∥op =⇒
∥∥∥∥ Bx

∥B∥op

∥∥∥∥ ≤ 1

So, we may apply the definition of the operator norm of A to see that∥∥∥∥A( Bx

∥B∥op

)∥∥∥∥ ≤ ∥A∥op =⇒
∥∥∥∥ 1

∥B∥op
ABx

∥∥∥∥ ≤ ∥A∥op =⇒ ∥ABx∥ ≤ ∥A∥op∥B∥op

Since this holds for all x with ∥x∥ ≤ 1, we may take a supremum over such x to find that

∥AB∥op ≤ ∥A∥op∥B∥op

as desired.
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Problem 7

Let d : X2 → [0,∞) be a homogeneous metric on a TVS X. Show that S ⊆ X is bounded (in the TVS

sense: for any N ∈ Nbhd(0X) one has S ⊆ tN for all t > 0 large) if and only if S is bounded in the metric

sense:

sup
x∈S

d(x, 0X) < ∞

Solution

Proof. For this problem, let Br := {z ∈ X : d(z, 0X) < r} be the open ball of radius r around the origin;

we know by definition of the topology induced by d that Br ∈ Nbhd(0X) for all r > 0.

( =⇒ ) Suppose first that S is bounded in the TVS sense, and let B1 ∈ Nbhd(0X) be the open unit

ball. By boundedness, we know that there is some t > 0 large enough that S ⊆ tB1. Let x ∈ S be arbitrary;

then, x ∈ tB1. So,
x
t ∈ B1, which means that

d
(x
t
, 0X

)
< 1 =⇒ d(x, 0X) < t

by homogeneity of the metric and the fact that t0X = 0X . Since this holds for all x ∈ S, we find that

sup
x∈S

d(x, 0X) ≤ t < ∞,

and so S is bounded in the metric sense.

( ⇐= ) Suppose now that S is bounded in the metric sense. If S ⊆ {0X} then the result holds triv-

ially; so, suppose S contains a nonzero element. Then, there is some s := supx∈S d(x, 0X) > 0 such that for

all x ∈ S,

d(x, 0X) ≤ s

Now, let N ∈ Nbhd(0X) be arbitrary; we may select a U ⊆ N that is a balanced and open neighborhood of

0X . Let
{
B 1

n

}
n∈N

be the open balls of radius 1
n about the origin. Since these form a local basis by definition

of the topology induced by d, we have that there is some M ∈ N large enough that B 1
M

⊆ U . Now, let

x ∈ S. Then, d(x, 0X) < s, and so by homogeneity

d
( x

sM
, 0X

)
<

1

M
=⇒ x

sM
∈ B 1

M
⊆ U

So, for all t > sM we know that ∣∣∣∣sMt
∣∣∣∣ ≤ 1 =⇒

(
sM

t

)
x

sM
=

x

t
∈ U

since U is balanced. Thus, for all t > sM we have

x ∈ tU ⊆ tN

Since this holds for all x ∈ S, we find that S ⊆ tN for all t > sM . This proves TVS boundedness of S.
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Problem 8

Show that a linear map A : X → Y between two Banach spaces maps bounded sets of X to bounded sets of

Y iff ∥A∥op < ∞.

Solution

Proof. ( =⇒ ) Suppose that A maps bounded sets of X to bounded sets of Y . Since B1(0X) is a bounded

set (see Problem 7), then A(B1(0X)) is also bounded. So, for all x0 ∈ X with ∥x0∥X ≤ 1, we have

∥Ax0∥Y ≤ sup
x∈B1(0X)

∥Ax∥Y = sup
y∈A(B1(0X))

∥y∥Y =: M < ∞,

where we know that M < ∞ since A(B1(0X)) is bounded. Thus, ∥A∥op ≤ M < ∞.

( ⇐= ) Suppose now that ∥A∥op < ∞. Let E ⊆ X be any bounded set. Then, there is some M < ∞
such that ∥x∥X ≤ M for every x ∈ E. By Problem 5,

∀x ∈ E ∥Ax∥Y ≤ ∥A∥op∥x∥X ≤ M∥A∥op =⇒ sup
x∈E

∥Ax∥Y ≤ M∥A∥op < ∞

Therefore, we get that

sup
y∈A(E)

∥y∥Y ≤ M∥A∥op < ∞,

and so A(E) is bounded. This means that A maps bounded sets of X to bounded sets of Y .
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Problem 9

Show that a linear map A : X → Y between two Banach spaces is bounded iff it is continuous iff it is

continuous at zero (in showing continuity implies boundedness please do not use the TVS theorem from

Chapter 1 but rather do this directly in the context of Banach spaces).

Solution

Proof. (bounded =⇒ continuous) First, suppose that A is bounded. Then, for any x, z ∈ X we know by

linearity and Problem 5 that

∥Ax−Az∥Y = ∥A(x− z)∥Y ≤ ∥A∥op∥x− z∥X

Let x ∈ X be arbitrary, and let ϵ > 0. Then, for any z ∈ X such that ∥x− z∥X < δ := ϵ
∥A∥op

, we have that

∥Ax−Az∥Y ≤ ∥A∥op∥x− z∥X < ∥A∥opδ = ϵ,

and so A is continuous at x. Since this holds for all x ∈ X, the map A is continuous.

(continuous =⇒ continuous at 0) This comes immediately from the definition of continuity.

(continuous at 0 =⇒ bounded) Suppose that A is continuous at 0X . Let ϵ > 0. Then, by definition

of continuity in norm topologies, there exists some δ > 0 such that whenever ∥x − 0X∥X = ∥x∥X ≤ δ, we

have that

∥Ax−A0X∥Y < ϵ =⇒ ∥Ax∥Y < ϵ,

where the implication follows since A sends 0X to 0Y . So, ∥x∥X ≤ δ =⇒ ∥Ax∥Y < ϵ. Let z ∈ X be

arbitrary such that ∥z∥X ≤ 1. Then, by homogeneity of the norm, ∥δz∥X ≤ δ, and so by continuity this tells

us that

∥A(δz)∥Y < ϵ =⇒ δ∥Az∥Y < ϵ =⇒ ∥Az∥Y <
ϵ

δ
,

where we used linearity and homogeneity for the first implication. Since this holds for all z ∈ X with

∥z∥X ≤ 1, taking a supremum tells us that

sup
z∈X

∥z∥X≤1

∥Az∥Y ≤ ϵ

δ
< ∞

Therefore, A is bounded and ∥A∥op ≤ ϵ
δ .
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Problem 10

Show that L∞(R → C) is a Banach space.

Solution

Proof. Define the essential supremum

∥f∥∞ := inf{M ∈ R : |f(x)| ≤ M for a.e. x ∈ R},

and so L∞(R → C) ≡ {f : R → C : ∥f∥∞ < ∞} is the set of all functions from R to C that are bounded

a.e. (actually, it is this space modulo the equivalence relation of functions differing only on a set of measure

0). Let f, g : R → C and α ∈ C be arbitrary. Then we know that for a.e. x ∈ R,

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ∥f∥∞ + ∥g∥∞,

and so it certainly holds that ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞. Next,

∥αf∥∞ = inf{M ∈ R : |αf(x)| ≤ M for a.e. x ∈ R}
= inf{M ∈ R : |α||f(x)| ≤ M for a.e. x ∈ R}

= inf

{
M ∈ R : |f(x)| ≤ M

|α|
for a.e. x ∈ R

}
= |α| inf

{
M

|α|
∈ R : |f(x)| ≤ M

|α|
for a.e. x ∈ R

}
= |α|∥f∥∞

Lastly, if ∥f∥∞ = 0 then |f(x)| ≤ 0 for a.e. x ∈ R, which means that f = 0 almost everywhere. So, f is in

the equivalence class of the constant 0 function, which means that f is the 0 element in L∞(R → C). From
the above, we also see that if f, g ∈ L∞(R → C), then f + g, αf ∈ L∞(R → C) too, and so L∞(R → C)
is a vector space. Furthermore, we have shown that ∥ · ∥∞ on this vector space is homogenous, positive,

and satisfies the triangle inequality, and so this means that L∞(R → C) is a normed vector space. All that

remains to be shown is that it is complete in this norm.

To this end, let {fn}n ⊆ L∞(R → C) be a Cauchy sequence with respect to the ∥ · ∥∞ norm. Firstly,

this tells us that the sequence is bounded. To see this, pick any δ > 0, and then there is some N ∈ N such

that for all n > N we have

δ > ∥fN − fn∥∞ ≥ |∥fN∥∞ − ∥fn∥∞| =⇒ ∥fn∥∞ ≤ ∥fN∥∞ + δ

So, for any m ∈ N we know that ∥fm∥∞ ≤ max{∥f1∥∞, ..., ∥fN∥∞, ∥fN∥∞ + δ} =: K < ∞, and so the

sequence is bounded. Then, for a.e. x ∈ R and any n,m ∈ N we have that

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞,

and so the sequence {fn(x)}n is Cauchy in R. Since R is complete, this means that fn(x) converges to some

point in R, which we call f(x). Since this holds for a.e. x ∈ R, we see that fn → f pointwise a.e. for some

function f : R → C. It remains to be shown that ∥f∥∞ < ∞ and that ∥fn − f∥∞ → 0 as n → ∞.

For the first result, let ϵ > 0. Then, for a.e. x ∈ R there exists an Nx ∈ N such that |f(x)− fNx
(x)| < ϵ by

definition of pointwise convergence. So, by the reverse triangle inequality,

||f(x)| − |fNx(x)|| ≤ |f(x)− fNx(x)| < ϵ =⇒ |f(x)| ≤ |fNx(x)|+ ϵ ≤ ∥fNx∥∞ + ϵ ≤ K + ϵ,
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where we used the definition of the essential supremum and the fact that the sequence is bounded (note

that the above doesn’t hold everywhere, but only a.e.). So, |f(x)| ≤ K + ϵ for a.e. x ∈ R, and so

∥f∥∞ ≤ K + ϵ < ∞; thus, f ∈ L∞(R → C).

Now, we must show that ∥fn − f∥∞ → 0. Let ϵ > 0 be arbitrary. Select a subsequence {fnk
}k∈N ⊆ {fn}n∈N

such that

∥fnk+1
− fnk

∥∞ ≤ ϵ

2k
∀k ∈ N,

which we may do by the Cauchy criterion (pick nk = N for the N such that for all n,m ≥ N we know

∥fn − fm∥∞ ≤ ϵ2−k). Since fn → f pointwise a.e. and so fnk
→ f pointwise a.e., we may express

f(x) = fnk
(x) +

∞∑
m=k

(fnm+1(x)− fnm(x))

for any k ∈ N via a telescoping sum. So, for k ∈ N we have

f(x)− fnk
(x) =

∞∑
m=k

(fnm+1(x)− fnm(x))

Since this holds for a.e. x ∈ R, we have that

∥f − fnk
∥∞ =

∥∥∥∥∥
∞∑

m=k

(fnm+1
− fnm

)

∥∥∥∥∥
∞

≤
∞∑

m=k

∥fnm+1
− fnm

∥∞ ≤
∞∑

m=k

ϵ

2m
≤

∞∑
m=1

ϵ

2m
= ϵ,

where the first inequality comes from the infinite triangle inequality (which we can apply because | · | is
continuous and thus so is ∥ · ∥∞), the second inequality comes from our selection of the subsequence, and

the third inequality is because it is a sum of nonnegative terms. Thus, fnk
→ f in the ∥ · ∥∞ norm. Now,

let δ > 0. Then, there is some N ∈ N such that for all n,m > N we have ∥fn − fm∥∞ < δ
2 by the Cauchy

criterion. By the fact that ∥fnk
− f∥∞ → 0, there is some M ∈ N such that for all k with nk > M , we know

∥fnk
− f∥∞ < δ

2 . So, for any n > N , we know that

∥fn − f∥∞ ≤ ∥fn − fnk
∥∞ + ∥fnk

− f∥∞ <
δ

2
+

δ

2
= δ ∀k s.t. nk > max{N,M}

Since such an N exists for any δ > 0, we find that ∥fn− f∥∞ → 0 as n → ∞. Since this holds for all Cauchy

sequences, the space is complete.
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Problem 11

Let a normed vector space (X, ∥·∥) be given. Show that (X, ∥·∥) is complete iff, for any sequence {xn}n∈N ⊆
X, (∑

n∈N
∥xn∥ < ∞

)
=⇒

(
lim

N→∞

N∑
n=1

xn exists and equals some x ∈ X

)

Solution

Proof. ( =⇒ ) Suppose first that (X, ∥ · ∥) is complete. Let {xn}n∈N ⊆ X be a sequence such that∑
n∈N ∥xn∥ < ∞. Define zk :=

∑k
n=1 xn ∈ X; we want to show that the sequence {zk}k∈N is Cauchy. So,

let ϵ > 0. Let N be large enough that
∑∞

n=N ∥xn∥ < ϵ, which can be done since infinite sums with finite

value have arbitrarily small tails. Then, for any k, l > N with k < l we have that

∥zk − zl∥ =

∥∥∥∥∥
l∑

n=k

xn

∥∥∥∥∥ ≤
l∑

n=k

∥xn∥ ≤
∞∑

n=N

∥xn∥ < ϵ,

where the first equality is by definition of the zk’s, the first inequality uses the triangle inequality, the second

inequality uses that k > N and l < ∞ and that we are summing nonnegative terms, and the last inequality

uses our selection of N . Since such an N exists for all ϵ, we find that {zk}k is Cauchy. So, by completeness

of X the sequence converges to some x ∈ X. In other words,

lim
N→∞

N∑
n=1

xn = lim
N→∞

zN = x

for some x ∈ X, which is what we wanted to show.

( ⇐= ) Suppose that the big implication at the top of the page holds for all sequences. Let {xn}n∈N ⊆ X be

a Cauchy sequence; we want to show that xn → x for some x ∈ X to show completeness. For each k ∈ N, let
Nk be such that for all n,m ≥ Nk we have ∥xn − xm∥ ≤ 1

2k
. Suppose without loss of generality that {Nk}k

is strictly monotonically increasing. For each k ∈ N define

dk := xNk+1
− xNk

Then, by construction we have that ∥dk∥ ≤ 1
2k

for all k. So,∑
k∈N

∥dk∥ ≤
∞∑
k=1

1

2k
= 1 < ∞

So, we may apply the implication to the sequence {dk}k and see that

lim
m→∞

m∑
k=1

dk = x

for some x ∈ X, where the above limit is taken with respect to the norm ∥ · ∥. Now, for every m ∈ N we

have that
m∑

k=1

dk =

m∑
k=1

(xNk+1
− xNk

) = xNm+1 − xN1 ,

and so the existence of the limit means that

x+ xN1 = lim
m→∞

xNm+1 = lim
n→∞

xn,

where for the last equality we used the monotonicity of {Nk}k. In partuclar, we find that there is some

x̃ := x+ xN1 ∈ X for which x̃ = limn→∞ xn. Since such a result is true for every Cauchy sequence, we find

that (X, ∥ · ∥) is complete.
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Problem 12

Show that the 1
3 -Cantor set is nowhere dense.

Solution

Proof. Let C ⊆ [0, 1] denote the 1
3 -Cantor set. We can write

Cn :=

3n−1−1⋃
k=0

([
3k

3n
,
3k + 1

3n

]
∪
[
3k + 2

3n
,
3k + 3

3n

])
, C =

∞⋂
n=1

Cn

Each Cn =
⋃3n−1

k=0

([
3k
3n ,

3k+1
3n

]
∪
[
3k+2
3n , 3k+3

3n

])
is a finite union of closed sets and is therefore closed, and

so C is an intersection of closed sets and is itself closed. So, to show that C is nowhere dense it suffices

to show that it has empty interior. To this end, suppose by way of contradiction that x ∈ int(C); clearly,
x /∈ {0, 1}. Then, there is some δ > 0 for which (x − δ, x + δ) ⊆ C. Suppose without loss of generality

that δ = 3−n for some n ∈ N, which we can do because we can shrink δ arbitrarily. We want to show

that (x − δ, x + δ) ∩ ([0, 1] \ Cn+1) is nonempty, as this will show that (x − δ, x + δ) ̸⊆ Cn+1 and therefore

(x− δ, x+ δ) ̸⊆ C. We note that

[0, 1] \ Cn+1 = [0, 1] \

(
3n−1⋃
k=0

([
3k

3n+1
,
3k + 1

3n+1

]
∪
[
3k + 2

3n+1
,
3k + 3

3n+1

]))

So, for any k < 3n it will hold that (
3k + 1

3n+1
,
3k + 2

3n+1

)
⊆ [0, 1] \ Cn+1

In words, the above states that any element of one of the removed middle thirds will no longer be in Cn+1.

Plugging in the relation between n and δ, we see that for every k < 1
δ we have(

kδ +
δ

3
, kδ +

2δ

3

)
⊆ [0, 1] \ Cn+1

Note that

[0, 1) =

1
δ−1⊔
k=0

[kδ, (k + 1)δ),

where the above is a disjoint union. Select the k < 1
δ such that x ∈ [kδ + (k + 1)δ) = [kδ, kδ + δ). Then, it

certainly holds that

[kδ, kδ + δ) ⊆ (x− δ, x+ δ)

In particular, (x− δ, x+ δ) ∩
(
kδ + δ

3 , kδ +
2δ
3

)
must be nonempty. Therefore, (x− δ, x+ δ) ̸⊆ Cn+1, and so

(x− δ, x+ δ) ̸⊆ C. This is a contradiction, and thus C has empty interior. Since it is closed, we get that the
1
3 -Cantor set is nowhere dense in [0, 1].

14



Evan Dogariu MAT 520: Problem Set 2 Problem 13

Problem 13

Prove that if X is a locally compact Hausdorff space and {Vj}j∈N are open dense sets then V :=
⋂

j∈N Vj is

also dense in X.

Solution

Proof. We start with a useful lemma.

Lemma 1. Let X be a locally compact Hausdorff space. For any nonempty U ∈ Open(X), there is a

nonempty W ∈ Open(X) such that W is compact and W ⊆ U .

Proof of Lemma 1. Let x ∈ U . Then, by local compactness there is a V ∈ Open(X) for which V is

compact and x ∈ V . Define K := V ∩ UC ; then, K is a closed (since U is open) subset of a compact set

and is itself compact. Also, x /∈ K since x ∈ U . Now, we may apply the Hausdorff condition between x

and every point of K as follows: for every k ∈ K we may find two open sets Ak, Bk ∈ Open(X) such that

x ∈ Ak, k ∈ Bk, and Ak ∩ Bk = ∅ =⇒ Ak ⊆ BC
k =⇒ Ak ⊆ BC

k =⇒ Ak ∩ Bk = ∅ (here, we used that

the closure is the smallest closed superset, and BC
k is a closed superset). We note that K ⊆

⋃
k∈K Bk is an

open cover of a compact set, and so there exists a finite subcover; i.e. there are some k1, . . . , kN ∈ K such

that K ⊆
⋃N

n=1 Bkn . Now, define A :=
⋂N

n=1 Akn . Certainly, A is open and nonempty (since A is a finite

intersection of open sets and x ∈ A). Furthermore, for all n = 1, . . . , N we have

A ∩Bkn ⊆ Akn ∩Bkn = ∅,

and so A ∩K = ∅ =⇒ A ∩ V ∩ UC = ∅ =⇒ A ∩ V ⊆ U . Letting W := A ∩ V , we find that W is open

(since A and V are), W is nonempty (since x ∈ A and x ∈ V ), and W = A ∩ V ⊆ A ∩ V ⊆ U . Lastly, since

W ⊆ V , we have that W is a closed subset of a compact set and is thus compact. So, W satisfies all the

desired properties, and the lemma is proved.

We may now proceed with proving the main result. Let U ∈ Open(X) be arbitrary. We want to show

that U ∩ V ̸= ∅. Note that U ∩ V1 is open since V1 is open and nonempty since V1 is dense; so, we may

apply Lemma 1 to find a nonempty W1 ∈ Open(X) such that W1 ⊆ U ∩ V1 is compact. Similarly, since W1

is open and V2 is open and dense, there is a nonempty W2 ∈ Open(X) for which W2 ⊆ W1 ∩ V2 is compact.

Repeating, we find a sequence of nonempty open sets {Wn}n ⊆ Open(X) where for all n ∈ N, Wn is compact

and

Wn+1 ⊆ Wn ∩ Vn+1 ⊆ U ∩
n+1⋂
j=1

Vj

Define

W :=
⋂
n∈N

Wn

Then, we have that W ⊆ U ∩
⋂

j∈N Vj = U ∩ V , and so all we must show is that W is nonempty. Clearly,

W is compact, since it is a closed subset of a compact set. Suppose by way of contradiction that W were

empty. Then, for all x ∈ W1 there must be some Nx > 1 such that x /∈ WNx
=⇒ x ∈ WNx

C
. Thus, we

have that

W1 ⊆
⋃
n∈N
n>1

Wn
C

Since each Wn
C

is open (as Wn is closed), this is an open cover of a compact set, and so it yields a finite

subcover {Wnk

C}Nk=1. So, DeMorgan’s laws give that

W1 ⊆
N⋃

k=1

Wnk

C
=⇒ W1

C ⊇
N⋂

k=1

Wnk
= WnN

,

15
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where the last equality uses that Wn+1 ⊆ Wn for all n ∈ N, and so the sequence is decreasing. However,

because the sequence is decreasing we know that WnN
⊆ W1, a contradiction (WnN

cannot be a subset of a

set and its complement at the same time). So, W must be nonempty. Thus, U ∩ V is nonempty. Since this

holds for all U ∈ Open(X), we see that V is dense as desired.

16
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Problem 15

Show that if X is an infinite-dimensional TVS which is the union of countably many finite-dimensional

subspaces, then X is of Baire’s first category. Conclude that no infinite-dimensional Banach space has a

countable Hamel basis.

Solution

Proof. We start with the following lemma.

Lemma 2. If X is a TVS and E ⊊ X is a proper vector subspace, then E has empty interior.

Proof of Lemma 2. Suppose by way of contradiction that there were some x ∈ int(E). Then,

there must exist some U ∈ Nbhd(x) such that U ⊆ E. Since E is closed under vector addition, then

V = U − {x} ∈ Nbhd(0X) and V ⊆ E. Let g ∈ X \ E, which can be done because E ⊊ X. We know by

Theorem 1.15(a) in Rudin that g ∈ rV for some r > 0, and so 1
r g ∈ V . Therefore, 1

r g ∈ E since V ⊆ E.

Since E is closed under scalar multiplication, this means that g ∈ E, contradicting our choice of g. So, there

can be no x ∈ int(E).

Let

X =
⋃
n∈N

En

be as described, where each En is a finite-dimensional subspace. By Theorem 1.21(b) in Rudin, each En

is closed. Furthermore, since each En is finite-dimensional but X isn’t, we know that each En is a proper

subspace. By Lemma 2, each En has empty interior, which means that each En is nowhere dense (as

int(En) = int(En) = ∅). Thus, X is a countable union of nowhere dense sets, and it meagre as desired.

We now turn to the last result. Suppose by way of contradiction that X is an infinite-dimensional Ba-

nach space with a countable Hamel basis {xk}k∈N. Let {In}n∈N ⊆ 2N denote the set of all finite subsets of

N (we know this to be countable). For each n ∈ N, define

En := span{xk : k ∈ In}

Then, each En is a finite-dimensional vector subspace of X, since it is the span of finitely many elements of

X. Furthermore, for any x ∈ X, we know by definition of a Hamel basis that x =
∑

k∈In
αkxk for some In

(i.e. x lies in the span of some finite subset of the Hamel basis). So, x ∈ En, and we see

X ⊆
⋃
n∈N

En =⇒ X =
⋃
n∈N

En

This means that X is an infinite-dimensional TVS who can be written as a countable union of finite-

dimensional subspaces; the first result of this problem then gives that X is of Baire’s first category. However,

X is a Banach space, which means it is of Baire’s second category by the Baire Category Theorem. This is

a contradiction, and so X cannot have a countable Hamel basis.

17
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Problem 16

Find a subset S ⊆ [0, 1] which is of Baire’s first category but whose Lebesgue measure equals 1.

Solution

Proof. Let m(·) denote the Lebesgue measure. We start by creating a monotonic family of dense subsets

of [0, 1] whose Lebesgue measure decreases to 0. To do so, let {qn}n∈N be an enumeration of the rationals in

Q ∩ (0, 1) and for each ϵ > 0 define

Eϵ := (0, 1) ∩

(⋃
n∈N

Bϵ/2n+1(qn)

)
⊆ [0, 1],

where Bϵ/2n+1(qn) =
(
qn − ϵ

2n+1 , qn + ϵ
2n+1

)
is exactly what you expect. Also, define

Fϵ := [0, 1] \ Eϵ

for notation. We have the following properties:

1. Each Eϵ is open. So, each Fϵ is closed. Furthermore, each Fϵ has empty interior. To see this, suppose

by way of contradiction that x ∈ int(Fϵ). Then, there must be some neighborhood of x contained in

Fϵ, which by density of the rationals means that qn ∈ Fϵ for some n. However, qn ∈ Eϵ = [0, 1] \Fϵ for

all n, a contradiction. Thus, each Fϵ is closed with empty interior, and so is nowhere dense.

2. If 0 < δ < ϵ, then clearly Bδ/2n+1(qn) ⊆ Bϵ/2n+1(qn) for all n, and so Eδ ⊆ Eϵ. Then, Fϵ ⊆ Fδ.

3. Each Eϵ and therefore each Fϵ is obviously measurable. By countable subadditivity of the measure,

we have for all ϵ > 0 that

m(Eϵ) ≤ m

(⋃
n∈N

Bϵ/2n+1(qn)

)
≤
∑
n∈N

m(Bϵ/2n+1(qn)) =
∑
n∈N

ϵ

2n
= ϵ

So,

1− ϵ ≤ 1−m(Eϵ) = m(Fϵ) ≤ 1

Now, define the set

S :=
⋃
k∈N

F 1
k
⊆ [0, 1]

It is certainly measurable since it is a countable union of measurable sets. By property 1, S is a countable

union of nowhere dense sets, and so it is meagre. By property 2, the family {F 1
k
}k is a monotonically

increasing family of sets, and so the continuity of measures from below guarantees that

m(S) = lim
k→∞

m(F 1
k
) ≥ lim

k→∞

(
1− 1

k

)
= 1,

where the inequality above comes from property 3. Since S ⊆ [0, 1] =⇒ m(S) ≤ 1, we get that S has

Lebesgue measure 1.

18
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Problem 17

For any f ∈ L2(S1), let f̂ : Z → C be given by

f̂(n) :=
1

2π

∫
θ∈[−π,π]

f(eiθ)e−inθdθ (n ∈ Z)

For each n ∈ N, define Λn : L2(S1) → C via

Λnf :=

n∑
k=−n

f̂(k) (f ∈ L2(S1))

Show that

D :=
{
f ∈ L2(S1) : lim

n→∞
Λnf exists

}
is a dense subspace of L2(S1) of Baire’s first category.

Solution

Proof. We start by showing that D is a subspace. We know that 0 ∈ D since λn0 = 0 for all n. Next, for

any f, g ∈ D and any α ∈ C, it holds that for all n ∈ Z,

̂(f + αg)(n) =
1

2π

∫
θ∈[−π,π]

(f + αg)(eiθ)e−inθdθ

=
1

2π

∫
θ∈[−π,π]

f(eiθ)e−inθdθ +
1

2π

∫
θ∈[−π,π]

αg(eiθ)e−inθdθ

= f̂(n) + αĝ(n),

and so Λn(f + αg) = Λnf + αΛng (note that this proves that Λn is linear for each n). By linearity of the

limit, since limn→∞ Λnf and limn→∞ Λng both exist, so too does limn→∞ Λn(f + αg), and so f + αg ∈ D.

To show that D is dense, we will show that it has a dense subset. Let

S :=
{
f ∈ L2(S1) : f is a Schwartz function

}
denote the Schwartz space, where we say f is a Schwartz function if f is smooth (infinitely differentiable) s.t.

for all multi-indices α, β, we know xα
(

∂
∂x

)β
f is bounded. We know that S is dense in L2(S1) (see Lemma

1.2 from Chapter 5 of Stein III). Furthermore, because f is differentiable at ei0 (since it is differentiable

everywhere), we know that the Fourier series at ei0 converges (by Theorem 2.1 in Chapter 3 of Stein I).

Namely, we know that for all f ∈ S,

lim
n→∞

Λnf = lim
n→∞

n∑
k=−n

f̂(k) = lim
n→∞

n∑
k=−n

f̂(k)eik0 exists

This result is the pointwise convergence of the Fourier series at points of differentiability. Thus, S ⊆ D.

Since D contains a subset that is dense in L2(S1), so too is D. Note that we could have used a larger class

of functions (such as C1(S1) ⊆ L2(S1) also being dense and a subset of D), but I found a reference in Stein

for Schwartz functions.

Now, we wish to show that D is meagre. To this end, write

D =
⋃
R∈N

DR,

19
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where each DR ⊆ D is defined by

DR :=
{
f ∈ L2(S1) : |Λnf | ≤ R for all n

}
We may do this since an infinite series in C converges if and only if the sequence of partial sums is bounded.

We claim that each DR is closed with empty interior, and so is nowhere dense.

We first show closure; to this end, let R ∈ N be arbitrary and let {fj}j∈N ⊆ DR be a sequence such

that fj → f in the L2 norm for some f ∈ L2(S1). We wish to show that f ∈ DR as well. Since fj → f in

the L2 norm, by Holder’s inequality and the fact that the domain is finite measure we may say that fj → f

in the L1 norm as well. Let n ∈ N be arbitrary, and let ϵ > 0. Then, we may find a N ∈ N large enough

that ∥f − fN∥L1 < ϵ
2n , and so by linearity of Λn and linearity of the integral,

|Λnf − ΛnfN | = |Λn(f − fN )| = 1

2π

∫
θ∈[−π,π]

∣∣f(eiθ)− fN (eiθ)
∣∣ ∣∣∣∣∣

n∑
k=−n

eikθ

∣∣∣∣∣ dθ
≤ 1

2π

∫
θ∈[−π,π]

∣∣f(eiθ)− fN (eiθ)
∣∣ · 2ndθ = 2n∥f − fN∥L1 < ϵ

So,

|Λnf | = |ΛnfN + Λn(f − fN )| ≤ |ΛnfN |+ |Λn(f − fN )| ≤ R+ ϵ,

where we used that |ΛnfN | ≤ R since fN ∈ DR. Since this holds for all ϵ > 0, we know that |Λnf | ≤ R.

Since this holds for all n, we find that f ∈ DR, and so DR is closed.

We now wish to show that DR has empty interior. Write I := int(DR) to be the interior of DR for notation,

and suppose by way of contradiction that I ̸= ∅. Let f ∈ I. Define g ∈ L2(S1) to be the function with

Fourier coefficients of the form ĝ(k) =
∣∣ 1
k

∣∣. Then, clearly g /∈ D since the harmonic sum doesn’t converge,

and so g /∈ I. We claim that f + 1
j g /∈ I for all j ∈ N. To this end, note that for all n ∈ N, we have∣∣∣∣Λn

(
f +

1

j
g

)∣∣∣∣ = ∣∣∣∣Λnf +
1

j
Λng

∣∣∣∣ ≥ 1

j
|Λng| − |Λnf | ≥

1

j
2 ln(n)− |Λnf | ≥

2

j
ln(n)−R,

where the first inequality is the reverse triangle inequality, the second uses the lower bound
∑n

k=1
1
k ≥ ln(n),

and the last inequality uses that |Λnf | ≤ R. So, for each j ∈ N, if we select an n > eRj we find that∣∣∣∣Λn

(
f +

1

j
g

)∣∣∣∣ > 2

j
Rj −R = R,

and so it must be that f + 1
j g /∈ DR. However, we know that∥∥∥∥(f +

1

j
g

)
− f

∥∥∥∥
L2

=
1

j
∥g∥L2 → 0,

and so f + 1
j g → f in L2. Thus, we have a sequence of elements

{
f + 1

j g
}
j∈N

⊆ IC that converges in L2 to

an element f , and so f ∈ IC since IC is closed (as I is open). This is a contradiction, and so DR must have

empty interior. Thus, DR is nowhere dense. Since D can be written as a countable union of nowhere dense

sets, it is meagre.
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Problem 18

Let X be a Banach space and Y a subspace of X whose complement is of Baire’s first category. Show that

Y = X.

Solution

Proof. By definition of sets of Baire’s first category, write

X \ Y =
⋃
n∈N

En

where each En is nowhere dense. We will show that Y must have nonempty interior. To this end, suppose

by way of contradiction that int(Y ) = ∅. Then, for every U ∈ Open(X) we have that U ∩ (X \ Y ) ̸= ∅ (if

this weren’t the case, then we would find a U ⊆ Y and Y would have nonempty interior). In particular, this

means that X \ Y is dense in X, and so X \ Y = X. Since the closure of a countable union is the countable

union of the closures, we find that

X = X \ Y =
⋃
n∈N

En

Clearly, since each En is nowhere dense it holds that En is also nowhere dense. So, X is a countable union

of nowhere dense sets, and is therefore meagre. However, the Baire Category Theorem tells us that since X

is a Banach space, it cannot be meagre. This is a contradiction, and so Y has nonempty interior. From here,

we simply apply the contrapositive of Lemma 2 and get that Y cannot be a proper subspace of X. Thus,

Y = X.
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Problem 19

Let X,K be metric spaces with K compact. Assume that f : X → K is a map with Γ(f) ∈ Closed(X ×K).

Show that f is continuous.

Solution

Proof. Note that f is continuous if, for every A ⊆ X, we know that

f(A) ⊆ f(A)

So, let A ⊆ X and let x ∈ A. Then, there is some sequence {xn}n ⊆ A for which xn → x. Note

that K is a compact metric space, and so it is sequentially compact. As {f(xn)}n ⊆ K is a sequence of

points in a sequentially compact space, it therefore has a convergent subsequence {f(xnk
)}k∈N such that

f(xnk
) → y ∈ K for some y ∈ K as k → ∞. Since limk→∞ xnk

= limn→∞ xn = x, we get that

lim
k→∞

(xnk
, f(xnk

)) = (x, y) ∈ X ×K,

where the above convergence is in the product topology on X × K (we have coordinatewise convergence

on both coordinates). However, each element (xnk
, f(xnk

)) of the above sequence is an element of Γ(f),

which by closure of Γ(f) means that its limit point (x, y) ∈ Γ(f). This necessarily means that y = f(x).

So, fnk
→ f(x) in K as k → ∞, and so f(x) is a limit point of a sequence of elements of f(A). Thus,

f(x) ∈ f(A). We have shown that for every x ∈ A, f(x) ∈ f(A). Therefore, for all A ⊆ X,

f(A) ⊆ f(A)

So, f is continuous as desired.
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