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Problem 1

Provide an example for a non-normal operator A € B() and a point in the resolvent set z € p(A) where

1

14 =7 < 5 5@y

does not hold.

Solution

Proof. Let H = R? and A € B(H) be the operator given by the matrix

-l

Then, we know that o(A) = {2}. So, for z =1 € p(A), we see that

i I Y

We may compute the operator norm using the fact that for an nxn matrix B, we have || B|lop = 1/ Amax(B*B)
is the square root of the largest eigenvalue of B*B. So, letting B := (A — 1)7!, we seek eigenvalues of the

B*B_[ll (ﬂ [(1) _11]_{11 _21}

We see that A is an eigenvalue iff (1 —A\)(2—-X) —1=0 <= A\ -3\+1=0 <= A= % Therefore,

Amax(B*B) = %, and so
/345
[(A—1)"} = %[ ~1.618 > 1

1 1

dist(z,0(A))  [1-2]
Therefore, for this choice of H, A, and z, we have that

matrix

However, we have that
1

1

1A= =) > gy
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Problem 2

Let A € B(H) be an operator with polar decomposition A = U|A|. Define functions f, : [0,00) — R via

> 1
n(@) =47 -n
e[ 22
Prove that
U =slimAf,(J4])
n— oo
Solution

Proof. We wish to show that
1= slim |A] £, (|A]).

since the main result will follow by applying U to both sides. Since |A| is self-adjoint, we may apply the
functional calculus. Define g, : [0,00) — R via

1 xr >

ner x<

gn(z) =z fn(x) = {

3= 3=

Letting I : [0,00) — [0,00) be the identity map = +— z, we have that g,(x) = I(z)f,(z). Then, by the
homomorphism property of the functional calculus and the fact that I(|A]) = |A],

gn(1A]) = I(JA]) fu(|A]) = [Al fu(|A])

So, we want to show that s-lim, o gn(|A]) = 1, and the result will follow. To see this, we simply note that
gn(x) converges to 1 for every = € (0,00), and so g, — 1 pointwise a.e. on [0,00). Then, over o(]A|) we see
that g, — 1 pointwise and ||gnllcc < 1 < 00. So, the measurable functional calculus (Theorem VII.2(d) in
Reed & Simon) gives that ¢, (|A|) — 1 strongly. The main result follows. m
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Problem 3

Prove that if A € B(H) is normal, then
[A] = r(A4)

where r(-) is the spectral radius.

Solution

Proof. By the spectral mapping theorem and the continuous functional calculus on the function z +— |z|2
(which we may apply since A is normal, see Theorem 8.40 in the lecture notes), we have that

o(|AP) = {l2]*: z€a(A)}

Thus,

r(|A?) = ESU&){IZIQ},

and so
r(4) = sup {|z[} = Vr(|AP)
z€o(A)
We know that |||A|?|| = r(]A|?) by Theorem 8.6 in the lecture notes since |A|? is self-adjoint. So, by this and
the C* identity,

r(4) = VIIAPR] = VIIAI? = ||l
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Problem 4

Let A € B(H) be normal. Show there exists some finite measure space (M, p) and a unitary U : H —
L?(M, ) such that there exists a bounded Borel function f: M — C such that

(UAUY)(m) = f(m)(m) (m € M, v € L*(M, )

Solution

Proof. We may express A as a linear combination of two self-adjoint operators via
A=TRe{A} +iIm{A4}

Furthermore, since A is normal we see that these two operators commute. Applying the result of Problem
5 with A; := Re{A} and Ay := Im {A} yields the finite measure space and unitary such that Re {A} is
represented as multiplication by f and Im {A} is represented as multiplication by g. A is therefore represented
as multiplication by f +ig : M — C as desired. m
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Problem 5

Show that if A, B € B(H) are two self-adjoint operators such that [A, B] = 0, then there exists a finite
measure space (M, u) and a unitary U : H — L?(M, u) such that there are two bounded Borel functions
f,9: M — R which obey

(UAU"p)(m) = f(m)ip(m)
(UBU*¢)(m) = g(m)ip(m)

for all m € M and ¢ € L?(M, p).

Solution

Proof. Suppose that A and B commute. We claim that for all  C 0(A) and ¥ C o(B) Borel it holds that
[xa(A), x=(B)] =0, or in other words that the spectral projections commute. Note that for each continuous
function f : o(A) — C, we have that
f(A)B = Bf(A)
since we may uniformly approximate f by polynomials (Stone-Weierstrass) and the above trivially holds
for polynomial functions. For any ¢ € H we may approximate xqo(-) in the p4 , measure by continuous
functions on o(A), which reveals that
Xo(A4)BY = Bxa(A)y
since the region of error from the approximation can be made to have approximately small ;14 measure.
Since this holds for all ¥ € ‘H, we see that
xe(A)B = Bxa(A)
which gives that
xa(A)xs(B) = x=(B)xa(A)
for all Borel 2 C 0(A) and ¥ C o(B). Define the set of rectangles

={ECR?*: E=Qx X for QC o(A) and ¥ C ¢(B) Borel}

We will define a functional calculus starting with simple functions that can be written as linear combinations
of characteristic functions of disjoint rectangles from R. Write

S:= {f : f= ZaiXRi with {R;}; C R pairwise disjoint}
i=1

to be the set of simple functions. For such f € S, we define

where R; = Q; x ;. We stop to note that for all such f, ||f(A, B)|| < ||fllcc- To see this, observe that
[Iflloc = max;{|cy|}. Since the €;’s are disjoint from each other and similarly for the ¥;’s, we see that the
projection operators {xq,(4)xs,(B)}; are all pairwise orthogonal. So, for any ¥ € H we that

1£(A, Byy|* = Z i e, (A)xs: (BYIP < (1F1% D Ixe (A)xs, (B)Y1* < IIF11 191,

i=1

where the last inequality comes from the Pythagorean theorem. So, this defines a functional calculus

¢:S— B(H)

Problem 5 continued on next page. .. 6



Evan Dogariu MAT 520: Problem Set 10 Problem 5 (continued)

which is clearly a linear transformation and satisfies ||¢(f)]| < ||fllco- Thus, since the set S is dense in
C(0(A) x o (B)) equipped with the uniform norm (we may apply Stone-Weierstrass since S separates points),
we may use the BLT theorem to construct a continuous functional calculus ¢ : C(o(A) x o(B)) — B(H).

We now construct a Borelian functional calculus. For any 1 € H we see that the map

Clo(A) x a(B)) 3 f = (¢, o(f)¥) = (b, f(A, B))

is a real-valued, continuous linear functional on C(c(A) x o(B)). Therefore, by the Riesz-Markov theorem,
there is a unique Borel measure p,, on R? with p,(R?) = ||¢||* and

W SABW) = [ fG)dus(2)

These measures i, are spectral measures, and we may use the polarization identity to uniquely define
(¥, f(A, B)p) for any bounded, Borel-measurable function f : o(A) x o(B) — R. Thus upgrades us to a
Borelian functional calculus.

We proceed to a spectral theorem. Call a vector ¢ € H cyclic for (A, B) if span{f(A,B)y : f €
C(o(A) x o(B))} is dense in H. Then, by basically the same proof as Lemma 10.22 in the lecture notes, we
see that if 1 is cyclic for (A, B) then there is a unitary operator U : H — L?(0(A) x o(B), y,) for which

(UAU” f)(x1,22) = 21 f(21,22)  ((21,22) € 0(A) X 0(B))
(UBU” f)(x1,22) = w2 f(x1,22) ((w1,22) € 0(A) x 0(B))

Now, all we must do is decompose H into a direct sum of spaces which each admit a cyclic vector, which
can be done cleanly via Zorn’s lemma. So, we see that

where N € NU {oo} and each H,, admits a cyclic vector v,,. We see that H is unitarily equivalent to
BN, L2(0(A) x 0(B), iy, ) and for all n = 1,..., N and f, € L2(c(A) x o(B), iy, ),

(UAU” f)n(x1,22) = 21 fr(z1,22)  ((21,22) € 0(A) x 0(B))
(UBU” f)p(x1,22) = x2fn(x1,22) ((21,22) € 0(A) x 0(B))

Set M = @27:1(0(/1) x o(B)) and p = ®7]j:1 ty, , The above statment now reads that, for every f €
L?(M, 1), we have

(AU f)(m) = Fa(m)f(m) (m € M)
(UBU" f)(m) = Fg(m)f(m) (m e M)
where F4 acts on the o(A) part of each constituent o(A) x o(B) in M and Fp acts on the o(B) parts. We

note that p(M) = ZnNzl [|[vn|%; if we select 1),,’s such that ||, || < 27" (which we may do since scaling does
not change cyclicity in H,,), we see that (M) <1. m
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Problem 6

Prove that for A € B(H) self-adjoint and x.(A) the projection-valued measure of A, we have

NEo(4) <= Xoento(A) £0 (£>0)

Solution

Proof. We will show the contrapositives for both directions. Namely, we prove the following:
A€ p(A) <= Fe>0st. X(r—erte)(A) =0

( <= ) Suppose that x(x—c r4e)(A) = 0 for some £ > 0; we want to show that this implies A € p(A). Note
that for all ¢, € H,

0= (@ X(r—ente) (DY) = papu((X =, X +¢))
Therefore, for all ¢, € H we see that for all z € spt(ua,, ) we have |2 — A| > €, and so the map sending
ZiA is bounded on spt(ft4,,.4). In other words, we have that ‘i’ < % for pa,, y-a.e. z € R. By the

bounded measurable functional calculus, we therefore see that

Z

(o (A=A1)79) = [ duapnla)

converges for all p,1 € H. Since all the matrix elements are defined, the resolvent (A — A\1)~! exists. In
particular, A € p(A).

( = ) Suppose that A € p(A). Since p(A) is open, there is an € > 0 such that (A —e, A +¢) C p(A).
Since spt(pa,y) € o(A) for all ¢ € H, this reveals that for all ¢ € H,

(A—e A te) Cspt(ag)® = / oo (2)dpiap(2) = 0

By construction of the measurable functional calculus, for all ¢ € H we have
(s X(r—ente) (DY) = AX(A—E7A+E)(Z)duA,¢(Z) =0

So, by Theorem 7.11 in the lecture notes, since all the diagonal elements of x(x—z x1<)(A) are 0 we know
that X (x—c,x+e)(A) = 0. So, there exists an € > 0 such that x(x—c r4¢)(4) =0. =




Evan Dogariu MAT 520: Problem Set 10 Problem 7

Problem 7

Prove that the only norm-closed *-ideals in B(H) are {0}, K(H), and B(H).

Solution

Proof. Let A C B(H) be a norm-closed *-ideal. Clearly, 0 € A. Also, A is a vector subspace. We claim the
following:

(1) If A contains any nonzero operator, then K(H) C A
(2) If A contains any noncompact operator, then A = B(H)

The result follows from these facts. To see this, we will exhaust all the possible cases. Suppose first that A
contains no nonzero compact operator and no nonzero noncompact operator; then, A = {O} Next, suppose
that A contains some nonzero compact operator (and so K(H) C A by (1)), but no nonzero noncompact
operator. Then, B(H) \ K(H) C A® = A C K(H), and so A = K(H). Lastly, suppose that A contains
some noncompact operator; (2) then implies that A = B(#H). So, to complete the proof it suffices to show
(1) and (2).

(1) We will show that A contains every rank-one operator of the form ¢ ® ¥*, ¢,% € H, since then A
will contain every finite-rank operator by properties of a vector space. From this, we will see that A contains
KC(H) by the fact that IC(#H) is the norm-closure of the set of finite-rank operators and A is norm-closed. So,
let ¢, 1 € H be arbitrary. Let B € A be nonzero. Then, there is some ¢ € H such that B(¢) is nonzero. By
the Hahn-Banach theorem (linear functionals separate points), there is some 7 € H such that (n, B(¢)) = 1.
We claim that

PP = (p@n")B(p @Y,

which by the two-sided-ideal property would mean that ¢ ® ¢* € A. To see this, note that for any £ € H,

(p@n")Blo@v™)(&) = (p@n")B((1,§) ¢) = (¥,8) (n, B(9)) ¢ = (¥, &) ¢ = (p @ ¥™)(§)

So, ¢ @ Y* € A for all p,7v € H. Thus, A contains all the finite-rank operators, and by norm-closure we
have that K(H) C A.

(2) Suppose now that .4 contains a noncompact operator S € A. By noncompactness, im(S) must have
a closed infinite-dimensional subspace, call it M. Define the closed vector subspace N := S~(M) Nker(S)> .
Then, consider the restricted bounded linear operator S|y : N — M. By construction, S|y is both injective
(since ker(S) N N = {0}) and surjective (since im(S|y) = M). Since N and M are both closed subspaces of
‘H they are Banach spaces, and so S |;,1 : M — N is continuous by the inverse mapping theorem. Let Py
be the orthogonal projection onto M, and define the map T € B(H) via

T = S|y' Pu

Then, for all ¢ € M we see that STp = ¢ whereas for all o € M+ we see that ST = 0. So, ST = Py;.
Now, let R € B(H) be arbitrary; we will show that R € A. Let {¢,,}nen € M be an orthonormal basis of M

and let {1, }_; C im(R) be an orthonormal basis of im(R) (N may be finite or countably infinite, which is
fine since {¢n}n is infinite). Let U € B(H) be the map sending 1, — ¢, and extended linearly, such that

U =0 over iIn(R)J_. Then, U is a partial isometry and im(U) C M. Note that for all £ € H, we have that

R¢ € ker(U)t = R¢ = |U|*?R¢ = U*UR¢

However, we know that UR( € M and so STURE = URE. Thus, RE = U*STURE. Since this holds for
all £ € H, we see that R = U*STUR, which means that R € A by the two-sided-ideal property. Thus,
A=B(H). =
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Problem 8

Let H := ¢*(Z) and on it define the discrete Laplacian
—A:=21-R-R"
where R is the bilateral right shift operator.
(a) For x € Z, is 0, a cyclic vector for —A?

(b) Define f: C* — C via
f(Z) = <50, (—A — Z]].)_1(50>

Find an explicit expression for f using the Fourier series.

(c) Calculate
lim Im {f(E + i)}

e—0t

for the two cases E € (0,4) and E € R\ (0,4).

(d) Calculate the spectral measure of (—A,dp) and determine its type (with respect to the Lebesgue
decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).

Solution

Proof. (a) Pick an = € Z. Then, we see that applying —A symmetrically introduces positions to the left
and right of x. Put differently, we have that for all n,k € N,

(Ot (=A)"02) = (Go—k, (= A)" )

By linearity and continuity of the inner product, we see that for all ¢ € span{(—A)"d, : n € N} and all
k € N we have

(Oaths V) = (O—t> ¥)

Therefore we clearly cannot have that d,.5 € span{(—A)"d, : n € N} for any k € N, which means that
span{(—A)"d, : n € N} is not dense. Thus, ¢, isn’t cyclic.

(b) Let F : H — L*(S') be the Fourier transform from Problem Set 8. Then, since it is unitary we
have that for all z € CT,

F(2) = (80, (=A = 21)7"d0) = (Fbo, F(=A = 21) "' F"Fbo) s

We know that (Fdp)(z) = €% = 1, the constant 1 function. Also, we know from Problem Set 8 and linearity
that F(—A)JF* is the multiplication operator by the function 8 — 2 —2cos(). So, by the functional calculus
we know that F(—A — 21)~1F* is the multiplication operator by the function 6 Ws(f))—z' So, we may
compute this inner product in L?(S') to see that for z € CT,

27
£(2) 1/0 S —— AT

~or 2—2cos(f) — z
I 1
= — / dé
2 Jo (2 —2) —2cos(h)
It is a well-known fact from residue integration that fOZW mde = \/%, where the result may be
complex for general a,b € C. Therefore, we have that
1 1
f(z) = (z€CT)

\/(272)2—4: V22— 4z

Problem 8 continued on next page. .. 10
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(c) Let £ € R and £ > 0. Noting that Im {-}, /-, and 1 are all continuous away from 0, we see that when
E ¢ {0,4} we may directly compute the limit as

. o 1 md L
g B (B ey = { Vi - (B + )2 — 45 + i2) } =\ )

In particular, when E > 4 or E < 0 the imaginary part is 0. When E € (0,4) we have that

1 1 1
Im{ ————= 7 =Im = >0
{\/E2—4E} {i\/4E—E2} VAE — E?
When F is 0 or 4 we see that (E + ic)? — 4(E + ie) = E? — &% + 2Fic — 4E — 4ic = —&? &+ 4ie, and so

Hm{f(E”E”:Hm{@}:H‘“{@}

Clearly, as € — 0T we see that this approaches infinity. To summarize,

0 E eR\|0,4]
: : _ 1
00 E €{0,4}

We take the time here to also note that for E € {0,4},

1
li I E+ide)} = lim I -0 =0
D e E ) ;%am{ _1i4;}

(d) Let p_a,s5, be the spectral measure of (—A,dp). Write the Radon-Nikodym decomposition of p_a s,
w.r.t. the Lebesgue measure as

H—A60 = f)\ + Hsing

By Lemma 10.10 in the lecture notes and part (c), we see that

0 AeRN0,4]
FO) = lim SIm (SO +i)} =4 o Ae(0.4)
00 A e{0,4}

By Lemma 10.11 in the lecture notes, spt(ising) = {0,4}, but at these values p_a 5, has no point masses.
Thus, the spectral measure p_a s, is absolutely continuous w.r.t. Lebesgue with support on [0,4] and a
density given by f above. m

11
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Problem 9
Let H := ¢*(Z) and on it define the multiplication operator V (X) via
(V(X))(z) :=V(2)y(x) (v €ZyeH),

where V' : Z — R is some bounded sequence.

(a) For xz € Z, is 0, a cyclic vector for V(X)?

(b) For any z € Z, define f, : Ct — C via

fo(2) = (6, (V(X) = 21)7'6,)
Find an explicit expression for f,.

(c¢) Calculate both
lim Im {f,(F +ic)}
e—0t

and
lim elm {f,(E + ie)}
e—0t
for all E € R (separate into cases).
(d) Calculate the spectral measure of (V(X),do) and determine its type (with respect to the Lebesgue

decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).

Solution

Proof. (a) For any x € Z, note that V(X)d, = V(x)d,. In particular, we have that for all z € Z,
{V(X)"0; : n € N} Cspan{d,}

Clearly, this set cannot be dense in H, and so no ¢, is cyclic for V(X).

(b) Note that for each z € Z and each z € CT we have

v - (5

x)—z

1= (0o (773 %) = v =

(c) From the above, we get that for all E € R and all € > 0,

) =5, = (V(X)—21)7%5, = <w§—> 2

So, we see that

Hm{fm(E—&—ie)}:]Im{(v(x)_lE)_ig}

Letting y := V(x) — E for notation, we can rationalize

1 Yy + i€ Y €

= = 1
y—ie y?+e? y2+52+y2+52

From this, it is obvious that

Im{f.(E +ie)} = (V(z) — E)? + &2

Problem 9 continued on next page. .. 12
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If E # V(x), then we find that
lim Im{f,(E+ic)} = lim eIm{f,(E+ic)} =0
e—0*+ e—0*t

However, if E'= V(x) then

1
lim I (B +ie)p = lim — = d i I (B +ig)} =1
Jim I {f,(E+i9)} = lim ~ =00 and lim cIm{f,(E+io)}

(d) Let py(x),s, be the spectral measure of (V(X),dp). Write the Radon-Nikodym decomposition of
My (x),s, W-r-t. the Lebesgue measure as

Hv (X),60 = f)\ + Hsing

By Lemma 10.10 in the lecture notes and part (c), we see that

A £ V(0)
A =V(0)

1 0
A)= lim —1 Atie)} =
fF) = lim —Im{fo(A+ic)} {OO
So, f = 0 Lebesgue a.e., which means fA = 0. Therefore, py(x), 5, has no absolutely continuous part.
By Lemma 10.11 in the lecture notes, spt(ising) = {V/(0)}, and at this value py (x4, has a point
mass. From the above, we see that piing is precisely equal to a point mass at V(0). Thus, the spectral
measure [y (x),s, 1S pure point and equal to a point mass at V(0). m

13
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Problem 10

On H := (*(N), let R be the unilateral right shift operator. Calculate ker R, ker R* and im(R) and show
that R is a Fredholm operator. Calculate its Fredholm index.

Solution
Proof. Let {e, }nen be the standard orthonormal basis of H. Then, R is the operator sending
Re, :=epr1 (neN)

and extended linearly. Then, we see that R preserves the norm of each e,,, which means that it is an isometry
over all of H by the Pythagorean theorem and the fact that {e,}, is an orthonormal basis. In particular,
this means that R has trivial kernel and closed image. Let

M :=span{e1} ={yp € H: ¢(j)=0forall j > 1}

Then, we see that
im(R) =M+ ={ypcH: ¢(1)=0}

We have already seen that R* is the unilateral left shift, i.e.

en_1 n>1
R*e,, := !
0 n=1

From this wee see immediately that ker(R*) = M.

Now, we see that dimker(R) = 0. Also, we know that dim coker(R) = dimker(R*) = dim M = 1. Therefore,
R is Fredholm with a Fredholm index of 0 —1=—-1. m

14
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Problem 11

Show that on H := (3(N), % where X is the position operator is not a Fredholm operator by calculating
im(+) and showing that it is not closed.

Solution

Proof. Let {e,}nen be the standard orthonormal basis of H. The operator % can be expressed as a

multiplication operator on this basis via
1 1

Yen = Een
Clearly, + is bounded and linear, and so + € B(H). For any 1) € H we may write
Y= Z Y(n)en
neN

where this convergence is in the norm on H. So, we have that
1 ¥(n)
Xw = Z Ten
Therefore, we may write
1
im <X> = {go cH: %n2|w(n)|2 < oo}

since any such ¢ can be expressed as %@/} for a ¢ € H, whereas any ¢ € H that does not have this summability
condition cannot. We claim that this set is not closed. To see this, for each N € N define

N

wN = Z %en

n=1

Clearly, each ¥y € im(%) since it has finitely many nonzero terms. Furthermore, we see that {1/ }n has a
limit v, since

2
2 =1 1
2 : _ _
W”HHJJ%WHHHZ senl| =<
n=1 H n=1

However, this limit is certainly not in im(%) since ¢ does not satisfy the harder summability condition

ZnQ|z/J(n)|2 = ZnQ% = Z 1=00

neN neN neN

So, there is a sequence of elements in im(5-) converging to a vector that is not in im(<-), and so im(<) is
not closed. By Proposition 9.45 in the lecture notes, this means that % is not Fredholm. since coker(%) is
not finite-dimensional. m

15



