MAT 520: Problem Set 1

Due on September 15, 2023

Professor Jacob Shapiro

Evan Dogariu Collaborators: David Shustin

Prove that \mathbb{C}^n with its Euclidean topology is a topological vector space, i.e., show that vector addition and scalar multiplication are continuous with respect to the Euclidean topology.

Solution

Proof. We first show continuity of vector addition. Let $z, w \in \mathbb{C}^n$ be two arbitrary vectors, and let $\epsilon > 0$. Then, if we let $\delta := \frac{\epsilon}{2} > 0$, we have for every $(\tilde{z}, \tilde{w}) \in B_{\delta}(z) \times B_{\delta}(w)$ that

$$
|(\tilde{z} + \tilde{w}) - (z + w)| \le |\tilde{z} - z| + |\tilde{w} - w| < \delta + \delta = \epsilon,
$$

where the first inequality is the triangle inequality. Since such a δ exists for every ϵ , we see that the addition map is continuous at $(z, w) \in \mathbb{C}^n \times \mathbb{C}^n$. Since this holds for all $z, w \in \mathbb{C}^n$, vector addition is continuous.

Similarly, let $z \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$ be arbitrary. Let $\epsilon > 0$ be arbitrary, and set $\delta := \min\left\{1, \frac{\epsilon}{1+|\alpha|+|z|}\right\} > 0$. Then, for every $\tilde{z} \in B_{\delta}(z)$ and every $\beta \in B_{\delta}(\alpha)$, we have that

$$
|\beta \tilde{z} - \alpha z| = |\beta \tilde{z} - \beta z + \beta z - \alpha z| \le |\beta \tilde{z} - \beta z| + |\beta z - \alpha z|
$$

= $|\beta||\tilde{z} - z| + |z||\beta - \alpha| \le |\beta|\delta + |z|\delta$

Next, since $|\beta - \alpha| < \delta$, the reverse triangle inequality grants that $||\beta| - |\alpha|| < \delta \implies |\beta| < \delta + |\alpha|$. So,

$$
|\beta \tilde{z} - \alpha z| \le (\delta + |\alpha|)\delta + |z|\delta = \delta^2 + (|\alpha| + |z|)\delta \le (1 + |\alpha| + |z|)\delta \le \epsilon,
$$

where the second to last inequality comes from the fact that $\delta \leq 1$, and the last inequality follows from $\delta \leq \frac{\epsilon}{1+|\alpha|+|z|}$. So, since we may find such a δ for every $\epsilon > 0$, scalar multiplication is continuous at (z, α) . Since this holds for every $z \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$, we have shown that scalar multiplication is continuous.

Prove that $\mathbb C$ with the French metro metric is not homeomorphic (=topologically isomorphic) to $\mathbb C$ with the Euclidean metric. Conclude (why?) that $\mathbb C$ with the French metro metric is not a TVS.

Solution

Proof. Recall the French metro metric

$$
d(z, w) = \begin{cases} |z - w| & \exists \alpha \in \mathbb{R} \text{ s.t. } z = \alpha w \\ |z| + |w| & \text{else} \end{cases}
$$

Pick a $z \in \mathbb{C}$ that is nonzero, and let $\delta \in (0, |z|)$ be arbitrary. In the French metro metric, we have

$$
B_{\delta}(z) = \{ w \in \mathbb{C} : \quad w = rz \text{ for some } r \in (1 - \delta, 1 + \delta) \}
$$

Since metric spaces are T_1 and so singletons are closed, we see that $B := B_\delta(z) \setminus \{z\}$ is an open set with two connected components. Suppose by way of contradiction that there were a homeomorphism f going from C with the French metric to C with the Euclidean metric. Then, we should have that $f(B)$ is a set in C that is open in the Euclidean topology and has two connected components by the properties of homeomorphisms. However, by bijectivity of f we have

$$
f(B) = f(B_{\delta}(z)) \setminus \{f(z)\}
$$

So, $f(B_\delta(z))$ is a connected open set in C_{usual} which, upon removal of a single point, becomes two disjoint connected sets. This is impossible in $\mathbb{C}_{\text{usual}}$ since removing a point from open disks in \mathbb{C} keeps the disk connected. So, we arrive at a contradiction, and so there can be no homeomorphism between these spaces.

Suppose by way of contradiction that $\mathbb C$ with the French metro metric were a TVS. Then, since the identity map is a vector space isomorphism from $\mathbb{C}_{\text{usual}}$ to \mathbb{C} with the French metro metric (which is finitedimensional), Theorem 1.21(a) from Rudin would guarantee that the identity map is also a homeomorphism. However, we just ruled out that possibility, and so we see that C with the French metro metric cannot be a TVS. ■

Prove that if X is a TVS and $A, B \subseteq X$, then $\overline{A} + \overline{B} \subseteq \overline{A + B}$

Solution

Proof. Let $x \in \overline{A} + \overline{B}$ be arbitrary. Then, $x = x_a + x_b$ for some $x_a \in \overline{A}$ and $x_b \in \overline{B}$. Let $U \in \text{Nbhd}(0_X)$ be arbitrary. By Lemma 2.6, there is some $W \in \text{Nbhd}(0_X)$ for which $W + W \subseteq U$. By Theorem 1.13(a) in Rudin, we know that

$$
\overline{A} = \bigcap_{U \in \text{Nbhd}(0_X)} (A + U)
$$

and similarly for B. In particular, we know that $x_a \in A + W$ and $x_b \in B + W$. So, there exist $a \in A, b \in B$, and $w_a, w_b \in W$ such that

$$
x = x_a + x_b = a + b + w_a + w_b = (a + b) + (w_a + w_b)
$$

So, since $a + b \in A + B$ and $w_a + w_b \in W + W \subseteq U$, x can be written as a sum of an element of $A + B$ with an element of U, and so $x \in (A + B) + U$. Since this holds for all $U \in \text{Nbhd}(0_X)$, we have

$$
x \in \bigcap_{U \in \text{Nbhd}(0_X)} ((A+B)+U) = \overline{A+B},
$$

where the last equality is again by Theorem 1.13(a) in Rudin. Since this holds for all $x \in \overline{A} + \overline{B}$, the result is proven.

Prove that if X is a TVS and $A \subseteq X$ is a vector subspace, then so is \overline{A} .

Solution

Proof. Let $x, y \in \overline{A}$ and $\alpha \in \mathbb{C}$. Certainly, since $0_X \in A$ we have that $0_X \in \overline{A}$. We wish to show that $x + y \in \overline{A}$ and $\alpha x \in \overline{A}$, since then \overline{A} will be closed under the vector operations. We know by Theorem 1.13(a) in Rudin that

$$
\overline{A} = \bigcap_{U \in \text{Nbhd}(0_X)} (A + U)
$$

So, for every $W \in \text{Nbhd}(0_X)$, it holds that $x, y \in A + W$. Let $U \in \text{Nbbd}(0_X)$ be an arbitrary neighborhood of the origin. By Lemma 2.6, there is a $W \in \text{Nbhd}(0_X)$ such that $W + W \subseteq U$. So, since $x, y \in A + W$, we know that $x = a_x + w_x$ and $y = a_y + w_y$ for some $a_x, a_y \in A$ and $w_x, w_y \in W$. Therefore,

$$
x + y = (a_x + a_y) + (w_x + w_y)
$$

Since A is a vector subspace, we know that $a_x + a_y \in A$ as well. Also, we know that $w_x + w_y \in W + W \subseteq U$. So, $x + y$ can be written as the sum of an element of A and an element of U, and so $x + y \in A + U$. Since this holds for every $U \in \text{Nbhd}(0_X)$, we find that $x + y \in \overline{A}$ as desired.

If $\alpha = 0$ then clearly $\alpha x \in \overline{A}$ (since A contains 0_X by definition of vector subspace and $A \subseteq \overline{A}$), and so suppose without loss of generality that $\alpha \neq 0$. Let $U \in \text{Nbhd}(0_X)$ be arbitrary. Define $W := \frac{1}{\alpha}U$; since scaling by $\frac{1}{\alpha}$ is a homeomorphism in a TVS and maps 0_X to 0_X , it must be that $W \in \text{Nbhd}(0_X)$. We note that

$$
\alpha x \in A + U \iff \alpha x = a + u \text{ for some } a \in A \text{ and } u \in U
$$

$$
\iff x = \frac{1}{\alpha}a + \frac{1}{\alpha}u \text{ for some } a \in A \text{ and } u \in U \iff x \in \frac{1}{\alpha}A + \frac{1}{\alpha}U
$$

Since A is a vector subspace, we know that $A = \frac{1}{\alpha}A$, and so

$$
\alpha x \in A + U \iff x \in A + W
$$

Since $x \in \overline{A}$ and W is a neighborhood of the origin, we know by Theorem 1.13(a) in Rudin that $x \in A + W$, and so $\alpha x \in A + U$. Since this holds for all $U \in \text{Nbhd}(0_X)$, then

$$
\alpha x\in \bigcap_{U\in \mathrm{Nbhd}(0_X)} (A+U)=\overline{A},
$$

completing the proof. \blacksquare

Prove that if X is a TVS and $A \subseteq X$, then $2A \subseteq A + A$.

Solution

Proof. Let $x \in 2A$; then, $x = 2a = a + a$ for some $a \in A$. So, x can be written as the sum of two elements of A (namely, a and a), and so $x \in A + A$. Since this holds for all $x \in 2A$, we find

 $2A \subseteq A + A$

Prove that any union and any intersection of balanced sets is balanced.

Solution

Proof. Let $\{A_{\gamma}\}_{{\gamma}\in I}$ be any collection of balanced sets (I need not be countable). Let $\alpha \in \mathbb{C}$ be such that $|\alpha| \leq 1$. For the first part, let $x \in \alpha\left(\bigcup_{\gamma \in I} A_{\gamma}\right)$. Then, $x = \alpha y$ for some $y \in \bigcup_{\gamma \in I} A_{\gamma}$; since y is in the union, there is some A_{γ} such that $y \in A_{\gamma}$. So, $x = \alpha y \in \alpha A_{\gamma} \subseteq A_{\gamma}$ by the fact that A_{γ} is balanced. Thus, $x \in \bigcup_{\gamma \in I} A_{\gamma}$. Therefore,

$$
\alpha \left(\bigcup_{\gamma \in I} A_{\gamma} \right) \subseteq \bigcup_{\gamma \in I} A_{\gamma}
$$

for all $|\alpha| \leq 1$, as desired.

Now, let $x \in \alpha\left(\bigcap_{\gamma\in I} A_{\gamma}\right)$. Then, $x = \alpha y$ for some $y \in \bigcap_{\gamma\in I} A_{\gamma} \implies y \in A_{\gamma}$ $\forall \gamma \in I$. Since every A_{γ} is balanced, we know that $x = \alpha y \in \alpha A_{\gamma} \subseteq A_{\gamma}$ for every γ . So, $x \in \bigcap_{\gamma \in I} A_{\gamma}$. Therefore,

$$
\alpha\left(\bigcap_{\gamma\in I}A_\gamma\right)\subseteq \bigcap_{\gamma\in I}A_\gamma
$$

for all $|\alpha| \leq 1$, and the intersection is balanced.

Prove that if A and B are balanced, then so is $A + B$.

Solution

Proof. Let $\alpha \in \mathbb{C}$ be such that $|\alpha| \leq 1$, and let $x \in \alpha(A + B)$. Then, $x = \alpha y$ for some $y \in A + B$, meaning that $x = \alpha(a + b) = \alpha a + \alpha b$ for some $a \in A$ and $b \in B$. We know that $\alpha a \in \alpha A \subseteq A$ by the fact that A is balanced, and similarly we know that $\alpha b \in B$. Thus, x is the sum of an element of A and an element of B, meaning $x \in A + B$. Since this holds for all $x \in \alpha(A + B)$, we find

$$
\alpha(A+B) \subseteq A+B
$$

Since this holds for all $|\alpha| \leq 1$, then $A + B$ is balanced.

Let X be a TVS. Prove that if $A, B \subseteq X$ are bounded (resp. compact) then $A + B$ is bounded (resp. compact).

Solution

Proof. Suppose first that A, B are bounded. Let $U \in \text{Nbhd}(0_X)$ be arbitrary. By Lemma 2.6, there is some $W \in \text{Nbhd}(0_X)$ such that $W + W \subseteq U$. By boundedness, there are some $t_A, t_B > 0$ such that

$$
s > t_A \implies A \subseteq sW \quad \text{and} \quad s > t_B \implies B \subseteq sW
$$

Now, let $t_U := \max\{t_A, t_B\}$, and let $s > t$ be arbitrary. We wish to show that $A + B \subseteq sU$. So, suppose that $x \in A + B$, and so $x = a + b$ for some $a \in A \subseteq sW$ and $b \in B \subseteq sW$. Then, $a = sw_a$ and $b = sw_b$ for some $w_a, w_b \in W$, and so

$$
x = a + b = sw_a + sw_b = s(w_a + w_b) \in s(W + W)
$$

Lastly, since $W+W\subseteq U$, it must be that $s(W+W)\subseteq sU$, and so $x\in sU$. Since this holds for all $x\in A+B$, we have $A+B\subseteq sU$. Since this holds for all $U\in \mathrm{Nbhd}(0_X)$ and all $s>t_U$, this means that $A+B$ is bounded.

Now, suppose that A and B are both compact. We wish to show that $A + B$ is also compact. To this end, let $\bigcup_{\alpha\in I}U_\alpha$ be an open cover of $A+B$. For each U_α , let $F_\alpha\subseteq X\times X$ denote the preimage of U_α under the addition map (i.e. $F_{\alpha} = \{(x, y) \in X \times X : x + y \in U_{\alpha}\}\)$. Since addition is continuous in a TVS, each F_{α} is open. Furthermore, we note that

$$
A \times B \subseteq \bigcup_{\alpha \in I} F_{\alpha},
$$

since each tuple $(a, b) \in A \times B$ maps under addition to an element $a + b \in U_\alpha$ for some α , and so $(a, b) \in F_\alpha$ for this α . So, $\{F_{\alpha}\}_{\alpha}$ is an open cover of $A \times B$, which is compact, and so there is a finite subcover $A \times B \subseteq \bigcup_{i=1}^{n} F_i$. We claim that

$$
A + B \subseteq \bigcup_{i=1}^{n} U_i
$$

To see this, let $a + b \in A + B$ with $a \in A$ and $b \in B$. Then, $(a, b) \in F_i$ for some $i \leq n$, and so taking the image under the addition map we see that $a + b \in U_i$ for that i. Thus, $a + b \in \bigcup_{i=1}^n U_i$. We have just constructed a finite subcover of an arbitrary open cover of $A + B$, therefore proving compactness of $A + B$.

Find two closed sets A, B for which $A + B$ is not closed.

Solution

Proof. Let $X = \mathbb{R}$ be the line as a TVS, and define

$$
A := \{-n : n \in \mathbb{N}\}
$$

and

$$
B := \left\{ n - \frac{1}{n} : \quad n \in \mathbb{N} \right\}
$$

Since

$$
A^C=\bigcup_{n\in\mathbb{N}}(-n-1,-n)\cup(-1,\infty)
$$

is an open set, we see that A is closed. Furthermore, B is closed since

$$
B^C = (-\infty, 0) \cup \bigcup_{n \in \mathbb{N}} \left(n - \frac{1}{n}, n + 1 - \frac{1}{n+1} \right)
$$

is an open set. However, we claim that $A + B$ is not closed. To see this, note that for every $n \in \mathbb{N}$ we have that $-\frac{1}{n}$ ∈ A + B since $-n \in A$ and $n-\frac{1}{n} \in B$. Also, $-\frac{1}{n} \to 0$. However, $0 \notin A + B$. To see this, suppose by way of contradiction that $0 = a + b$ for some $-n_1 \in A$ and $n_2 - \frac{1}{n_2} \in B$. So,

$$
0 = n_2 - \frac{1}{n_2} - n_1 \implies n_1 = n_2 - \frac{1}{n_2}
$$

In order for $\frac{1}{n_2}$ to equal $n_2 - n_1$ and be an integer, it must be that $n_2 = 1$. Therefore, $n_1 = 0$, which is a contradiction since $0 \notin A$. Therefore, there is a sequence $\{-\frac{1}{n}\}_n \subseteq A + B$ whose limit point is not in $A + B$. Therefore, $A + B$ cannot be closed. \blacksquare

If X, Y are TVS with $\dim(Y) < \infty$, and $\Lambda : X \to Y$ is linear with $\Lambda(X) = Y$, show that Λ is an open mapping. Show further that if $\text{ker}(\Lambda)$ is closed, then Λ is continuous.

Solution

Proof. Suppose that Λ is linear and surjective, with $\dim(Y) = n < \infty$. Let $y_1, ..., y_n$ denote a basis of Y. Define the linear map $f: \mathbb{C}^n \to Y$ via

$$
f(z) := \sum_{i=1}^{n} z_i y_i
$$

Since $\{y_i\}_{i=1}^n$ is a basis of Y, the map f is bijective, and so it is a vector space isomorphism. By Theorem 1.21(a) in Rudin, it is therefore also a homeomorphism. Now, since Λ is surjective, we may define a map $g: \mathbb{C}^n \to X$ given by

$$
g(z) = \sum_{i=1}^{n} z_i \Lambda^{-1}(y_i),
$$

where $\Lambda^{-1}: Y \to X$ is any right inverse for Λ (i.e. for each y_i the preimage $\Lambda^{-1}(\{y\})$ is nonempty; use the Axiom of Choice to pick an element of this set and call it $\Lambda^{-1}(y_i)$. The map g is certainly linear, which by Lemma 1.20 in Rudin means that g is continuous. Define the map $\varphi: Y \to X$ given by $\varphi := g \circ f^{-1}$; since g is continuous and f is homeomorphic we find that φ is continuous. Now, for any $y \in Y$ we have that $y = \sum_{i=1}^{n} a_i y_i$, and so $f^{-1}(y) = (a_1, ..., a_n)$ uniquely by definition of a basis. Therefore, $\varphi(y) = g((a_1, ..., a_n)) = \sum_{i=1}^n a_i \Lambda^{-1}(y_i)$. By linearity of Λ , we get that

$$
(\Lambda \circ \varphi)(y) = \Lambda \left(\sum_{i=1}^n a_i \Lambda^{-1}(y_i)\right) = \sum_{i=1}^n a_i \Lambda(\Lambda^{-1}(y_i)) = \sum_{i=1}^n a_i y_i = y
$$

So, $\Lambda \circ \varphi$ is the identity over all of Y. We have therefore constructed a right inverse φ for Λ that is continuous. So, for any open set $U \in \text{Open}(X)$, we see that $\varphi^{-1}(U)$ is open in Y by continuity of φ , where φ^{-1} denotes the preimage. However, $\varphi^{-1}(U) = \Lambda(U)$, since

$$
y \in \varphi^{-1}(U) \iff \varphi(y) \in U \iff \Lambda(\varphi(y)) \in \Lambda(U) \iff y \in \Lambda(U),
$$

where the first equivalence comes from the definition of the preimage of φ , the second equivalence comes from the definition of the image of Λ , and the last equivalence comes from the fact that $\Lambda(\varphi(y)) = y$ for all y. So, we find that $\Lambda(U)$ is open in Y. Since this holds for all $U \in \text{Open}(X)$, Λ is an open map.

Suppose further that ker(Λ) is closed. We know that ker(Λ) is a vector subspace since $x, y \in \text{ker}(\Lambda)$ and $\alpha \in \mathbb{C}$ implies $\Lambda(x + y) = \Lambda(x) + \Lambda(y) = 0_Y + 0_Y = 0_Y$ and $\Lambda(\alpha x) = \alpha \Lambda(x) = \alpha 0_Y = 0_Y$, and so $x + y$, $\alpha x \in \text{ker}(\Lambda)$. By Theorem 1.41 in Rudin, this means that the canonical quotient map $\pi: X \to X/\text{ker}(\Lambda)$ sending $x \to x + \text{ker}(\Lambda)$ is continuous, where we use $x + \text{ker}(\Lambda)$ to denote cosets of $\ker(\Lambda)$ by elements x. Furthermore, note that the map $h : X/\ker(\Lambda) \to Y$ mapping $x + \ker(\Lambda) \to \Lambda(x)$ is a vector space isomorphism by the First Isomorphism Theorem from abstract algebra. (Precisely, viewing Λ as a surjective group homomorphism and X, Y as additive groups, the theorem guarantees that h is a bijective homomorphism; we would also need to show that $h(\alpha x) = \alpha h(x)$ $\forall \alpha \in \mathbb{C}$, which follows directly from linearity of Λ and the fact that ker(Λ) is a vector subspace). So, as h is a vector space isomorphism to a finite-dimensional TVS, Theorem 1.21 in Rudin guarantees that h is also a homeomorphism, and so it certainly is continuous. Thus, $h \circ \pi$ is continuous; we claim that $\Lambda = h \circ \pi$ over X. Indeed,

$$
h(\pi(x)) = h(x + \ker(\Lambda)) = \Lambda(x)
$$

Thus, Λ is continuous, and we are done.

Let $C := \{f : [0,1] \to \mathbb{C} : f \text{ is continuous}\}\$ and define

$$
d(f,g):=\int_{[0,1]}\frac{|f(x)-g(x)|}{1+|f(x)-g(x)|}dx
$$

Show that d is a metric on C , show that C is a vector space (with pointwise addition and scalar multiplication), and show that the topology which d induces on C makes it into a TVS. Show that that TVS has a countable local base.

Solution

Proof. We start by showing that d is a metric. Firstly, for all $f \in C$ we have

$$
d(f, f) = \int_{[0,1]} \frac{|f(x) - f(x)|}{1 + |f(x) - f(x)|} dx = \int_{[0,1]} \frac{0}{1} dx = 0
$$

The property that $d(f, g) = d(g, f)$ is clear from the symmetry of the definition. Next, suppose that $f, g \in C$ are such that $f \neq g$. Define the function $h : [0,1] \to \mathbb{R}$ by $h(x) := |f(x) - g(x)|$; then, h is nonnegative and continuous since $f - g$ and $|\cdot|$ are both continuous. Define the set

$$
E := \{ x \in [0, 1] : \quad h(x) > 0 \}
$$

Clearly, E is nonempty since $f \neq g$ somewhere. Suppose by way of contradiction that $m(E) = 0$, where $m(\cdot)$ denotes the Lebesgue measure. Let $x \in E$, and let $0 \lt \epsilon \lt h(x)$. By continuity of h at x, there exists a $\delta > 0$ such that for all $y \in (x - \delta, x + \delta) \subseteq [0, 1]$, we have

$$
|h(x)-h(y)|<\epsilon\implies h(x)-h(y)<\epsilon0\implies y\in E
$$

So, $(x - \delta, x + \delta) \subseteq E$, and so by monotonicity of measure we have that $2\delta = m((x - \delta, x + \delta)) \le m(E) = 0$. This is a contradiction, and so $m(E) > 0$. We may write

$$
d(f,g) = \int_E \frac{h(x)}{1+h(x)} dx + \int_{[0,1]\setminus E} \frac{h(x)}{1+h(x)} dx
$$

=
$$
\int_E \frac{h(x)}{1+h(x)} dx + \int_E \frac{0}{1} dx
$$

$$
\geq \int_E h(x) dx,
$$

where the inequality comes from the fact that h is nonnegative. Now, we know by inner regularity of the Lebesgue measure that if we set $\delta := m(E)$, we may select a closed set $F \subseteq E$ such that

$$
m(E \setminus F) < \delta = m(E) \implies m(E) = m(F) + m(E \setminus F) < m(F) + m(E) \implies m(F) > 0
$$

Define $a := \inf_{x \in F} \{h(x)\}\.$ Since $F \subseteq [0, 1]$ is closed and bounded in R, it is compact, and so the continuous function h attains its infimum a at some point; this necessarily means that $a > 0$ (if a were 0 then $h(t_a) = 0$) for some $t_a \in F \subseteq E$, contradicting our definition of E). As such, we may write

$$
d(f,g) \ge \int_E h(x)dx \ge \int_F h(x)dx \ge am(F) > 0
$$

The last thing that remains to be shown is the triangle inequality. To this end, we prove the following lemma.

and

Lemma 1. For any $a, b \in (0, \infty)$, we have that

$$
\frac{1}{1+a} + \frac{1}{1+b} \le 1 + \frac{1}{1+a+b}
$$

$$
\frac{a+b}{1+a+b} \le \frac{a}{1+a} + b
$$

Proof of Lemma 1. For the first part, note that

$$
LHS := \frac{1}{1+a} + \frac{1}{1+b} = \frac{1+a+1+b}{1+a+b+ab} = \frac{2+a+b}{1+a+b+ab}
$$

Since $ab > 0$, we get that

$$
LHS \le \frac{2+a+b}{1+a+b} = 1 + \frac{1}{1+a+b}
$$

To see the second part, note that

$$
\frac{a+b}{1+a+b}\leq \frac{a+b+ab}{1+a+b}\leq \frac{a+b+ab}{1+a}=\frac{a}{1+a}+b,
$$

proving the lemma.

From here, we note that for any $f, g, h \in C$, the above lemma grants

$$
d(f,g) = 1 - \int_{[0,1]} \frac{1}{1+|f(x) - g(x)|} dx \le 1 - \int_{[0,1]} \frac{1}{1+|f(x) - h(x)| + |h(x) - g(x)|} dx
$$

\n
$$
\le 1 + 1 - \int_{[0,1]} \left(\frac{1}{1+|f(x) - h(x)|} + \frac{1}{1+|h(x) - g(x)|} \right) dx
$$

\n
$$
= \left(1 - \int_{[0,1]} \frac{1}{1+|f(x) - h(x)|} dx \right) + \left(1 - \int_{[0,1]} \frac{1}{1+|h(x) - g(x)|} dx \right)
$$

\n
$$
= d(f,h) + d(h,g),
$$

and the triangle inequality is proven. So, d is a metric. In fact, we have that d is translation invariant, since for all $f, g, h \in C$ we know that $d(f + h, g + h) = \int_{[0,1]}$ $\frac{|f+h-(g+h)|}{1+|f+h-(g+h)|} = \int_{[0,1]}$ $\frac{|f-g|}{1+|f-g|} = d(f,g).$

Next, we know that C is closed under the pointwise addition and pointwise scalar multiplication operations since continuity is preserved under such operations. So, C is a vector space. Since our topology is induced by a metric, we know that it is automatically T_1 . We wish to show that addition and scalar multiplication are continuous. So, let $f, g \in C$ be arbitrary and let $\epsilon > 0$. Then, setting $\delta := \frac{\epsilon}{2}$, we have that for any $\tilde{f} \in B_{\delta}(f)$ and $\tilde{g} \in B_{\delta}(g)$ (where $B_r(\cdot)$ denotes an open ball of radius r),

$$
d(\tilde{f} + \tilde{g}, f + g) \le d(\tilde{f} + \tilde{g}, \tilde{f} + g) + d(\tilde{f} + g, f + g)
$$

= $d(\tilde{g}, g) + d(\tilde{f}, f)$
< $\delta + \delta = \epsilon$,

where the first line is the triangle inequality, the second line uses the translation invariance of d, and the third line comes from our selection of δ . So, since we can find such balls $B_{\delta}(f)$ and $B_{\delta}(g)$ for any ϵ , the addition map is continuous at $(f, g) \mapsto f + g$. Since this holds for all $f, g \in C$, vector addition is continuous. To see that scalar addition is continuous, let $f \in C$ and $\alpha \in \mathbb{C}$ be arbitrary, and let $\epsilon > 0$. Let $s := \sup_{x \in [0,1]} \{f(x)\}\$ (and so s is finite since f is continuous on a compact domain). Define

$$
\delta := \min\left\{1, \frac{\epsilon}{1+|\alpha|+s}\right\}
$$

Then, for any $\tilde{f} \in B_{\delta}(f)$ and any $\beta \in \mathbb{C}$ with $|\beta - \alpha| < \delta$, we have

$$
d(\beta \tilde{f}, \alpha f) = 1 - \int_{[0,1]} \frac{1}{1 + |\beta \tilde{f}(x) - \alpha f(x)|} dx = 1 - \int_{[0,1]} \frac{1}{1 + |\beta \tilde{f}(x) - \beta f(x) + \beta f(x) - \alpha f(x)|} dx
$$

\n
$$
\leq 1 - \int_{[0,1]} \frac{1}{1 + |\beta \tilde{f}(x) - \beta f(x)| + |\beta f(x) - \alpha f(x)|} dx
$$

\n
$$
\leq 1 - \int_{[0,1]} \frac{1}{1 + |\beta| |\tilde{f}(x) - f(x)| + |\beta - \alpha| |f(x)|} dx
$$

By the reverse triangle inequality, $||\beta| - |\alpha|| \leq |\beta - \alpha| < \delta \implies |\beta| < \delta + |\alpha|$, and so

$$
d(\beta \tilde{f}, \alpha f) < 1 - \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)| + \delta |f(x)|} dx
$$

$$
\leq 1 - \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)| + \delta s} dx
$$

There are two cases: either $\delta + |\alpha| \leq 1$ or $\delta + |\alpha| > 1$. If $\delta + |\alpha| \leq 1$, then from the above bound we may get

$$
d(\beta \tilde{f}, \alpha f) \le 1 - \int_{[0,1]} \frac{1}{1 + |\tilde{f}(x) - f(x)| + \delta s} dx = \int_{[0,1]} \frac{\delta s + |\tilde{f}(x) - f(x)|}{1 + |\tilde{f}(x) - f(x)| + \delta s} dx
$$

Now, we may apply the second result from Lemma 1 with $a = |\tilde{f}(x) - f(x)|$ and $b = \delta s$ to see that

$$
d(\beta \tilde{f}, \alpha f) \le \int_{[0,1]} \left(\frac{|\tilde{f}(x) - f(x)|}{1 + |\tilde{f}(x) - f(x)|} + \delta s \right) dx = d(\tilde{f}, f) + \delta s \le \delta + \delta s = \delta(1 + s)
$$

In the case when $\delta + |\alpha| > 1$, we instead continue with

$$
d(\beta \tilde{f}, \alpha f) \le 1 - \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)| + \delta s} dx
$$

\n
$$
\le 2 - \left(\int_{[0,1]} \frac{1}{1 + \delta s} dx + \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)|} dx \right)
$$

\n
$$
= 1 - \frac{1}{1 + \delta s} + (\delta + |\alpha|) \int_{[0,1]} \frac{|\tilde{f}(x) - f(x)|}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)|} dx
$$

\n
$$
\le 1 - \frac{1}{1 + \delta s} + (\delta + |\alpha|) \int_{[0,1]} \frac{|\tilde{f}(x) - f(x)|}{1 + |\tilde{f}(x) - f(x)|} dx
$$

\n
$$
= \frac{\delta s}{1 + \delta s} + (\delta + |\alpha|) d(\tilde{f}, f) < \delta s + (\delta + |\alpha|) \delta
$$

\n
$$
= \delta^2 + \delta(|\alpha| + s),
$$

where the second line applies Lemma 1. Since $\delta \leq 1$, we see that in this second case

$$
d(\beta \tilde{f}, \alpha f) \le \delta + \delta(|\alpha| + s) = \delta(1 + |\alpha| + s)
$$

Since $|\alpha| \geq 0$, this means that in both cases we always have that

$$
d(\beta \tilde{f}, \alpha f) \le \delta(1 + |\alpha| + s)
$$

So, since $\delta \leq \frac{\epsilon}{1+|\alpha|+s}$, we have completed the proof that scalar multiplication is continuous. So, since the topology induced by d is T_1 and yields that the vector addition and scalar multiplication are continuous, we find that this is a TVS.

To finish up, note that the collection ${B_r(g)}_{(r,g)\in\mathbb{R}_+\times C}$ forms a basis for the topology induced by d, where

$$
B_r(g) := \{ f \in C : \ d(f, g) < r \}
$$

Furthermore, we have that $B_r(0_C) \subseteq B_q(0_C)$ for any $r < q$ by definition. We claim that the collection

$$
\mathcal{B}:=\{B_{\frac{1}{n}}(0_C): \quad n\in\mathbb{N}\}
$$

forms a countable local basis at 0_C for the topology induced by d. To this end, let $U \in \text{Nbhd}(0_C)$ be any open neighborhood containing the origin. Then, $U = \bigcup_{(r,g)\in I} B_r(g)$ for some $I \subseteq \mathbb{R}_+ \times C$. So, $0_C \in B_r(g)$ for some $r > 0$ and $g \in C$. For any $f \in B_\delta(0_C)$, we have that

$$
d(f,g)=1-\int_{[0,1]}\frac{1}{1+|f-g|}
$$

FINISH

Let V be a neighborhood of zero in a TVS X. Prove that $\exists f : X \to \mathbb{R}$ continuous such that $f(0) = 0$ and $f(x) = 1$ for all $x \in X \setminus V$.

Solution

Proof. We proceed as hinted in Rudin exercise 1.21. Suppose without loss of generality that V is balanced, since we may find a balanced $W \in \text{Nbhd}(0_X)$ with $W \subseteq V$ by Theorem 1.14 in Rudin (if f is 1 outside W, then it is 1 outside V). By Rudin Theorem 1.14 and Lemma 2.6, we may select a balanced $V_1 \in \text{Nbhd}(0_X)$ such that $V_1 + V_1 \subseteq V$. Similarly, for any $n \in \mathbb{N}$, if $V_n \in \text{Nbhd}(0_X)$ we may select a $V_{n+1} \in \text{Nbhd}(0_X)$ balanced such that $V_{n+1} + V_{n+1} \subseteq V_n$. So, for each $n \in \mathbb{N}$, we have that V_n is open, balanced, and satisfies

$$
V_n + V_n \subseteq V_{n-1} \quad \forall n > 1
$$

Now, let B be the set of all rational numbers in $[0, 1]$ with a finite binary representation. By this, we mean let

$$
B := \left\{ q \in (0,1) \cap \mathbb{Q} : q = \sum_{n \in N_q} 2^{-n} \text{ for some finite } N_q \subseteq \mathbb{N} \right\} \cup \{1\}
$$

For each $q \in B \setminus \{1\}$ define the set

$$
A(q) := \sum_{n \in N_q} V_n,
$$

where the above sum is a finite sum of sets. Firstly, each $A(q)$ is balanced by Problem 7, since it is a finite sum of balanced sets. We claim that $A(q) \subseteq V$ for all $q \in B \setminus \{1\}$. To see this, $q \in B \setminus \{1\}$ and let $m_1, ..., m_k$ be the set N_q written in increasing order (which can be done by finiteness of N_q). We note that $V_{m_j} \subseteq V_i$ for all $i < m_j$ by construction. So, $V_{m_j} + V_{m_j} \subseteq V_{m_{j-1}}$ by monotonicity of the sequence $\{m_k\}_k$ and selection of the V_n 's. Using these two facts, we see

$$
A(q) = V_{m_k} + \dots + V_{m_1} \subseteq V_{m_k} + V_{m_k} + V_{m_{k-1}} + \dots + V_{m_1}
$$

\n
$$
\subseteq V_{m_{k-1}} + V_{m_{k-1}} + V_{m_{k-2}} + \dots + V_{m_1}
$$

\n
$$
\subseteq V_{m_{k-2}} + V_{m_{k-2}} + \dots + V_{m_1}
$$

\n
$$
\subseteq \dots \subseteq V_{m_1} + V_{m_1} \subseteq V_1 + V_1 \subseteq V
$$

In the above, we used the fact that that $V_{m_k} \subseteq V_{m_k} + V_{m_k}$ in the first line (it contains the origin), the fact that $V_{m_k} + V_{m_k} \subseteq V_{m_{k-1}}$ to go to the second line, the fact that $V_{m_{k-1}} + V_{m_{k-1}} \subseteq V_{m_{k-2}}$ to go to the third line, and the fact that $V_{m_1} \subseteq V_1$ in the last line.

Next, define $A(1) = X$. Thus, for every $x \in V$ there is some $q \in B$ for which $x \in A(q)$. Now, define a function $f: X \to [0, 1]$ via

$$
f(x) := \inf_{q \in B} \{q : x \in A(q)\}
$$

We note that $f(0_X) = 0$, since $0_X \in V_n$ $\forall n \in \mathbb{N} \implies 0_X \in A(q)$ $\forall q \in B$, and so $f(0_X) = \inf_{q \in B} \{q\} = 0$ (to see this last statement, note that B contains the sequence $\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^k}, \ldots\}$ whose infimum is 0). Furthermore, for every $x \notin V$ we know that $x \notin A(q)$ if $q \in B \setminus \{1\}$, and so $f(x) = 1$ necessarily. Thus, all that remains to be proven is that this map f is continuous. We start with the following lemmas.

Lemma 2. The set B is dense in $[0, 1]$.

Proof of Lemma 2. The statement that B is dense in [0,1] holds if and only if $B \cap (r - \delta, r + \delta) \neq \emptyset$ for every $r \in (0,1)$ and any $\delta > 0$ (since these intervals $(r - \delta, r + \delta)$ generate the usual subspace topology on [0,1]). So, let $r \in (0, 1)$ and $\delta > 0$ be arbitrary such that $(r - \delta, r + \delta) \subseteq [0, 1]$. Write r in terms of its infinite binary expansion

$$
r = \sum_{n \in N_r} 2^{-n}
$$

for some not-necessarily-finite $N_r \subseteq \mathbb{N}$. Let $k > -\log_2(\delta)$ be an integer, and define

$$
\tilde{r}:=\sum_{\substack{n\in N_r\\ n\leq k}}2^{-n}
$$

to be the k-truncated binary representation of r. Then, certainly $\tilde{r} \in B$ since $\tilde{r} \in (0, r) \subseteq [0, 1]$ and it has a finite binary representation. Also,

$$
|r-\tilde r|=\sum_{\substack{n\in N_r\\ n>k}}2^{-n}\leq \sum_{n>k}2^{-n}=2^{-k}<2^{\log_2(\delta)}=\delta,
$$

where the above holds since we are summing nonnegative terms that form a geometric series. So $\tilde{r} \in$ $(r - \delta, r + \delta)$. Thus, B is dense in [0, 1]. \blacksquare

Lemma 3. Each $A(q)$ is open for $q \in B$, and for any $p, q \in B$ we have

$$
A(q) + A(p) \subseteq A(q+p)
$$

Thus, for any $p, q \in B$ with $p < q$ we have

$$
A(p) \subseteq A(q)
$$

Proof of Lemma 3. First, we prove openness. If $q = 1$, then $A(q) = X$ which is open. So, suppose $q \in B \setminus \{1\}$. Let N_q be the set of nonzero coefficient indices in the binary expansion of q. Since $q \in B$, we know N_q is finite; thus, $A(q)$ is a finite sum of open sets and is therefore open (to see this final statement, we observe that if A, B open, then $A + B = \bigcup_{a \in A} (a + B)$, and so $A + B$ is a union of open sets). So, $A(q)$ is an open set.

Now, let $p, q \in B$. If $p + q \ge 1$ then the result holds trivially. So, suppose that $p + q < 1$, and so $p, q, p + q \in B \setminus \{1\}$ (we know that $p + q \in B$ since the sum of two finite binary expansions is itself a finite binary expansion). Let N_p , N_q , $N_{p+q} \subseteq \mathbb{N}$ be the sets of indices of the nonzero terms in the binary expansions of p, q, and $p + q$, respectively; we know that they will all disagree with each other somewhere. We restate the proposition about binary addition that was used in the proof of Theorem 1.24 in Rudin: namely, that

$$
m := \min\{(N_p \setminus N_q) \cup (N_q \setminus N_p)\} \in N_{p+q} \cap N_p^C \cap N_q^C
$$

In words, this states that at the first coefficient where p and q disagree, $p + q$ will have a value of 1 while both p and q will have a value of 0; this can be seen as an immediate consequence of carrying over while performing the addition $p + q$ in the binary expansion. Regardless, we see that for this m, we have

$$
A(p) = \sum_{n \in N_p \setminus \{m\}} V_n
$$

and

$$
A(q) = \sum_{n \in N_q \setminus \{m\}} V_n
$$

So,

$$
A(p) + A(q) \subseteq \sum_{N_{p+q}} V_n = A(p+q),
$$

proving the second part. To see the last part, we note that since $0_X \in A(t)$ for every $t \in B$, for any $p < q$ with $p, q \in B$ we have

$$
A(p) \subseteq A(p) + A(q - p) \subseteq A(q),
$$

where we know that $q - p$ is in B since the difference of finite binary representations is again a finite binary representation.

Lemma 4. For all $x, y \in X$, we have that

$$
|f(x) - f(y)| \le f(x - y)
$$

Proof of Lemma 4. Let $x, y \in X$. We claim that $f(x + y) \leq f(x) + f(y)$. To this end, let $\epsilon > 0$. By density of B in [0,1], we may find a $p, q \in B$ such that $f(x) < p < f(x) + \frac{\epsilon}{2}$ and $f(y) < q < f(y) + \frac{\epsilon}{2}$. Since $f(x) < p$ we know by definition of an infimum that $x \in A(r)$ for some $r < p$, and so $x \in A(p)$ by the last statement of Lemma 3. Similarly, $y \in A(q)$. Thus, $x + y \in A(p) + A(q) \subseteq A(p + q)$ by Lemma 3, and so it must be that $f(x + y) \leq p + q$. Therefore,

$$
f(x+y) < f(x) + f(y) + \epsilon,
$$

and taking $\epsilon \to 0$ yields that $f(x + y) \leq f(x) + f(y)$.

Therefore, for any $x, y \in X$ we know that

$$
f(y) = f(x + (y - x)) \le f(x) + f(y - x) \implies f(y) - f(x) \le f(y - x)
$$

Similarly, $f(x) - f(y) \leq f(x - y)$. Lastly, for each $r \in B$ since $A(r)$ is balanced and therefore symmetric, we know that $y-x \in A(q) \iff x-y \in A(q)$, and so $f(x-y) = f(y-x)$. The lemma follows immediately. ■

Now, let $x \in X$ be arbitrary; we wish to show f is continuous at x. Let $\epsilon > 0$ be arbitrary. We seek an open set $U \in \text{Nbhd}(x)$ for which $y \in U \implies |f(y) - f(x)| < \epsilon$. Let $q \in B \cap (0, \epsilon)$, which is nonempty by Lemma 2. Then, $A(q) \in \text{Nbhd}(0_X)$ by Lemma 3, and so $U := x + A(q) \in \text{Nbhd}(x)$. Furthermore, for any $y \in U$ we have that $y - x \in A(q)$, and so by Lemma 4 we know

$$
|f(y) - f(x)| \le f(y - x) \le q < \epsilon,
$$

where the second inequality above comes from the fact that $y - x \in A(q)$, and the last comes from our selection of $q \in B \cap (0, \epsilon)$. So, f is continuous on X. ■

Let X be the VS of all continuous functions $f:(0,1) \to \mathbb{C}$. For any $f \in X$ and $r > 0$, set

 $V(f,r) := \{ g \in X : |g(x) - f(x)| < r \; \forall x \in (0,1) \}$

and set $Open(X)$ as the topology generated by ${V(f,r)}_{f\in X,r>0}$ (is this collection a basis or a sub-basis for a topology?). Show that w.r.t. $Open(X)$, vector addition is continuous but scalar multiplication is not.

Solution

Proof. To see that vector addition is continuous, let $g, h \in X$ be arbitrary and let $U \in \text{Nbhd}(g + h)$ be an arbitrary neighborhood of their sum. Let r be small enough that $V(g+h,r) \subseteq U$. We seek neighborhoods $V_g \in \text{Nbhd}(g)$ and $V_h \in \text{Nbhd}(h)$ for which $V_g + V_h \subseteq V(g+h,r)$. So, let $V_g := V(g, \frac{r}{2})$ and $V_h := V(h, \frac{r}{2})$. Now, for any $\tilde{g} \in V_g$ and $\tilde{h} \in V_h$, we have that for all $x \in (0,1)$,

$$
|\tilde{g}(x)+\tilde{h}(x)-(g(x)+h(x))|\leq |\tilde{g}(x)-g(x)|+|\tilde{h}(x)-h(x)|<\frac{r}{2}+\frac{r}{2}=r,
$$

and so $\tilde{g} + \tilde{h} \in V(g + h, r) \subseteq U$. Since we were able to find such neighborhoods V_g and V_h for all $U \in \text{Nbhd}(g+h)$, we see that vector addition is continuous.

i have no idea how to show scalar multiplication isnt continuous \blacksquare