MAT 520: Problem Set 1

Due on September 15, 2023

Professor Jacob Shapiro

Evan Dogariu Collaborators: David Shustin

Prove that \mathbb{C}^n with its Euclidean topology is a topological vector space, i.e., show that vector addition and scalar multiplication are continuous with respect to the Euclidean topology.

Solution

Proof. We first show continuity of vector addition. Let $z, w \in \mathbb{C}^n$ be two arbitrary vectors, and let $\epsilon > 0$. Then, if we let $\delta := \frac{\epsilon}{2} > 0$, we have for every $(\tilde{z}, \tilde{w}) \in B_{\delta}(z) \times B_{\delta}(w)$ that

$$|(\tilde{z} + \tilde{w}) - (z + w)| \le |\tilde{z} - z| + |\tilde{w} - w| < \delta + \delta = \epsilon,$$

where the first inequality is the triangle inequality. Since such a δ exists for every ϵ , we see that the addition map is continuous at $(z, w) \in \mathbb{C}^n \times \mathbb{C}^n$. Since this holds for all $z, w \in \mathbb{C}^n$, vector addition is continuous.

Similarly, let $z \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$ be arbitrary. Let $\epsilon > 0$ be arbitrary, and set $\delta := \min\left\{1, \frac{\epsilon}{1+|\alpha|+|z|}\right\} > 0$. Then, for every $\tilde{z} \in B_{\delta}(z)$ and every $\beta \in B_{\delta}(\alpha)$, we have that

$$\begin{aligned} |\beta \tilde{z} - \alpha z| &= |\beta \tilde{z} - \beta z + \beta z - \alpha z| \le |\beta \tilde{z} - \beta z| + |\beta z - \alpha z| \\ &= |\beta||\tilde{z} - z| + |z||\beta - \alpha| \le |\beta|\delta + |z|\delta \end{aligned}$$

Next, since $|\beta - \alpha| < \delta$, the reverse triangle inequality grants that $||\beta| - |\alpha|| < \delta \implies |\beta| < \delta + |\alpha|$. So,

$$|\beta \tilde{z} - \alpha z| \le (\delta + |\alpha|)\delta + |z|\delta = \delta^2 + (|\alpha| + |z|)\delta \le (1 + |\alpha| + |z|)\delta \le \epsilon,$$

where the second to last inequality comes from the fact that $\delta \leq 1$, and the last inequality follows from $\delta \leq \frac{\epsilon}{1+|\alpha|+|z|}$. So, since we may find such a δ for every $\epsilon > 0$, scalar multiplication is continuous at (z, α) . Since this holds for every $z \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$, we have shown that scalar multiplication is continuous.

Prove that \mathbb{C} with the French metro metric is not homeomorphic (=topologically isomorphic) to \mathbb{C} with the Euclidean metric. Conclude (why?) that \mathbb{C} with the French metro metric is not a TVS.

Solution

Proof. Recall the French metro metric

$$d(z,w) = \begin{cases} |z-w| & \exists \alpha \in \mathbb{R} \text{ s.t. } z = \alpha w \\ |z| + |w| & \text{else} \end{cases}$$

Pick a $z \in \mathbb{C}$ that is nonzero, and let $\delta \in (0, |z|)$ be arbitrary. In the French metro metric, we have

$$B_{\delta}(z) = \{ w \in \mathbb{C} : w = rz \text{ for some } r \in (1 - \delta, 1 + \delta) \}$$

Since metric spaces are T_1 and so singletons are closed, we see that $B := B_{\delta}(z) \setminus \{z\}$ is an open set with two connected components. Suppose by way of contradiction that there were a homeomorphism f going from \mathbb{C} with the French metro metric to \mathbb{C} with the Euclidean metric. Then, we should have that f(B) is a set in \mathbb{C} that is open in the Euclidean topology and has two connected components by the properties of homeomorphisms. However, by bijectivity of f we have

$$f(B) = f(B_{\delta}(z)) \setminus \{f(z)\}$$

So, $f(B_{\delta}(z))$ is a connected open set in \mathbb{C}_{usual} which, upon removal of a single point, becomes two disjoint connected sets. This is impossible in \mathbb{C}_{usual} since removing a point from open disks in \mathbb{C} keeps the disk connected. So, we arrive at a contradiction, and so there can be no homeomorphism between these spaces.

Suppose by way of contradiction that \mathbb{C} with the French metro metric were a TVS. Then, since the identity map is a vector space isomorphism from \mathbb{C}_{usual} to \mathbb{C} with the French metro metric (which is finite-dimensional), Theorem 1.21(a) from Rudin would guarantee that the identity map is also a homeomorphism. However, we just ruled out that possibility, and so we see that \mathbb{C} with the French metro metric cannot be a TVS. \blacksquare

Problem 3

Prove that if X is a TVS and $A, B \subseteq X$, then $\overline{A} + \overline{B} \subseteq \overline{A + B}$

Solution

Proof. Let $x \in \overline{A} + \overline{B}$ be arbitrary. Then, $x = x_a + x_b$ for some $x_a \in \overline{A}$ and $x_b \in \overline{B}$. Let $U \in \text{Nbhd}(0_X)$ be arbitrary. By Lemma 2.6, there is some $W \in \text{Nbhd}(0_X)$ for which $W + W \subseteq U$. By Theorem 1.13(a) in Rudin, we know that

$$\overline{A} = \bigcap_{U \in \text{Nbhd}(0_X)} (A + U)$$

and similarly for B. In particular, we know that $x_a \in A + W$ and $x_b \in B + W$. So, there exist $a \in A, b \in B$, and $w_a, w_b \in W$ such that

$$x = x_a + x_b = a + b + w_a + w_b = (a + b) + (w_a + w_b)$$

So, since $a + b \in A + B$ and $w_a + w_b \in W + W \subseteq U$, x can be written as a sum of an element of A + B with an element of U, and so $x \in (A + B) + U$. Since this holds for all $U \in Nbhd(0_X)$, we have

$$x \in \bigcap_{U \in \text{Nbhd}(0_X)} ((A+B) + U) = \overline{A+B},$$

where the last equality is again by Theorem 1.13(a) in Rudin. Since this holds for all $x \in \overline{A} + \overline{B}$, the result is proven.

Prove that if X is a TVS and $A \subseteq X$ is a vector subspace, then so is \overline{A} .

Solution

Proof. Let $x, y \in \overline{A}$ and $\alpha \in \mathbb{C}$. Certainly, since $0_X \in A$ we have that $0_X \in \overline{A}$. We wish to show that $x + y \in \overline{A}$ and $\alpha x \in \overline{A}$, since then \overline{A} will be closed under the vector operations. We know by Theorem 1.13(a) in Rudin that

$$\overline{A} = \bigcap_{U \in \text{Nbhd}(0_X)} (A + U)$$

So, for every $W \in \text{Nbhd}(0_X)$, it holds that $x, y \in A + W$. Let $U \in \text{Nbhd}(0_X)$ be an arbitrary neighborhood of the origin. By Lemma 2.6, there is a $W \in \text{Nbhd}(0_X)$ such that $W + W \subseteq U$. So, since $x, y \in A + W$, we know that $x = a_x + w_x$ and $y = a_y + w_y$ for some $a_x, a_y \in A$ and $w_x, w_y \in W$. Therefore,

$$x + y = (a_x + a_y) + (w_x + w_y)$$

Since A is a vector subspace, we know that $a_x + a_y \in A$ as well. Also, we know that $w_x + w_y \in W + W \subseteq U$. So, x + y can be written as the sum of an element of A and an element of U, and so $x + y \in A + U$. Since this holds for every $U \in \text{Nbhd}(0_X)$, we find that $x + y \in \overline{A}$ as desired.

If $\alpha = 0$ then clearly $\alpha x \in \overline{A}$ (since A contains 0_X by definition of vector subspace and $A \subseteq \overline{A}$), and so suppose without loss of generality that $\alpha \neq 0$. Let $U \in \text{Nbhd}(0_X)$ be arbitrary. Define $W := \frac{1}{\alpha}U$; since scaling by $\frac{1}{\alpha}$ is a homeomorphism in a TVS and maps 0_X to 0_X , it must be that $W \in \text{Nbhd}(0_X)$. We note that

$$\alpha x \in A + U \iff \alpha x = a + u \text{ for some } a \in A \text{ and } u \in U$$
$$\iff x = \frac{1}{\alpha}a + \frac{1}{\alpha}u \text{ for some } a \in A \text{ and } u \in U \iff x \in \frac{1}{\alpha}A + \frac{1}{\alpha}U$$

Since A is a vector subspace, we know that $A = \frac{1}{\alpha}A$, and so

$$\alpha x \in A + U \iff x \in A + W$$

Since $x \in \overline{A}$ and W is a neighborhood of the origin, we know by Theorem 1.13(a) in Rudin that $x \in A + W$, and so $\alpha x \in A + U$. Since this holds for all $U \in \text{Nbhd}(0_X)$, then

$$\alpha x \in \bigcap_{U \in \mathrm{Nbhd}(0_X)} (A + U) = \overline{A},$$

completing the proof. \blacksquare

Prove that if X is a TVS and $A \subseteq X$, then $2A \subseteq A + A$.

Solution

Proof. Let $x \in 2A$; then, x = 2a = a + a for some $a \in A$. So, x can be written as the sum of two elements of A (namely, a and a), and so $x \in A + A$. Since this holds for all $x \in 2A$, we find

 $2A\subseteq A+A$

Prove that any union and any intersection of balanced sets is balanced.

Solution

Proof. Let $\{A_{\gamma}\}_{\gamma \in I}$ be any collection of balanced sets (*I* need not be countable). Let $\alpha \in \mathbb{C}$ be such that $|\alpha| \leq 1$. For the first part, let $x \in \alpha \left(\bigcup_{\gamma \in I} A_{\gamma}\right)$. Then, $x = \alpha y$ for some $y \in \bigcup_{\gamma \in I} A_{\gamma}$; since y is in the union, there is some A_{γ} such that $y \in A_{\gamma}$. So, $x = \alpha y \in \alpha A_{\gamma} \subseteq A_{\gamma}$ by the fact that A_{γ} is balanced. Thus, $x \in \bigcup_{\gamma \in I} A_{\gamma}$. Therefore,

$$\alpha\left(\bigcup_{\gamma\in I}A_{\gamma}\right)\subseteq\bigcup_{\gamma\in I}A_{\gamma}$$

for all $|\alpha| \leq 1$, as desired.

Now, let $x \in \alpha \left(\bigcap_{\gamma \in I} A_{\gamma}\right)$. Then, $x = \alpha y$ for some $y \in \bigcap_{\gamma \in I} A_{\gamma} \implies y \in A_{\gamma} \quad \forall \gamma \in I$. Since every A_{γ} is balanced, we know that $x = \alpha y \in \alpha A_{\gamma} \subseteq A_{\gamma}$ for every γ . So, $x \in \bigcap_{\gamma \in I} A_{\gamma}$. Therefore,

$$\alpha\left(\bigcap_{\gamma\in I}A_{\gamma}\right)\subseteq\bigcap_{\gamma\in I}A_{\gamma}$$

for all $|\alpha| \leq 1$, and the intersection is balanced.

Prove that if A and B are balanced, then so is A + B.

Solution

Proof. Let $\alpha \in \mathbb{C}$ be such that $|\alpha| \leq 1$, and let $x \in \alpha(A + B)$. Then, $x = \alpha y$ for some $y \in A + B$, meaning that $x = \alpha(a + b) = \alpha a + \alpha b$ for some $a \in A$ and $b \in B$. We know that $\alpha a \in \alpha A \subseteq A$ by the fact that A is balanced, and similarly we know that $\alpha b \in B$. Thus, x is the sum of an element of A and an element of B, meaning $x \in A + B$. Since this holds for all $x \in \alpha(A + B)$, we find

$$\alpha(A+B)\subseteq A+B$$

Since this holds for all $|\alpha| \leq 1$, then A + B is balanced.

Let X be a TVS. Prove that if $A, B \subseteq X$ are bounded (resp. compact) then A + B is bounded (resp. compact).

Solution

Proof. Suppose first that A, B are bounded. Let $U \in Nbhd(0_X)$ be arbitrary. By Lemma 2.6, there is some $W \in Nbhd(0_X)$ such that $W + W \subseteq U$. By boundedness, there are some $t_A, t_B > 0$ such that

 $s > t_A \implies A \subseteq sW$ and $s > t_B \implies B \subseteq sW$

Now, let $t_U := \max\{t_A, t_B\}$, and let s > t be arbitrary. We wish to show that $A + B \subseteq sU$. So, suppose that $x \in A + B$, and so x = a + b for some $a \in A \subseteq sW$ and $b \in B \subseteq sW$. Then, $a = sw_a$ and $b = sw_b$ for some $w_a, w_b \in W$, and so

$$x = a + b = sw_a + sw_b = s(w_a + w_b) \in s(W + W)$$

Lastly, since $W + W \subseteq U$, it must be that $s(W+W) \subseteq sU$, and so $x \in sU$. Since this holds for all $x \in A+B$, we have $A+B \subseteq sU$. Since this holds for all $U \in Nbhd(0_X)$ and all $s > t_U$, this means that A+B is bounded.

Now, suppose that A and B are both compact. We wish to show that A + B is also compact. To this end, let $\bigcup_{\alpha \in I} U_{\alpha}$ be an open cover of A + B. For each U_{α} , let $F_{\alpha} \subseteq X \times X$ denote the preimage of U_{α} under the addition map (i.e. $F_{\alpha} = \{(x, y) \in X \times X : x + y \in U_{\alpha}\}$. Since addition is continuous in a TVS, each F_{α} is open. Furthermore, we note that

$$A \times B \subseteq \bigcup_{\alpha \in I} F_{\alpha},$$

since each tuple $(a, b) \in A \times B$ maps under addition to an element $a + b \in U_{\alpha}$ for some α , and so $(a, b) \in F_{\alpha}$ for this α . So, $\{F_{\alpha}\}_{\alpha}$ is an open cover of $A \times B$, which is compact, and so there is a finite subcover $A \times B \subseteq \bigcup_{i=1}^{n} F_i$. We claim that

$$A + B \subseteq \bigcup_{i=1}^{n} U_i$$

To see this, let $a + b \in A + B$ with $a \in A$ and $b \in B$. Then, $(a, b) \in F_i$ for some $i \leq n$, and so taking the image under the addition map we see that $a + b \in U_i$ for that i. Thus, $a + b \in \bigcup_{i=1}^n U_i$. We have just constructed a finite subcover of an arbitrary open cover of A + B, therefore proving compactness of A + B.

Find two closed sets A, B for which A + B is not closed.

Solution

Proof. Let $X = \mathbb{R}$ be the line as a TVS, and define

$$A := \{-n : n \in \mathbb{N}\}$$

and

$$B := \left\{ n - \frac{1}{n} : \quad n \in \mathbb{N} \right\}$$

Since

$$A^C = \bigcup_{n \in \mathbb{N}} (-n-1, -n) \cup (-1, \infty)$$

is an open set, we see that A is closed. Furthermore, B is closed since

$$B^C = (-\infty, 0) \cup \bigcup_{n \in \mathbb{N}} \left(n - \frac{1}{n}, \ n+1 - \frac{1}{n+1} \right)$$

is an open set. However, we claim that A + B is not closed. To see this, note that for every $n \in \mathbb{N}$ we have that $-\frac{1}{n} \in A + B$ since $-n \in A$ and $n - \frac{1}{n} \in B$. Also, $-\frac{1}{n} \to 0$. However, $0 \notin A + B$. To see this, suppose by way of contradiction that 0 = a + b for some $-n_1 \in A$ and $n_2 - \frac{1}{n_2} \in B$. So,

$$0 = n_2 - \frac{1}{n_2} - n_1 \implies n_1 = n_2 - \frac{1}{n_2}$$

In order for $\frac{1}{n_2}$ to equal $n_2 - n_1$ and be an integer, it must be that $n_2 = 1$. Therefore, $n_1 = 0$, which is a contradiction since $0 \notin A$. Therefore, there is a sequence $\{-\frac{1}{n}\}_n \subseteq A + B$ whose limit point is not in A + B. Therefore, A + B cannot be closed.

If X, Y are TVS with $\dim(Y) < \infty$, and $\Lambda : X \to Y$ is linear with $\Lambda(X) = Y$, show that Λ is an open mapping. Show further that if ker(Λ) is closed, then Λ is continuous.

Solution

Proof. Suppose that Λ is linear and surjective, with $\dim(Y) = n < \infty$. Let $y_1, ..., y_n$ denote a basis of Y. Define the linear map $f : \mathbb{C}^n \to Y$ via

$$f(z) := \sum_{i=1}^{n} z_i y_i$$

Since $\{y_i\}_{i=1}^n$ is a basis of Y, the map f is bijective, and so it is a vector space isomorphism. By Theorem 1.21(a) in Rudin, it is therefore also a homeomorphism. Now, since Λ is surjective, we may define a map $g: \mathbb{C}^n \to X$ given by

$$g(z) = \sum_{i=1}^{n} z_i \Lambda^{-1}(y_i),$$

where $\Lambda^{-1}: Y \to X$ is any right inverse for Λ (i.e. for each y_i the preimage $\Lambda^{-1}(\{y\})$ is nonempty; use the Axiom of Choice to pick an element of this set and call it $\Lambda^{-1}(y_i)$). The map g is certainly linear, which by Lemma 1.20 in Rudin means that g is continuous. Define the map $\varphi: Y \to X$ given by $\varphi := g \circ f^{-1}$; since g is continuous and f is homeomorphic we find that φ is continuous. Now, for any $y \in Y$ we have that $y = \sum_{i=1}^{n} a_i y_i$, and so $f^{-1}(y) = (a_1, ..., a_n)$ uniquely by definition of a basis. Therefore, $\varphi(y) = g((a_1, ..., a_n)) = \sum_{i=1}^{n} a_i \Lambda^{-1}(y_i)$. By linearity of Λ , we get that

$$(\Lambda \circ \varphi)(y) = \Lambda \left(\sum_{i=1}^{n} a_i \Lambda^{-1}(y_i)\right) = \sum_{i=1}^{n} a_i \Lambda(\Lambda^{-1}(y_i)) = \sum_{i=1}^{n} a_i y_i = y$$

So, $\Lambda \circ \varphi$ is the identity over all of Y. We have therefore constructed a right inverse φ for Λ that is continuous. So, for any open set $U \in \text{Open}(X)$, we see that $\varphi^{-1}(U)$ is open in Y by continuity of φ , where φ^{-1} denotes the preimage. However, $\varphi^{-1}(U) = \Lambda(U)$, since

$$y\in \varphi^{-1}(U) \iff \varphi(y)\in U \iff \Lambda(\varphi(y))\in \Lambda(U) \iff y\in \Lambda(U),$$

where the first equivalence comes from the definition of the preimage of φ , the second equivalence comes from the definition of the image of Λ , and the last equivalence comes from the fact that $\Lambda(\varphi(y)) = y$ for all y. So, we find that $\Lambda(U)$ is open in Y. Since this holds for all $U \in \text{Open}(X)$, Λ is an open map.

Suppose further that ker(Λ) is closed. We know that ker(Λ) is a vector subspace since $x, y \in \text{ker}(\Lambda)$ and $\alpha \in \mathbb{C}$ implies $\Lambda(x + y) = \Lambda(x) + \Lambda(y) = 0_Y + 0_Y = 0_Y$ and $\Lambda(\alpha x) = \alpha \Lambda(x) = \alpha 0_Y = 0_Y$, and so x + y, $\alpha x \in \text{ker}(\Lambda)$. By Theorem 1.41 in Rudin, this means that the canonical quotient map $\pi : X \to X/\text{ker}(\Lambda)$ sending $x \to x + \text{ker}(\Lambda)$ is continuous, where we use $x + \text{ker}(\Lambda)$ to denote cosets of ker(Λ) by elements x. Furthermore, note that the map $h : X/\text{ker}(\Lambda) \to Y$ mapping $x + \text{ker}(\Lambda) \mapsto \Lambda(x)$ is a vector space isomorphism by the First Isomorphism Theorem from abstract algebra. (Precisely, viewing Λ as a surjective group homomorphism and X, Y as additive groups, the theorem guarantees that h is a bijective homomorphism; we would also need to show that $h(\alpha x) = \alpha h(x) \quad \forall \alpha \in \mathbb{C}$, which follows directly from linearity of Λ and the fact that ker(Λ) is a vector subspace). So, as h is a vector space isomorphism, and so it certainly is continuous. Thus, $h \circ \pi$ is continuous; we claim that $\Lambda = h \circ \pi$ over X. Indeed,

$$h(\pi(x)) = h(x + \ker(\Lambda)) = \Lambda(x)$$

Thus, Λ is continuous, and we are done.

Let $C := \{f : [0,1] \to \mathbb{C} : f \text{ is continuous}\}$ and define

$$d(f,g) := \int_{[0,1]} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$$

Show that d is a metric on C, show that C is a vector space (with pointwise addition and scalar multiplication), and show that the topology which d induces on C makes it into a TVS. Show that that TVS has a countable local base.

Solution

Proof. We start by showing that d is a metric. Firstly, for all $f \in C$ we have

$$d(f,f) = \int_{[0,1]} \frac{|f(x) - f(x)|}{1 + |f(x) - f(x)|} dx = \int_{[0,1]} \frac{0}{1} dx = 0$$

The property that d(f,g) = d(g,f) is clear from the symmetry of the definition. Next, suppose that $f, g \in C$ are such that $f \neq g$. Define the function $h : [0,1] \to \mathbb{R}$ by h(x) := |f(x) - g(x)|; then, h is nonnegative and continuous since f - g and $|\cdot|$ are both continuous. Define the set

$$E := \{ x \in [0,1] : \quad h(x) > 0 \}$$

Clearly, E is nonempty since $f \neq g$ somewhere. Suppose by way of contradiction that m(E) = 0, where $m(\cdot)$ denotes the Lebesgue measure. Let $x \in E$, and let $0 < \epsilon < h(x)$. By continuity of h at x, there exists a $\delta > 0$ such that for all $y \in (x - \delta, x + \delta) \subseteq [0, 1]$, we have

$$|h(x) - h(y)| < \epsilon \implies h(x) - h(y) < \epsilon < h(x) \implies h(y) > 0 \implies y \in E$$

So, $(x - \delta, x + \delta) \subseteq E$, and so by monotonicity of measure we have that $2\delta = m((x - \delta, x + \delta)) \leq m(E) = 0$. This is a contradiction, and so m(E) > 0. We may write

$$d(f,g) = \int_E \frac{h(x)}{1+h(x)} dx + \int_{[0,1]\setminus E} \frac{h(x)}{1+h(x)} dx$$
$$= \int_E \frac{h(x)}{1+h(x)} dx + \int_E \frac{0}{1} dx$$
$$\ge \int_E h(x) dx,$$

where the inequality comes from the fact that h is nonnegative. Now, we know by inner regularity of the Lebesgue measure that if we set $\delta := m(E)$, we may select a closed set $F \subseteq E$ such that

$$m(E \setminus F) < \delta = m(E) \implies m(E) = m(F) + m(E \setminus F) < m(F) + m(E) \implies m(F) > 0$$

Define $a := \inf_{x \in F} \{h(x)\}$. Since $F \subseteq [0, 1]$ is closed and bounded in \mathbb{R} , it is compact, and so the continuous function h attains its infimum a at some point; this necessarily means that a > 0 (if a were 0 then $h(t_a) = 0$ for some $t_a \in F \subseteq E$, contradicting our definition of E). As such, we may write

$$d(f,g) \ge \int_E h(x)dx \ge \int_F h(x)dx \ge am(F) > 0$$

The last thing that remains to be shown is the triangle inequality. To this end, we prove the following lemma.

Lemma 1. For any $a, b \in (0, \infty)$, we have that

$$\frac{1}{1+a} + \frac{1}{1+b} \le 1 + \frac{1}{1+a+b}$$
$$\frac{a+b}{1+a+b} \le \frac{a}{1+a} + b$$

1

Proof of Lemma 1. For the first part, note that

$$LHS := \frac{1}{1+a} + \frac{1}{1+b} = \frac{1+a+1+b}{1+a+b+ab} = \frac{2+a+b}{1+a+b+ab}$$

Since ab > 0, we get that

$$LHS \le \frac{2+a+b}{1+a+b} = 1 + \frac{1}{1+a+b}$$

To see the second part, note that

$$\frac{a+b}{1+a+b} \leq \frac{a+b+ab}{1+a+b} \leq \frac{a+b+ab}{1+a} = \frac{a}{1+a} + b,$$

proving the lemma.

From here, we note that for any $f, g, h \in C$, the above lemma grants

$$\begin{split} d(f,g) &= 1 - \int_{[0,1]} \frac{1}{1 + |f(x) - g(x)|} dx \le 1 - \int_{[0,1]} \frac{1}{1 + |f(x) - h(x)| + |h(x) - g(x)|} dx \\ &\le 1 + 1 - \int_{[0,1]} \left(\frac{1}{1 + |f(x) - h(x)|} + \frac{1}{1 + |h(x) - g(x)|} \right) dx \\ &= \left(1 - \int_{[0,1]} \frac{1}{1 + |f(x) - h(x)|} dx \right) + \left(1 - \int_{[0,1]} \frac{1}{1 + |h(x) - g(x)|} dx \right) \\ &= d(f,h) + d(h,g), \end{split}$$

and the triangle inequality is proven. So, d is a metric. In fact, we have that d is translation invariant, since for all $f, g, h \in C$ we know that $d(f + h, g + h) = \int_{[0,1]} \frac{|f+h-(g+h)|}{1+|f+h-(g+h)|} = \int_{[0,1]} \frac{|f-g|}{1+|f-g|} = d(f,g)$.

Next, we know that C is closed under the pointwise addition and pointwise scalar multiplication operations since continuity is preserved under such operations. So, C is a vector space. Since our topology is induced by a metric, we know that it is automatically T_1 . We wish to show that addition and scalar multiplication are continuous. So, let $f, g \in C$ be arbitrary and let $\epsilon > 0$. Then, setting $\delta := \frac{\epsilon}{2}$, we have that for any $\tilde{f} \in B_{\delta}(f)$ and $\tilde{g} \in B_{\delta}(g)$ (where $B_r(\cdot)$ denotes an open ball of radius r),

$$\begin{split} d(\hat{f} + \tilde{g}, f + g) &\leq d(\hat{f} + \tilde{g}, \hat{f} + g) + d(\hat{f} + g, f + g) \\ &= d(\tilde{g}, g) + d(\tilde{f}, f) \\ &< \delta + \delta = \epsilon, \end{split}$$

where the first line is the triangle inequality, the second line uses the translation invariance of d, and the third line comes from our selection of δ . So, since we can find such balls $B_{\delta}(f)$ and $B_{\delta}(g)$ for any ϵ , the addition map is continuous at $(f,g) \mapsto f + g$. Since this holds for all $f,g \in C$, vector addition is continuous. To see that scalar addition is continuous, let $f \in C$ and $\alpha \in \mathbb{C}$ be arbitrary, and let $\epsilon > 0$. Let $s := \sup_{x \in [0,1]} \{f(x)\}$ (and so s is finite since f is continuous on a compact domain). Define

$$\delta := \min\left\{1, \frac{\epsilon}{1+|\alpha|+s}\right\}$$

Then, for any $\tilde{f} \in B_{\delta}(f)$ and any $\beta \in \mathbb{C}$ with $|\beta - \alpha| < \delta$, we have

$$\begin{split} d(\beta \tilde{f}, \alpha f) &= 1 - \int_{[0,1]} \frac{1}{1 + |\beta \tilde{f}(x) - \alpha f(x)|} dx = 1 - \int_{[0,1]} \frac{1}{1 + |\beta \tilde{f}(x) - \beta f(x) + \beta f(x) - \alpha f(x)|} dx \\ &\leq 1 - \int_{[0,1]} \frac{1}{1 + |\beta \tilde{f}(x) - \beta f(x)| + |\beta f(x) - \alpha f(x)|} dx \\ &\leq 1 - \int_{[0,1]} \frac{1}{1 + |\beta| |\tilde{f}(x) - f(x)| + |\beta - \alpha| |f(x)|} dx \end{split}$$

By the reverse triangle inequality, $||\beta| - |\alpha|| \le |\beta - \alpha| < \delta \implies |\beta| < \delta + |\alpha|$, and so

$$d(\beta \tilde{f}, \alpha f) < 1 - \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|)|\tilde{f}(x) - f(x)| + \delta|f(x)|} dx$$

$$\leq 1 - \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|)|\tilde{f}(x) - f(x)| + \delta s} dx$$

There are two cases: either $\delta + |\alpha| \le 1$ or $\delta + |\alpha| > 1$. If $\delta + |\alpha| \le 1$, then from the above bound we may get

$$d(\beta \tilde{f}, \alpha f) \le 1 - \int_{[0,1]} \frac{1}{1 + |\tilde{f}(x) - f(x)| + \delta s} dx = \int_{[0,1]} \frac{\delta s + |\tilde{f}(x) - f(x)|}{1 + |\tilde{f}(x) - f(x)| + \delta s} dx$$

Now, we may apply the second result from Lemma 1 with $a = |\tilde{f}(x) - f(x)|$ and $b = \delta s$ to see that

$$d(\beta \tilde{f}, \alpha f) \leq \int_{[0,1]} \left(\frac{|\tilde{f}(x) - f(x)|}{1 + |\tilde{f}(x) - f(x)|} + \delta s \right) dx = d(\tilde{f}, f) + \delta s \leq \delta + \delta s = \delta(1+s)$$

In the case when $\delta + |\alpha| > 1$, we instead continue with

$$\begin{split} d(\beta \tilde{f}, \alpha f) &\leq 1 - \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)| + \delta s} dx \\ &\leq 2 - \left(\int_{[0,1]} \frac{1}{1 + \delta s} dx + \int_{[0,1]} \frac{1}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)|} dx \right) \\ &= 1 - \frac{1}{1 + \delta s} + (\delta + |\alpha|) \int_{[0,1]} \frac{|\tilde{f}(x) - f(x)|}{1 + (\delta + |\alpha|) |\tilde{f}(x) - f(x)|} dx \\ &\leq 1 - \frac{1}{1 + \delta s} + (\delta + |\alpha|) \int_{[0,1]} \frac{|\tilde{f}(x) - f(x)|}{1 + |\tilde{f}(x) - f(x)|} dx \\ &= \frac{\delta s}{1 + \delta s} + (\delta + |\alpha|) d(\tilde{f}, f) < \delta s + (\delta + |\alpha|) \delta \\ &= \delta^2 + \delta(|\alpha| + s), \end{split}$$

where the second line applies Lemma 1. Since $\delta \leq 1$, we see that in this second case

$$d(\beta \tilde{f}, \alpha f) \le \delta + \delta(|\alpha| + s) = \delta(1 + |\alpha| + s)$$

Since $|\alpha| \ge 0$, this means that in both cases we always have that

$$d(\beta \tilde{f}, \alpha f) \le \delta(1 + |\alpha| + s)$$

So, since $\delta \leq \frac{\epsilon}{1+|\alpha|+s}$, we have completed the proof that scalar multiplication is continuous. So, since the topology induced by d is T_1 and yields that the vector addition and scalar multiplication are continuous, we find that this is a TVS.

To finish up, note that the collection $\{B_r(g)\}_{(r,g)\in\mathbb{R}_+\times C}$ forms a basis for the topology induced by d, where

$$B_r(g) := \{ f \in C : d(f,g) < r \}$$

Furthermore, we have that $B_r(0_C) \subseteq B_q(0_C)$ for any r < q by definition. We claim that the collection

$$\mathcal{B} := \{ B_{\perp}(0_C) : n \in \mathbb{N} \}$$

forms a countable local basis at 0_C for the topology induced by d. To this end, let $U \in \text{Nbhd}(0_C)$ be any open neighborhood containing the origin. Then, $U = \bigcup_{(r,g)\in I} B_r(g)$ for some $I \subseteq \mathbb{R}_+ \times C$. So, $0_C \in B_r(g)$ for some r > 0 and $g \in C$. For any $f \in B_{\delta}(0_C)$, we have that

$$d(f,g) = 1 - \int_{[0,1]} \frac{1}{1+|f-g|}$$

FINISH

Let V be a neighborhood of zero in a TVS X. Prove that $\exists f : X \to \mathbb{R}$ continuous such that f(0) = 0 and f(x) = 1 for all $x \in X \setminus V$.

Solution

Proof. We proceed as hinted in Rudin exercise 1.21. Suppose without loss of generality that V is balanced, since we may find a balanced $W \in \text{Nbhd}(0_X)$ with $W \subseteq V$ by Theorem 1.14 in Rudin (if f is 1 outside W, then it is 1 outside V). By Rudin Theorem 1.14 and Lemma 2.6, we may select a balanced $V_1 \in \text{Nbhd}(0_X)$ such that $V_1 + V_1 \subseteq V$. Similarly, for any $n \in \mathbb{N}$, if $V_n \in \text{Nbhd}(0_X)$ we may select a $V_{n+1} \in \text{Nbhd}(0_X)$ balanced such that $V_{n+1} + V_{n+1} \subseteq V_n$. So, for each $n \in \mathbb{N}$, we have that V_n is open, balanced, and satisfies

$$V_n + V_n \subseteq V_{n-1} \quad \forall n > 1$$

Now, let B be the set of all rational numbers in [0,1] with a finite binary representation. By this, we mean let

$$B := \left\{ q \in (0,1) \cap \mathbb{Q} : q = \sum_{n \in N_q} 2^{-n} \text{ for some finite } N_q \subseteq \mathbb{N} \right\} \cup \{1\}$$

For each $q \in B \setminus \{1\}$ define the set

$$A(q) := \sum_{n \in N_q} V_n,$$

where the above sum is a finite sum of sets. Firstly, each A(q) is balanced by Problem 7, since it is a finite sum of balanced sets. We claim that $A(q) \subseteq V$ for all $q \in B \setminus \{1\}$. To see this, $q \in B \setminus \{1\}$ and let m_1, \ldots, m_k be the set N_q written in increasing order (which can be done by finiteness of N_q). We note that $V_{m_j} \subseteq V_i$ for all $i < m_j$ by construction. So, $V_{m_j} + V_{m_j} \subseteq V_{m_{j-1}}$ by monotonicity of the sequence $\{m_k\}_k$ and selection of the V_n 's. Using these two facts, we see

$$A(q) = V_{m_k} + \ldots + V_{m_1} \subseteq V_{m_k} + V_{m_k} + V_{m_{k-1}} + \ldots + V_{m_1}$$
$$\subseteq V_{m_{k-1}} + V_{m_{k-1}} + V_{m_{k-2}} + \ldots + V_{m_1}$$
$$\subseteq V_{m_{k-2}} + V_{m_{k-2}} + \ldots + V_{m_1}$$
$$\subseteq \ldots \subseteq V_{m_1} + V_{m_1} \subseteq V_1 + V_1 \subseteq V$$

In the above, we used the fact that $V_{m_k} \subseteq V_{m_k} + V_{m_k}$ in the first line (it contains the origin), the fact that $V_{m_k} + V_{m_k} \subseteq V_{m_{k-1}}$ to go to the second line, the fact that $V_{m_{k-1}} + V_{m_{k-1}} \subseteq V_{m_{k-2}}$ to go to the third line, and the fact that $V_{m_1} \subseteq V_1$ in the last line.

Next, define A(1) = X. Thus, for every $x \in V$ there is some $q \in B$ for which $x \in A(q)$. Now, define a function $f: X \to [0, 1]$ via

$$f(x):=\inf_{q\in B}\{q:x\in A(q)\}$$

We note that $f(0_X) = 0$, since $0_X \in V_n \quad \forall n \in \mathbb{N} \implies 0_X \in A(q) \quad \forall q \in B$, and so $f(0_X) = \inf_{q \in B} \{q\} = 0$ (to see this last statement, note that B contains the sequence $\{1, \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^k}, \dots\}$ whose infimum is 0). Furthermore, for every $x \notin V$ we know that $x \notin A(q)$ if $q \in B \setminus \{1\}$, and so f(x) = 1 necessarily. Thus, all that remains to be proven is that this map f is continuous. We start with the following lemmas.

Lemma 2. The set B is dense in [0, 1].

Proof of Lemma 2. The statement that *B* is dense in [0,1] holds if and only if $B \cap (r - \delta, r + \delta) \neq \emptyset$ for every $r \in (0,1)$ and any $\delta > 0$ (since these intervals $(r - \delta, r + \delta)$ generate the usual subspace topology

on [0,1]). So, let $r \in (0,1)$ and $\delta > 0$ be arbitrary such that $(r - \delta, r + \delta) \subseteq [0,1]$. Write r in terms of its infinite binary expansion

$$r = \sum_{n \in N_r} 2^{-n}$$

for some not-necessarily-finite $N_r \subseteq \mathbb{N}$. Let $k > -\log_2(\delta)$ be an integer, and define

$$\tilde{r} := \sum_{\substack{n \in N_r \\ n \le k}} 2^{-n}$$

to be the k-truncated binary representation of r. Then, certainly $\tilde{r} \in B$ since $\tilde{r} \in (0, r) \subseteq [0, 1]$ and it has a finite binary representation. Also,

$$|r - \tilde{r}| = \sum_{\substack{n \in N_r \\ n > k}} 2^{-n} \le \sum_{n > k} 2^{-n} = 2^{-k} < 2^{\log_2(\delta)} = \delta,$$

where the above holds since we are summing nonnegative terms that form a geometric series. So $\tilde{r} \in (r - \delta, r + \delta)$. Thus, B is dense in [0, 1].

Lemma 3. Each A(q) is open for $q \in B$, and for any $p, q \in B$ we have

$$A(q) + A(p) \subseteq A(q+p)$$

Thus, for any $p, q \in B$ with p < q we have

$$A(p) \subseteq A(q)$$

Proof of Lemma 3. First, we prove openness. If q = 1, then A(q) = X which is open. So, suppose $q \in B \setminus \{1\}$. Let N_q be the set of nonzero coefficient indices in the binary expansion of q. Since $q \in B$, we know N_q is finite; thus, A(q) is a finite sum of open sets and is therefore open (to see this final statement, we observe that if A, B open, then $A + B = \bigcup_{a \in A} (a + B)$, and so A + B is a union of open sets). So, A(q) is an open set.

Now, let $p, q \in B$. If $p + q \ge 1$ then the result holds trivially. So, suppose that p + q < 1, and so $p, q, p + q \in B \setminus \{1\}$ (we know that $p + q \in B$ since the sum of two finite binary expansions is itself a finite binary expansion). Let $N_p, N_q, N_{p+q} \subseteq \mathbb{N}$ be the sets of indices of the nonzero terms in the binary expansions of p, q, and p + q, respectively; we know that they will all disagree with each other somewhere. We restate the proposition about binary addition that was used in the proof of Theorem 1.24 in Rudin: namely, that

$$m := \min\{(N_p \setminus N_q) \cup (N_q \setminus N_p)\} \in N_{p+q} \cap N_p^C \cap N_q^C$$

In words, this states that at the first coefficient where p and q disagree, p + q will have a value of 1 while both p and q will have a value of 0; this can be seen as an immediate consequence of carrying over while performing the addition p + q in the binary expansion. Regardless, we see that for this m, we have

$$A(p) = \sum_{n \in N_p \setminus \{m\}} V_n$$

and

$$A(q) = \sum_{n \in N_q \setminus \{m\}} V_n$$

So,

$$A(p) + A(q) \subseteq \sum_{N_{p+q}} V_n = A(p+q),$$

proving the second part. To see the last part, we note that since $0_X \in A(t)$ for every $t \in B$, for any p < q with $p, q \in B$ we have

$$A(p) \subseteq A(p) + A(q-p) \subseteq A(q),$$

where we know that q - p is in B since the difference of finite binary representations is again a finite binary representation.

Lemma 4. For all $x, y \in X$, we have that

$$|f(x) - f(y)| \le f(x - y)$$

Proof of Lemma 4. Let $x, y \in X$. We claim that $f(x + y) \leq f(x) + f(y)$. To this end, let $\epsilon > 0$. By density of B in [0, 1], we may find a $p, q \in B$ such that $f(x) and <math>f(y) < q < f(y) + \frac{\epsilon}{2}$. Since f(x) < p we know by definition of an infimum that $x \in A(r)$ for some r < p, and so $x \in A(p)$ by the last statement of Lemma 3. Similarly, $y \in A(q)$. Thus, $x + y \in A(p) + A(q) \subseteq A(p + q)$ by Lemma 3, and so it must be that $f(x + y) \leq p + q$. Therefore,

$$f(x+y) < f(x) + f(y) + \epsilon,$$

and taking $\epsilon \to 0$ yields that $f(x+y) \leq f(x) + f(y)$.

Therefore, for any $x, y \in X$ we know that

$$f(y) = f(x + (y - x)) \le f(x) + f(y - x) \implies f(y) - f(x) \le f(y - x)$$

Similarly, $f(x) - f(y) \le f(x - y)$. Lastly, for each $r \in B$ since A(r) is balanced and therefore symmetric, we know that $y - x \in A(q) \iff x - y \in A(q)$, and so f(x - y) = f(y - x). The lemma follows immediately.

Now, let $x \in X$ be arbitrary; we wish to show f is continuous at x. Let $\epsilon > 0$ be arbitrary. We seek an open set $U \in Nbhd(x)$ for which $y \in U \implies |f(y) - f(x)| < \epsilon$. Let $q \in B \cap (0, \epsilon)$, which is nonempty by Lemma 2. Then, $A(q) \in Nbhd(0_X)$ by Lemma 3, and so $U := x + A(q) \in Nbhd(x)$. Furthermore, for any $y \in U$ we have that $y - x \in A(q)$, and so by Lemma 4 we know

$$|f(y) - f(x)| \le f(y - x) \le q < \epsilon,$$

where the second inequality above comes from the fact that $y - x \in A(q)$, and the last comes from our selection of $q \in B \cap (0, \epsilon)$. So, f is continuous on X.

Let X be the VS of all continuous functions $f:(0,1)\to\mathbb{C}$. For any $f\in X$ and r>0, set

 $V(f,r) := \{ g \in X : |g(x) - f(x)| < r \ \forall x \in (0,1) \}$

and set Open(X) as the topology generated by $\{V(f,r)\}_{f \in X, r>0}$ (is this collection a basis or a sub-basis for a topology?). Show that w.r.t. Open(X), vector addition is continuous but scalar multiplication is not.

Solution

Proof. To see that vector addition is continuous, let $g, h \in X$ be arbitrary and let $U \in \text{Nbhd}(g+h)$ be an arbitrary neighborhood of their sum. Let r be small enough that $V(g+h,r) \subseteq U$. We seek neighborhoods $V_g \in \text{Nbhd}(g)$ and $V_h \in \text{Nbhd}(h)$ for which $V_g + V_h \subseteq V(g+h,r)$. So, let $V_g := V(g, \frac{r}{2})$ and $V_h := V(h, \frac{r}{2})$. Now, for any $\tilde{g} \in V_g$ and $\tilde{h} \in V_h$, we have that for all $x \in (0, 1)$,

$$|\tilde{g}(x) + \tilde{h}(x) - (g(x) + h(x))| \le |\tilde{g}(x) - g(x)| + |\tilde{h}(x) - h(x)| < \frac{r}{2} + \frac{r}{2} = r,$$

and so $\tilde{g} + \tilde{h} \in V(g + h, r) \subseteq U$. Since we were able to find such neighborhoods V_g and V_h for all $U \in Nbhd(g + h)$, we see that vector addition is continuous.

i have no idea how to show scalar multiplication isnt continuous