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Problem 1

Prove that Cn with its Euclidean topology is a topological vector space, i.e., show that vector addition and

scalar multiplication are continuous with respect to the Euclidean topology.

Solution

Proof. We first show continuity of vector addition. Let z, w ∈ Cn be two arbitrary vectors, and let ϵ > 0.

Then, if we let δ := ϵ
2 > 0, we have for every (z̃, w̃) ∈ Bδ(z)×Bδ(w) that

|(z̃ + w̃)− (z + w)| ≤ |z̃ − z|+ |w̃ − w| < δ + δ = ϵ,

where the first inequality is the triangle inequality. Since such a δ exists for every ϵ, we see that the ad-

dition map is continuous at (z, w) ∈ Cn×Cn. Since this holds for all z, w ∈ Cn, vector addition is continuous.

Similarly, let z ∈ Cn and α ∈ C be arbitrary. Let ϵ > 0 be arbitrary, and set δ := min
{
1, ϵ

1+|α|+|z|

}
> 0.

Then, for every z̃ ∈ Bδ(z) and every β ∈ Bδ(α), we have that

|βz̃ − αz| = |βz̃ − βz + βz − αz| ≤ |βz̃ − βz|+ |βz − αz|
= |β||z̃ − z|+ |z||β − α| ≤ |β|δ + |z|δ

Next, since |β − α| < δ, the reverse triangle inequality grants that ||β| − |α|| < δ =⇒ |β| < δ + |α|. So,

|βz̃ − αz| ≤ (δ + |α|)δ + |z|δ = δ2 + (|α|+ |z|)δ ≤ (1 + |α|+ |z|)δ ≤ ϵ,

where the second to last inequality comes from the fact that δ ≤ 1, and the last inequality follows from

δ ≤ ϵ
1+|α|+|z| . So, since we may find such a δ for every ϵ > 0, scalar multiplication is continuous at (z, α).

Since this holds for every z ∈ Cn and α ∈ C, we have shown that scalar multiplication is continuous.
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Problem 2

Prove that C with the French metro metric is not homeomorphic (=topologically isomorphic) to C with the

Euclidean metric. Conclude (why?) that C with the French metro metric is not a TVS.

Solution

Proof. Recall the French metro metric

d(z, w) =

{
|z − w| ∃α ∈ R s.t. z = αw

|z|+ |w| else

Pick a z ∈ C that is nonzero, and let δ ∈ (0, |z|) be arbitrary. In the French metro metric, we have

Bδ(z) = {w ∈ C : w = rz for some r ∈ (1− δ, 1 + δ)}

Since metric spaces are T1 and so singletons are closed, we see that B := Bδ(z) \ {z} is an open set with

two connected components. Suppose by way of contradiction that there were a homeomorphism f going

from C with the French metro metric to C with the Euclidean metric. Then, we should have that f(B) is

a set in C that is open in the Euclidean topology and has two connected components by the properties of

homeomorphisms. However, by bijectivity of f we have

f(B) = f(Bδ(z)) \ {f(z)}

So, f(Bδ(z)) is a connected open set in Cusual which, upon removal of a single point, becomes two disjoint

connected sets. This is impossible in Cusual since removing a point from open disks in C keeps the disk

connected. So, we arrive at a contradiction, and so there can be no homeomorphism between these spaces.

Suppose by way of contradiction that C with the French metro metric were a TVS. Then, since the iden-

tity map is a vector space isomorphism from Cusual to C with the French metro metric (which is finite-

dimensional), Theorem 1.21(a) from Rudin would guarantee that the identity map is also a homeomorphism.

However, we just ruled out that possibility, and so we see that C with the French metro metric cannot be a

TVS.
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Problem 3

Prove that if X is a TVS and A,B ⊆ X, then A+B ⊆ A+B

Solution

Proof. Let x ∈ A + B be arbitrary. Then, x = xa + xb for some xa ∈ A and xb ∈ B. Let U ∈ Nbhd(0X)

be arbitrary. By Lemma 2.6, there is some W ∈ Nbhd(0X) for which W +W ⊆ U . By Theorem 1.13(a) in

Rudin, we know that

A =
⋂

U∈Nbhd(0X)

(A+ U)

and similarly for B. In particular, we know that xa ∈ A+W and xb ∈ B+W . So, there exist a ∈ A, b ∈ B,

and wa, wb ∈ W such that

x = xa + xb = a+ b+ wa + wb = (a+ b) + (wa + wb)

So, since a+ b ∈ A+B and wa +wb ∈ W +W ⊆ U , x can be written as a sum of an element of A+B with

an element of U , and so x ∈ (A+B) + U . Since this holds for all U ∈ Nbhd(0X), we have

x ∈
⋂

U∈Nbhd(0X)

((A+B) + U) = A+B,

where the last equality is again by Theorem 1.13(a) in Rudin. Since this holds for all x ∈ A+B, the result

is proven.
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Problem 4

Prove that if X is a TVS and A ⊆ X is a vector subspace, then so is A.

Solution

Proof. Let x, y ∈ A and α ∈ C. Certainly, since 0X ∈ A we have that 0X ∈ A. We wish to show that

x + y ∈ A and αx ∈ A, since then A will be closed under the vector operations. We know by Theorem

1.13(a) in Rudin that

A =
⋂

U∈Nbhd(0X)

(A+ U)

So, for every W ∈ Nbhd(0X), it holds that x, y ∈ A+W . Let U ∈ Nbhd(0X) be an arbitrary neighborhood

of the origin. By Lemma 2.6, there is a W ∈ Nbhd(0X) such that W +W ⊆ U . So, since x, y ∈ A+W , we

know that x = ax + wx and y = ay + wy for some ax, ay ∈ A and wx, wy ∈ W . Therefore,

x+ y = (ax + ay) + (wx + wy)

Since A is a vector subspace, we know that ax+ay ∈ A as well. Also, we know that wx+wy ∈ W +W ⊆ U .

So, x+ y can be written as the sum of an element of A and an element of U , and so x+ y ∈ A+ U . Since

this holds for every U ∈ Nbhd(0X), we find that x+ y ∈ A as desired.

If α = 0 then clearly αx ∈ A (since A contains 0X by definition of vector subspace and A ⊆ A), and

so suppose without loss of generality that α ̸= 0. Let U ∈ Nbhd(0X) be arbitrary. Define W := 1
αU ; since

scaling by 1
α is a homeomorphism in a TVS and maps 0X to 0X , it must be that W ∈ Nbhd(0X). We note

that

αx ∈ A+ U ⇐⇒ αx = a+ u for some a ∈ A and u ∈ U

⇐⇒ x =
1

α
a+

1

α
u for some a ∈ A and u ∈ U ⇐⇒ x ∈ 1

α
A+

1

α
U

Since A is a vector subspace, we know that A = 1
αA, and so

αx ∈ A+ U ⇐⇒ x ∈ A+W

Since x ∈ A and W is a neighborhood of the origin, we know by Theorem 1.13(a) in Rudin that x ∈ A+W ,

and so αx ∈ A+ U . Since this holds for all U ∈ Nbhd(0X), then

αx ∈
⋂

U∈Nbhd(0X)

(A+ U) = A,

completing the proof.
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Problem 5

Prove that if X is a TVS and A ⊆ X, then 2A ⊆ A+A.

Solution

Proof. Let x ∈ 2A; then, x = 2a = a+ a for some a ∈ A. So, x can be written as the sum of two elements

of A (namely, a and a), and so x ∈ A+A. Since this holds for all x ∈ 2A, we find

2A ⊆ A+A
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Problem 6

Prove that any union and any intersection of balanced sets is balanced.

Solution

Proof. Let {Aγ}γ∈I be any collection of balanced sets (I need not be countable). Let α ∈ C be such that

|α| ≤ 1. For the first part, let x ∈ α
(⋃

γ∈I Aγ

)
. Then, x = αy for some y ∈

⋃
γ∈I Aγ ; since y is in the

union, there is some Aγ such that y ∈ Aγ . So, x = αy ∈ αAγ ⊆ Aγ by the fact that Aγ is balanced. Thus,

x ∈
⋃

γ∈I Aγ . Therefore,

α

⋃
γ∈I

Aγ

 ⊆
⋃
γ∈I

Aγ

for all |α| ≤ 1, as desired.

Now, let x ∈ α
(⋂

γ∈I Aγ

)
. Then, x = αy for some y ∈

⋂
γ∈I Aγ =⇒ y ∈ Aγ ∀γ ∈ I. Since every

Aγ is balanced, we know that x = αy ∈ αAγ ⊆ Aγ for every γ. So, x ∈
⋂

γ∈I Aγ . Therefore,

α

⋂
γ∈I

Aγ

 ⊆
⋂
γ∈I

Aγ

for all |α| ≤ 1, and the intersection is balanced.
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Problem 7

Prove that if A and B are balanced, then so is A+B.

Solution

Proof. Let α ∈ C be such that |α| ≤ 1, and let x ∈ α(A+B). Then, x = αy for some y ∈ A+B, meaning

that x = α(a+ b) = αa+ αb for some a ∈ A and b ∈ B. We know that αa ∈ αA ⊆ A by the fact that A is

balanced, and similarly we know that αb ∈ B. Thus, x is the sum of an element of A and an element of B,

meaning x ∈ A+B. Since this holds for all x ∈ α(A+B), we find

α(A+B) ⊆ A+B

Since this holds for all |α| ≤ 1, then A+B is balanced.
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Problem 8

Let X be a TVS. Prove that if A,B ⊆ X are bounded (resp. compact) then A + B is bounded (resp.

compact).

Solution

Proof. Suppose first that A,B are bounded. Let U ∈ Nbhd(0X) be arbitrary. By Lemma 2.6, there is some

W ∈ Nbhd(0X) such that W +W ⊆ U . By boundedness, there are some tA, tB > 0 such that

s > tA =⇒ A ⊆ sW and s > tB =⇒ B ⊆ sW

Now, let tU := max{tA, tB}, and let s > t be arbitrary. We wish to show that A + B ⊆ sU . So, suppose

that x ∈ A+ B, and so x = a+ b for some a ∈ A ⊆ sW and b ∈ B ⊆ sW . Then, a = swa and b = swb for

some wa, wb ∈ W , and so

x = a+ b = swa + swb = s(wa + wb) ∈ s(W +W )

Lastly, since W +W ⊆ U , it must be that s(W +W ) ⊆ sU , and so x ∈ sU . Since this holds for all x ∈ A+B,

we have A+B ⊆ sU . Since this holds for all U ∈ Nbhd(0X) and all s > tU , this means that A+B is bounded.

Now, suppose that A and B are both compact. We wish to show that A + B is also compact. To this

end, let
⋃

α∈I Uα be an open cover of A+B. For each Uα, let Fα ⊆ X ×X denote the preimage of Uα under

the addition map (i.e. Fα = {(x, y) ∈ X ×X : x+ y ∈ Uα}. Since addition is continuous in a TVS, each

Fα is open. Furthermore, we note that

A×B ⊆
⋃
α∈I

Fα,

since each tuple (a, b) ∈ A×B maps under addition to an element a+ b ∈ Uα for some α, and so (a, b) ∈ Fα

for this α. So, {Fα}α is an open cover of A × B, which is compact, and so there is a finite subcover

A×B ⊆
⋃n

i=1 Fi. We claim that

A+B ⊆
n⋃

i=1

Ui

To see this, let a + b ∈ A + B with a ∈ A and b ∈ B. Then, (a, b) ∈ Fi for some i ≤ n, and so taking

the image under the addition map we see that a + b ∈ Ui for that i. Thus, a + b ∈
⋃n

i=1 Ui. We have just

constructed a finite subcover of an arbitrary open cover of A+B, therefore proving compactness of A+B.
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Problem 9

Find two closed sets A,B for which A+B is not closed.

Solution

Proof. Let X = R be the line as a TVS, and define

A := {−n : n ∈ N}

and

B :=

{
n− 1

n
: n ∈ N

}
Since

AC =
⋃
n∈N

(−n− 1,−n) ∪ (−1,∞)

is an open set, we see that A is closed. Furthermore, B is closed since

BC = (−∞, 0) ∪
⋃
n∈N

(
n− 1

n
, n+ 1− 1

n+ 1

)
is an open set. However, we claim that A+B is not closed. To see this, note that for every n ∈ N we have

that − 1
n ∈ A+ B since −n ∈ A and n− 1

n ∈ B. Also, − 1
n → 0. However, 0 /∈ A+ B. To see this, suppose

by way of contradiction that 0 = a+ b for some −n1 ∈ A and n2 − 1
n2

∈ B. So,

0 = n2 −
1

n2
− n1 =⇒ n1 = n2 −

1

n2

In order for 1
n2

to equal n2 − n1 and be an integer, it must be that n2 = 1. Therefore, n1 = 0, which is a

contradiction since 0 /∈ A. Therefore, there is a sequence {− 1
n}n ⊆ A+B whose limit point is not in A+B.

Therefore, A+B cannot be closed.
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Problem 10

If X,Y are TVS with dim(Y ) < ∞, and Λ : X → Y is linear with Λ(X) = Y , show that Λ is an open

mapping. Show further that if ker(Λ) is closed, then Λ is continuous.

Solution

Proof. Suppose that Λ is linear and surjective, with dim(Y ) = n < ∞. Let y1, ..., yn denote a basis of Y .

Define the linear map f : Cn → Y via

f(z) :=

n∑
i=1

ziyi

Since {yi}ni=1 is a basis of Y , the map f is bijective, and so it is a vector space isomorphism. By Theorem

1.21(a) in Rudin, it is therefore also a homeomorphism. Now, since Λ is surjective, we may define a map

g : Cn → X given by

g(z) =

n∑
i=1

ziΛ
−1(yi),

where Λ−1 : Y → X is any right inverse for Λ (i.e. for each yi the preimage Λ−1({y}) is nonempty;

use the Axiom of Choice to pick an element of this set and call it Λ−1(yi)). The map g is certainly

linear, which by Lemma 1.20 in Rudin means that g is continuous. Define the map φ : Y → X given by

φ := g ◦ f−1; since g is continuous and f is homeomorphic we find that φ is continuous. Now, for any

y ∈ Y we have that y =
∑n

i=1 aiyi, and so f−1(y) = (a1, ..., an) uniquely by definition of a basis. Therefore,

φ(y) = g((a1, ..., an)) =
∑n

i=1 aiΛ
−1(yi). By linearity of Λ, we get that

(Λ ◦ φ)(y) = Λ

(
n∑

i=1

aiΛ
−1 (yi)

)
=

n∑
i=1

aiΛ(Λ
−1(yi)) =

n∑
i=1

aiyi = y

So, Λ◦φ is the identity over all of Y . We have therefore constructed a right inverse φ for Λ that is continuous.

So, for any open set U ∈ Open(X), we see that φ−1(U) is open in Y by continuity of φ, where φ−1 denotes

the preimage. However, φ−1(U) = Λ(U), since

y ∈ φ−1(U) ⇐⇒ φ(y) ∈ U ⇐⇒ Λ(φ(y)) ∈ Λ(U) ⇐⇒ y ∈ Λ(U),

where the first equivalence comes from the definition of the preimage of φ, the second equivalence comes

from the definition of the image of Λ, and the last equivalence comes from the fact that Λ(φ(y)) = y for all

y. So, we find that Λ(U) is open in Y . Since this holds for all U ∈ Open(X), Λ is an open map.

Suppose further that ker(Λ) is closed. We know that ker(Λ) is a vector subspace since x, y ∈ ker(Λ)

and α ∈ C implies Λ(x + y) = Λ(x) + Λ(y) = 0Y + 0Y = 0Y and Λ(αx) = αΛ(x) = α0Y = 0Y ,

and so x + y, αx ∈ ker(Λ). By Theorem 1.41 in Rudin, this means that the canonical quotient map

π : X → X/ ker(Λ) sending x → x + ker(Λ) is continuous, where we use x + ker(Λ) to denote cosets of

ker(Λ) by elements x. Furthermore, note that the map h : X/ ker(Λ) → Y mapping x + ker(Λ) 7→ Λ(x) is

a vector space isomorphism by the First Isomorphism Theorem from abstract algebra. (Precisely, viewing

Λ as a surjective group homomorphism and X,Y as additive groups, the theorem guarantees that h is a

bijective homomorphism; we would also need to show that h(αx) = αh(x) ∀α ∈ C, which follows directly

from linearity of Λ and the fact that ker(Λ) is a vector subspace). So, as h is a vector space isomorphism

to a finite-dimensional TVS, Theorem 1.21 in Rudin guarantees that h is also a homeomorphism, and so it

certainly is continuous. Thus, h ◦ π is continuous; we claim that Λ = h ◦ π over X. Indeed,

h(π(x)) = h(x+ ker(Λ)) = Λ(x)

Thus, Λ is continuous, and we are done.
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Problem 11

Let C := {f : [0, 1] → C : f is continuous} and define

d(f, g) :=

∫
[0,1]

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx

Show that d is a metric on C, show that C is a vector space (with pointwise addition and scalar multipli-

cation), and show that the topology which d induces on C makes it into a TVS. Show that that TVS has a

countable local base.

Solution

Proof. We start by showing that d is a metric. Firstly, for all f ∈ C we have

d(f, f) =

∫
[0,1]

|f(x)− f(x)|
1 + |f(x)− f(x)|

dx =

∫
[0,1]

0

1
dx = 0

The property that d(f, g) = d(g, f) is clear from the symmetry of the definition. Next, suppose that f, g ∈ C

are such that f ̸= g. Define the function h : [0, 1] → R by h(x) := |f(x)− g(x)|; then, h is nonnegative and

continuous since f − g and | · | are both continuous. Define the set

E := {x ∈ [0, 1] : h(x) > 0}

Clearly, E is nonempty since f ̸= g somewhere. Suppose by way of contradiction that m(E) = 0, where

m(·) denotes the Lebesgue measure. Let x ∈ E, and let 0 < ϵ < h(x). By continuity of h at x, there exists

a δ > 0 such that for all y ∈ (x− δ, x+ δ) ⊆ [0, 1], we have

|h(x)− h(y)| < ϵ =⇒ h(x)− h(y) < ϵ < h(x) =⇒ h(y) > 0 =⇒ y ∈ E

So, (x− δ, x+ δ) ⊆ E, and so by monotonicity of measure we have that 2δ = m((x− δ, x+ δ)) ≤ m(E) = 0.

This is a contradiction, and so m(E) > 0. We may write

d(f, g) =

∫
E

h(x)

1 + h(x)
dx+

∫
[0,1]\E

h(x)

1 + h(x)
dx

=

∫
E

h(x)

1 + h(x)
dx+

∫
E

0

1
dx

≥
∫
E

h(x)dx,

where the inequality comes from the fact that h is nonnegative. Now, we know by inner regularity of the

Lebesgue measure that if we set δ := m(E), we may select a closed set F ⊆ E such that

m(E \ F ) < δ = m(E) =⇒ m(E) = m(F ) +m(E \ F ) < m(F ) +m(E) =⇒ m(F ) > 0

Define a := infx∈F {h(x)}. Since F ⊆ [0, 1] is closed and bounded in R, it is compact, and so the continuous

function h attains its infimum a at some point; this necessarily means that a > 0 (if a were 0 then h(ta) = 0

for some ta ∈ F ⊆ E, contradicting our definition of E). As such, we may write

d(f, g) ≥
∫
E

h(x)dx ≥
∫
F

h(x)dx ≥ am(F ) > 0

The last thing that remains to be shown is the triangle inequality. To this end, we prove the following lemma.
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Lemma 1. For any a, b ∈ (0,∞), we have that

1

1 + a
+

1

1 + b
≤ 1 +

1

1 + a+ b

and
a+ b

1 + a+ b
≤ a

1 + a
+ b

Proof of Lemma 1. For the first part, note that

LHS :=
1

1 + a
+

1

1 + b
=

1 + a+ 1 + b

1 + a+ b+ ab
=

2 + a+ b

1 + a+ b+ ab

Since ab > 0, we get that

LHS ≤ 2 + a+ b

1 + a+ b
= 1 +

1

1 + a+ b

To see the second part, note that

a+ b

1 + a+ b
≤ a+ b+ ab

1 + a+ b
≤ a+ b+ ab

1 + a
=

a

1 + a
+ b,

proving the lemma.

From here, we note that for any f, g, h ∈ C, the above lemma grants

d(f, g) = 1−
∫
[0,1]

1

1 + |f(x)− g(x)|
dx ≤ 1−

∫
[0,1]

1

1 + |f(x)− h(x)|+ |h(x)− g(x)|
dx

≤ 1 + 1−
∫
[0,1]

(
1

1 + |f(x)− h(x)|
+

1

1 + |h(x)− g(x)|

)
dx

=

(
1−

∫
[0,1]

1

1 + |f(x)− h(x)|
dx

)
+

(
1−

∫
[0,1]

1

1 + |h(x)− g(x)|
dx

)
= d(f, h) + d(h, g),

and the triangle inequality is proven. So, d is a metric. In fact, we have that d is translation invariant, since

for all f, g, h ∈ C we know that d(f + h, g + h) =
∫
[0,1]

|f+h−(g+h)|
1+|f+h−(g+h)| =

∫
[0,1]

|f−g|
1+|f−g| = d(f, g).

Next, we know that C is closed under the pointwise addition and pointwise scalar multiplication opera-

tions since continuity is preserved under such operations. So, C is a vector space. Since our topology is

induced by a metric, we know that it is automatically T1. We wish to show that addition and scalar multi-

plication are continuous. So, let f, g ∈ C be arbitrary and let ϵ > 0. Then, setting δ := ϵ
2 , we have that for

any f̃ ∈ Bδ(f) and g̃ ∈ Bδ(g) (where Br(·) denotes an open ball of radius r),

d(f̃ + g̃, f + g) ≤ d(f̃ + g̃, f̃ + g) + d(f̃ + g, f + g)

= d(g̃, g) + d(f̃ , f)

< δ + δ = ϵ,

where the first line is the triangle inequality, the second line uses the translation invariance of d, and the third

line comes from our selection of δ. So, since we can find such balls Bδ(f) and Bδ(g) for any ϵ, the addition

map is continuous at (f, g) 7→ f + g. Since this holds for all f, g ∈ C, vector addition is continuous. To see

that scalar addition is continuous, let f ∈ C and α ∈ C be arbitrary, and let ϵ > 0. Let s := supx∈[0,1]{f(x)}
(and so s is finite since f is continuous on a compact domain). Define

δ := min

{
1,

ϵ

1 + |α|+ s

}
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Then, for any f̃ ∈ Bδ(f) and any β ∈ C with |β − α| < δ, we have

d(βf̃ , αf) = 1−
∫
[0,1]

1

1 + |βf̃(x)− αf(x)|
dx = 1−

∫
[0,1]

1

1 + |βf̃(x)− βf(x) + βf(x)− αf(x)|
dx

≤ 1−
∫
[0,1]

1

1 + |βf̃(x)− βf(x)|+ |βf(x)− αf(x)|
dx

≤ 1−
∫
[0,1]

1

1 + |β||f̃(x)− f(x)|+ |β − α||f(x)|
dx

By the reverse triangle inequality, ||β| − |α|| ≤ |β − α| < δ =⇒ |β| < δ + |α|, and so

d(βf̃ , αf) < 1−
∫
[0,1]

1

1 + (δ + |α|)|f̃(x)− f(x)|+ δ|f(x)|
dx

≤ 1−
∫
[0,1]

1

1 + (δ + |α|)|f̃(x)− f(x)|+ δs
dx

There are two cases: either δ+ |α| ≤ 1 or δ+ |α| > 1. If δ+ |α| ≤ 1, then from the above bound we may get

d(βf̃ , αf) ≤ 1−
∫
[0,1]

1

1 + |f̃(x)− f(x)|+ δs
dx =

∫
[0,1]

δs+ |f̃(x)− f(x)|
1 + |f̃(x)− f(x)|+ δs

dx

Now, we may apply the second result from Lemma 1 with a = |f̃(x)− f(x)| and b = δs to see that

d(βf̃ , αf) ≤
∫
[0,1]

(
|f̃(x)− f(x)|

1 + |f̃(x)− f(x)|
+ δs

)
dx = d(f̃ , f) + δs ≤ δ + δs = δ(1 + s)

In the case when δ + |α| > 1, we instead continue with

d(βf̃ , αf) ≤ 1−
∫
[0,1]

1

1 + (δ + |α|)|f̃(x)− f(x)|+ δs
dx

≤ 2−

(∫
[0,1]

1

1 + δs
dx+

∫
[0,1]

1

1 + (δ + |α|)|f̃(x)− f(x)|
dx

)

= 1− 1

1 + δs
+ (δ + |α|)

∫
[0,1]

|f̃(x)− f(x)|
1 + (δ + |α|)|f̃(x)− f(x)|

dx

≤ 1− 1

1 + δs
+ (δ + |α|)

∫
[0,1]

|f̃(x)− f(x)|
1 + |f̃(x)− f(x)|

dx

=
δs

1 + δs
+ (δ + |α|)d(f̃ , f) < δs+ (δ + |α|)δ

= δ2 + δ(|α|+ s),

where the second line applies Lemma 1. Since δ ≤ 1, we see that in this second case

d(βf̃ , αf) ≤ δ + δ(|α|+ s) = δ(1 + |α|+ s)

Since |α| ≥ 0, this means that in both cases we always have that

d(βf̃ , αf) ≤ δ(1 + |α|+ s)

So, since δ ≤ ϵ
1+|α|+s , we have completed the proof that scalar multiplication is continuous. So, since the

topology induced by d is T1 and yields that the vector addition and scalar multiplication are continuous, we

find that this is a TVS.

14
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To finish up, note that the collection {Br(g)}(r,g)∈R+×C forms a basis for the topology induced by d, where

Br(g) := {f ∈ C : d(f, g) < r}

Furthermore, we have that Br(0C) ⊆ Bq(0C) for any r < q by definition. We claim that the collection

B := {B 1
n
(0C) : n ∈ N}

forms a countable local basis at 0C for the topology induced by d. To this end, let U ∈ Nbhd(0C) be any

open neighborhood containing the origin. Then, U =
⋃

(r,g)∈I Br(g) for some I ⊆ R+ × C. So, 0C ∈ Br(g)

for some r > 0 and g ∈ C. For any f ∈ Bδ(0C), we have that

d(f, g) = 1−
∫
[0,1]

1

1 + |f − g|

FINISH

15
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Problem 12

Let V be a neighborhood of zero in a TVS X. Prove that ∃f : X → R continuous such that f(0) = 0 and

f(x) = 1 for all x ∈ X \ V .

Solution

Proof. We proceed as hinted in Rudin exercise 1.21. Suppose without loss of generality that V is balanced,

since we may find a balanced W ∈ Nbhd(0X) with W ⊆ V by Theorem 1.14 in Rudin (if f is 1 outside W ,

then it is 1 outside V ). By Rudin Theorem 1.14 and Lemma 2.6, we may select a balanced V1 ∈ Nbhd(0X)

such that V1 + V1 ⊆ V . Similarly, for any n ∈ N, if Vn ∈ Nbhd(0X) we may select a Vn+1 ∈ Nbhd(0X)

balanced such that Vn+1 + Vn+1 ⊆ Vn. So, for each n ∈ N, we have that Vn is open, balanced, and satisfies

Vn + Vn ⊆ Vn−1 ∀n > 1

Now, let B be the set of all rational numbers in [0, 1] with a finite binary representation. By this, we mean

let

B :=

q ∈ (0, 1) ∩Q : q =
∑
n∈Nq

2−n for some finite Nq ⊆ N

 ∪ {1}

For each q ∈ B \ {1} define the set

A(q) :=
∑
n∈Nq

Vn,

where the above sum is a finite sum of sets. Firstly, each A(q) is balanced by Problem 7, since it is a finite

sum of balanced sets. We claim that A(q) ⊆ V for all q ∈ B \{1}. To see this, q ∈ B \{1} and let m1, ...,mk

be the set Nq written in increasing order (which can be done by finiteness of Nq). We note that Vmj ⊆ Vi

for all i < mj by construction. So, Vmj +Vmj ⊆ Vmj−1 by monotonicity of the sequence {mk}k and selection

of the Vn’s. Using these two facts, we see

A(q) = Vmk
+ . . .+ Vm1 ⊆ Vmk

+ Vmk
+ Vmk−1

+ . . .+ Vm1

⊆ Vmk−1
+ Vmk−1

+ Vmk−2
+ . . .+ Vm1

⊆ Vmk−2
+ Vmk−2

+ . . .+ Vm1

⊆ . . . ⊆ Vm1
+ Vm1

⊆ V1 + V1 ⊆ V

In the above, we used the fact that that Vmk
⊆ Vmk

+ Vmk
in the first line (it contains the origin), the fact

that Vmk
+ Vmk

⊆ Vmk−1
to go to the second line, the fact that Vmk−1

+ Vmk−1
⊆ Vmk−2

to go to the third

line, and the fact that Vm1
⊆ V1 in the last line.

Next, define A(1) = X. Thus, for every x ∈ V there is some q ∈ B for which x ∈ A(q). Now, define

a function f : X → [0, 1] via

f(x) := inf
q∈B

{q : x ∈ A(q)}

We note that f(0X) = 0, since 0X ∈ Vn ∀n ∈ N =⇒ 0X ∈ A(q) ∀q ∈ B, and so f(0X) = infq∈B{q} = 0

(to see this last statement, note that B contains the sequence {1, 1
2 ,

1
4 , . . . ,

1
2k
, ...} whose infimum is 0).

Furthermore, for every x /∈ V we know that x /∈ A(q) if q ∈ B \ {1}, and so f(x) = 1 necessarily. Thus, all

that remains to be proven is that this map f is continuous. We start with the following lemmas.

Lemma 2. The set B is dense in [0, 1].

Proof of Lemma 2. The statement that B is dense in [0, 1] holds if and only if B ∩ (r − δ, r + δ) ̸= ∅
for every r ∈ (0, 1) and any δ > 0 (since these intervals (r − δ, r + δ) generate the usual subspace topology

Problem 12 continued on next page. . . 16
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on [0, 1]). So, let r ∈ (0, 1) and δ > 0 be arbitrary such that (r − δ, r + δ) ⊆ [0, 1]. Write r in terms of its

infinite binary expansion

r =
∑
n∈Nr

2−n

for some not-necessarily-finite Nr ⊆ N. Let k > − log2(δ) be an integer, and define

r̃ :=
∑
n∈Nr
n≤k

2−n

to be the k-truncated binary representation of r. Then, certainly r̃ ∈ B since r̃ ∈ (0, r) ⊆ [0, 1] and it has a

finite binary representation. Also,

|r − r̃| =
∑
n∈Nr
n>k

2−n ≤
∑
n>k

2−n = 2−k < 2log2(δ) = δ,

where the above holds since we are summing nonnegative terms that form a geometric series. So r̃ ∈
(r − δ, r + δ). Thus, B is dense in [0, 1].

Lemma 3. Each A(q) is open for q ∈ B, and for any p, q ∈ B we have

A(q) +A(p) ⊆ A(q + p)

Thus, for any p, q ∈ B with p < q we have

A(p) ⊆ A(q)

Proof of Lemma 3. First, we prove openness. If q = 1, then A(q) = X which is open. So, suppose

q ∈ B \ {1}. Let Nq be the set of nonzero coefficient indices in the binary expansion of q. Since q ∈ B, we

know Nq is finite; thus, A(q) is a finite sum of open sets and is therefore open (to see this final statement,

we observe that if A,B open, then A+B =
⋃

a∈A(a+B), and so A+B is a union of open sets). So, A(q)

is an open set.

Now, let p, q ∈ B. If p + q ≥ 1 then the result holds trivially. So, suppose that p + q < 1, and so

p, q, p+ q ∈ B \ {1} (we know that p+ q ∈ B since the sum of two finite binary expansions is itself a finite

binary expansion). Let Np, Nq,Np+q ⊆ N be the sets of indices of the nonzero terms in the binary expansions

of p, q, and p + q, respectively; we know that they will all disagree with each other somewhere. We restate

the proposition about binary addition that was used in the proof of Theorem 1.24 in Rudin: namely, that

m := min{(Np \Nq) ∪ (Nq \Np)} ∈ Np+q ∩NC
p ∩NC

q

In words, this states that at the first coefficient where p and q disagree, p + q will have a value of 1 while

both p and q will have a value of 0; this can be seen as an immediate consequence of carrying over while

performing the addition p+ q in the binary expansion. Regardless, we see that for this m, we have

A(p) =
∑

n∈Np\{m}

Vn

and

A(q) =
∑

n∈Nq\{m}

Vn

So,

A(p) +A(q) ⊆
∑
Np+q

Vn = A(p+ q),

Problem 12 continued on next page. . . 17
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proving the second part. To see the last part, we note that since 0X ∈ A(t) for every t ∈ B, for any p < q

with p, q ∈ B we have

A(p) ⊆ A(p) +A(q − p) ⊆ A(q),

where we know that q− p is in B since the difference of finite binary representations is again a finite binary

representation.

Lemma 4. For all x, y ∈ X, we have that

|f(x)− f(y)| ≤ f(x− y)

Proof of Lemma 4. Let x, y ∈ X. We claim that f(x + y) ≤ f(x) + f(y). To this end, let ϵ > 0. By

density of B in [0, 1], we may find a p, q ∈ B such that f(x) < p < f(x) + ϵ
2 and f(y) < q < f(y) + ϵ

2 . Since

f(x) < p we know by definition of an infimum that x ∈ A(r) for some r < p , and so x ∈ A(p) by the last

statement of Lemma 3. Similarly, y ∈ A(q). Thus, x + y ∈ A(p) + A(q) ⊆ A(p + q) by Lemma 3, and so it

must be that f(x+ y) ≤ p+ q. Therefore,

f(x+ y) < f(x) + f(y) + ϵ,

and taking ϵ → 0 yields that f(x+ y) ≤ f(x) + f(y).

Therefore, for any x, y ∈ X we know that

f(y) = f(x+ (y − x)) ≤ f(x) + f(y − x) =⇒ f(y)− f(x) ≤ f(y − x)

Similarly, f(x) − f(y) ≤ f(x − y). Lastly, for each r ∈ B since A(r) is balanced and therefore symmetric,

we know that y−x ∈ A(q) ⇐⇒ x−y ∈ A(q), and so f(x−y) = f(y−x). The lemma follows immediately.

Now, let x ∈ X be arbitrary; we wish to show f is continuous at x. Let ϵ > 0 be arbitrary. We seek

an open set U ∈ Nbhd(x) for which y ∈ U =⇒ |f(y)− f(x)| < ϵ. Let q ∈ B ∩ (0, ϵ), which is nonempty by

Lemma 2. Then, A(q) ∈ Nbhd(0X) by Lemma 3, and so U := x + A(q) ∈ Nbhd(x). Furthermore, for any

y ∈ U we have that y − x ∈ A(q), and so by Lemma 4 we know

|f(y)− f(x)| ≤ f(y − x) ≤ q < ϵ,

where the second inequality above comes from the fact that y − x ∈ A(q), and the last comes from our

selection of q ∈ B ∩ (0, ϵ). So, f is continuous on X.

18
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Problem 13

Let X be the VS of all continuous functions f : (0, 1) → C. For any f ∈ X and r > 0, set

V (f, r) := {g ∈ X : |g(x)− f(x)| < r ∀x ∈ (0, 1)}

and set Open(X) as the topology generated by {V (f, r)}f∈X,r>0 (is this collection a basis or a sub-basis

for a topology?). Show that w.r.t. Open(X), vector addition is continuous but scalar multiplication is not.

Solution

Proof. To see that vector addition is continuous, let g, h ∈ X be arbitrary and let U ∈ Nbhd(g + h) be an

arbitrary neighborhood of their sum. Let r be small enough that V (g + h, r) ⊆ U . We seek neighborhoods

Vg ∈ Nbhd(g) and Vh ∈ Nbhd(h) for which Vg + Vh ⊆ V (g + h, r). So, let Vg := V (g, r
2 ) and Vh := V (h, r

2 ).

Now, for any g̃ ∈ Vg and h̃ ∈ Vh, we have that for all x ∈ (0, 1),

|g̃(x) + h̃(x)− (g(x) + h(x))| ≤ |g̃(x)− g(x)|+ |h̃(x)− h(x)| < r

2
+

r

2
= r,

and so g̃ + h̃ ∈ V (g + h, r) ⊆ U . Since we were able to find such neighborhoods Vg and Vh for all

U ∈ Nbhd(g + h), we see that vector addition is continuous.

i have no idea how to show scalar multiplication isnt continuous
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