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Evan Dogariu MAT 520: Problem Set 10 Problem 1

Problem 1

Provide an example for a non-normal operator A ∈ B(H) and a point in the resolvent set z ∈ ρ(A) where

∥(A− z1)−1∥ ≤ 1

dist(z, σ(A))

does not hold.

Solution

Proof. Let H = R2 and A ∈ B(H) be the operator given by the matrix

A :=

[
2 1

0 2

]
Then, we know that σ(A) = {2}. So, for z = 1 ∈ ρ(A), we see that

(A− 1)−1 =

[
1 1

0 1

]−1

=

[
1 −1

0 1

]
We may compute the operator norm using the fact that for an n×nmatrix B, we have ∥B∥op =

√
λmax(B∗B)

is the square root of the largest eigenvalue of B∗B. So, letting B := (A − 1)−1, we seek eigenvalues of the

matrix

B∗B =

[
1 0

−1 1

] [
1 −1

0 1

]
=

[
1 −1

−1 2

]
We see that λ is an eigenvalue iff (1− λ)(2− λ)− 1 = 0 ⇐⇒ λ2 − 3λ+ 1 = 0 ⇐⇒ λ = 3±

√
5

2 . Therefore,

λmax(B
∗B) = 3+

√
5

2 , and so

∥(A− 1)−1∥ =

√
3 +

√
5

2
≈ 1.618 > 1

However, we have that
1

dist(z, σ(A))
=

1

|1− 2|
= 1

Therefore, for this choice of H, A, and z, we have that

∥(A− z1)−1∥ > 1

dist(z, σ(A))
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Evan Dogariu MAT 520: Problem Set 10 Problem 2

Problem 2

Let A ∈ B(H) be an operator with polar decomposition A = U |A|. Define functions fn : [0,∞) → R via

fn(x) :=

{
1
x x ≥ 1

n

n x ≤ 1
n

Prove that

U = s-lim
n→∞

Afn(|A|)

Solution

Proof. We wish to show that

1 = s-lim
n→∞

|A|fn(|A|),

since the main result will follow by applying U to both sides. Since |A| is self-adjoint, we may apply the

functional calculus. Define gn : [0,∞) → R via

gn(x) := xfn(x) =

{
1 x ≥ 1

n

nx x ≤ 1
n

Letting I : [0,∞) → [0,∞) be the identity map x 7→ x, we have that gn(x) = I(x)fn(x). Then, by the

homomorphism property of the functional calculus and the fact that I(|A|) = |A|,

gn(|A|) = I(|A|)fn(|A|) = |A|fn(|A|)

So, we want to show that s-limn→∞ gn(|A|) = 1, and the result will follow. To see this, we simply note that

gn(x) converges to 1 for every x ∈ (0,∞), and so gn → 1 pointwise a.e. on [0,∞). Then, over σ(|A|) we see

that gn → 1 pointwise and ∥gn∥∞ ≤ 1 < ∞. So, the measurable functional calculus (Theorem VII.2(d) in

Reed & Simon) gives that gn(|A|) → 1 strongly. The main result follows.
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Evan Dogariu MAT 520: Problem Set 10 Problem 3

Problem 3

Prove that if A ∈ B(H) is normal, then

∥A∥ = r(A)

where r(·) is the spectral radius.

Solution

Proof. By the spectral mapping theorem and the continuous functional calculus on the function z 7→ |z|2
(which we may apply since A is normal, see Theorem 8.40 in the lecture notes), we have that

σ(|A|2) = {|z|2 : z ∈ σ(A)}

Thus,

r(|A|2) = sup
z∈σ(A)

{|z|2},

and so

r(A) = sup
z∈σ(A)

{|z|} =
√
r(|A|2)

We know that ∥|A|2∥ = r(|A|2) by Theorem 8.6 in the lecture notes since |A|2 is self-adjoint. So, by this and

the C∗ identity,

r(A) =
√

∥|A|2∥ =
√

∥A∥2 = ∥A∥
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Evan Dogariu MAT 520: Problem Set 10 Problem 4

Problem 4

Let A ∈ B(H) be normal. Show there exists some finite measure space (M,µ) and a unitary U : H →
L2(M,µ) such that there exists a bounded Borel function f :M → C such that

(UAU∗ψ)(m) = f(m)ψ(m) (m ∈M, ψ ∈ L2(M,µ))

Solution

Proof. We may express A as a linear combination of two self-adjoint operators via

A = Re {A}+ i Im {A}

Furthermore, since A is normal we see that these two operators commute. Applying the result of Problem

5 with A1 := Re {A} and A2 := Im {A} yields the finite measure space and unitary such that Re {A} is

represented as multiplication by f and Im {A} is represented as multiplication by g. A is therefore represented

as multiplication by f + ig :M → C as desired.
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Evan Dogariu MAT 520: Problem Set 10 Problem 5

Problem 5

Show that if A,B ∈ B(H) are two self-adjoint operators such that [A,B] = 0, then there exists a finite

measure space (M,µ) and a unitary U : H → L2(M,µ) such that there are two bounded Borel functions

f, g :M → R which obey

(UAU∗ψ)(m) = f(m)ψ(m)

(UBU∗ψ)(m) = g(m)ψ(m)

for all m ∈M and ψ ∈ L2(M,µ).

Solution

Proof. Suppose that A and B commute. We claim that for all Ω ⊆ σ(A) and Σ ⊆ σ(B) Borel it holds that

[χΩ(A), χΣ(B)] = 0, or in other words that the spectral projections commute. Note that for each continuous

function f : σ(A) → C, we have that

f(A)B = Bf(A)

since we may uniformly approximate f by polynomials (Stone-Weierstrass) and the above trivially holds

for polynomial functions. For any ψ ∈ H we may approximate χΩ(·) in the µA,ψ measure by continuous

functions on σ(A), which reveals that

χΩ(A)Bψ = BχΩ(A)ψ

since the region of error from the approximation can be made to have approximately small µA,ψ measure.

Since this holds for all ψ ∈ H, we see that

χΩ(A)B = BχΩ(A)

which gives that

χΩ(A)χΣ(B) = χΣ(B)χΩ(A)

for all Borel Ω ⊆ σ(A) and Σ ⊆ σ(B). Define the set of rectangles

R := {E ⊆ R2 : E = Ω× Σ for Ω ⊆ σ(A) and Σ ⊆ σ(B) Borel}

We will define a functional calculus starting with simple functions that can be written as linear combinations

of characteristic functions of disjoint rectangles from R. Write

S :=

{
f : f =

n∑
i=1

αiχRi with {Ri}i ⊆ R pairwise disjoint

}
to be the set of simple functions. For such f ∈ S, we define

f(A,B) :=

n∑
i=1

αiχΩi
(A)χΣi

(B)

where Ri = Ωi × Σi. We stop to note that for all such f , ∥f(A,B)∥ ≤ ∥f∥∞. To see this, observe that

∥f∥∞ = maxi{|αi|}. Since the Ωi’s are disjoint from each other and similarly for the Σi’s, we see that the

projection operators {χΩi
(A)χΣi

(B)}i are all pairwise orthogonal. So, for any ψ ∈ H we that

∥f(A,B)ψ∥2 =

n∑
i=1

|αi|2∥χΩi
(A)χΣi

(B)ψ∥2 ≤ ∥f∥2∞
n∑
i=1

∥χΩi
(A)χΣi

(B)ψ∥2 ≤ ∥f∥2∞∥ψ∥2,

where the last inequality comes from the Pythagorean theorem. So, this defines a functional calculus

ϕ : S → B(H)

Problem 5 continued on next page. . . 6



Evan Dogariu MAT 520: Problem Set 10 Problem 5 (continued)

which is clearly a linear transformation and satisfies ∥ϕ(f)∥ ≤ ∥f∥∞. Thus, since the set S is dense in

C(σ(A)×σ(B)) equipped with the uniform norm (we may apply Stone-Weierstrass since S separates points),

we may use the BLT theorem to construct a continuous functional calculus ϕ : C(σ(A)× σ(B)) → B(H).

We now construct a Borelian functional calculus. For any ψ ∈ H we see that the map

C(σ(A)× σ(B)) ∋ f 7→ ⟨ψ, ϕ(f)ψ⟩ = ⟨ψ, f(A,B)ψ⟩

is a real-valued, continuous linear functional on C(σ(A)× σ(B)). Therefore, by the Riesz-Markov theorem,

there is a unique Borel measure µψ on R2 with µψ(R2) = ∥ψ∥2 and

⟨ψ, f(A,B)ψ⟩ =
∫
R2

f(z)dµψ(z)

These measures µψ are spectral measures, and we may use the polarization identity to uniquely define

⟨ψ, f(A,B)φ⟩ for any bounded, Borel-measurable function f : σ(A) × σ(B) → R. Thus upgrades us to a

Borelian functional calculus.

We proceed to a spectral theorem. Call a vector ψ ∈ H cyclic for (A,B) if span{f(A,B)ψ : f ∈
C(σ(A)× σ(B))} is dense in H. Then, by basically the same proof as Lemma 10.22 in the lecture notes, we

see that if ψ is cyclic for (A,B) then there is a unitary operator U : H → L2(σ(A)× σ(B), µψ) for which

(UAU∗f)(x1, x2) = x1f(x1, x2) ((x1, x2) ∈ σ(A)× σ(B))

(UBU∗f)(x1, x2) = x2f(x1, x2) ((x1, x2) ∈ σ(A)× σ(B))

Now, all we must do is decompose H into a direct sum of spaces which each admit a cyclic vector, which

can be done cleanly via Zorn’s lemma. So, we see that

H =

N⊕
n=1

Hn

where N ∈ N ∪ {∞} and each Hn admits a cyclic vector ψn. We see that H is unitarily equivalent to⊕N
n=1 L

2(σ(A)× σ(B), µψn) and for all n = 1, . . . , N and fn ∈ L2(σ(A)× σ(B), µψn),

(UAU∗f)n(x1, x2) = x1fn(x1, x2) ((x1, x2) ∈ σ(A)× σ(B))

(UBU∗f)n(x1, x2) = x2fn(x1, x2) ((x1, x2) ∈ σ(A)× σ(B))

Set M :=
⊕N

n=1(σ(A) × σ(B)) and µ :=
⊗N

n=1 µψn
, The above statment now reads that, for every f ∈

L2(M,µ), we have

(UAU∗f)(m) = FA(m)f(m) (m ∈M)

(UBU∗f)(m) = FB(m)f(m) (m ∈M)

where FA acts on the σ(A) part of each constituent σ(A)× σ(B) in M and FB acts on the σ(B) parts. We

note that µ(M) =
∑N
n=1 ∥ψn∥2; if we select ψn’s such that ∥ψn∥ < 2−n (which we may do since scaling does

not change cyclicity in Hn), we see that µ(M) ≤ 1.
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Evan Dogariu MAT 520: Problem Set 10 Problem 6

Problem 6

Prove that for A ∈ B(H) self-adjoint and χ·(A) the projection-valued measure of A, we have

λ ∈ σ(A) ⇐⇒ χ(λ−ε,λ+ε)(A) ̸= 0 (ε > 0)

Solution

Proof. We will show the contrapositives for both directions. Namely, we prove the following:

λ ∈ ρ(A) ⇐⇒ ∃ε > 0 s.t. χ(λ−ε,λ+ε)(A) = 0

( ⇐= ) Suppose that χ(λ−ε,λ+ε)(A) = 0 for some ε > 0; we want to show that this implies λ ∈ ρ(A). Note

that for all φ,ψ ∈ H,

0 =
〈
φ, χ(λ−ε,λ+ε)(A)ψ

〉
= µA,φ,ψ((λ− ε, λ+ ε))

Therefore, for all φ,ψ ∈ H we see that for all z ∈ spt(µA,φ,ψ) we have |z − λ| ≥ ε, and so the map sending

z 7→ 1
z−λ is bounded on spt(µA,φ,ψ). In other words, we have that

∣∣∣ 1
z−λ

∣∣∣ ≤ 1
ε for µA,φ,ψ-a.e. z ∈ R. By the

bounded measurable functional calculus, we therefore see that〈
φ, (A− λ1)−1ψ

〉
=

∫
R

1

z − λ
dµA,φ,ψ(z)

converges for all φ,ψ ∈ H. Since all the matrix elements are defined, the resolvent (A − λ1)−1 exists. In

particular, λ ∈ ρ(A).

( =⇒ ) Suppose that λ ∈ ρ(A). Since ρ(A) is open, there is an ε > 0 such that (λ − ε, λ + ε) ⊆ ρ(A).

Since spt(µA,ψ) ⊆ σ(A) for all ψ ∈ H, this reveals that for all ψ ∈ H,

(λ− ε, λ+ ε) ⊆ spt(µA,ψ)
C =⇒

∫
R
χ(λ−ε,λ+ε)(z)dµA,ψ(z) = 0

By construction of the measurable functional calculus, for all ψ ∈ H we have〈
ψ, χ(λ−ε,λ+ε)(A)ψ

〉
=

∫
R
χ(λ−ε,λ+ε)(z)dµA,ψ(z) = 0

So, by Theorem 7.11 in the lecture notes, since all the diagonal elements of χ(λ−ε,λ+ε)(A) are 0 we know

that χ(λ−ε,λ+ε)(A) = 0. So, there exists an ε > 0 such that χ(λ−ε,λ+ε)(A) = 0.
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Evan Dogariu MAT 520: Problem Set 10 Problem 7

Problem 7

Prove that the only norm-closed ∗-ideals in B(H) are {0}, K(H), and B(H).

Solution

Proof. Let A ⊆ B(H) be a norm-closed ∗-ideal. Clearly, 0 ∈ A. Also, A is a vector subspace. We claim the

following:

(1) If A contains any nonzero operator, then K(H) ⊆ A

(2) If A contains any noncompact operator, then A = B(H)

The result follows from these facts. To see this, we will exhaust all the possible cases. Suppose first that A
contains no nonzero compact operator and no nonzero noncompact operator; then, A = {0}. Next, suppose

that A contains some nonzero compact operator (and so K(H) ⊆ A by (1)), but no nonzero noncompact

operator. Then, B(H) \ K(H) ⊆ AC =⇒ A ⊆ K(H), and so A = K(H). Lastly, suppose that A contains

some noncompact operator; (2) then implies that A = B(H). So, to complete the proof it suffices to show

(1) and (2).

(1) We will show that A contains every rank-one operator of the form φ ⊗ ψ∗, φ, ψ ∈ H, since then A
will contain every finite-rank operator by properties of a vector space. From this, we will see that A contains

K(H) by the fact that K(H) is the norm-closure of the set of finite-rank operators and A is norm-closed. So,

let φ,ψ ∈ H be arbitrary. Let B ∈ A be nonzero. Then, there is some ϕ ∈ H such that B(ϕ) is nonzero. By

the Hahn-Banach theorem (linear functionals separate points), there is some η ∈ H such that ⟨η,B(ϕ)⟩ = 1.

We claim that

φ⊗ ψ∗ = (φ⊗ η∗)B(ϕ⊗ ψ∗),

which by the two-sided-ideal property would mean that φ⊗ ψ∗ ∈ A. To see this, note that for any ξ ∈ H,

(φ⊗ η∗)B(ϕ⊗ ψ∗)(ξ) = (φ⊗ η∗)B(⟨ψ, ξ⟩ϕ) = ⟨ψ, ξ⟩ ⟨η,B(ϕ)⟩φ = ⟨ψ, ξ⟩φ = (φ⊗ ψ∗)(ξ)

So, φ ⊗ ψ∗ ∈ A for all φ,ψ ∈ H. Thus, A contains all the finite-rank operators, and by norm-closure we

have that K(H) ⊆ A.

(2) Suppose now that A contains a noncompact operator S ∈ A. By noncompactness, im(S) must have

a closed infinite-dimensional subspace, call itM . Define the closed vector subspace N := S−1(M)∩ker(S)⊥.

Then, consider the restricted bounded linear operator S|N : N →M . By construction, S|N is both injective

(since ker(S) ∩N = {0}) and surjective (since im(S|N ) =M). Since N and M are both closed subspaces of

H they are Banach spaces, and so S|−1
N : M → N is continuous by the inverse mapping theorem. Let PM

be the orthogonal projection onto M , and define the map T ∈ B(H) via

T = S|−1
N PM

Then, for all φ ∈ M we see that STφ = φ whereas for all φ ∈ M⊥ we see that STφ = 0. So, ST = PM .

Now, let R ∈ B(H) be arbitrary; we will show that R ∈ A. Let {φn}n∈N ⊆M be an orthonormal basis of M

and let {ψn}Nn=1 ⊆ im(R) be an orthonormal basis of im(R) (N may be finite or countably infinite, which is

fine since {φn}n is infinite). Let U ∈ B(H) be the map sending ψn 7→ φn and extended linearly, such that

U ≡ 0 over im(R)
⊥
. Then, U is a partial isometry and im(U) ⊆M . Note that for all ξ ∈ H, we have that

Rξ ∈ ker(U)⊥ =⇒ Rξ = |U |2Rξ = U∗URξ

However, we know that URξ ∈ M and so STURξ = URξ. Thus, Rξ = U∗STURξ. Since this holds for

all ξ ∈ H, we see that R = U∗STUR, which means that R ∈ A by the two-sided-ideal property. Thus,

A = B(H).
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Evan Dogariu MAT 520: Problem Set 10 Problem 8

Problem 8

Let H := ℓ2(Z) and on it define the discrete Laplacian

−∆ := 21−R−R∗

where R is the bilateral right shift operator.

(a) For x ∈ Z, is δx a cyclic vector for −∆?

(b) Define f : C+ → C via

f(z) =
〈
δ0, (−∆− z1)−1δ0

〉
Find an explicit expression for f using the Fourier series.

(c) Calculate

lim
ε→0+

Im {f(E + iε)}

for the two cases E ∈ (0, 4) and E ∈ R \ (0, 4).

(d) Calculate the spectral measure of (−∆, δ0) and determine its type (with respect to the Lebesgue

decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).

Solution

Proof. (a) Pick an x ∈ Z. Then, we see that applying −∆ symmetrically introduces positions to the left

and right of x. Put differently, we have that for all n, k ∈ N,

⟨δx+k, (−∆)nδx⟩ = ⟨δx−k, (−∆)nδx⟩

By linearity and continuity of the inner product, we see that for all ψ ∈ span{(−∆)nδx : n ∈ N} and all

k ∈ N we have

⟨δx+k, ψ⟩ = ⟨δx−k, ψ⟩

Therefore we clearly cannot have that δx+k ∈ span{(−∆)nδx : n ∈ N} for any k ∈ N, which means that

span{(−∆)nδx : n ∈ N} is not dense. Thus, δx isn’t cyclic.

(b) Let F : H → L2(S1) be the Fourier transform from Problem Set 8. Then, since it is unitary we

have that for all z ∈ C+,

f(z) =
〈
δ0, (−∆− z1)−1δ0

〉
=

〈
Fδ0,F(−∆− z1)−1F∗Fδ0

〉
L2(S1)

We know that (Fδ0)(x) = e−i0x = 1, the constant 1 function. Also, we know from Problem Set 8 and linearity

that F(−∆)F∗ is the multiplication operator by the function θ 7→ 2−2 cos(θ). So, by the functional calculus

we know that F(−∆− z1)−1F∗ is the multiplication operator by the function θ 7→ 1
2−2 cos(θ)−z . So, we may

compute this inner product in L2(S1) to see that for z ∈ C+,

f(z) =
1

2π

∫ 2π

0

(Fδ0)(θ)
1

2− 2 cos(θ)− z
(Fδ0)(θ)dθ

=
1

2π

∫ 2π

0

1

(2− z)− 2 cos(θ)
dθ

It is a well-known fact from residue integration that
∫ 2π

0
1

a+b cos(θ)dθ = 2π√
a2−b2 , where the result may be

complex for general a, b ∈ C. Therefore, we have that

f(z) =
1√

(2− z)2 − 4
=

1√
z2 − 4z

(z ∈ C+)

Problem 8 continued on next page. . . 10



Evan Dogariu MAT 520: Problem Set 10 Problem 8 (continued)

(c) Let E ∈ R and ε > 0. Noting that Im {·},
√
·, and 1

· are all continuous away from 0, we see that when

E /∈ {0, 4} we may directly compute the limit as

lim
ε→0+

Im {f(E + iε)} = Im

{
1√

limε→0+(E + iε)2 − 4(E + iε)

}
= Im

{
1√

E2 − 4E

}
In particular, when E > 4 or E < 0 the imaginary part is 0. When E ∈ (0, 4) we have that

Im
{

1√
E2 − 4E

}
= Im

{
1

i
√
4E − E2

}
=

1√
4E − E2

> 0

When E is 0 or 4 we see that (E + iε)2 − 4(E + iε) = E2 − ε2 + 2Eiε− 4E − 4iε = −ε2 ± 4iε, and so

Im {f(E + iε)} = Im
{

1√
−ε2 ± 4iε

}
= Im

{√
1

−ε2 ± 4iε

}

Clearly, as ε→ 0+ we see that this approaches infinity. To summarize,

lim
ε→0+

Im {f(E + iε)} =


0 E ∈ R \ [0, 4]

1√
4E−E2

E ∈ (0, 4)

∞ E ∈ {0, 4}

We take the time here to also note that for E ∈ {0, 4},

lim
ε→0+

ε Im {f(E + iε)} = lim
ε→0+

Im

{√
1

−1± 4i
ε

}
= 0

(d) Let µ−∆,δ0 be the spectral measure of (−∆, δ0). Write the Radon-Nikodym decomposition of µ−∆,δ0

w.r.t. the Lebesgue measure as

µ−∆,δ0 = fλ+ µsing

By Lemma 10.10 in the lecture notes and part (c), we see that

f(λ) = lim
ε→0+

1

π
Im {f(λ+ iε)} =


0 λ ∈ R \ [0, 4]

1
π
√
4λ−λ2

λ ∈ (0, 4)

∞ λ ∈ {0, 4}

By Lemma 10.11 in the lecture notes, spt(µsing) = {0, 4}, but at these values µ−∆,δ0 has no point masses.

Thus, the spectral measure µ−∆,δ0 is absolutely continuous w.r.t. Lebesgue with support on [0, 4] and a

density given by f above.
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Evan Dogariu MAT 520: Problem Set 10 Problem 9

Problem 9

Let H := ℓ2(Z) and on it define the multiplication operator V (X) via

(V (X)ψ)(x) := V (x)ψ(x) (x ∈ Z, ψ ∈ H),

where V : Z → R is some bounded sequence.

(a) For x ∈ Z, is δx a cyclic vector for V (X)?

(b) For any x ∈ Z, define fx : C+ → C via

fx(z) =
〈
δx, (V (X)− z1)−1δx

〉
Find an explicit expression for fx.

(c) Calculate both

lim
ε→0+

Im {fx(E + iε)}

and

lim
ε→0+

ε Im {fx(E + iε)}

for all E ∈ R (separate into cases).

(d) Calculate the spectral measure of (V (X), δ0) and determine its type (with respect to the Lebesgue

decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).

Solution

Proof. (a) For any x ∈ Z, note that V (X)δx = V (x)δx. In particular, we have that for all x ∈ Z,

{V (X)nδx : n ∈ N} ⊆ span{δx}

Clearly, this set cannot be dense in H, and so no δx is cyclic for V (X).

(b) Note that for each x ∈ Z and each z ∈ C+ we have

(V (X)− z1)

(
δx

V (x)− z

)
= δx =⇒ (V (X)− z1)−1δx =

(
1

V (x)− z

)
δx

So, we see that

fx(z) =

〈
δx,

(
1

V (x)− z

)
δx

〉
=

1

V (x)− z

(c) From the above, we get that for all E ∈ R and all ε > 0,

Im {fx(E + iε)} = Im
{

1

(V (x)− E)− iε

}
Letting y := V (x)− E for notation, we can rationalize

1

y − iε
=

y + iε

y2 + ε2
=

y

y2 + ε2
+ i

ε

y2 + ε2

From this, it is obvious that

Im {fx(E + iε)} =
ε

(V (x)− E)2 + ε2

Problem 9 continued on next page. . . 12



Evan Dogariu MAT 520: Problem Set 10 Problem 9 (continued)

If E ̸= V (x), then we find that

lim
ε→0+

Im {fx(E + iε)} = lim
ε→0+

ε Im {fx(E + iε)} = 0

However, if E = V (x) then

lim
ε→0+

Im {fx(E + iε)} = lim
ε→0+

1

ε
= ∞ and lim

ε→0+
ε Im {fx(E + iε)} = 1

(d) Let µV (X),δ0 be the spectral measure of (V (X), δ0). Write the Radon-Nikodym decomposition of

µV (X),δ0 w.r.t. the Lebesgue measure as

µV (X),δ0 = fλ+ µsing

By Lemma 10.10 in the lecture notes and part (c), we see that

f(λ) = lim
ε→0+

1

π
Im {f0(λ+ iε)} =

{
0 λ ̸= V (0)

∞ λ = V (0)

So, f = 0 Lebesgue a.e., which means fλ = 0. Therefore, µV (X),δ0 has no absolutely continuous part.

By Lemma 10.11 in the lecture notes, spt(µsing) = {V (0)}, and at this value µV (X),δ0 has a point

mass. From the above, we see that µsing is precisely equal to a point mass at V (0). Thus, the spectral

measure µV (X),δ0 is pure point and equal to a point mass at V (0).
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Evan Dogariu MAT 520: Problem Set 10 Problem 10

Problem 10

On H := ℓ2(N), let R be the unilateral right shift operator. Calculate kerR, kerR∗ and im(R) and show

that R is a Fredholm operator. Calculate its Fredholm index.

Solution

Proof. Let {en}n∈N be the standard orthonormal basis of H. Then, R is the operator sending

Ren := en+1 (n ∈ N)

and extended linearly. Then, we see that R preserves the norm of each en, which means that it is an isometry

over all of H by the Pythagorean theorem and the fact that {en}n is an orthonormal basis. In particular,

this means that R has trivial kernel and closed image. Let

M := span{e1} = {ψ ∈ H : ψ(j) = 0 for all j > 1}

Then, we see that

im(R) =M⊥ = {ψ ∈ H : ψ(1) = 0}

We have already seen that R∗ is the unilateral left shift, i.e.

R∗en :=

{
en−1 n > 1

0 n = 1

From this wee see immediately that ker(R∗) =M .

Now, we see that dimker(R) = 0. Also, we know that dim coker(R) = dimker(R∗) = dimM = 1. Therefore,

R is Fredholm with a Fredholm index of 0− 1 = −1.
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Problem 11

Show that on H := ℓ2(N), 1
X where X is the position operator is not a Fredholm operator by calculating

im( 1
X ) and showing that it is not closed.

Solution

Proof. Let {en}n∈N be the standard orthonormal basis of H. The operator 1
X can be expressed as a

multiplication operator on this basis via
1

X
en :=

1

n
en

Clearly, 1
X is bounded and linear, and so 1

X ∈ B(H). For any ψ ∈ H we may write

ψ =
∑
n∈N

ψ(n)en

where this convergence is in the norm on H. So, we have that

1

X
ψ =

∑
n∈N

ψ(n)

n
en

Therefore, we may write

im

(
1

X

)
=

{
φ ∈ H :

∑
n∈N

n2|φ(n)|2 <∞

}
since any such φ can be expressed as 1

Xψ for a ψ ∈ H, whereas any φ ∈ H that does not have this summability

condition cannot. We claim that this set is not closed. To see this, for each N ∈ N define

ψN :=

N∑
n=1

1

n
en

Clearly, each ψN ∈ im( 1
X ) since it has finitely many nonzero terms. Furthermore, we see that {ψN}N has a

limit ψ, since

∥ψ∥2H =
∥∥∥ lim
N→∞

ψN

∥∥∥2
H

=

∥∥∥∥∥
∞∑
n=1

1

n
en

∥∥∥∥∥
2

H

=

∞∑
n=1

1

n2
<∞

However, this limit is certainly not in im( 1
X ) since ψ does not satisfy the harder summability condition∑

n∈N
n2|ψ(n)|2 =

∑
n∈N

n2
1

n2
=

∑
n∈N

1 = ∞

So, there is a sequence of elements in im( 1
X ) converging to a vector that is not in im( 1

X ), and so im( 1
X ) is

not closed. By Proposition 9.45 in the lecture notes, this means that 1
X is not Fredholm. since coker( 1

X ) is

not finite-dimensional.
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