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Evan Dogariu MAT 520: Problem Set 11 Problem 1

Problem 1

Let X be the position operator on H := L2(R). Show that

D(X) :=

{
ψ ∈ H :

∫
R
x2|ψ(x)|2dx <∞

}
is the largest vector space V such that for each ψ ∈ V , Xψ ∈ L2(R).

Solution

Proof. Suppose by way of contradiction that there were some ψ ∈ H such that ψ /∈ D(X) yet Xψ ∈ L2(R).
We note that

∥Xψ∥2 =

∫
R
|xψ(x)|2dx =

∫
R
x2|ψ(x)|2dx = ∞,

where we know that this equals ∞ because ψ /∈ D(X). This is a contradiction since Xψ ∈ L2(R) =⇒
∥Xψ∥2 <∞.
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Problem 2

Let H := L2([0, 1]). Define

A := {ψ ∈ H : ψ is absolutely continuous and ψ′ ∈ H}

Let A1 and A2 both be defined as ψ 7→ −iψ′ on the respective domains

D(A1) := A
D(A2) := {ψ ∈ A : ψ(0) = 0}

Show that both domains are dense in H and that A1, A2 are closed. Finally, show that

σ(A1) = C
σ(A2) = ∅

Solution

Proof. We will show that D(A2) is dense in H, from which density of D(A1) will follow. Note that the set

C∞([0, 1]) of smooth functions on [0, 1] is dense in H; so, if we can approximate an arbitrary f ∈ C∞([0, 1])

with elements of D(A2) then density follows by a standard ε
3 argument. Consider the sequence of functions

fn : [0, 1] → C given by

fn(x) :=

{
e−1/(nx)f(x) x > 0

0 x = 0

Note that each |fn(x)| ≤ |f(x)| for all x, and so it is in H because f is continuous and therefore bounded

since we are on a compact domain. Furthermore, each fn is has fn(0) = 0 and is certainly absolutely

continuous with bounded (and so square-integrable) derivative via fn(x) = f(x)
∫ x

0
e−1/(nt)/(nt2)dt for all

x; so, fn ∈ D(A2). Let M be such that |f | ≤M . For any ε > 0, we see that for n > N ,

∥fn − f∥2 =

∫ 1

0

|fn(x)− f(x)|2dx ≤M2

∫ 1

0

|e−1/(nx) − 1|2dx

This integrand is bounded above by (|1| + |1|)2 = 4, and so by dominated convergence and the fact that

e−1/(nx) converges to 1 pointwise a.e. as n → ∞, we see that ∥fn − f∥ → 0, which means that D(A2) is

dense in H.

To see closedness of A1, let {(φn, A1φn)}n ⊆ Γ(A1) converge to some (φ,ψ) ∈ H × H; we claim that

(φ,ψ) ∈ Γ(A1) as this will imply that Γ(A1) is closed and thus A1 is closed. We know that φn → φ and

A1φn → ψ =⇒ φ′
n → iψ. We will show that the convergence φn → φ is uniform by showing it is uniformly

Cauchy. Let ε > 0 and x ∈ [0, 1] be arbitrary. Then, for all n,m ∈ N

|φn(x)− φm(x)| =
∣∣∣∣φn(0) +

∫ x

0

φ′
n(t)dt− φm(0)−

∫ x

0

φ′
m(t)dt

∣∣∣∣
≤ |φn(0)− φm(0)|+

∫ x

0

|φ′
n(t)− φ′

m(t)|dt

≤ |φn(0)− φm(0)|+
∫ 1

0

|φ′
n(t)− φ′

m(t)|dt

≤ |φn(0)− φm(0)|+ ∥φ′
n − φ′

m∥,

where for the last line we used the Holder inequality ∥ · ∥L1 ≤ ∥ · ∥L2 . Since φk(0) = φk(x)−
∫ x

0
φ′
k(t)dt, we

see

|φn(0)− φm(0)|2 =

∫ 1

0

|φn(0)− φm(0)|2dt =
∫ 1

0

∣∣∣∣φn(t)− φm(t) +

∫ t

0

(φ′
m(s)− φ′

n(s))ds

∣∣∣∣2 dt
Problem 2 continued on next page. . . 3



Evan Dogariu MAT 520: Problem Set 11 Problem 2 (continued)

So, letting ξk be the map sending t 7→
∫ t

0
φ′
k(s)ds,

|φn(0)− φm(0)| = ∥φn − φm + ξn − ξm∥ ≤ ∥φn − φm∥+ ∥ξn − ξm∥

We have already seen that |ξn(x)−ξm(x)| ≤ ∥φ′
n−φ′

m∥ by the Holder estimate, and so ∥ξn−ξm∥ ≤ ∥φ′
n−φ′

m∥
as well. Combining everything, we see that

|φn(x)− φm(x)| ≤ ∥φn − φm∥+ 2∥φ′
n − φ′

m∥

Since both of these sequences converge and therefore are Cauchy, certainly the convergence φn → φ is

uniform. We now claim that φ(x) = φ(0) +
∫ x

0
(iψ(t))dt for a.e. x. Let ε > 0; then, there is some n ∈ N

independent of x for which |φ(x)−φn(x)|, |φ(0)−φn(0)|, and ∥φ′
n − iψ∥ are all ≤ ε

3 for all x ∈ [0, 1]. Then,

for all x, ∣∣∣∣φ(x)− φ(0)−
∫ x

0

(iψ(t))dt

∣∣∣∣ = ∣∣∣∣φ(x)− φ(0)−
∫ x

0

(iψ(t))dt+ φn(x)− φn(x)

∣∣∣∣
≤ |φ(x)− φn(x)|+

∣∣∣∣φn(x)− φ(0)−
∫ x

0

(iψ(t))dt

∣∣∣∣
≤ ε

3
+ |φn(0)− φ(0)|+

∣∣∣∣∫ x

0

(φ′
n(t)− iψ(t))dt

∣∣∣∣
≤ 2ε

3
+

∫ 1

0

|φ′
n(t)− iψ(t)|dt

≤ 2ε

3
+ ∥φ′

n − iψ∥ ≤ ε,

where to get the last line we again used our favorite Holder estimate. Since this holds for all ε > 0, we

see that
∣∣φ(x)− φ0 −

∫ x

0
(iψ(t))dt

∣∣ for all x, and so φ(x) = φ(0) +
∫ x

0
(iψ(t))dt for all x. Therefore, φ is

absolutely continuous and φ′ = iψ. So, φ ∈ D(A1) and (φ,ψ) ∈ Γ(A1), from which closedness follows.

The proof that A2 is closed goes similarly. Let {(φn, A2φn)}n ⊆ Γ(A2) converge to some (φ,ψ) ∈ H × H;

we claim that (φ,ψ) ∈ Γ(A2). We know that φn → φ and A2φn → ψ =⇒ φ′
n → iψ. The exact same proof

as above shows that φn → φ uniformly and therefore that φ(x) = φ(0) +
∫ x

0
(iψ(t))dt, which means that φ

is absolutely continuous and −iφ′ = ψ. The last thing we must show is that φ(0) = 0, which follows clearly

from the fact that φn → φ uniformly and so φ(0) = limn φn(0) = 0. So, φ ∈ D(A2) and so (φ,ψ) ∈ Γ(A2).

We conclude by showing the spectral results. For A1, note that for any λ ∈ C we have that the map

ψλ sending x 7→ eiλx is absolutely continuous and so ψλ ∈ D(A1) (since e
iλx = 1+ iλ

∫ x

0
eiλtdt) and we have

that

(A1 − λ1)ψλ = −i(iλ)ψλ − λψλ = 0 =⇒ ψλ ∈ ker(A1 − λ1) =⇒ λ ∈ σ(A1)

So, σ(A1) = C. For A2, we claim that ρ(A2) = C. To see this, we will simply show that the resolvent

(A2 − λ1)−1 exists for every λ ∈ C. Equivalent, we show that for each λ ∈ C and each ψ ∈ H, the equation

(A2 − λ1)φ = ψ

has a unique solution φ ∈ D(A2). Let Mλ : D(A2) → D(A2) be the multiplication operator sending

ξ(x) 7→ eiλxξ(x); this is clearly a bijection. So, we want to show that the equation

(A2 − λ1)Mλξ = ψ

has a unique solution ξ ∈ D(A2). Since (Mλξ)
′(x) = eiλxξ′(x) + iλeiλxξ(x), the above differential equation

reads

−ieiλxξ′(x)− i2λeiλxξ(x)− λeiλxξ(x) = ψ(x) (ξ(0) = 0)

Problem 2 continued on next page. . . 4



Evan Dogariu MAT 520: Problem Set 11 Problem 2 (continued)

⇐⇒ ξ′(x) = ie−iλxψ(x) (ξ(0) = 0)

⇐⇒ ξ(x) =

∫ x

0

ie−iλtψ(t)dt

This ξ ∈ D(A2) defined above is the unique solution, which means that (A2 − λ1) is invertible and so

λ ∈ ρ(A2). Thus, σ(A2) = 0.
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Problem 3

Show that if A is a symmetric operator on a Hilbert space H then the following are equivalent:

(a) A is essentially self-adjoint.

(b) ker(A∗ ± i1) = {0}.

(c) im(A± i1) = H.

Solution

Proof. (a =⇒ b) Suppose first that A is essentially self-adjoint. Then, A is self-adjoint. So,

ker((A)∗ ± i1) = {0}

by applying Theorem 11.26 in the lecture notes to A. By Theorem 11.17 in the lecture notes, (A)∗ = A∗,

which means that

ker(A∗ ± i1) = {0}

as desired.

(b =⇒ c) Suppose now that ker(A∗ ± i1) = {0} =⇒ ker((A)∗ ± i1) = {0}, where the equality fol-

lows from Theorem 11.17. Then, again applying Theorem 11.26 to A, we see that

im(A± i1) = H

Note that we certainly have that A± i1 is closable and with the same domain as A, and so

A± i1 = (A± i1)∗∗ = A∗∗ ± i1 = A± i1

Thus,

im(A± i1) = H

Let T := A ± i1 for notation. Write Γ(T ) = {(φ, Tφ) : φ ∈ D(T )} for the graph of T . Then, by Claim

11.11 in the lecture notes we know that Γ(T ) = Γ(T ). Since im(T ) = H, for every ψ ∈ H there is an element

φ ∈ D(T ) and a sequence {(φn, Tφn)}n∈N ⊆ Γ(T ) such that Tφ = ψ and

(φn, Tφn) → (φ,ψ)

In particular, we see that Tφn → ψ, which means that ψ ∈ im(T ). Since this holds for all ψ ∈ H, we see

that im(A± i1) = H.

(c =⇒ a) Again let T := A ± i1 for notation. Suppose that im(T ) = H. Let ψ ∈ ker(T ∗) = ker(A∗ ∓ i1)

be arbitrary. Then,

T ∗ψ = 0 =⇒ ⟨T ∗ψ,φ⟩ = 0 ∀φ ∈ D(T ) =⇒ ⟨ψ, Tφ⟩ = 0 ∀φ ∈ D(T ) =⇒ ψ ∈ im(T )⊥

By Claim 7.8 in the lecture notes, im(T )⊥ = (im(T ))⊥ = H⊥ = {0}. So, ψ = 0, and therefore

ker(A∗ ± i1) = {0}

Since A∗ = (A)∗, we find that A is closed and ker((A)∗ ± i1) = {0}. So, by Theorem 11.26 in the lecture

notes, A is self-adjoint. Thus, A is essentially self-adjoint.
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Problem 4

Let A := −i∂ on

D(A) := {ψ ∈ A : ψ(0) = ψ(1) = 0}

with A as above.

(a) Show that A is symmetric as an operator A : D(A) → L2([0, 1]).

(b) Calculate A∗ (along with D(A∗)) and conclude A is closed, symmetric but not self-adjoint.

(c) For any α ∈ C, |α| = 1, define Aα := −i∂ on the domain

D(Aα) := {ψ ∈ A : ψ(0) = αψ(1)}

Show that Aα is self-adjoint, and that it is an extension of A, and is extended by A∗:

A ⊆ Aα ⊆ A∗

Conclude that A has uncountably many self-adjoint extensions.

Solution

Proof. (a) To see that it is symmetric, let ψ,φ ∈ D(A). We explicitly compute via integration by parts that

⟨ψ,Aφ⟩ =
∫ 1

0

ψ(x)(−iφ′(x))dx

= [ψ(x)(−iφ(x))]1x=0 −
∫ 1

0

ψ′(x)(−iφ(x))dx

=

∫ 1

0

−iψ′(x)φ(x)dx

= ⟨Aψ,φ⟩ ,

where we used that ψ(0) = ψ(1) = φ(0) = φ(1) = 0 to eliminate the boundary term and observed that

ψ
′
= ψ′ (which can be seen by separately differentiating the real and imaginary parts). Therefore, A is

symmetric.

(b) We will show that D(A∗) = A. To see this, let {Kδ}δ ⊆ L2([0, 1]) be an approximation to the identity

as defined in Chapter 3.2 of Stein III (in particular, each Kδ may be compactly-supported, real-valued, and

infinitely-differentiable). Letting Jδ ∈ B(L2([0, 1]) be the operator sending φ → φ ∗ Kδ, we see that Jδ is

indeed linear. To see boundedness, note that by definition of an approximation to the identity there is a

constant C for which
∫ 1

0
|Kδ| < C for all δ. By Young’s inequality, we see that

∥Jδφ∥ = ∥φ ∗Kδ∥L2 ≤ ∥φ∥L2∥Kδ∥L1 ≤ C∥φ∥

and so Jδ is bounded. By Theorem 2.1 of Chapter 3 in Stein III, we know that for Lebesgue a.e. x ∈ [0, 1]

and continuous f : [0, 1] → C,
(f ∗Kδ)(x) → f(x) as δ → 0

If f is continuous on the compact domain [0, 1] it is also bounded and so clearly in L2([0, 1]). Again by

Young’s inequality, ∥f ∗Kδ∥L∞ ≤ ∥f∥L2∥Kδ∥L2 = ∥f∥L2 . Therefore, the sequence {f ∗Kδ}δ is a uniformly

bounded sequence converging to f pointwise a.e., which means that f ∗Kδ → f in L2([0, 1]) as well by dom-

inated convergence. It is known that on a compact domain, the continuous functions are dense in L2. So,

by a standard ε
3 argument we see that Jδφ→ φ in ∥·∥L2 as δ → 0 for all φ ∈ L2([0, 1]). Thus, Jδ → 1 strongly.

Problem 4 continued on next page. . . 7
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Now, note that for all 0 < α < β < 1, if we define

g
(α,β)
δ (x) :=

∫ x

0

Kδ(t− β)−Kδ(t− α)dt,

then for small enough δ we definitely have that g
(α,β)
δ ∈ D(A). Since |g(α,β)δ | is uniformly bounded w.r.t. δ

by 2C and g
(α,β)
δ (x) → χ(α,β)(x) pointwise, we see that g

(α,β)
δ → χ(α,β) in L2 as δ → 0 by the dominated

convergence theorem. Now, let ψ ∈ D(A∗) be arbitrary. We have that by definition of the adjoint and

continuity of the inner product,〈
Ag

(α,β)
δ , ψ

〉
=
〈
g
(α,β)
δ , A∗ψ

〉
→
〈
χ(α,β), A

∗ψ
〉
=

∫ β

α

(A∗ψ)(x)dx

We may compute the left hand side via

Ag
(α,β)
δ (x) = −iKδ(x− β) + iKδ(x− α)

and so 〈
Ag

(α,β)
δ , ψ

〉
= −i

∫ 1

0

Kδ(x− β)ψ(x)dx+ i

∫ 1

0

Kδ(x− α)ψ(x)dx

= −i(Kδ ∗ ψ)(β) + i(Kδ ∗ ψ)(α)
= −i(Jδψ)(β) + i(Jδψ)(α)

By strong convergence of Jδ, we see that as δ → 0,〈
Ag

(α,β)
δ , ψ

〉
→ −iψ(β) + iψ(α)

So, by uniqueness of limits, we see that

−i(ψ(β)− ψ(α)) =

∫ β

α

(A∗ψ)(x)dx

So, ψ is absolutely continuous and therefore D(A∗) ⊆ A. Furthermore, the above shows that (−i∂)ψ = A∗ψ.

We already saw in the proof of Problem 2 that A ⊆ D(A∗) since we may apply integration by parts to any

absolutely continuous function. So, A∗ = −i∂ with domain D(A∗) = A, which means A is not self-adjoint.

To show that A is closed, we will show that A = A∗∗ (though replicating the proofs of closedness from

Problem 2’s A1 and A2 would work too). We know that A∗∗ ⊆ A∗ since A is symmetric, and so A∗∗ = −i∂.
To determine its domain, let ψ ∈ D(A∗∗). Then, we have that for all φ ∈ D(A∗) = A,

⟨A∗φ,ψ⟩ = ⟨φ,A∗∗ψ⟩ = ⟨φ,−iψ′⟩ =
∫ 1

0

φ(x)(−iψ′(x))dx

= −i[φ(x)ψ(x)]1x=0 + i

∫ 1

0

φ′(x)ψ(x)dx

= −i[φ(x)ψ(x)]1x=0 + ⟨−iφ′, ψ⟩

= −i[φ(x)ψ(x)]1x=0 + ⟨A∗φ,ψ⟩

So, we must have that −i[φ(x)ψ(x)]1x=0 = 0 for every φ ∈ A, which is only possible if ψ(0) = ψ(1) = 0.

Therefore, ψ ∈ D(A), which means that D(A∗∗) ⊆ D(A) and so A∗∗ ⊆ A. Since A ⊆ A∗∗ always, we have

shown that A = A∗∗ = A, and so A is closed.

Problem 4 continued on next page. . . 8



Evan Dogariu MAT 520: Problem Set 11 Problem 4 (continued)

(c) We know that A∗
α = −i∂ by similar logic to what we had in part (b) (note that all the Jδ and g

(α,β)
δ

nonsense did not depend on any boundary information of ψ), and so all we must do is find its domain. Let

ψ ∈ D(A∗
α) be arbitrary. Then, for all φ ∈ D(Aα), we have by yet another integration by parts that

⟨A∗
αψ,φ⟩ = ⟨ψ,Aαφ⟩ =

∫ 1

0

ψ(x)(−iφ′(x)) = −i[ψ(x)φ(x)]1x=0 + ⟨−iψ′, φ⟩ = i[ψ(x)φ(x)]1x=0 + ⟨A∗
αψ,φ⟩

So, for all φ ∈ D(Aα) we must have

i[ψ(x)φ(x)]1x=0 = 0 =⇒ 1

α
ψ(1)φ(0)− ψ(0)φ(0) = 0

The only way for this to hold for all φ is if

ψ(1) = αψ(0) =⇒ αψ(1) = ψ(0),

where the implication follows since α = 1
α for |α| = 1. Therefore, ψ ∈ D(Aα), and so D(A∗

α) = D(Aα). In

particular, Aα is self-adjoint. Since all of A,Aα, and A
∗ act as −i∂ and we have that

D(A) ⊆ D(Aα) ⊆ A = D(A∗),

we see

A ⊆ Aα ⊆ A∗

So, we conclude that A has uncountably many self-adjoint extensions.
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Problem 5

Show that A is closable iff Γ(A) = Γ(B) for some operator B. Show that this operator B is the closure A of

A.

Solution

Proof. ( =⇒ ) Suppose that A is closable. Let B be any closed extension of A with domain D(B) ⊇ D(A).

By definition of an extension, we know that Γ(A) ⊆ Γ(B). Since B is closed, so too is Γ(B), which means

that

Γ(A) ⊆ Γ(B)

Define the operator R : D(R) → H via

D(R) := {ψ ∈ H : (ψ,φ) ∈ Γ(A) for some φ ∈ H}

and

Rψ = φ for the φ ∈ H such that (ψ,φ) ∈ Γ(A)

We know that this definition is unique since, if there were two (ψ,φ1), (ψ,φ2) ∈ Γ(A), we would have that

(ψ,φ1), (ψ,φ2) ∈ Γ(B) and so φ1 = Bψ = φ2. Clearly, this construction means that Γ(R) = Γ(A). Further-

more, this means that Γ(R) ⊆ Γ(B) =⇒ R ⊆ B. Since this holds for all closed extensions B of A, we see

that R is the minimal closed extension of A. Therefore, R = A.

( ⇐= ) Suppose that Γ(A) = Γ(B) for some operator B. We know that B is a closed operator since

its graph is closed. Furthermore,

Γ(A) ⊆ Γ(B) =⇒ A ⊆ B

So, B is a closed extension of A. In particular, A is closable.
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Problem 6

Let {φn}n∈N be an orthonormal basis for H and ψ ∈ H any vector which is not a finite linear combination of

{φn}n. Let D be the set of vectors which are finite linear combinations of {φn}n and of ψ. Define A : D → H
via

A

(
bψ +

N∑
i=1

aiφi

)
:= bψ.

Calculate Γ(A) and show that Γ(A) is not the graph of a linear operator.

Solution

Proof. Note that for any η ∈ span{φn}n we have that Aη = 0. Also, Aψ = ψ. Let ξ ∈ D be arbitrary;

then, ξ = bψ + η for some η ∈ span{φn}n, and so

(ξ, Aξ) = (bψ, bψ) + (η, 0)

Since this holds for all ξ ∈ D, we see that

Γ(A) = {(ξ, Aξ) ∈ H2 : ξ ∈ D} = span{(ψ,ψ)} ⊕ span{(φn, 0)}n∈N

So,

Γ(A) = span{(ψ,ψ)} ⊕ span{(φn, 0)}n∈N

= span{(ψ,ψ)} ⊕ {(ξ, 0) : ξ ∈ H}
= {(φ, bψ) : φ ∈ H and b ∈ C},

where for the second equality we used that the closure of the span of an orthonormal basis is the whole

space, and for the third line we noted that for any b and φ, it holds that (φ− bψ, 0) ∈ {(ξ, 0) : ξ ∈ H} and

so (bψ, bψ) + (φ − bψ, 0) = (φ, bψ) ∈ Γ(A). Suppose by way of contradiction that Γ(A) = Γ(B) for some

linear operator B. Then, (0, ψ) ∈ Γ(B), which means that B(0) = ψ and so ψ = 0. This contradicts the fact

that ψ /∈ span{φn}n, and so A is not a closable operator.
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Problem 7

Let A : D(A) → H be injective.

(a) Show that if A is closed and has a closed range then ∃C ∈ (0,∞) such that

∥Aψ∥ ≥ C∥ψ∥ (ψ ∈ D(A)) (1)

(b) Show that if A has dense closed range and obeys (1) then A is closed.

(c) Show that if A is closed and obeys (1) then it has a closed range.

Solution

Proof. (a) Suppose that A is closed with closed range. Define the map Ã : D(A) → im(A), which is then

a bijection since A is injective. Furthermore, we see that Γ(Ã) = Γ(A) and so Γ(Ã) is closed in H× im(A)

since Γ(A) is closed. Since im(A) is closed and is therefore a Banach space, we may apply the closed graph

theorem to see that Ã−1 : im(A) → D(A) is bounded. Let M ∈ (0,∞) be such that

∥Ã−1φ∥ ≤M∥φ∥ (φ ∈ im(A))

Then, for any ψ ∈ D(A) we may apply the above with φ := Aψ to see that

∥Ã−1Aψ∥ ≤M∥Aψ∥ =⇒ ∥ψ∥ ≤M∥Aψ∥ =⇒ ∥Aψ∥ ≥ 1

M
∥ψ∥

The above holds for all ψ ∈ D(A).

(b) Suppose now that A has dense closed range and obeys (1). A dense closed set is the whole space,

and so im(A) = H. Therefore, A is both injective and surjective, meaning that it is invertible. We claim

that Γ(A) is closed. To this end, suppose that {(φn, Aφn)}n∈N ⊆ Γ(A) is a sequence converging to some

(φ,ψ) ∈ H×H; we want to show that φ ∈ D(A) and ψ = Aφ since this would imply that (φ,ψ) ∈ Γ(A) and

therefore that Γ(A) is closed. Since A is bijective, we see that for all ξ ∈ H, A−1ξ ∈ D(A) and so (1) reads

∥AA−1ξ∥ ≥ C∥A−1ξ∥ =⇒ ∥A−1ξ∥ ≤ 1

C
∥ξ∥

Thus, the map A−1 : H → D(A) is a bounded linear bijection. Note that we separately have that φn → φ

and Aφn → ψ. We may say that

∥A−1ψ − φn∥ = ∥A−1(ψ −Aφn)∥ ≤ 1

C
∥ψ −Aφn∥

Since ∥ψ − Aφn∥ → 0, we then find that ∥A−1ψφn∥ → 0 and so φn → A−1ψ. By uniqueness of limits, this

means that φ = A−1ψ, which automatically yields both that φ ∈ D(A) and also that Aφ = ψ. So, Γ(A) is

closed.

(c) Suppose now that A is closed (and so Γ(A) is closed) and obeys (1). Let {ψn}n∈N ⊆ im(A) be a

sequence converging to some ψ ∈ H; we want to show that ψ ∈ im(A) as this will prove that A has closed

range. Note that for each n there is some φn ∈ D(A) such that ψn = Aφn. We note that by (1), for n ̸= m

we have

∥φn − φm∥ ≤ 1

C
∥Aφn −Aφm∥ =

1

C
∥ψn − ψm∥

Since the sequence {ψn}n converges it is Cauchy, which means that {φn}n is also Cauchy and so converges

to some φ ∈ H by completeness. So, since φn → φ and Aφn → ψ, we see that

(φn, Aφn) → (φ,ψ) as n→ ∞

Since each (φn, Aφn) ∈ Γ(A) and Γ(A) is closed, this means that (φ,ψ) ∈ Γ(A) as well. Therefore, ψ = Aφ,

and ψ ∈ im(A). So, A has closed image.

12
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Problem 8

Calculate the adjoint of −∂2 : C∞
0 (R) → L2(R). Determine if −∂2 is essentially self-adjoint. Here C∞

0 (R) is
the set of functions f : R → C smooth of compact support.

Solution

Proof. We start by observing that −∂2 is indeed densely defined since the smooth functions of compact

support are dense in L2(R), which is a good sign. Now, we show that −∂2 is symmetric. For every

ψ,φ ∈ D(−∂2), we have that 〈
ψ, (−∂2)φ

〉
= ⟨ψ,−φ′′⟩

By integration by parts, we see that

⟨ψ,−φ′′⟩ = −
∫
R
ψφ′′ = −[ψφ′]∞−∞ +

∫
R
ψ′φ′

Since φ has compact support, certainly φ′ also does, and so the boundary term vanishes. Applying integration

by parts again,

⟨ψ,−φ′′⟩ = [ψ′φ]∞−∞ −
∫
R
ψ′′φ = ⟨−ψ′′, φ⟩ =

〈
(−∂2)ψ,φ

〉
,

where the boundary term again vanishes because of compact support. Since this holds for all ψ,φ ∈ D(−∂2),
we find that −∂2 is symmetric. We will now compute its adjoint.

As we did in Problem 4, let {Kδ}δ>0 be a real-valued, compactly-supported, infinitely-differentiable ap-

proximation to the identity, and let Jδ ∈ B(L2(R)) be the bounded linear operator sending

L2(R) ∋ ψ 7→ ψ ∗Kδ ∈ L2(R)

Note that even though the measure space is now infinite, we may still use Young’s inequality for boundedness

of Jδ since
∫
R |Kδ| < C. We would like to show that Jδ converges strongly to 1. To see this, it suffices to

show that ∥Jδψ − ψ∥ → 0 for all ψ ∈ C∞
0 (R), and then density of C∞

0 will imply that Jδ → 1 strongly. So,

let ψ ∈ C∞
0 (R), and we compute

∥Jδψ − ψ∥2 =

∫
R
|(ψ ∗Kδ)(x)− ψ(x)|2dx

Note that if we let M denote an upper bound on ψ and E be the compact support of ψ, then

|(ψ ∗Kδ)(x)− ψ(x)| ≤ |(ψ ∗Kδ)(x)|+MχE(x)

=⇒ |(ψ ∗Kδ)(x)− ψ(x)|2 ≤ |(ψ ∗Kδ)(x)|2 + 2M |(ψ ∗Kδ)(x)|+M2χE(x)

Since ψ,Kδ are both compactly-supported, their convolution must be as well. It is also bounded since

|(ψ ∗Kδ)(x)| ≤M
∫
R |Kδ| ≤MC. This shows that the function |ψ ∗Kδ|2+2M |ψ ∗Kδ|+M2χE is integrable,

which means that it is a valid dominating function for the above integral. So, by the dominated convergence

theorem, we see that ∥Jδψ → ψ∥ → 0. So, Jδ → 1 on C∞
0 (R); by density and boundedness of Jδ, this means

that Jδ → 1 strongly on all of L2(R).

Proceeding similarly to what we did in Problem 4, for any 0 < α < β we define

g
(α,β)
δ (x) := c(x)

∫ x

0

∫ t

0

Kδ(s− β)−Kδ(s− α)dsdt

Problem 8 continued on next page. . . 13
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where c(x) =

{
1

x−α x ∈ (α, β)

0 else
. Then, each g

(α,β)
δ is smooth and has compact support since Kδ does (for

large enough s we expect Kδ(s − β) − Kδ(s − α) = 0 since Kδ is compactly supported). Therefore, each

g
(α,β)
δ ∈ D(−∂2). Furthermore, since |g(α,β)δ − χ(α,β)| is dominated by 0 for x ≤ α and 2C otherwise and

compactly supported we may apply dominated convergence. We know that
∫ t

0
Kδ(s− β)−Kδ(s− α)ds →

χ(α,β)(t) pointwise, and so

g
(α,β)
δ (x) → c(x)

∫ x

0

χ(α,β)(t)dt

If x ≤ α this equals 0, and if x ≥ β this also equals 0. However, for x ∈ (α, β), we have that this equals
1

x−α

∫ x

α
dt = 1. So, g

(α,β)
δ → χ(α,β) pointwise. By dominated convergence, g

(α,β)
δ → χ(α,β) in L

2 as well.

Now, let ψ ∈ D((−∂2)∗) be arbitrary. We have that by definition of the adjoint and continuity of the

inner product,〈
−∂2g(α,β)δ , ψ

〉
=
〈
g
(α,β)
δ , (−∂2)∗ψ

〉
→
〈
χ(α,β), (−∂2)∗ψ

〉
=

∫ β

α

((−∂2)∗ψ)(x)dx

We may compute the left hand side via

−∂2g(α,β)δ = −Kδ(x− β) +Kδ(x− α)

and so 〈
−∂2g(α,β)δ , ψ

〉
= −

∫ ∞

0

K ′
δ(x− β)ψ(x)dx+

∫ ∞

0

K ′
δ(x− α)ψ(x)dx

By integration by parts, for γ ∈ (0,∞) we have that∫ ∞

0

K ′
δ(x− γ)ψ(x)dx = []

i’m pretty sure I messed up, something is not right. I hope I was on the right track :)

14
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Problem 9

Let −i∂ : C∞
0 ([0,∞)) → L2([0,∞)) where the domain is the set of smooth functions with compact support

away from the origin. Is it essentially self-adjoint?

Solution

Proof. Let A := −i∂ and H := L2([0,∞)) for notation. The usual integration by parts trick reveals that

A is symmetric since a function having ”compact support away from the origin” means that it is 0 at 0 and

[N,∞) for some large enough N , and so the boundary term from integration by parts will vanish. We claim

that it is not essentially self-adjoint.

Define ψ ∈ H via ψ(x) = e−x. We have that

D(A∗) = {φ ∈ H : ∃ξ ∈ H s.t. ∀η ∈ D(A), ⟨φ,Aη⟩ = ⟨ξ, η⟩}

We claim that ψ ∈ D(A∗). To see this, let η ∈ D(A) be arbitrary. Then,

⟨ψ,Aη⟩ =
∫ ∞

0

−ie−xη′(x)dx = i
[
e−xη(x)

]∞
x=0

− (−i)
∫ ∞

0

(−e−x)η(x)dx

Since η is compactly supported away from 0,

⟨ψ,Aη⟩ =
∫ ∞

0

ie−xη(x)dx = ⟨−iψ′, η⟩

Note that −iψ′(x) = −i(−e−x) = ie−x and so −iψ′ = iψ ∈ H. We find that A∗ψ = iψ and therefore that

ψ ∈ D(A∗). Note that

(A∗ − i1)ψ = iψ − iψ = 0 =⇒ ψ ∈ ker(A∗ − i1)

Since ψ ̸= 0, Problem 3 above tells us that A is not essentially self-adjoint.
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