915

Notr: (Topological Vector Space) X is a topological vector space ;f it is a (C-)vector space and
also a topological space with apon rests Open(x) in a compatible way:

 \cdot +: $X \times X \rightarrow X$ is antiverse und $\rho_{\mu\nu}(x)$
 \cdot $\cdot : C \times X \rightarrow X$ is antiverse with product topo. $C \times X$

Furthernoses we assure X is T, and singletons are closed.

We claim that $(0, \gamma)$ is TVS but $(0, \gamma)$ is NOT.

To desk detter + is continuous, we may note that the basic open sets of
a ridinable tops is $B_6(z)$. So, we may see $f'(B_6(z)) = \bigcup_{w \in X} B_6(w) \times \{v \in X : ||w+v-z||ce\}$

Example: Il spaces for pelaco) $\ell^{\prime}(\omega)$ = $\ell^{\prime}(\omega \rightarrow c)$ = $\left\{ a:\omega \rightarrow c \mid \lim_{n \rightarrow \infty} |a(n)|^{\rho} \circ \omega \right\}$ It is a ℓ -vector space. If ρ_2 1, 3 non-vectors topo.
It ρ_2 1, 3 notive is topo. We claim $l^P(M)$ is a TVS of infinite dimeson. Furtherory
 $l^P(M) \neq l^P(M)$ if $p \neq q$ as TVS, even though they are the some
vector space. The they of TVS will allow vs to discern between these. TVS Example: not S - For $U \subseteq \mathbb{R}$ open, $C(U \ni e)$ is a creatur space. We may give it a topology.
normalist - For $U \subseteq \mathbb{R}^n$ open, $U(U \ni e)$... Den: (Banded & Biloned sets) Let X be a TUS. We say $S \subseteq X$ is bounded if for any respirational N
of a part oe S, $S \subseteq \ell N$ for large every t. S is bakned (starchyed) if aSSS the c with lalst. S is absorbing if $VxeX, 3tso$ st. $x \in A$ 1) wanny: TVS barndedress does not always agree with metre bardedress
(Hough it does it the notice is indeed by a norm. <u>Renok:</u> Reall a lovel been at ρeX is a collection $B \subseteq N b \cup A(X)$
st. $\forall N \in N b \cup A(C_{\rho})$, \exists B $e \cdot B$ st. $B \subseteq N$. Furtherness, by hypothests we have two howeverspheres $T_{\varphi}:x\rightarrow x$ with notice $T_{-\varphi}$ and $M_{\varphi}:x\rightarrow x$ with sweak $M_{\frac{1}{2}}$, 1:0 So, a load burs at $\varphi \in X$ is east to a load burs at a by $T_{\varphi \cdot \alpha}$,
and so it is sufficient to specify a load burs to delive a topology on X. local been \rightarrow been $\rightarrow +\infty$.

Special types of TVS \int_{0}^{∞} X is locally correct : f 3 local basis of \int_{0}^{∞} X is locally convex :f 3 load basis of 0 consisting of \bigotimes X is locally bounded if \cdots bounded alts \bigcirc X is locally comput if \exists Ne Nbid(o sit. \overline{N} is comput & X is an E-space if it is metricable from ^a complete, translation-mirarent metric. **S** X has the Heire-Barel property if closed + bonded ⇒ compret
Lemma: Lemma : $\frac{mn\alpha}{m\alpha}$:
V WeNbd(o), JUENbd(o) st. U=-U and U+UEW. $\frac{\partial u}{\partial s}$ +: $X_{x}X\rightarrow X$ is continues at 0 9 We Noted (0) st. $u=u$ and $u+u \in W$.
 $\frac{1}{2}u^2 + \frac{1}{2}x^2 + \frac{1}{2}x + \frac{1$ Let $u := v_1 \wedge v_2 \wedge (-v_1) \wedge (-v_2) \implies 0 \in U_1$, $u_n = o_1 v_2$, and $u_1 = u_2$ \Box <u>|</u>
|
| Lenna (separation] 1 (separation)
If X is a TVS with CEX closed and KEX correct (K) kind open
with CNK=0, the JVENbold st. mH , $CAK=0$, the $JVeMU(0)$ st $(C_{+} v) \wedge (k_{+} v) - \emptyset$ sed and $K \subseteq X$ compret $\begin{pmatrix} k \\ k \end{pmatrix}$ (where $\begin{pmatrix} k \\ k \end{pmatrix}$ Cover $\begin{pmatrix} k \\ k \end{pmatrix}$ Cover $(C_{+}v) \wedge (k_{+}v) = \emptyset$
Furtherary since $C_{+}v$ is open, $k_{+}v \subseteq (C_{+}v)^{2} \Rightarrow \overline{K_{+}v} \subseteq (C_{+}v)^{2} \Rightarrow (C_{+}v) \wedge (\overline{K_{+}v}) = \emptyset.$ $M_{\text{on-one}},$ if we take $K = \{0\}$ and $C = U^c$ with $U \in M \cup U$, then $M_{\text{on-one}}$ me sts wade $\frac{9}{7}$ Leed Rudh Ch. 1) A

B
 $G = (C+1)^2 \Rightarrow K + V = C+10^3 \Rightarrow (C+1) \wedge K +1$
 $C = 10^2 \Rightarrow K + V = C + 10^3 \Rightarrow (C+1) \wedge K +1$
 $\overline{C} = 10^3 \Rightarrow \overline{C} = 11 \Rightarrow \overline{C}$ restly are often now

Part of Spquation	lown:	Supmar	Wolos	1 u-t	$k \neq \emptyset$	1e-t	$x \in K \Rightarrow x \in C$. So, \n $C \in Nbbd(x)$ \n $\Rightarrow C \cdot \{x\}$ \n $\Rightarrow b\sqrt{x} - \sqrt{x}$ \n	3																														
1 u ₁ , $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$ </td

Lana:

Let
$$
AsX
$$
. Thus, $\overline{A} \subseteq \bigcap_{\mu \in M \setminus A(G)}$.

 V *L* kow xeA \leftrightarrow $UAA + \phi$ VUe Nb $d(x)$ \Leftrightarrow $(Sx3+U) \wedge A + \phi$ VUe Nb $d(\phi)$ γ_{ref} Es xeA+(-U) V Ve NULLED ED xeA+VI VUE NULLED. \overline{U} inewates es
uewates

Lenna:

If
$$
ESX
$$
 is bounded, $H = E$ is the

Proof: Lot Ve Mtd.Co). The JUEMENTO est WCV. Since E is bounded. $ESHV$ for large $t = \frac{1}{2}$ $ESEWSEUV$. \mathbf{D}

shorthere for

Lenni. 1 V Ue N(0), JV e N(0) balanced st V CU. 1 V Ue N(0) coner, FVEN(0) baland & coner st. VSU.

Proof:	① Let the U(0), Solu- mH . n <i>confluag</i> m <i>so</i> 350 m . $Vde(G,a)$
2 WethU(0), $uW \subseteq U$.	
2 WethU(0), $uW \subseteq U$.	
3.50 m . $Vde(G,a)$	
4. $V_s := \bigcup_{a \in G(S)} u W$. Thus, V_s is open. Forfluae, V_s n	
5. $u = \bigcup_{a \in G(S)} u W$. Thus, $u = \bigcup_{a \in G(S)} u W + \bigcup_{a \in G(S)} u$	
6. $\bigcup_{a \in G(S)} u W + \bigcup_{a \in G(S)} u W + \bigcup_{a \in G(S)} u$	
7. $\bigcup_{a \in G(S)} u W + \bigcup_{a \in G(S)} u W + \bigcup_{a \in G(S)} u$	

 ${\mathcal P}not$: $(0\ni 0)$ A cont. \Rightarrow $\Lambda^{\prime}(C)$ is closed in X for all closed $C \leq C$. Since $\{0\}$ \in Cloud (C) and $\mathcal{K}(-\Lambda) = \Lambda^{-1}(\{0\})$; it is closed. $(③ \rightarrow ③)$ Since $ke-(\Lambda)$ is closed, $ke-(\Lambda) = ke-(\Lambda) \neq \times$ by assumption. $(3 \Rightarrow 0)$ Suppose the (1) $x_1 +$ dece \Leftrightarrow $x + (k \vee n^c) \neq \emptyset$. let rent (ke (0) = \exists lle N(0) st {x3+4 \leq ke $(A)^C$. Suppose works that us belenged. By Imenity 14 is belenged as well. Suppose two let $\Lambda u \in \mathbb{C}$ is unbounded, get balanced. Then, $\Lambda u = \mathbb{C}$ = $\exists y \in \mathbb{U}$ of $\Lambda y = -\Lambda x$ = $x+y \in \text{Inv}(\Lambda) \Lambda (\xi x \xi + \Lambda)$. $(M) \Rightarrow D$ Suppose $JU\in\mathcal{N}(0)$ st. Al_{u} is bounded. Then, $JM\in\mathcal{O}_{2}$ and s.t. $|A_x|$ sm $\forall x \in U$ let $\epsilon > 0$ and define $W_i = \frac{\epsilon}{m} U$
Then, $\forall x \in W_{\epsilon}$ is know $|A_x - A_0| = |A_x| \le \epsilon$. So, $A = 0$ continuous at $0 = 1$ continuous. \overline{D} We now look it furtherdin TUS:s (which it will turn at is always $\cong \mathbb{C}^n$). Theor:
Any linear f: $C \Rightarrow x$ is continues. Proof: Let $\{e_i\}_i$ be the student loss for C' . Then, $f(z) = \sum_{i=1}^{n} z_i f(e_i)$
by Incord, Since each element of the sun is continues, so is f. Theoren:
Let X Le a TVS and let YEX be a finite-dan sibspue.
Let don(Y)=n. Then, OY is doned MX . 2 Any nector space isomorphic f. C => is a TUS isomorphism $\sqrt{\omega t}$: 9/12-(2) lot $f: C' \rightarrow Y$ be a vector space isomorphin = f is bijective and linear.

better $S := \{z \in C^n \mid \sum_{i=1}^n |z_i|^2 = |\} \cong \bigoplus^{2n-1} S$, S is carped. Since $f(x)$ linear, it is continuous and so $f(s)$ is compret in Y. Since $fD_{c1} = D_{y}$, $D_{y} \notin f(c)$. Thus, $JVEV(C_{y})$ balanced st. $V\cap f(c) = \emptyset$. Dete $E:=f^{-1}(v)=f^{-1}(v\wedge v)=e^{-v}\cdot T^{1}v, \quad E\rightarrow \text{open}$ and $E\wedge S=\emptyset$ We anyve V balack = V poth-connected, and so E is peth-romated = E connected.

So,
$$
E \rightarrow \infty
$$
 con情 other \rightarrow *E 1* \rightarrow *1* \rightarrow *2* \rightarrow *3* \rightarrow *3* \rightarrow *4* \rightarrow *4* \rightarrow *5* \rightarrow *6* \rightarrow *7* \rightarrow *8* \rightarrow *8* \rightarrow *1* $\$

Theoren:

If
$$
X
$$
 is a locally compact TVS, then $\partial x \times \partial \phi$.

Point	Longvalues	mean	$JVENOx$	$gh. V$	is	conpart.																																																																															
Ue	On	build e	partialle	long the																																																																																	

 \mathbf{L}

Thearn:

If
$$
X
$$
 is a locally bounded Tvs with $\omega_{\alpha_{S}}$ Here, $\omega_{\alpha_{S}}$ property, then $\omega_{\alpha_{S}}$

Proof: By local bandednes, $\frac{1}{3}$ Ve $N(\Omega_x)$ banded Thus, \overline{V} is also banded
which by Here-Burd property muss \overline{V} comput. So, X is locally comput!
Apply previous theorem. \overline{U}

Remarks make everything finite-den !!!

2. Banach Spaces

Deh:

 $let V be a veden sque. A nom on Vrs a map $||\cdot||:V\ni[0, \infty)$ s.t.$ $\begin{array}{lll}\n0 & \text{all } x \parallel = \parallel x \times \parallel & \quad \downarrow x \in C, & x \in V & \text{(homogeneity)} \\
\hline\n0 & \parallel x + y \parallel & \leq \parallel x \parallel + \parallel y \parallel & \quad \downarrow x, y \in V & \text{(two)}\n\end{array}$ $\|x\| = 0 \Rightarrow |x = 0$ $\vee \dots \vee |x = 0$ $\frac{1}{\|x\| \cdot \|x\| \cdot$ ல have m 2nd slot,
anthough 1st slot Del: A vector space V is an inner probat space il 4 3 a sessailven map \circled{D} $\langle x,y\rangle$ = $\overline{\langle y,x\rangle}$ \circled{D} \downarrow mer in $2^{\frac{1}{2}}$ agent \circled{S} $\langle x,x\rangle$ so $\forall x \in V \setminus \{0\}$ It hoppes that me probable move nome.
The countre is not always true. Class: If a nomed vector space whose norm satures the 27-law $\|x+y\|^2 + \|x-y\|^2 \le 2\|x\|^2 + 2\|y\|^2$ $\forall x, y \in V$ then $\langle x, y \rangle = \frac{1}{4} \left[\|x+y\|^2 - \|x-y\|^2 + 1 \|x-y\|^2 - 1 \|x+y\|^2 \right]$ is a valid me Furthernow, if 1-1 m is not obeyed, then the is no inver product $exch.$ C $ch.$ 1 rom $||d|| = 2|d||$ doesn't satisfy C -law, $n>1$. Every nom sidra a honogenes vehr d: v3= [0,00) via $d(x_2) = ||x_2|| \implies d(x_2, x_3) = |x| d(x_3)$ Def:
X is a Banach space : ff its nom where a complete netwe. Exerge a^2 $w/2$ - non Contrarente X:= {f: [0,1] = C | f contrare} with pointine +;
Define a nome liftle:= (f_{0,13} | f1²)². The, (x, 11.11.) is a normal VS.
Yet f_n -> I_[2,1] & X, and so X int complete.

<u> Juli:</u> In a Bough space X , a ret $S \subseteq X$ is dense if $\forall x \in X$, $\forall \epsilon > 0$,
 $\exists y \in S: d(x,y) \neq \epsilon$ (equivalent to $\overline{S} = X$). <u>Defri</u>

A Banch space X is separable it 3 a countile, deve subset.

<u>Prop:</u> \overline{A} Baneah space X $\overline{\kappa}$ a TVS. P roof: Metre space are T, and so all we must show x that t, is continuous. Let $x,y \in X$ and $x>0$. We not $S_1, S_2>0$ st. $\widetilde{x} \in \mathcal{B}_{\delta}(x)$, $\widetilde{y} \in \mathcal{B}_{\delta}(x)$ \Rightarrow $(\widetilde{x} + \widetilde{y}) \in \mathcal{B}_{\epsilon}(x+ \widetilde{y})$ P ick $S_1 = S_2 = 2/z$, and then $||x+y\rangle - (x+y)||_2 ||x-x|| + ||y-y||_2 \leq 2 + 2 = 2$ Save $\left| \begin{array}{c} 2 \end{array} \right|$. \boldsymbol{D}

Boundedress

Read that TVS, boundaries at S as V UENCON, SEEN for substants $\log e$ \pm . Also, in a named VS, boundedness at S => sup {|x||} LOO, It tung at that these are equally numely spaces.

let X, Y be Banch speer. If A: X-1 x tree and contrary
Men A is bonded, and so SSX bold - ASSY bold in te TVS see So, $\frac{\mathcal{S} \vee \mathcal{S}}{\mathcal{S} \in \beta_1(\mathcal{S})}$ $\|A_X\|$ $\mathcal{L} \infty$.

Dehi For XX Banch speas and A: X-24 lineary define $\|A\|_{B(x\rightarrow y)} := \sup_{x \in B(0x)} \{ \|A_x\| \}$ Let $B(x\rightarrow y):=\frac{5}{5}A. x\rightarrow y$ lall $_{B(x\rightarrow y)}$ is liver and contract } In Based space, we have continues as bounded.

<u> 9114-</u>

Clami If $A:\times \rightarrow Y$ is a lace mys between Banady spaces, then $\|A\|_{op}\circledcirc\qquad\Longleftrightarrow\qquad A$ contrary Proof; (2) Already seen in Chapter 1. (\Rightarrow) the Lane $||A_{x}-A\tilde{x}||_{y}=||A(x-\tilde{x})||_{p}$ $\leq ||A||_{op}||x-\tilde{x}||_{x}$
So A is $||A||_{op}-Lipschit_{p}$ and thus continues. 口 if $A, B: \times \rightarrow \times$ are been apechers on a Banach space, Also thy $||A \cdot B||_{op} \le ||A||_{op}$ $||B||_{op}$ (sub) (bab) ents up territy B (x) ports a Barcoh algebra, as we TLK will see later. Class: (Reed & Seron III.2) $(B(x=1), \|P\|_{op})$ is a Banch space. $\frac{1}{2}$ \bullet nom. So, we not show completes. Let $\{A_n\}$ Le Grang
writ. Il llop. For any xex, $\{A_n x\}$ is Greng in Y
by the earlier claim. So, $A_n x \rightarrow y$ for some yey by
completus. Define B serling x = kim $A_n x$. B is liver by livering of the limits Fortherness $||A_{\eta}-A_{\eta}||_{op} \ge ||A_{\eta}||_{op} + ||A_{\eta}||_{op}$ b_{5} rue Δ -rue. So {IA,11}, is Carely to M, a corplete spee. So, Jack $s +$ $\lim_{n \to \infty} ||A_n||_{q} = \alpha$ S_0 $\forall x \in X$ $||Bx||_y =$ les $||A_nx||_y =$ les $||A_n||_{op} ||x||_x =$ $||x||_x$ S_2 B_3 bounded with $||B||_{op}$ $\leq c$. Thus, $B e B (x \rightarrow y)$. All that renors to show is that $IIB-1$ For every xeX $\|(B-A_2)x\|_y = 2$
and $\|A-A_2)x\|_y$ S_2 \rightarrow \rightarrow \parallel \parallel \parallel \parallel \sim A_n) \times \parallel \rightarrow \parallel A_{n} $A_{n}\parallel$ \parallel ρ \rightarrow \parallel \parallel A_{n} \parallel A_{n} $A_{n}\parallel$ ρ

D

 $\overline{\mathcal{P}}$

A E B (X=Y) is an isometry ift $\|A_x\|_y = \|x\|_x$ Vx=X.
So, X and Y are isometrically someptic ift 3A E B(X+7) line and isomorptic.
This x the Bonopter in the extegeny of Banach Spaces.

 Cl ain:

Any closed subspece of a Banach space To Health a Banach space.

2.1 Conpletences

Defn: If X is a topological space, we say $S \subseteq X$ is nowher dense iff $\frac{1}{2}int(\vec{s}) = \phi$

Detr: (Bane) Sets of the 1st Category: $S \subseteq X$ is neare iff it is the countile Sets of the 2nd Category: sets that are NOT meagre $E_{\frac{3}{2}}$ - Z = R usual TS noutre deve - Q = Il von 3 NOT noutre deve $-$ [0, 1] \subseteq \mathbb{R} vant \mathbb{R} $\$ nouse desse $-$ R \subset \mathcal{C}_{vs-1} 5 - in a discrete space, β is the only nowher dese set. - If X a TVs and $V \subseteq X$ is a vector subspect, V is either deve or nowe dese - C E [0,1] Carter set 3 nowhere deree. Clan: \mathcal{I}_{Λ} a topo. speed $X:$ $- A \leq B$ and B is nearly then so is A - IF 8A.3, are all neare, then U is too
- If E closed with with = 0, the E is measure

- If h: X-X is a homeomorpher, then h(B) neare \Leftrightarrow B neare

Theoren: (Baire Category Theoren) If X is etter a couplet return space or a locally compret thusdorff spaces If $\{A_n\}_n \subseteq O_{\mathsf{pr}}(X)$ are dese, then $\bigcap A_n$ is dense. In particular, $X \times m$ not mangre. Proof. We prove BCT forgt for complete vertic spaces. Let $\{V_3\}$ be
open and deve. Let $W \in \mathcal{O}_{\rho}$ be arbitrary: ne with $W \wedge (\sqrt{1}V_3) \neq \emptyset$.
Since V, desc, $W \wedge V_1 \neq \emptyset$. The, $\exists x, \in W \wedge V_1$, $r_1 \in (0, \frac{1}{2})$

 $\sqrt{B_{r_1}(x_1)} \subseteq W \wedge V_1$ Proceeding inductively, we may always tid $x_i \in R_{r_{i-1}}(x_i,)\wedge U_i$ and $r_i \in (0, \frac{1}{2}i)$ \mathbf{e}_{i} . $\boxed{B_{r,i}(\mathbf{x}_{i})} \subseteq B_{r_{i-1}}(x_{i-1}) \wedge V_{i}$. So, $\forall j$ we have $x_{j} \in B_{r_{j-1}}(x_{j-1}) \cap V_{j} \subseteq B_{r_{j-2}}(x_{j-1}) \cap V_{j-1} \cap V_{j}$ $\leq ... \leq$ $w \wedge (\underbrace{\lambda}_{i} v_{i})$

We claim $\{x_i\}_j$ is Carcity, since if $n,m \geq N$ we have $x_n, x_n \in B_{r_N}(x_N) \implies d(x_n, x_n) \in Z_r$

Since X is couplete, $\exists x \in X$ st. $x_n \exists x$, and so $x \in W \cap (\bigcap_{i \in N} V_i)$.
Thus, $W \cap (\bigcap_{i \in N} V_i) \neq \emptyset$ $\Rightarrow \bigcap_{i \in N} V_i$ is deve.

For the "in particles" part, let {E;};EX be a countile collection of

- E_j notre es $\left[\pi + (\overline{E_j})\right]^c = \chi$ \Leftrightarrow $(\overline{E_j})^c = \chi$ \Leftrightarrow $(\overline{E_j})^c$ is deve and apen BCT gives $\bigcap_{j} (\overline{e_j})^c \neq \emptyset \implies \bigcup_{j} \overline{e_j} \neq x \implies \bigcup_{j} \overline{e_j} \neq x$
- Since the holds $V\xi E_{i}S_{j}$ nowher devel, we know X is not meason.

Cordlon:

Complete notice speed are uncountedle. Proof: $X = \bigcup_{x \in X} \{x\}$, and end $\{x\}$ is noutre dece.
By BCT, X conot be countable.

Theorn: (Banach-Stenhere/Viston Boundaries Pranciple)

Let
$$
X,Y
$$
 be **B** and **S** $z = 12(x-3)$.
If for all $x \in X$ we have $\sup_{A \in \mathcal{F}} \{||A_x||_y\} \le \infty$,
the $\sup_{A \in \mathcal{F}} \{||A||_{op}\} \le \infty$.

Post:	Note	$X_n := \{x \in X : \text{sup } \{ A_x _3\} \le n\}$				
Thus,	$X_n \in \text{Closed}(x)$	ab	$X = \text{new } X_n$. So,	ab	ab	
by	BCI	$\exists n \in \mathbb{N}$	$\forall n \in \mathbb{N}$	$\forall n \in \mathbb{N}$	ab	ab
by	BCI	$\exists n \in \mathbb{N}$	$\forall n \in \mathbb{N}$	ab	ab	ab
by	$\emptyset \neq \text{nt}(X_n) = \text{nt}(X_n)$	$\Rightarrow \exists x_0 \in X_n \subseteq X, \text{ so } \text{st.}$				
By	$\emptyset \neq \text{nt}(X_n) = \text{nt}(X_n)$	$\Rightarrow \exists x_0 \in X_n \subseteq X, \text{ so } \text{st.}$				
By	$\emptyset \neq \text{nt}(X_n) = \text{nt}(X_n)$	$\Rightarrow \exists x_0 \in X_n \subseteq X, \text{ so } \text{st.}$				
By	$\emptyset \neq \text{nt}(X_n) = \text{true } X_n$	$\exists x_0 \in X_n \subseteq X, \text{ so } \text{st.}$				
By	$\emptyset \neq \text{nt}(X_n) = \text{true } X_n$	$\exists x_0 \in X_n \subseteq X, \text{ so } \text{st.}$				

$$
\frac{27a}{60}
$$

Since $11a$ bound $down$ $down$ $down$ 1 $down$ 1 $down$ 1 $down$ 1

9/19-

Let
$$
x, y, z
$$
 be y and z .

\nProof:

\nLet x, y, z be y and z are y and z .

\nLet x, y, z be y and z .

\nLet x, y, z be z and z and z .

\nLet x, y, z be z and z and z .

\nLet x, y, z be z and z and z .

\nLet x, y, z be z and z and z .

\nLet z is y and z .

\nLet z is <math display="</p>

Open Mapping Theorem

(a) Let
$$
U \in U(0x) \Rightarrow f(u) \in Opn(Y)
$$
. By having $O_x \in U \Rightarrow O_y \in f(u)$.
\n
$$
(\equiv) \text{ Let } U \in Opn(x) \text{ Let } y \in f(u) \text{ then } \exists x \in U \text{ and } x \in V \Rightarrow O_y \in f(u)
$$
\n
$$
A's_0, O_x \in U - \{x\} \Rightarrow U - \{x\} \in U(0x)
$$
\nLet $U \in U(0, x)$ be s .
\n
$$
L \subseteq f(u - \{x\}) = f(u) - f(\{x\}) = f(u) - \{y\} \Rightarrow \{y\} \in f(u)
$$
\n
$$
S_{0, 0} \Rightarrow m_0 \in U \Rightarrow \text{subject to } \exists x \in U \text{ and } m_1 \in U(u)
$$
\n
$$
S_{0, 0} \Rightarrow m_0 \in U \Rightarrow \text{subject to } \exists x \in U \text{ and } m_2 \in U(u)
$$

Open Mapping Theorem
\n $A \rightarrow \infty$ $f: X \rightarrow Y$ <i>both</i> $\frac{1}{2}$ <i>by</i> $\frac{1}{2}$ \n
\n $A \rightarrow \infty$ $f: X \rightarrow Y$ <i>both</i> $\frac{1}{2}$ <i>by</i> $\frac{1}{2}$ \n
\n $\frac{1000}{1000}$ \n
\n $\frac{1000}{1000}$ \n
\n $\frac{1000}{1000}$ \n
\n $\frac{1000}{1000}$ \n
\n $\frac{1000}{1000}$ \n
\n $\frac{1000}{1000}$ \n
\n $\frac{1000}{1000}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n $\frac{1}{2}$ \n
\n <math< td=""></math<>

$$
CD \quad \text{cores} \quad from \quad \text{Bare} \quad Categorical \quad \text{Teven} \quad \text{with} \quad \gamma = \bigcup_{n \geq 0} A B_n \big(B_n \big)
$$

(1):
$$
mc
$$
 $m+3$ $\overline{AB_{r}(o_{x})} \subseteq AB_{r_{r}(o_{x})}$ $b \rightarrow 0$.

\nLet $v_{1}e$ $\overline{AB_{r}(o_{x})} \implies$ $\forall e_{2}e$, $B_{e}(q) \land AB_{r}(o_{x}) \neq \emptyset$.

\nSo, $\forall e_{2}e$, $3 \times (e)$ $s + \Delta \times (e) \in B_{e}(o_{y}) + \gamma \implies A_{x}(e) - \gamma \in B_{e}(o_{y})$.

\nNext, $e_{s}x$.

\nLet $e_{s}x$ and $e_{s}x$.

\nLet $e_{s}x$ and $e_{s}x$ and $e_{s}x$ and $e_{s}x$.

\nLet $e_{s}x$ and $e_{s}x$ and <

We thus have
$$
x_n \in B_{2^m}(0_x)
$$
 s.t. $y - \sum_{s=1}^{n} A_{x_s} \in B_{2^m}(0_x) \subseteq AB_{2^{m-1}}(0_x)$
\nSo, $\sum_{s=1}^{n} A_{x_s} = y$.
\nThus, $A\left(\sum_{s=1}^{n} x_s\right) = y$ as $A B_{2r}(0_x)$.
\n $\sum_{s=1}^{n} A_{2s} \in B_{2r}(0_x)$.

D

LE) Herenok i

Theoen: (Invece Mypsy Theorn) If $A \in B(x \rightarrow Y)$ is a bijection, then $A^{\dagger} \in B(x \rightarrow Y)$ Proof. A contenume & surjecte => A open => A contenus => A contenus => A bounded. $P^{\infty}P$ If A: X-1Y is a linear map between Banach spaces, then A bounded $\Leftrightarrow A^{-1}(\overline{B,(O_y)})$ has nonempty

Proof: $($ \Leftarrow) let x_0 be a the interior and so \exists E>0 st. $B_e(x_0) \subseteq A^1(B_1(o_x))$ $\forall x \in X$ with $||x|| \in \epsilon$, we have $x_0 + x_0 \in B_{\epsilon}(x_0)$, and so $||A(x_0 + x_0)|| \leq 1$. S_2 $||A_x|| \le ||A(x+x_0)|| + ||Ax_0|| \le ||+ ||A_x||$ $\mathbb{1}f \parallel \widetilde{\chi} \parallel \epsilon \parallel, \quad \mu_{m} \parallel \parallel \xi \widetilde{\chi} \parallel \epsilon \epsilon \implies \parallel A \widetilde{\chi} \parallel = \xi \parallel A(\xi \widetilde{\chi}) \parallel \epsilon \widetilde{\epsilon} \left(\parallel + \parallel A_{\chi_{0}} \parallel \right) \angle \infty.$ (a) Monework i IJ

Closed Graph Theorem

 Δ The graph of a function f. XXY is $- P(F) = \{ (x, 0) \in X \times Y : y = f(x) \}$ Theren: (Closed graph) Let A: X-Y be a linear mp between Banah spaces. Then, A bounded $\iff \Gamma(A) \in \text{Cloud}(X \times Y)$ Proof: (=) A both = A controver = if $\{x_n\}_n \subseteq x$ st $x_n \to x \in X$, the $A_{x_n} \to A_{x_n} \cap Y$. Let $\{(x_i, A_x)\}$; $\subseteq \Gamma(A)$ be a servere which converses to

by first countability of X*Y.

\nSo, consider the two projection maps
$$
P_i: X*Y \rightarrow X
$$
 and $P_{i-1}: X*Y \rightarrow Y$ contains the probability of $P_{i-1}: X*Y \rightarrow Y$ and $P_{i-2}: X*Y \rightarrow Y$ and $P_{i-1}: X*Y \rightarrow Y$.

\nThus, $A_{x,j} = P_{x}(X_{x,j}, A_{x,j}) \rightarrow y$ and $A_{x,j} = P_{x}(X_{x,j}, A_{x,j}) \rightarrow y$.

\nSo, show $A_{x,j} \rightarrow A_{x}$ by *continuous* of A_{y} . A x-ray.

$$
(\Leftrightarrow)
$$
 Let $P(A) \in Closed(Xx)$, Then, $P(A) = 3$ then $\tilde{A} \times 2$ and $\tilde{B} \times 3$ (which are a horizontal square).
\n $W = \tilde{A} \cdot X \Rightarrow P(A) = 1$.
\n $\tilde{A} \times 3$ (b) $\begin{bmatrix} 1 \\ P(A) \end{bmatrix}$, which is (x, Ax) . Thus, $\tilde{A} \times 3$ is a bijection $\tilde{A} \times 3$ (which is (x, Ax)). Thus, $\tilde{A} \times 3$ is a solution.

A cool application !

Lema: (Grotherdeak)

If
$$
pe(1, \infty)
$$
, then l^{ρ} embeds m l^{∞} .

Formally, let u be a finite news on SL, and consider Formally, let μ be a firith never on Ω , and consider S a closed $(\mathcal{L}^p(\Omega,\mu))$ as a closed sideprec that is also contained in $\mathcal{L}^p(\Omega,\mu)$. The tom
Se C
<u>Tha</u> B $k \ge 0$ st. $Uf \in S$, $||f||_{\infty} \le K$ $||f||_{\rho}$

Proof:	Let	S	have the subspace ¹ topology	from	$L^{\rho}(R,m)$, and let																																								
Let	$\frac{1}{2}$	$\frac{1}{5} \rightarrow \frac{1}{2} (R, n)$	be the integral from any.	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{$

$$
\|\mathbf{u}\|_{\infty} \leq k \|f\|_{\rho} \implies \|f\|_{\infty} \leq k \|f\|_{\rho}.
$$

Reverti: In frot, from the assumption on any p, $\|\hat{y}_j\|^2_{\infty}$ is $k\|\hat{y}\|^2_{\infty}$ over $\|\hat{y}\|^2_{\infty}$ over $k\|\hat{y}\|^2_{\infty}$.
Remote: In froty from the assumption on any ρ , we any store $\|\hat{y}\|^2_{\infty} \leq M\|\hat{y}\|^2_{\infty}$ over S .

9/21-

4. Convexity

Deb.

A partial order on a set X rc a subset REX-X s.t.

- (1) refleme: $(a, a) eR$ $\forall a e \times$
- (2) antonymetric: (a,b) off and $(b,a)eR \implies a = b$ $\forall a,b \in X$
- (3) travitive: $(c_{a,b}) \in R$ and $(c_{b,c}) \in R$ = $(c_{a,c}) \in R$ $\forall a,b,c \in X$

We say X is linearly ordered if $\forall a,b \in X$, efter (a,b) or (b,a) m R.

We say not is a massel element of YSX if Vyey (n,g) or ag=n.
We say in is an upper board of YSX if Vyey, (g,e) or

Lenna (Zorn's Lenna)

let X be a nonempty partilly-ordered at s.t. any linearly-ordered upper bound that is a measured elevent.

Theorn: (R-Ham-Banch)

Let X be an IR-vector space and $\rho: X \rightarrow \mathbb{R}$ st.
 $\rho(\alpha x + (1-\lambda) \sqrt{\alpha}) \le \alpha \rho(x) + (1-\alpha) \rho(x)$ V $x \cdot \sqrt{\alpha} \times \alpha \sqrt{\alpha}$ all $\alpha \in (0,1)$ P CONVEX

Suppose that $1:Y\rightarrow \mathbb{R}$ is linear on a subspect $Y\subseteq X$ with $\lambda \subseteq \rho$ over Y.
The, $3\Lambda: X\rightarrow \mathbb{R}$ linear s.t. (i) $\Lambda|_Y=1$ (Leterson) (1) $\Lambda \subseteq \rho$ on X (mantary bound)

Proof: let $z \in X \vee Y$. Define $\widetilde{Y} =$ span $\{z, y\} = (\mathbb{R}z) \oplus Y$. We will define $\tilde{\chi}$: \tilde{y} on R and $\tilde{\lambda}$ (azing) = a $\tilde{\lambda}$ (2) + λ (g) to presence treater. We wish to pick a value for $\widetilde{a}(v)$ to martin He bond. To that end, let $y_{11}y_{2}\in Y$ and $x_{1}\beta > 0$. Then,

$$
L1(\gamma_1) + \beta 1(\gamma_2) = \lambda (\alpha_1 + \beta_1) = (\alpha + \beta) 1 (\frac{\alpha}{\alpha + \beta} \gamma_1 + \frac{\beta}{\alpha + \beta} \gamma_2)
$$

= $(\alpha + \beta) 1 (\frac{\alpha}{\alpha + \beta} (\gamma_1 - \beta_2) + \frac{\beta}{\alpha + \beta} (\gamma_2 + \alpha_2))$
 $\leq (\alpha + \beta) \rho (\frac{\alpha}{\alpha + \beta} (\gamma_1 - \beta_2) + \frac{\beta}{\alpha + \beta} (\gamma_2 + \alpha_2))$

$$
\frac{2}{\rho \cos \theta} \alpha \rho (r_1 - \beta_2) + \beta \rho (r_1 + \beta_2)
$$

 $\Rightarrow \frac{1}{\beta} \left[-\rho (r_1 - \beta e) + 2(r_1) \right] \leq \frac{1}{\lambda} \left[\rho (r_1 + \alpha e) - 2(r_1 e) \right] \qquad (*)$

In partenter, Jack st.

$$
\begin{array}{c}\n 3\varphi \\
 \beta \ge 0 \\
 \hline\n 3, e^{\gamma} \\
 \beta\n\end{array}\n\left[-\rho(\gamma^{-1/2}e) + 2(\gamma_{1})\right] \le q_{2} \le \text{Re}\left[-\text{Im}\left(-\rho(\gamma_{1} + \alpha_{3}) - 2(\gamma_{2})\right)\right]\n \end{array}
$$

Defec $\widetilde{\lambda}(z)=q$. We wis $\widetilde{\lambda}(a_{\overline{z}}n_{\overline{z}}) \leq \rho(a_{\overline{z}}n_{\overline{z}})$ $\forall a \in \mathbb{R}$, gey. Suppose woros that aso. Apply (+) with dea, grey to see

$$
\widetilde{\lambda}(v) \leq \frac{1}{a} \left[\rho(\eta + av) - \lambda(\eta) \right] \implies \widetilde{\lambda}(av + \eta) \leq \rho(\eta + \eta)
$$

So, we are estable by 1 extra denomin without violating $\widetilde{1} \leq \rho$.

Next, let
$$
\mathcal{E}
$$
 be the collection of linear expressions of 1 that an
\n $\leq \rho$ on *Part* subspaces of definition. Define a partial order $R \subseteq \mathcal{E} \times \mathcal{E}$
\n $(e_1, e_2) \in R \implies X_1 \subseteq X_2$ and $e_2|_{X_1} = e_1$ $(\frac{X_1}{X_2})_{X_1}$ and $\frac{1}{e_1}$ shows
\nLet $\{e_2\}_{A \in A} \subseteq \mathcal{E}$ be linearly ordered. We define an upper bound on
\n $e_1 \cup X_2 \rightarrow \mathbb{R}$ are $(x):=e_4(x)$ $\forall x \in X_4$

By don of E elxisolid, and so eef. Clearly, (ex,e) ER Vac A.
So, every linearly-ordered subset of E has an upper board.

 B_3 Zones Lema, 3 max element e: $X' \rightarrow \mathbb{R}$ et. esp on X' . Suppose BWOC X'= X; then, ne could cold another direction to the extension $e \leq \rho$ and $e|_{\mathsf{V}} = 1$. $\mathbf u$

Theorin: (C-Mahr-Banch)

Let X be a C -vector space and $\rho: X \ni \mathbb{R}$ st.
 $\rho(a \times B \ni b = |a| \rho(x) + |\beta| \rho(x))$ $\forall x, y \in X$ and all $\prec, \beta \in C$ or $|a| + |\beta| = 1$.

D

Suppose that $1:Y\rightarrow\mathbb{C}$ π line on a subspect $Y\subseteq X$ with $|z|\subseteq p$ over Y . $\frac{1}{\mu_{\mathbf{x}}}, \frac{3}{\mu_{\mathbf{x}}}, \frac{1}{\mu_{\mathbf{x}}}, \frac{1}{\mu_{\math$ (1) $\left[\Lambda\right] \leq \rho$ on X (marting bound)

forgetter functor

Preat: Apply IR-Hob-Barech on $H_R(x)$ with the local finctional $\ell: F_R(x) \to \mathbb{R}$ $v = \mathcal{L}(y) = Re(\mathcal{L}(y)) = \mathcal{L} \leq |x| \leq p$ or Y . So, we get $L: \mathcal{F}_A(x) \to \mathbb{R}$ s.t. $L|_{\mathcal{Y}} = L$ and $L \leq \rho$. Define $\Lambda: X = C$ via $\Lambda(X) = L(X) - L(L(X))$

$Dval_iH_1$

Defr:

If X is a Banch space, we define its dual X^* to be the vector space B $(X \ni E)$ with the norm $||3||_{op} = \sup \{ |2(x)| : ||x|| \le 1 \}$
 $x \in X$) We have seen that the dual is a Banch space.

Examples

D Let
$$
\frac{1}{p} + \frac{1}{q} = 1
$$
 with $p_{,q} \in (1, \infty)$. We claim $(L^{q}(R^{n}))^{*} = L^{p}(R^{n})$
\nTake $q \in L^{p} \mapsto Ge(L^{q})^{*}$ via $G(f) := \int \overline{g}f$.
\nBy Höldus neural3, $||G(f)|| \le ||g||_{p} ||f||_{q} \Rightarrow ||G||_{op} \le ||g_{p}|| \le \infty$
\n $\int_{R} f_{p} dx$ $\qquad + \frac{1}{2} \int_{R^{n} \setminus R^{n}} \frac{1}{2} \int_{R^{n} \setminus R^{n}}$

Theoren:

$$
l + (x^+)^*
$$
 denote the double dual. The map
 $\overline{J}: X \rightarrow X^{**}$ $x \mapsto (x^* \cdot a \mapsto \lambda x)$

is an isometric ingestion.

J will essentally be the evaluation mp. We send a point x to the $Prof:$ evaluation map that evaluates a fundional at x. In math, J sends

$$
x\mapsto (1\mapsto \lambda(x))
$$

$2eB^*$, $2GeC$

We not to store that $\|T(x)\|_{B(x^{\alpha} - \epsilon)} = \|x\|_{x}$
For all $x \in X$, $2 \epsilon x^{\alpha}$, $|\{(5(k))(3)| = |3(k)| \in ||3||_{op} ||k||_{X}$

Taking a suprem over all $2 \epsilon x^2$ with Hallows1, $|| \tau(x)||_{op} \le ||x||_x$ To show the other directors we seek a fundament Λ s.t. $|J(x)\Lambda| \geq ||x||_X$ for sine $x \in X$. Fix some $x_0 \in X$, at define a final finalisment 2: $c_{x_0} \rightarrow c$ on $c_{x_0} \mapsto c \cup |x|_x$ Clerts, we have an vpper band p: $X \rightarrow (0, \infty)$ van plys=llyllx (i.e. $1 \le p$ on (x_0)).
Applying Hahn-Bands, ne get some $A: X \rightarrow \mathbb{C}$ s.t. $A(x_0)$ =llxollx and $\|A\|_{op}$ = \sim ρ $\left\{ |A_{og}| : \|g\|_{\leq} \right\}$ s 1.

 \mathbf{a}

 $\|\mathcal{I}(\mathbf{x})\|_{op} \geq |\mathcal{I}(\mathbf{x})(\Lambda)| - \|\mathbf{x}_o\|_{X}$ = $\|\mathcal{I}(\mathbf{x})\|_{op} - \|\mathbf{x}_o\|_{X}$ $\forall_{\mathbf{x}_o \in X}$. Tws,

9/26-

5. Durlitz, Wesk Topologies, & Banch-Alaoglu

Dehr

We so that a Banch space X is reflexive if X=X**, or

Lenne:

Let X be a Banah space and YSX a vector. Soepee.
For any
$$
2eY^x
$$
 the earth: see $1eX^x$ st. 1111_{op} = 111_{op} and $11_{Y}=2$.

Post:	Value	ρ_2 : $X \rightarrow E_0$ and $x \mapsto x \mapsto x _X x _{op} \implies \exists e$ and Y .
$\begin{array}{rcl}\nU_{11} & Hahn-Bawah, & Hau & is & see & A: X \rightarrow e & s+.\n\end{array}$ \n	$U_{12} \downarrow U_{13} \downarrow U_{14} \downarrow U_{15} \downarrow U_{16} \downarrow U_{17} \downarrow U_{17} \downarrow U_{18} \downarrow U_{19} \downarrow U_{10} \downarrow U_{11} \downarrow U_{10} \downarrow U_{11} \downarrow U_{11}$	

<u>Lenne:</u>

Let X be Boned. Then, for all xex

$$
||x||_X = sup \{ |2(x)| : 1 \in X^*
$$
 sh $||2||_{op} \le 1 \}$

 $||x||_x = ||\text{IdW}||_p(x-x) = RHS$ P_{out}

 $S.I - Weak Topologies$

Del:

Lest (X, 11.11) be Banach. We define the weak topology on X as the
"initial topology" generated by the collection of maps X". Let's call it Open (x). Then, Open (x) = Open (x)
Then, Open (x) is the smallest topology on X st. 2: X+ C is continues $for all $2 \in x^*$.$ Open $L(x)$ is generated by the side-burs $\{2^{-1}(L): U \in Q_{\rho}$ en (L) and $2 \in X^* \}$ So, $U \in \mathcal{O}_{\rho \mathbf{e}_1 \omega}(x) \iff U = \bigcup_{\alpha \in \mathcal{F}} \bigcap_{j=1}^{n_{\alpha}} \lambda_{\alpha_j}^{-1}(\mathcal{E}_{\alpha_j})$ for some $\lambda_{\alpha_j} \in x^*$
experience,

 \overline{u}

ne N

1.1.
$$
X
$$
 is an a subset, denoted space and $Ue0ru_{\nu}(x)$.

\n1. W is an a function of W and W is a function of X .

\n2. W is a function of X and W is a function of X .

\n2. W is a function of X and W is a function of X .

\n3. W is a function of X and X is a function of X .

\n4. W is a function of X and X is a function of X .

\n5. W is a function of X and W is a function of X .

\n7. W is a function of X and W is a function of X .

\n8. W is a function of X and W is a function of X .

\n9. W is a function of X and W is a function of X .

\n1. W is a function of X and W is a function of X .

\n1. W is a function of X and W is a function of X .

\n2. W is a function of X and W is a function of X .

\n3. W is a function of X .

\n4. W is a function of X .

\n5. W is a function of X .

\n6. W is a function of X .

\n7. W is a function of X .

\n8. W is a function of X .

\n9. W is a function of X .

\n1. W is a function of X .

\n2. W is a function of X .

\n3.

Proof: Vsc separatory sensions $2 \mapsto p_2(x,y) = |2(x)-2(y)|$.
The He collector $\{p_3\}_{3 \in \mathbb{N}}$ is separators: for two posts flux will be disagreedy
forefands. This leads to contently of + and , see Roder 1.37.
To show T_{1} , w

Let
$$
x \in X \setminus \{0_x\}
$$
. Then, $\exists 1 \in X^*$ s.t. $2(x) \neq 0$. Thus, $3 \in \infty$ s.t.
\n $x \notin 1^{-1}(B_e(0_e)) \iff 0_x \Leftrightarrow \{x\} - 1^{-1}(B_e(0_e)) \in Nblab(x)$.
\nSo, $\{0_x\} \approx 0$ and m the walk though.

Renock: - When druk = as since this is a non-netwic TVS, there are two meganated TVS structures. meginated IVS structures.
- This contracts the faith-dim case! \mathbf{u}

Lenne.

$$
x_n \xrightarrow{v} x \iff 1(x_n) \xrightarrow{e} 1(x) \qquad \forall x \in X^*
$$

$$
O(x_1)(1)
$$

In words, weak convergence and positive connegence on 2%.

Proof: (\Rightarrow) Suppose $x_n \le x$. The, $W \in N \cap J(\alpha)$, $\exists M, \in \mathbb{N}$ s.t. $n \ge M$, $\Rightarrow x_n \in V$.
Let $\exists E X''$, and let $U \in N \cup J_0(\alpha)$. The, $\pi^*(\omega) \in N \cup J_0(\alpha)$. So, lettery
 $V = \pi^*(\omega)$, we get $N_{\alpha} \cdot M_{\alpha \vee \omega}$ of \vdots $V_{n \ge N_{$

$$
(E) Let U \in Wblal_{\omega}(x).
$$

$$
V \in \{x\} + \sum_{s=1}^{n} \mathcal{I}_{s}^{-1}(B_{s}(o_{s})) \subseteq U.
$$

 $P_{\alpha\beta}$

Even, weakly-onreg of sequence is non-bounded.

\nPart: Suppose
$$
x_n \rightharpoonup x
$$
. Define $3_n := \mathcal{I}(x_n) \in X^{**}$.

\nFor all $2 \in X^*$ we have $1 + \{2(x_n)\}_n \subseteq \mathbb{C}$ converge in \mathbb{C} .

\nor all $s_n \neq n$ holds.

\nSo, for each $2 \in X^*$.

\nFor all $3 \in \mathbb{Z}$.

\nFor all $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, for each $2 \in X^*$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$ and $3 \in \mathbb{Z}$.

\nSo, $3 \$

128-

Weak * Topology

We had that the Weak topology or ^X is the initial topology generated by x^*

<u> Deh:</u>

The weak-se topology on X^{*} is the initial topology generated by
J(x) \subseteq X^{**}. That is, it is the meakest topology an X^{*} s.t. point The weak- of topology on X²⁰ is the initial topology
JCX) \subseteq X⁴². That is, it is the medicat topology on it
evaluations are continuous work. the functional Leing evaluated. Date:
The weak-of topology on X^{m} is the infinit topology generated \exists (x) \leq X^{**} . That is, it is the medicate topology on X^{*} st.
evaluations are continuous with the functional being evaluated.
From Hw

Theorem: (Banach-Alaogh)

Let X^* be the dual of a Banach space X and $B := \{ \text{Re} X^* : \| \text{Re} s \in \mathbb{R} \}$ The, B is weak-x compact.

 $\frac{P}{\sqrt{P}}$ define $B_x := B_{\text{total}}(O_e) \subseteq \mathbb{C}$. We know B_x is compact in K, and so by Tychauffy Theorem we how $B := \prod_{x \in X} B_x$ is compact in the product topology on C^X .

We may think of elements in ^B as functionals, though they are not $B := \frac{1}{10}B_{\kappa}$ is compact in the product.
We non that of elements in B as functions, though
recessarily linear. However, we know that $\forall (b:\times \neg c) \in B$, $|b(x)| \le ||x||$ S_0 , $B \subseteq B$ (i.e. $B = B \cap (1 \cap e^{-x})$). We should first show that the subspace topology of linear functionals $s \theta$ and $(x^*$ week-*) agree. Note that Open (B) is the inital topology generated by the projection mps p_x sending $b \mapsto b(x)$. Some $p_x(b) = 5(a)(b)$ and Openweak- $f(x^2)$ is the mital topology generated by the JCxI's, we know that these are the save topology. Thus, & is also week- compart.

Now, we from B is weak- compact compact.
Now, we from B is weak- compact, and so we must show B is weakers closed. Now, we know & is west- consact, and so we must shaw
We will construct a continuous map whose kernel is B.

For
$$
x,y \in X
$$
 and zeC , $dbx = \frac{(\sqrt{x},y)(\sqrt{x}) - \frac{1}{2}}{(\sqrt{x},y)(\sqrt{x}) - \frac{1}{2}b(\sqrt{x})}$
\nWe know $(\frac{1}{x},y, y, z)$ we have $-\frac{1}{x}$ continuous $sinx + \frac{1}{x}$ a combination of points, which are $2x + \frac{1}{x}$ continuous by $2x + \frac{1}{x}$.
\n $B = \frac{10}{2} \cap (\frac{1}{x}) = \frac{10}{x} \times \frac{10}{x} = \frac{10}{x} \times \frac{10}{x} = 0$
\n $sec = \frac{10}{x} = 0$

6. Banach Algebras & Spectral Analysis

Recall that $xf X$ is a Barch space, then $B(X \rightarrow X)$ is a Banah space with 11-11 op. Also, we have a natural nultiplicative structure vin composition of liner maps. So, $B(X \rightarrow X)$ is a $C-\text{algebra}$ We also had that $\|A\|_{op}$ s $\|A\|_{op}$ ($\|B\|_{op}$. We will define an abstract notion of Barach spaces that are C-algebres with submultiplicative norm.

notion
Defin: Detr:

^A Banach algebre t is ^a Barch space that is also a D-algebre for which ^① Va, bet , llable ⁼ HallellbIIA

$$
② 31eA \quad s.\quad a1=1a\quad2a} \quad \forall a.e. \quad a0b \quad ||1||_A=1.
$$

Pop:

·:Axt-t is continuous

 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} - a b \frac{\partial u}{\partial y}$ $\leq \frac{(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial z})}{(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y})}$ D

Examples:

① C(50, 1 ⁺ e) is ^a Banch space with the supremen norm . With pointwise C (E0, 13 + C) is a Banch space with the supreme nom.

2 cm with elevature nottobaction is a commitative Banch algebra.

is in several a non-connectative Bangah absent. \circ \circ \circ Note that $B(e^x) \cong M_{\sigma +_{mn}}(e)$.

6.1 Invertible Elevents

 \overline{D}

elevent red he a left more if 3acd s.t. ax = 1.
" right more if Jbed s.t. xb=1. A_{Ω} both enst, then x is martise, $x \in y$ and so musics are wight.
call the est of monthle elements $G_A \equiv G(A)$. If w_{L}

Remark: What systems this discussion from vint group theory is that we have topological information un the nom.

Lenni

$$
If x \in A \text{ obeys } ||x - 1||c|, \text{ then } x \in G(A) \text{ and } ...
$$
\n
$$
\cdot \frac{x^{-1}}{x^{-1}} = \sum_{n=0}^{\infty} (1-x)^n \qquad \text{(von Neumann group)} \qquad ... \qquad ...}
$$
\n
$$
\cdot ||x^{-1}|| \le \frac{1}{1-1|1-x|}
$$

$$
\frac{\rho_{\text{no}}f_{1}}{2} \text{ kJ} + \frac{\rho_{13}}{2} \text{ m} \frac{1}{2} \text{ m}
$$

 P ap:

 $G(A)$ e Open (A) and $F: G(A) \rightarrow G(A)$ is continuous.

Point:	Let $ae(G(x))$. Let $ch(x)$	0 _{ln⁻¹} (a) $\leq G(x)$. So, let $\tilde{a} \in B_{\frac{1}{2}n\overline{4}}(x)$
$\int_{S_{2}}$	$ a - \tilde{a} c \frac{1}{ a\overline{4} } = a - \tilde{a} a^{-1} \geq a - \tilde{a} \cdot a^{-1} = 1 - \tilde{a} \cdot a^{-1} $	
$\begin{array}{rcl}\n B_{3} & The \text{ short-level} \\ S_{2} & A & B & C(x) \\ \hline \end{array}$ \n	$\tilde{a} \cdot \tilde{a}^{-1} \in G(x)$. So, $\tilde{a} \cdot \tilde{a}^{-1}(\tilde{a} - \tilde{a})^{-1} = 1$	
$\int_{S_{2}} a \cdot \tilde{a}^{-1} \cdot \$		

We ask about fundances f: C -> X for a C-Banach space X.
Reall the magne of C-differentability from complex andysis. We do

Deh:

$$
\oint: C \rightarrow X \quad \pi \quad \text{Frecht} \quad \text{d}:\text{ffomfubble} \quad \text{at} \quad \pi_{o} \in \mathbb{C} \quad \text{at} \quad \exists \text{Le } \mathbb{B}(\mathbb{C} \rightarrow x) \quad \text{at}.
$$
\n
$$
\lim_{z \to 0} \frac{\left\| \int f(z_{o} + z) - f(z_{o}) - Lz \right\|_{x}}{\left\| z \right\|_{x}} = 0
$$
\nThus π equivalent to \mathbb{C} .
Substituting π is the following.

Ibenez:

Proef: m Ruder.

Integration

Det: (Remon Integration)

- Let $f: [a,b] \rightarrow X$ when X is a C -Bensch goue. Define $\int_{[a,b]}$ as follows:
For any pertition P give by $a-x$, $c...c x_n = b$, obtain
 $S(f; P) := \int_{0}^{x} (x_{j+1} x_j) f(x_j)$ and $w(f; P) := \int_{0}^{x} (x_{j+1} x_j) \int_{0}^{x} g(t(s) f(t)) |f(x_j)|$
- We ment VESO to Ad a pertition P st. w(f,P) = E, since then we
con proceed as usual.
- Inpertury if fix controves then it is Rimon-integrate!
- Det. (Bochner Integral)
	- Check Roder.
- Def: (Contor integral)
	- Let $\gamma: [2, 5] \to \mathbb{C}$ be precente smooth and $f: \mathbb{C} \to \times$ contains . We define $\int_{\gamma} f := \int_{[a,b]} (f \cdot \gamma) \gamma' \in X$ It time out that Soft does not deped on the parametersition of 8.
- Reall the following feets from camplex analysis:
	- Lenne: (ML) $||\int_{Y} f|| \leq \left(\sup_{t \in I_{N}} ||f(\gamma(t))||\right) L(Y)$
	- Carding Ityred Formula: (Ruden 1.31)
		- Let $I \in \mathcal{O}_{\rho}(\mathcal{C})$ be simply-connected, $f: D \rightarrow X$ halomonphe, $X: [a, b] \rightarrow D \rightarrow$ simple.
CChr contany and a_{ρ} in the interior of $X:$ They V ne NU{0}, $f^{(n)}(z) = \frac{n!}{2\pi i} \oint \frac{1}{(k-z)^{n+1}} f(x) dx$ So, holonophe = smooth.
		-
	- Cardry's Inequality:
		- Suppose that $f: C\rightarrow X$ is holomorphic on $\overline{B_R(a_0)}$. Then, $\|\hat{\psi}^{(\lambda)}(z_o)\| = \frac{n!}{R^n} \left(\frac{sq}{\epsilon_0 \epsilon_0} \frac{\|\hat{\psi}(\epsilon_0)\|}{\epsilon_0 \epsilon_0}\right)$

 6.3 : The Spectrum

 $\overline{p_{\mathcal{T}^i}}$

Gror a*e*
$$
z
$$
 a f **b** z **b** z **c** z **d** z **e** z **f** z **g** z **h** z **h** z **h** z **i** z **j** z **k** z **k** z **l** z **l**

We also detre:

• the resolvent set
$$
\rho(a) := \mathbb{C} \setminus \sigma(a)
$$
 and $\sigma(a) = \sigma(a)$ and $\sigma(a) = \sigma(a)$ and $\sigma(a) = \sigma(a)$ and $\sigma(a) = \sigma(a)$ and $\sigma(a)$ and $\sigma(a)$ and $\sigma(a)$ and $\sigma(a)$ and $\sigma(a)$ are the same as $\sigma(a$

A Theoren.

Proof: Let act. We want to show $O(G)$ e Cloud $(C) \iff \rho_{G} \geq O_{\rho}$ (C). Defre U: C + A sender = 2 1 a-21. The, U re contenant.
Furthermore, DCa) = 4¹ (C (A)) = a prompe of a aper set, and so $O(2)$ is cloud. Next, we wis $r(a) \in ||a||$. Let ze e s.t. lz/s/lall. Then, $-1 > \frac{||a||}{|a||}$ = $||a|| = ||1 - (1 - \frac{a}{2})||$, and so $||1 - \frac{a}{2}||eC(A)$ = $a - 21eC(A)$. $So,$ z e $O(s)$ for all $|z|$ all $|w|$ and theore $v(s) \le ||s||$. \mathcal{S}_2 , θ (a) $\in \mathbb{C}$ is clearly and bandel) which grants compastment by Heire-Borel. To see nonemptues, dertre te resolut map (2: 160) -> A early = 17 (a-21)⁻¹ 4 has an open donon, and $\frac{\psi(z_{0}+z)-\psi(z_{0})}{z}=\frac{(a-(z_{0}+z)(1)^{1}-(a-z_{0}+))^{1}}{z}=\frac{(a-(z_{0}+z)(1)^{1}(z_{0}+z_{0}+z)) (a-z)(1)^{1}}{z}$ $= -\Psi(z+z_0)\Psi(z_0)$ As z=0, containing of l guardices plus = -[l(20)]² on so l is holonoplic on scal. So, love is holomoptic on scal vac et We clean 4 deans as 12170. For any lets llall, we know $\|\Psi(x)\|$ - $\|(x-x)^{-1}\|$ - $|x|^{-1}$ $\|(x-x)^{-1}\|$ $\leq |x|^{-1}$ $(1-||x|^{-1}+||x-1||)^{-1}$ - $\frac{1}{|x-x|}$ \perp , \perp $|a|$ (1- $||a||$) $|a|$ - $||a||$ As $|z|$ = ∞ in $\{x \in \mathcal{H} \mid \| \psi(x) \| = 0, \|\theta(x) \| > 0, \| \lambda \circ \psi \|_{\infty} \le \| \lambda \|_{\infty} \sup \| \psi(x) \| < \infty \}$ This, 200 R bounded and necomple Suppose Bwo \triangle \triangle \triangle B_1 travellers theorem, love is construct V2. However, $\psi'(z) = -\psi(z)^2 + 0$.

D

Lenna (Fekete):

service Early ETR is substitute (anon santan VameN), IF le 1 an exists and equals the m_f $\frac{a_2}{a}$

 $Post$ $Hv!$

Lenna: (Gelferd's family)

$$
\underline{m}: (Gelfend's\ fammh)
$$
\n
$$
L\nu h = \alpha eA
$$
. Then, $\underline{f_{1m}}$ $||a^{n}||^{\frac{1}{2}}$ exist and $\underline{e_{1m}l_3} = \frac{e^{u}\mu h}{\alpha} \left[|a^{n}||^{\frac{1}{2}}\right]$.

Pool: Subaultphodend y of ||. || gas that
$$
b_n = \log (||a^n||)
$$
 is sbaddleate, a.3 so
Fehehe's lemma gives 14th re. |a-4= eants a.2 = a.01 s. 16 s. 17.

Now, let
$$
z \in C
$$
 be $s + |z| > ||z||$. Then,
\n
$$
\psi(z) = (a - z)1 \frac{1}{z} = \sum_{n=0}^{\infty} z^{n-1} a^n
$$
\nwhich comes uniformly on $3B_a(0)$ for $R > ||a||$. Thus,
\n
$$
\oint_{3B_a(0)} \psi(z) z^n dz = -\oint_{3B_a(0)} \overline{\sum_{n=0}^{\infty} z^{n-1} a^n} dz = \overline{\sum_{n=0}^{\infty} a^n} \overline{\sum_{n=0}^{\infty} a^{n-1} d^n} dz
$$

$$
a^{m} = -\frac{1}{2m}
$$
 $\oint_{B_{\alpha}(s)} \psi(s) e^{m} dz$ (R) ||all, $m \in \mathcal{N} \cup \{0\}$)

Since $\Delta(a) = 0 \cdot \sigma(a)$ carties all $|z| > ||a||$ and if it Indomptic on $\Delta(a)$ we my slights denue te nadas to get

$$
a^{2} = -\frac{1}{2\pi i} \oint_{\partial B_{R}(0)} P(x) z^{2} dz
$$
 (R₃ch), n₀Wu=03)

Takey the nome and applying ML lema,

$$
||a^{1}|| \le R^{nd} \text{ sup } ||\Psi(x)|| \implies \lim_{x \to 0} ||a^{1}||^{1/2} \le r(a)
$$

for $\Rightarrow e \circ \theta$. Converts,

$$
(z^{n}1-a^{n}) = (z1-a)(z^{n-1}1+...+a^{n-1}) = z^{n}eO(a^{n}) \Rightarrow |z|^{n} \le ||a^{n}||
$$

\n $\Rightarrow (c^{n}) \le |x|^{n} ||a^{n}||^{\frac{1}{2}}$

 $\overline{\mathbf{D}}$

1015-

Recall the following **vol**
$$
f
$$
 lets.
\n① **xe** f **s1**. $||x - 1|| \le 1$ **a** $x \in G(f)$, $x^{-1} = \sum_{n=0}^{\infty} (1-x)^n$. $||x^{-1}|| \le \frac{1}{1-||1-x||}$
\n② $G(f)$ **open** (since $B_{||a^{-1}||}(a) \le G(f)$) **the** $G(f)$) **and**
\n \therefore $G(f)$ **so** $G(f)$ **conform**
\n③ **left be** $B_{\frac{1}{||a^{-1}||}}(a)$. **Then** $-\|b^{-1}\| \le \frac{||a^{-1}||}{1-||a^{-1}|| ||a-b||}$
\n $= a^{-1} - b^{-1} = a^{-1}(b-a)b^{-1} = b^{-1}(b-a)^{-1}$
\n $= ||a^{-1}|| - ||a^{-1}|| ||a-b||$

Then... (Gdfrld-Moru)
\nIf
$$
A \times 803 \subseteq G(A)
$$
, then $A \cong C$.
\n
\nPoint: l dt are A , $z \neq z \in C$. V , const how beth S a- z , 1 = 0

so one of $a-z_i$ it is mutte.
Some orco $\neq a$, $a-z_i$ it is mutte.
Some orco $\neq a$, we find orco consiste of just one point (the zee s.h. a-z 11=0).
This is the desired mp from $A = 0$. \overline{D}

<u>Lenne</u>:

Let
$$
\{x_n\}_n \subseteq G(x)
$$
 s.l. $x_n \rightarrow x$ for sw $x \in G(G)$. Thus, $\|x_n\| \rightarrow \infty$.

Proof: Suppose BWOC that JM200 st. 1/2m²/1/2M for whately many n. Pick an a s.t. $\|\mathbf{x}_n^{-1}\| \geq n$ and $\|\mathbf{x}_n - \mathbf{x}_n\| \leq \frac{1}{n}$. Then

$$
\|1 - x_{n}^{-1}x\| = \|x_{n}^{-1}x_{n} - x_{n}^{-1}x\| \le \|x_{n}^{-1}\| \|x_{n} - x\| \le 1
$$

\n
$$
\Rightarrow x_{n}^{-1}x \in G(x) \Rightarrow x \in G(x)
$$

Contradiction!

Analysing spectrums of the leads to questions about whether wiggling act will change o (a) by a try amount . We arsure this below.

Theorn: (Contracty of spectrum)

Let a e/c, $\Omega \in Open(C)$ be $s \lambda$. $O(s) \subseteq \Omega$. If b is articles absent a, in perfection $||a-b|| \geq \sup_{x \in D} ||(a-x|)^{1/2}||$ $\underline{\mu}_{n}$ $\underline{\sigma}(\mathfrak{h})\subseteq \overline{\mu}_{n}$

Proof: We know the mp sending zeden to z \Rightarrow $||$ (a-z1)⁻¹/ $||$ is continued, then the mp sending $x \in D^c$ to $x \rightarrow ||(a-z||)^{-1}||$ is the restriction of a chord sof of a cloud sof, it is continuous (it is also bounded).

 $b - z 1 - (a - z 1)(a - z 0) (b - z) + 1)$ metive soule the 1 m

So, $b - z1$ is swetching, and so $\theta(b) \in \mathcal{R}$.

6.4 Polynomed Freethough Colculus

Let ρ be a polynomial on C (ρ (θ) = C_n \tilde{r}^n +...+ C_n \tilde{r} + C_o , $C_3 \in C$, $n \in N$). For any acts, the is a mapping from $C[z] \rightarrow A$; it is a C -algebra morphon (i.e. $p_{1}(\Delta) p_{2}(\Delta) = (p_{1}p_{2})(\Delta))$.

 \Box

6.5: Holomorphic Finctional Calculus

Detre exp: $A \rightarrow A$ von exploit $\sum_{n=1}^{\infty} \frac{1}{n!} a^n$. We will show that this Inch converses by showing the partial surs are Caudy: $\left\| \sum_{n=0}^{\infty} \frac{1}{n!} a^n - \sum_{n=0}^{\infty} \frac{1}{n!} a^n \right\| \leq \sum_{n=N+1}^{\infty} \frac{1}{n!} \left\| a^n \right\|^{2} \longrightarrow 0$

Inded, the regary holds I estima functions (analytic or all of C)

The next generalisation is for $f: B_{\alpha}(0) \to C$ Lolenapte, Rs.O.
From complex, we may write $f:(x) = \sum_{n=0}^{\infty} C_n z^n$ ($|x| \le R$).

we don that it a cash and richer R, the flat converses. We glow 2 is again Caroly:

 $\|\sum_{n=0}^{M}c_{n}a^{n}-\sum_{n=0}^{M}c_{n}a^{n}\| \leq \sum_{n=M+1}^{M}\|c_{n}\|\|a^{n}\| \leq \sum_{n=M+1}^{M}\|c_{n}\|c_{n}\|^{2}$

The fire) generalization is for funture holomonation on open sets contrary

Lenne:

Let
$$
\alpha \in A
$$
, $\alpha \in \beta(\alpha)$, $\Omega := \mathbb{C} \setminus \{\alpha\} \in Open(\mathbb{C})$.
\nLet $\gamma: \Gamma_{5}, \Gamma_{3} \to \mathbb{S} \longrightarrow \mathbb{S} \longrightarrow \mathbb{C}$ $\text{simple} \text{cutoff} \longrightarrow \mathbb{R}$ where
\nsumul $\theta_{\alpha} \ (\alpha - \alpha)^{2} \ (\alpha + \alpha)^{-1} \ d\alpha = (\alpha + \alpha)^{-1} \ \forall n \in \mathbb{Z}$

$$
\frac{1}{2\pi i} \oint_{\gamma} (d-2)^{n} (z \hat{1}-\hat{a})^{n} dz = (d\hat{1}-\hat{a})^{n} \qquad \forall n \in \mathbb{Z}
$$

Proof:	(120)	1/2	1/15	$\frac{1}{2\pi i}$	$\oint_{\gamma} (z f - a)^{-1} dz = 1$	($\frac{1}{\omega^{2}} \frac{1}{\sqrt{1 - \omega^{2}}} \frac{1}{\sqrt{1 - \omega^{2}}} = 1$)		
1/2	1/2	1/3	1/4	1/4	1/4	1/4	1/4	
1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4
1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4
2/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	
3/4	1/4	1/4	1/4	1/4	1/4			
2/4	1/4	1/4	1/4	1/4				
2/4	1/4	1/4	1/4	1/4				

$$
(n\neq0) \quad \text{We use a reversion from.} \quad \text{Let} \quad y_n := \text{LMS. We obtain} \quad \text{(a1-a)} \quad y_n := \text{LMS. We obtain}
$$

To sa
$$
h_x
$$
, Δh and $V_x \notin \mathcal{O}(A)$,

$$
(z1-a)^{-1} = (11-a)^{-1} + (1-z)(z1-a)^{-1}(z1-a)^{-1}
$$
, and so

$$
3\lambda^{\frac{2}{2}} \frac{1}{2\pi i} \oint_{\gamma} (1-z)^{n} (z^{n} - 5^{n}) dz
$$

= $\frac{1}{2\pi i} \oint_{\gamma} (1-z)^{n} dz (1-z)^{n} + \frac{1}{2\pi i} \oint_{\gamma} (1-z)^{n+1} (2(1-z)^{n}) dz (1-z)^{n}$
= $3\lambda^{n+1} (1-z)^{-1}$

Corolley:

If R:
$$
C \rightarrow C
$$
 is a rational function with poles $\{z_i\}$; $S \rightarrow (A)$,
\n $O(A) \subseteq \Omega$ be Open(C).
\n $C \rightarrow P$ becomes smoothly of(a) x 12, $\frac{H_{11}}{H_{11}}$
\n $R(A) = \frac{1}{\pi} \int_{0}^{1} R(x) (x 1-x)^{-1} dx$

Theorem: (general hole. forcheral calculus)
Let a est, Oto) SIC engenerale est f: C= C holempher on SL.
Hogether excite Oto) with SL, i.e.
together excite Oto) with SL, i.e. (1) March 2010) $\frac{1}{2\pi i} \sum_{j=1}^{3} \oint_{\gamma_1} \frac{1}{z-1} dz = \begin{cases} 1 & \text{if } z \neq 0 \\ 0 & \text{if } z \neq 0 \end{cases}$ χ Detre $f(a) = \frac{1}{2\pi i} \sum_{j} \oint_{X_{j}} f(x) (z1-a)^{-1} d z$

Ther, this definition presence the algebraic properties; i.e. this map from $1/2$
- f(x) g(x) = (fg) (x)
- f(x) +g(x) = (fg) x
- (z +x))(x) = 1 Weder $-(\epsilon \mapsto \epsilon)(\lambda) = \alpha$

> -contras vert. vister conversere tepday on the algebra of holonorphic firs.

Therefore, MF {1.3, is a servene of holonomotic fis conversing uniformly in

Renark: In general, it the poles of a function of don't be in the spectrum of
an element of the we am give many to for acting on that element.

 $\frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{1}{2}$

Note that $(a - zI)^{-1}$ $(a - zI) = 1$ \Rightarrow $a(a - zI)^{-1} = 1$ \Rightarrow $(a - zI)^{-1} = 1$ \Rightarrow $(a - zI)^{-1} = \frac{1}{z}I$
Using the masse $\sum_{s} \oint_{S}$ rin $\oint_{\partial B_R(s)}$ for Rsslall, we see that

 $=$ $\frac{1}{2\pi i}$ $\oint_{\partial B_R(\delta)} \frac{1}{2} a(a \cdot \epsilon) \frac{1}{a}$ $- \frac{1}{2\pi i} \oint_{\partial B_R(\delta)} \frac{1}{2} a - 1$

 $\bm{\Pi}$

 $(c_{\text{t}} \rightarrow c)$ (x) = a) we see that

 $= 9.$

 $\left(-\frac{1}{2\pi i}\int_{0}^{2\pi} \frac{1}{2\pi i} \int_{0}^{\pi} \frac{1}{2} \left(1-\frac{1}{2\pi i}\right) d\pi = a \left(-\frac{1}{2\pi i} \int_{0}^{2\pi} \frac{1}{2} \left(1-\frac{1}{2\pi i}\right) d\pi\right) + \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{1}{2} \int_{0}^{\pi} \frac{1}{2} d\pi$

(contrar) The proof wall we contents of the spectrum and a bound on the resolvent nom. For the rist see Ruder.

10/10-

One consequence of the above x that f(a) g(a)=g(a).f(a), and in partecher that afternotes a.

Lemmi

 $\text{ltt } a \cdot A, \quad \sigma(a) \leq \text{ReQan}(C), \quad a \cdot A - f \cdot D \rightarrow C \quad \text{holomorphic}.$ The, $f(s) e \mathcal{C}_{g} \iff O \notin m(f|_{\partial(s)})$

<u>Proof.</u> Let $O \notin \pi(f|_{O(G)})$. Then, $s:=\frac{1}{f}$ is toto on some $\tilde{\pi} \in O_{P}$ (ii) $\pi \in O(G) \subseteq \tilde{\pi}$.
We know $f(\lambda) g(\lambda) = g(\lambda) f(\lambda) = 1$ by the fuctional calcula, and so $f(\lambda) \in G_{\mathcal{H}}$. Now, let Oom ($A|_{O(\alpha)}$). Then, Jacques of flated. So, Jh: $R \geq 0$ of. $f(x) = h(x)(x-x)$ $\forall x \in \mathcal{R}$, and h_n late.

D

 \prod

 S_0 f(c)= $L(A)$ (a-a1) = f(c) ϵG_R . 66_A

Themen (Spectral Mappy): let act, ob sleoperce, f.l. a wds. Then, $\theta(f(\lambda)) = f(\theta(\lambda))$

Proof: $\forall z \in C$, $z \in \sigma(F(x))$ \Leftrightarrow $f(x) - zA \notin C_{2A}$ \Leftrightarrow $O \in \text{Im}(\sigma(x) \ni 1 \mapsto f(x) - z)$ \Leftrightarrow ze in (θ W) 32 $H(x)$) = $f(\theta(x))$.

Remark: The Spectral oneppay fleven now allowe is to describe a composition on the

Lenne:

If a
$$
eA
$$
 and 0 do 1 and 0 and 0 and 0 and 0 .

Prof: Defie log: R=C va a broach est along the given path, and so A is Inolomoptie.
Apply the fundient calculus. $\mathbf D$
$7.$ Milbert Space

We go from Banch spees mas Hilbert spaces, which are Banch speed Note nom obeys Z -law.

226.1	A Hilbert space F_1 a C -value for each $(\cdot, \cdot) : H^2 = C$							
32.2	32.3	42.4	44.4	45.4				
32.3	46.4	47.4	48.4	49.4	40.4	41.4		
33.4	40.4	41.4	41.4	42.4	43.4	44.4	45.4	
34.3	50.4	60.4	60.4	60.4	60.4	60.4	60.4	
35.4	60.4	60.4	60.4	60.4	60.4			
36.4	60.4	60.4	60.4	60.4	60.4	60.4		
37.3	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4
38.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4
39.4	11.4	12.4	18.4	19.4 </td				

 $||x_1 + x_2||^2 = 2||x_2||^2 + 2||x_2||^2 - ||x_1 - x_2||^2$

 -11 -44 aS a_n a_n $20 - 300$

 S_{φ} $||x_{n}-x_{n}|| \to 0$ as $n_{n} \to \infty$, od $A \neq \emptyset$ Caveby. So, $3xeE$ s.t. $x_{n} \to x$. cartainty of the ran, lixil-d. To be nounces, the is. B_{3} D

10/12-

We have played with Banach algebes madded after B(X) with ^X Barch. When given the Hilbert structure, we are also give another piece of structure: the played with Barrah algobres madeled after BCX) with
given the Uilbot showther, we are also given avother prece of its
the adjoint # it is the makes the a C*-algobre, we will build to today.

Theorem:

Let MEA be ^a closed liver subspace . The - ① Mt is also ^a closed liner subspace ^② M1n+ ⁼ ⁵⁰³ ^③ ^H⁼ MoMt(a & grading # of: ^①(4·⁷ is liner => ^M⁺ is ^a subspace . Also, since <4..7 continuous (Cauchy .Schnetzs, Mt ⁼ 1 <4,)"(502) => M⁺ closed (this holds even when M isn't closed) Yem ^② Let HeMmt = (4, 4):0 = 114112= ⁰ = y ⁼ ⁰ . ^③ Let Hel . Cleab, U-M is cover and closed, and so ⁷. FE(X-M) of min norm . So, 54:4-teM st. ¹¹ &41 is mi =: 3 Clam 7 . 5 Minnality gives ¹³¹¹²¹¹³ ⁺ ³¹¹ Vaem = gent. So, ⁴ : 4+ ^g ememt. B

<u>Prov.</u>

Let $w \in H$ be a linear subspace. Then, $(\overline{w})^{\perp}$ = w^{\perp} .

 $\frac{1}{2}$
 $\frac{1}{2}$ W \leq $\frac{1}{2}$ and $\frac{1}{2}$ w¹. For the other direction, let ve^{2} and $\frac{1}{2}$ w^{2} , \leq w^{2} correging $W \subseteq \overline{W} \implies (\overline{w})^+ \subseteq w^+$. For the other direction, let vew^+ and $\{w, \frac{2}{3}\}$
to some water. Then, $\langle v, w \rangle = \langle v, \frac{2}{3}w, \frac{2$

 \mathfrak{D}

 P no:

Let $W \in \mathcal{H}$ be a line subspect. Then, $(W^{\perp})^{\perp} = \overline{W}$.

Let $W \in \mathcal{H}$ be a line subspice. The, $(W^{\perp}) = W$.
 $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ (2) Let we \overline{W} . The, $\langle w, v \rangle$, θ V $\langle w \rangle^{\perp}$ = w^{\perp} . So, $w \in (w^{\perp})^{\perp}$.

(s) Write $H = \overline{w} \otimes (\overline{w})^{\perp} = \overline{w} \otimes w^{\perp}$. Since w^{\perp} closed, we may also unite $H=(U+1)^{\perp}\oplus W^{\perp}$. So, it cannot be that $\overline{w}\notin (U+1)^{\perp}$. \mathcal{D}

$7.1.$ Duality on Hilbert Special

Theory (Riesz Deprechtion)

 $\overline{\beta}$ ant: C-liver sometre bijector $k:\mathcal{H}\rightarrow\mathcal{H}^*$ sending $\ell\mapsto\langle\ell,\cdot\rangle$

Proof. It's clearly anti-C-linear. To see Banches, we wis || K(V)||op = 11411. B_3 definition, $||k(v)||_{op} = \sup_{\Psi \in \mathcal{H}} \{ |k(v)(\Psi)| \} = ||\Psi||$ $||\phi||-1$ $||\phi||$ $||\phi||$

For the other director, $k(e) \left(\frac{e}{1!e_0}\right) = \frac{1}{1!e_0} \langle \psi, \psi \rangle = ||\psi|| \implies ||\psi||_2 ||k(v)||_{op.}$

Nous we know all laren isouture are injecture. For surjecturity, let $\lambda \in \mathcal{H}^*$. If 150 , the $1(4)5(0, 4)$ $\forall 4.50$, support 160 . Since 15 continues, $N:=k\alpha(2)+1$ is a closed line subspace. Write $1: N\otimes N^{\perp}$ and let $3\in N^{\perp}\setminus\{0\}$. For all ψeH we see $[(\mathcal{Q}\psi)z - (2z)\psi]eW$. Some zeW^{\perp} we see

 $| \psi \rangle \leftrightarrow \angle | \psi |$

 $\mathsf D$

 $0=$ $\langle 3, (24)3 - (23)4 \rangle = (24)$ $||3||^2 - (23)$ $\langle 3, 4 \rangle \rightarrow 24 =$ $\langle \frac{(23)}{||2||^2}$ $\langle 2, 4 \rangle$. S_{2} $2 = k \left(\frac{c \overline{\lambda} \overline{\nu}}{\overline{\lambda} \overline{\nu}} 3 \right)$. $\mathsf{D}% _{T}$

This extint of C-liner isometric bijection from $12(11) \rightarrow 12(14)$ sending $A \mapsto kAk^{-1}$

Alternatively we can almostore A by As mother elements.

 P_{v}

If $A \in B(\mathcal{U})$ at $\langle \varphi, A \psi \rangle = 0$ week, the $A = 0$.

 $\frac{\rho_{\text{out}:}}{\rho}$ we have $\langle \Psi_{+}\Psi, A(\Psi_{+}\Psi) \rangle = 0$ = $\langle \Psi, A\Psi \rangle + \langle \Psi, A\Psi \rangle = 0$. Setting $|e|$; $|e|$ $-i \langle \Psi, A \Psi \rangle + i \langle \Psi, A \Psi \rangle = 0$.

Together the asme equitient mph <4, A45= 0 VV,4. Tahy $\sqrt{34}$ $\sqrt{44}$ $\sqrt{44}$ $\sqrt{25}$ $\sqrt{44}$ $\sqrt{44}$ $\sqrt{44}$

Cordlag: If $A, B \in \mathbb{R}(\mathcal{H})$ sit. $\langle \varphi, A \varphi \rangle = \langle \varphi, B \varphi \rangle$ ψ , the $A \neq B$.

Theor:

\nThe first 42.43.6 is a build, negative map is
$$
\int_{S,S} S = \frac{S\vee\varphi}{N!+N+1} = \int_{S} \frac{1}{f(\varphi,\varphi)} = \int_{S} \frac{1}{f(\varphi,\varphi)} = \int_{S} \frac{1}{f(\varphi,\varphi)} = \frac
$$

Det
A C+-algebre 13 a Berich algebre us an anti-C-lieu involvtion obuzany
He C++ sterlity llall²= llatall.

10/24

The additional structure of a C-x-dgebra allows for a continuous

7.2: Kenele and Inges

 P_{top}

$$
ker(A^*) = im(A)^{\perp}
$$
 and $ker(A) = im(A^*)^{\perp}$

$$
\frac{\rho_{\text{conf.}}}{\rho_{\text{conf.}}}
$$
 $A^4 \psi = 0$ \Leftrightarrow $\langle \psi, A^4 \psi \rangle = 0$ $\forall \psi$ \Leftrightarrow $\langle A \psi, \psi \rangle = 0$ $\forall \psi$ \Leftrightarrow $\psi \in \mathcal{M}(A)^{\perp}$
 \int

$$
\rho_{\infty\rho} = 1A1^{2} = A*A
$$

$$
k=(A)=k-(|A|^2)
$$

$$
\frac{\rho_{\text{corf}}}{}_{\cdot} \quad \varphi_{ek\text{co}}(A) \iff A \vee = 0 \Rightarrow A^*A \vee = 0 \Rightarrow \text{kekv}(|A|^2)
$$
\n
$$
\varphi_{ek\text{co}}(|A|^2) \iff A^*A \vee_{\text{co}} \Rightarrow \langle \varphi_A A^*A \vee \varphi \rangle = 0 \Rightarrow \langle A \vee A \vee A \vee \varphi \rangle = 0
$$
\n
$$
\Rightarrow ||A \vee ||_{\cdot} \circ \Rightarrow \psi_{ek\text{cor}}(A)
$$

$$
\Box
$$

 $\underline{b}_2 \underline{h}_2$ (C-mabalan state)

a e A is positive iff
$$
\frac{1}{2}b^2
$$
.
\na e A is self-algorithm: $1 + \frac{1}{2}a = 161^2$.
\na e A is normal if $|a|^2 = |a^2|^2$ as $[a, a^2] = 0$.
\nthe a^2 is independent if $p^2 = \rho$.
\nthe $p^2 = \rho$.

 $\rho_{\infty\rho}$:

 $P_{\sim P}$:

- 0 a sett-abject \rightarrow ora) $\subseteq \mathbb{R}$ $\bigoplus \rho \in \mathcal{A}$ idempotent = $\sigma(\rho) \subseteq \{0, 1\}$
- $\begin{array}{|c|c|c|c|c|}\n\hline\n\textcircled{3} & \textcircled{4} & \textcircled{4} & \textcircled{5} & \textcircled{6} & \textcircled{7} \\
\hline\n\textcircled{4} & \textcircled{5} & \textcircled{6} & \textcircled{7} & \textcircled{7} & \textcircled{8} & \textcircled{8} & \textcircled{9} \\
\hline\n\textcircled{5} & \textcircled{6} & \textcircled{7} & \textcircled{7} & \textcircled{8} & \textcircled{9} & \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1$

 $P_{\text{ce}}f_{s}$ n_{ν}

14.10-32
\n11.11
$$
[\frac{1}{2}(\sqrt{16})^2 - 2\sqrt{16}(\sqrt{16})^2 + 2\sqrt{16}(\sqrt{16})^2
$$

<u>lem:</u>

Let $\{ \varphi_i \}_i \subseteq H$ Le notary arthogonal with $\sum_{i=1}^{\infty} ||\psi_i||^2 \leq \infty$.
Then, $\psi_i = \ell_{\infty}$ $\sum_{i=1}^{\infty} \psi_i$ earsts and $||\psi||^2 = \sum_{i=1}^{\infty} ||\psi_i||^2$

 $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ $\frac{\rho_{\text{ref.}}}{\rho_{\text{ref.}}}$ \mathbf{D}

Theora:

If $\{E_n\}_n \subseteq \text{Cloud}(4)$ x a ser. of nector stepponed st. H= @ En, then $VQ_{e}H$ $\frac{1}{2}$ $\frac{1}{2}$

 $\frac{\rho_{\text{ref.}}}{\rho}$ $\|v\|^2$ $\frac{2}{\pi}$, $\|P_{\epsilon_1}v\|$ $\|v\|$ so app the above leave to see that $\frac{2}{\pi}P_{\epsilon_1}v$ 3. $\begin{array}{ccc} \mathbb{D}_5 & \text{para} & \text{otherwise} \\ A_5 & \text{max} & (\varphi - \frac{7}{24} P_{\varepsilon_5} \varphi) \perp \varepsilon_{m} & \mathbb{V}_{m \in \mathbb{A}} \end{array} \begin{array}{ccc} (\psi - \frac{7}{24} P_{\varepsilon_5} \varphi) \perp \varepsilon_{m} & \mathbb{V}_{m \in \mathbb{A}} \\ \Rightarrow (\varphi - \frac{7}{24} P_{\varepsilon_5} \varphi) \perp \psi & \mathbb{V}_{m \in \mathbb{A}} \end{array} \begin{array}{ccc} \text{where} & \mathbb$ $\overline{\Pi}$

 $\overline{\mu}$

Debi Contains all other An orthogonal besis of 7 is a <u>maximal</u> orthogonal set.

Dop

Every Hilsent space 17 contains an orthogonal basis.

Proof: Hw!

Prepi

 $\{P_{1}\}_{1\in A}$ is an orthonored buss, then $Wleq H$, J^L $\Psi = \sum_{a \in A} (\varphi_{a}, \varphi) \varphi_{a}$ and $\|\psi\|_{2}^{2} \leq |\langle \varphi_{a}, \psi \rangle|^{2}$

Uncounteble one is in Reel & Sim ℓ_{rad}

10/26

We call the isomoplisn in the category of Hilbert spaces to be unitary . These are live bijections that presere the inner product.

 \mathcal{P}

^A metre space / is separable At the exists ^a countable duse subset.

Theorus:
Theorus: Theorem :

- A Hilbert space H is separable \iff it has a countable ONB
- $\frac{1}{\sqrt{1-\frac{1}{n}}}\left(\frac{1}{n}\right)$ let $\frac{1}{n}\left(\frac{n}{n}\right)$ be a countest onb. Any $\frac{1}{n}\left(\frac{1}{n}\right)$ be approximed as a finite liner combination with refund coefficients. So, the set $\left\{ \begin{matrix} \psi_{\epsilon} \mathcal{H} \end{matrix} \right. : \quad \psi$ as a finie line combination with refined coefficients. So, if
Swe H: W= S1 en la, III cas, an rational }
is countable and duce.
	- (=) let {4.3, be contable and deser we my reduce it to a counterly limerly indpedant, duse set. Apply Gram-Schmidt. $\mathcal{D}% _{T}=\mathcal{P}_{T}\!\left(a,b\right) ,\ \mathcal{P}_{T}=\mathcal{P}_{T}\!\left(a,b\right) ,$
	- Remark: If the basis has finish many elements, say n linent intent deve set. Appy Cran-Schnidt.
Renol: If the basis has fully may elemits, say n,
If the basis introlly countelly the "HE H_n $H \in \mathbb{C}^n$. If the basis in month countries, $\lim_{M \to \infty} \frac{1}{M} = L(M - C) = 0$ The unitary mp $\psi \mapsto (g(x,4), g(y,4), \ldots)$ re varanze mp $\Psi \mapsto (2e, \Psi), 2e, \Psi$, ...)
realizes this relation. It's square summable since $\|\Psi\|^2$ is

To see A prime Pvalue, we observe
\n
$$
\langle U\Psi, U\Psi \rangle_{L^{2}(d\nu \to \mathbb{C})} = \sum_{n \in \mathbb{N}} (\overline{U\Psi})_{n} (U\Psi)_{n} = \sum_{n \in \mathbb{N}} \langle \Psi, \Psi_{n} \rangle \langle \Psi_{n}, \Psi \rangle
$$
\n
$$
= \langle \Psi, \sum_{n \in \mathbb{N}} \mathbb{P}_{n} \Psi \rangle = \langle \Psi, \Psi \rangle
$$

 \overline{Pr} :

 $- B \subseteq X$ is a Hanel been if $\forall \Psi \in X$, $\Psi = \frac{\hat{\Sigma}}{351} a_{ij} b_{ij}$ for some nell, $a_{jl} \in C$, $b_{jl} \in B$. A Any porder Benet space has only <u>incomptet</u> Henel bases. · BEX is a Schuder Less if VVEX, $\psi = \sum_{i \in I} d_{i}b_i$ for some d.e.C, b.e.B.

7.4: Direct Suns 8 Tereor Products

 $\overline{\mathcal{P}^+}$

Grey a sequel of Hilbert speed { Hy ? That, define $H:=\left\{ (x_n)_n : x_neM_n \quad \forall n \in \mathbb{N} \quad \text{and} \quad \mathcal{E}_{n \in \mathbb{N}} ||x_n||_{\mathcal{H}_n}^* \wedge \infty \right\}$ to be the direct sum. On H we defec the me product

$$
\langle x,y\rangle_{\mathcal{H}} := \sum_{n\in\mathbb{N}} \langle x_{n},y_{n}\rangle_{\mathcal{H}_{n}}
$$

 $Proer$

4 :s corplete.

 \int *Not*:

Let
$$
\{x_k\}_{k\in\mathbb{N}}
$$
 be Cuchy in H. Then, $\forall \epsilon>0$ J $N_{\epsilon}\in\mathbb{N}$ s.t. $\forall k, k\geq N_{\epsilon}$
\n $\epsilon^2 \geq ||x_k - x_k||_m^2 = \sum_{n=1}^{\infty} ||x_{n\epsilon} - x_{n\epsilon}||_m^2 \Rightarrow ||x_{n\epsilon} - x_{n\epsilon}||_m \leq \epsilon$
\nSo, $Un_{\epsilon}\in\mathbb{N}$ use $\{x_{n\epsilon}\}_{\epsilon} \leq \epsilon$ and $\epsilon = \frac{1}{2}$ as $C_{\epsilon}d_{\epsilon} \Rightarrow \frac{1}{2}$ as $lH_{\epsilon} \Rightarrow \frac{1}{2}$ as $lH_{\epsilon} \Rightarrow \frac{1}{2}$.
\nDefine $y:= (y_{\epsilon}, y_{\epsilon}, ...)$ Thus, $\sum_{n=1}^{\infty} ||x_{n\epsilon} - y_{\epsilon}||_m^2 = \sum_{n=1}^{\infty} ||x_{n\epsilon} - y_{\epsilon}||_m^2$
\n $||x_{\epsilon} - y_{\epsilon}||_m^2 = \sum_{n=1}^{\infty} ||x_{n\epsilon} - y_{\epsilon}||_m^2 = \sum_{n=1}^{\infty} ||x_{n\epsilon} - x_{n\epsilon}||_m^2$
\n $-\frac{1}{2}$ Thus, $\frac{1}{2}$ also $||x_{\epsilon} - x_{\epsilon}||_m^2 = \frac{1}{2}$ and $\frac{1}{2}$ as $\frac{1}{2}$ and $||x_{\epsilon} - x_{\epsilon}||_m^2 = \frac{1}{2}$
\n $-\frac{1}{2}$ Thus, $\frac{1}{2}$ and $-\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $-\frac{1}{2}$ and $-\$

If A,B are two diright & counteble sets, then $l^2(A \sqcup B) \cong l^2(A \otimes l^2(B))$

Prof. {e. } reall is an ONB for LMS (the Known delta basis). They map to (e_i, o) or (e,e_i) of ieA or ieB , repulsels. \mathcal{D}

 $\overline{\text{Det}}$

Let 14, 14, be Hilbert speces. Detre the necker space $\widetilde{H}:=\mathcal{H}_{1}\otimes\mathcal{H}_{2}=\left\{\varphi\colon\ \varphi\in\sum_{i_{3}=1}^{n}\alpha_{i_{3}}e_{i}\otimes f_{3}\quad\text{and}\quad e_{i_{3}}f_{3}\text{ but if }f\text{ is odd}\right\}$ $\langle e, \otimes f, e_k \otimes f_k \rangle_{\widetilde{H}} = \langle e, e_k \rangle_{\mu} \langle f, f_k \rangle_{\mu}$ and extra linearly. Dele This may not be complete, so let 11:= completion of 4 m.r.t. <...>

<u>Lenni</u>

 S , $P(P^*) \leq P(P) \geq P(P)$ Let A, B be two combit sets. Then, $\mathcal{L}^2(A \times B) \cong \mathcal{L}^2(A) \otimes \mathcal{L}^2(B)$

 $\frac{\rho_{\text{ref}}}{\rho}$ M_{ϕ} $e_{(a,b)}$ $\mapsto e_{a} \otimes e_{b}$.

 \overline{p}

Grea a Hilbert space H, we can from the Fook space $\mathcal{F}(\mathcal{H})$ via $\mathcal{L}(\mathcal{H}) = \frac{3}{\pi} \mathcal{H}^{\otimes n}$, when $\mathcal{H}^{\otimes o} = \mathbb{C}$.

Le thank of $F(H)$ as the space to describe howay countably many particles. (4.04) and the motion

 \bm{D}

1 Extern abeden 1H = $\frac{6}{90}$ H¹², whe H¹²= H1... 1H

As an example, $\ell^2(A) \otimes \ell^2(A) \equiv \ell^2(A^2) \ni \Psi$ bey artisymetre means

2 Symphic steepie Sere they but not antoquished

9: Bounded Operators on Hilbet Spaces

Weak & strong topologies on B(⁺)

Dot:

The shows approach of the problem is the initial topology generated by all maps
$$
E_{\psi}: B(1) \rightarrow 1
$$
 sends $A \mapsto A \psi$, $\psi_{\alpha} A$

In words, this is the meakerst topology st. point evaluation is continues

$$
\underbrace{L_{\text{error}}: A_n \xrightarrow{s} A \text{strongly}} \qquad \qquad A_n \vee \neg A \vee \qquad \qquad \vee \vee \neg A \vee
$$

 D_{σ} :

The rock operator Hepology is the might Hepology generated by all maps
Equ: B(11)
$$
\rightarrow
$$
 C sends A \mapsto (4,44), 4,44,44
In words, Hn is the number Hepology of A. He are product is continuous.

Lenz:
$$
Am\leq A
$$

muchly: AF $(\varphi, A, \psi)_{\psi} \Rightarrow (\varphi, A\psi)_{\psi} \Rightarrow \psi$ ψ ψ

m the Berech

متعموه Remark: We still have the week topology: He mited topology geneted
by $(P_1(n))^*$ The Exp's are index $e(P_2(n))^*$, but not all We still here the neck topology: The Mi
by (B(17))³⁸ The Evip's are noted E(B(17)
continues larer fredturals can be written that may.

 \mathcal{C} lan: submultiplating C. S. of norm \cup -
Nom convergence -> strang op converser -> week op convergence Uniform nurm poituge weak pointingen Let's look at some examples where the correse is false !

Tak $L^2(M)$ and define $P_{ij} := e_j \otimes e_j^*$ to be the orthogonal projections.
The, $P_{j} \rightarrow 0$ strongly $L + \infty$ in room.

 $\mathbf u$

B

 $\overline{\rho_{\text{out}}f_1}$ $\|\phi_3 - \phi\| \psi\|^2 = \|\rho_j \psi\|^2 = |\psi_i|^2 \to 0$ $\forall \psi \in \ell^{\infty}(\mathbb{N})$. So, theng.

House, $\|\rho_{3}-\phi\|=\|\rho_{3}\| = 1$.

0131-

Remarks We have that $\langle \varphi, \mu \otimes v^* \psi \rangle \equiv \langle \varphi, \mu \rangle \langle v, \psi \rangle$ definitionally.

Lot's see a contremple to the converse of streng a meak!

 P_{α}

Take $l^2(M)$ and define the unilatoral right shift operator $R(\varphi,\psi_1,...):=(0,\psi_1,\psi_2,...)$ $\forall \psi_2 \ell^2(w)$

Detred on the position bests, Rej=ej+1. Dete An:= Rⁿ to be slotte by n.
Then An -> 0 match, both not strangly.

$$
\frac{\rho_{\text{row}}f_{\cdot}}{f_{\cdot}} \qquad |\langle \varphi_{\rho} (A_{n}-\partial) \psi \rangle| = |\langle \varphi_{\rho} \hat{R}^{\circ} \psi \rangle| = \left| \sum_{n=1}^{\infty} \overline{\varphi_{n}} (R^{\circ} \psi)_{n} \right| = \left| \sum_{n=1}^{\infty} \overline{\varphi_{n}} (R^{\circ} \psi)_{n} \right|
$$

$$
\leq \left(\sum_{n=1}^{\infty} |\varphi_{n}|^{2} \right)^{2} \left(\sum_{n=1}^{\infty} |\psi_{n-1}|^{2} \right)^{2} \qquad \Rightarrow \qquad \circ
$$

 $So, An 50 weight.$ House, $||A_n e||^2 = \sum_{n=1}^{\infty} | (e^n e)_n|^2 = \sum_{n=1}^{\infty} ||e_{n-1}|^2 = ||e||^2 \implies ||A_n|| = 1.$ $So, A_n \nightharpoonup O \nightharpoonup s$

Note that $B(H) \cong H \otimes H^*$. Each element of H^* is $\langle v, \cdot \rangle$ by Ries. The single tensors in H&H* an thin work saley was (v,w) in

finite setting that we use mother elements to repeat operators. Reall in the

$$
M \iff \{ (e_i, Me_i) \}_{i,j=1}^n \qquad \text{and} \qquad M = \bigoplus_{i,j=1}^n M_{ij} e_i \otimes e_j^*
$$

does the sere stekent hold. We ask when

 P^{ref}

If
$$
H
$$
 has OWB { ℓ_3 } $_{\ell_3}$ and $A \in \mathbb{R}(H)$, Hom

\n $A = \n\begin{array}{ccc}\nA & \lambda & \lambda \\
N \rightarrow \infty & \lambda \\
\hline\n\end{array}$ \n

\n $\begin{array}{ccc}\nA & \lambda \\
\hline\n\end{array}$ \n

\n $\begin{array}{ccc}\nA & \lambda \\
\hline\n\end{array}$ \n

\n $\begin{array}{ccc}\n\lambda & \lambda \\
\hline\n\end{array}$ \n

$$
P_{rad} = ||(A-S_{n})\varphi||^{2} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, (A-S_{n})\varphi \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, (A-S_{n})\varphi \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}}{\sum_{s=1}^{n} |\langle \varphi_{s}, A \varphi_{s} \rangle|^{2}} = \frac{\sum_{s=1}^{n} |\langle \varphi_{s},
$$

$$
\mathcal{L}_{\mathbf{v},\mathbf{v}} \|\mathbf{v}_{\mathbf{v},\mathbf{v}}\|_{\mathbf{v}}^{2} = \mathcal{L}_{\mathbf{v},\mathbf{v}} \mathcal{L}_{\math
$$

$$
\frac{9.3: \text{Spectrum of Elenaks in }B(11):}{B(11): \text{Solumalgebra, and so we have }AC \text{ small stable.}
$$
\n
$$
\frac{9.21}{8} = 3.41
$$
\n
$$
\frac{1}{8} = 3.41
$$
\n

Deln: (point spectrum) this is when A-29 fits to be injective! eigenveled!

$$
\theta_{2}(A) = \{ \lambda \in C : | \lambda \in (A - 2\pi) \neq \{0\} \}
$$

 $160p(A) \Leftrightarrow 39e4\sqrt{6}3$... $4.2704=0$ $\Leftrightarrow 49.24$.

Dela: (continuou spectum) this is when A-211 fiels to be surjective (but As close)!

$$
\sigma_{c}(A) := \begin{cases} \n2e & \text{if } k \in (A - 21) = 8 \text{ is odd,} \\
0 & \text{if } k \in (A - 21) \neq H\n\end{cases}
$$

Detri (resided specture) the nest

$$
\Theta_{\Gamma}(A) := \Theta(A) \setminus \Big(\Theta_{\beta}(A) \cup \Theta_{c}(A)\Big)
$$

 $2e \theta_r(A) \implies A-21$ is wright but not surject and $\frac{1}{im(A-2n)} \neq H$.

Since the spectrum is cloud, $O\epsilon O(A)$, where is it? $C|_{\alpha,m}$: $O \epsilon \sigma_{n}(A)$ We know that there is an "inner" $(A^1 \varphi)_n = n \varphi_n$ We Know that there is an "snuck" $(A^T \varphi)_n = n \varphi_n$,
but it is NOT bounded. So, A is not snutble in $B(14)$.

 E xample: (ρ_{os}) ica operter)

Let $H = L^{2}(\overline{[0,1]} \rightarrow \mathcal{C})$ and X be defied by $(X \Psi)_{(\chi)} = x \Psi(\chi)$ Uxelo, 1]. LUT THE L (10,15 = C) and X be devent by $(X \vee f)(x) = x \vee f(x)$
Since x is an campion domain, we mont min integrability or boundedness. S o, $XeB(M)$. Here,

$$
\mathcal{O}(x) = \mathcal{O}_c(x) = [0, 1]
$$

The eigenvectors are Dive deltas, $U(X) = D_C(X) = [0,1]$
The esparetos are Done obthes, which aren't in 1t! One again, eigenectos lying

- 11/2-

For fu, we will next consider the adjoint of ^a shift operator.

 P_{\sim} . If $\lambda \in \mathbb{C}$ and $A \in \mathbb{B}(\mathbb{H})$ then \hat{D} \overline{A} \in $\mathcal{O}_r(A^*)$ \Rightarrow $\lambda \in \mathcal{O}_p(A)$ $\circled{2}$ $\lambda \in \mathcal{O}_{\rho}(A) \Rightarrow \overline{\lambda} \in \mathcal{O}_{\rho}(A^{+}) \cup \mathcal{O}_{\rho}(A^{+})$ Proof: 1 Iut $\overline{a} \in \mathfrak{S}$, $(A^*) \iff \overline{m(a^*- \overline{a} \cdot a)}$ is proper single of H \Leftrightarrow $(\frac{1}{m}(A^{2}-\overline{10}))^{2} \neq \{0\}$ $\left(\frac{1}{2}\right)^{\frac{1}{2}+\sqrt{1}}$ ($m(A^* - \overline{2}1)$) $\stackrel{C_{\text{max}}}{=}$ kv (A-21) S_3 $A - 21$ is not njected 1 For the russe, we could have that either $\overline{a} \varepsilon \mathcal{O}_C(A^*)$ or $A^* - \overline{A} \overline{A}$ mot mjeste. D Theorer: If act in a C^* -algebra has at an, then $\mathcal{O}(a) \subseteq \mathbb{R}$. Proof: see below i D Theorem: (perperticular eigensprees of self-adjoint operators) If $A = A^* \in B(H)$ the $\sigma_r(A) = \emptyset$ and if $\lambda_r A \in \mathcal{O}_p(A)$ with $x \neq n$, then $\ker(A-2\pi) \perp \ker(A-n\pi)$. $\frac{\partial u}{\partial x}f:$ Suppose $\lambda \in \mathcal{O}_r(A)$. The, $\lambda \in \mathcal{O}_r(A^*)$ \Rightarrow $\overline{\lambda} \in \mathcal{O}_p(A)$. Since $A = A^* \Rightarrow \lambda \in \mathbb{R}$, we see $\lambda \in \mathcal{O}_P(A) \wedge \mathcal{O}_P(A)$.
However, there are disjoint. \rightarrow Now, let AY=24, AP=nl with 2=n. Suppose wold of that 20. T_{ν} $\langle \psi, \psi \rangle = \frac{1}{2} \langle \lambda \psi, \psi \rangle = \frac{1}{2} \langle A\psi, \psi \rangle = \frac{1}{2} \langle \psi, A\psi \rangle = \frac{1}{2} \langle \psi, \psi \rangle$ $E: M - \mu/\pi = 1 \implies \mu = \pi = 2$, which assort be, or $\langle \psi, \psi \rangle = 0$. $\mathbf U$

More about C[#]- algebrand

In the below, At is a C^* -algebre $(i.e.$ llall²= llatall = ll lal²||)

\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a & d\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & b \\ a$
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	------------------------------------

$$
\frac{8}{3}e^{3x} = \frac{8}{3}e^{3x} = \frac{7}{3}e^{3x} + e^{3x} = 2x
$$
 and $000 = 7$ km, $100 = 1$. $\frac{1}{2}$
\n $100 = 1$
\n $100 = 100$
\n $100 =$

 \rightarrow \sim $\overline{}$ Theorer:

If act in a C^* -algebra has $a^* = a$, then $\mathcal{O}(a) \subseteq \mathbb{R}$.

Proof. Note that $z \mapsto e^{i\theta}$ is entire and so by the "entire"
functional calculus" $e^{i\alpha} = \frac{z}{n!} e^{i\alpha}$ of We wis e^{in} is uniting; nearly that $(e^{in})^* = e^{-in}$ $(e^{i\alpha})^{\frac{1}{n}} = \left(\sum_{n=0}^{\infty} \frac{i^{n}}{n!} a^{n}\right)^{\frac{1}{n}} = \sum_{n=0}^{\infty} \left(\frac{i^{n}}{n!} a^{n}\right)^{\frac{1}{n}} = \sum_{n=0}^{\infty} \frac{(i)^{n}}{n!} a^{n} = e^{-in}$ So, e^{in} is unity! $e^{in}e^{-in} = e^{-in}e^{in} = 1$ by tonomopter of
frotanel calculus. By the unitary prop, $\Theta(e^{in}) \subseteq S$. Let $2e\theta(a)$. Then, $e^{i\lambda}e\theta(e^{ia})$ by spectral mapping there. T_{max} $|e^{i\lambda}| = 1$ \Rightarrow $\lambda e^{i\lambda}$. $\mathbf D$

Back to B(M): polar decomposition
We seek a decomposition analogous to z=ei^otel and in Mⁿ: SVD $A = WZV^* = (WV^*)VEV^*$

In infante-damentional H, we will see that for any AeB(14) we will have $A = U |A| = U \sqrt{14^2} = U \sqrt{A^4 A}$ for some partial reording U. If we requere Ko-A=ko-U, then U is virgue!

 $1/2$ porton test Lenni $U \in \mathbb{R}(\mathbb{N})$ is a partel isorety $\iff U$ is an isoraty on $Ker(U)^{\perp}$ $(i.e. ||U \Psi|| = ||\Psi||$ $\forall \Psi \in K \sim (4)^{\perp}$ $\frac{1}{2}$ $\frac{1}{2}$ (=) Assume $|u|^2$ is idempotent = $|u^*|^2$ is $\frac{1}{2}$ idempotent. Since ker (u) = ker (ui^2) . So, if $\psi \in \ker(u)^{\perp}$ the by decay of H, Ψe in $\langle |u|^2 \rangle \Rightarrow |u|^2 \psi$, $\psi \Rightarrow \|u\psi\|^2$, $\langle u\psi u\psi \rangle$, $\langle \psi | u \rangle \psi \rangle$, $\|\psi\|^2$.

$$
(\frac{1}{2})
$$
 For Re ke $ln(4) +$
\n
$$
||(1-14i^{2})\psi||^{2} = \langle \psi, |1-14i^{2}\psi \rangle = \langle \psi, (4-14i^{2})\psi \rangle
$$
\n
$$
S_{0} + \frac{|11-11}{2} = \frac{|111|^{2} - |111|^{2} + 0.}{2}
$$
\n
$$
S_{0} + \frac{32e}{2} + \frac{11}{2} + \frac{1}{2}e
$$
\n
$$
S_{1} + \frac{32e}{2} + \frac{1}{2}e
$$
\n
$$
S_{2} + \frac{32e}{2} + \frac{1}{2}e
$$
\n
$$
S_{3} + \frac{32e}{2} + \frac{1}{2}e
$$
\n
$$
S_{4} + \frac{1}{2}e
$$
\n
$$
S_{5} + \frac{1}{2}e
$$
\n
$$
S_{6} + \frac{1}{2}e
$$
\n
$$
S_{7} + \frac{1}{2}e
$$
\n
$$
S_{8} + \frac{1}{2}e
$$
\n
$$
S_{9} + \frac{1}{2}e
$$
\n
$$
S_{10} + \frac{1}{2}e
$$
\n
$$
S_{11} + \frac{1}{2}e
$$
\n
$$
S_{12} + \frac{1}{2}e
$$
\n
$$
S_{13} + \frac{1}{2}e
$$
\n
$$
S_{14} + \frac{1}{2}e
$$
\n
$$
S_{15} + \frac{1}{2}e
$$
\n
$$
S_{16} + \frac{1}{2}e
$$
\n
$$
S_{17} + \frac{1}{2}e
$$
\n
$$
S_{18} + \frac{1}{2}e
$$
\n
$$
S_{19} + \frac{1}{2}e
$$
\n
$$
S_{10} + \frac{1}{2}e
$$
\n
$$
S_{11} + \frac{1}{2}e
$$
\n
$$
S_{10} + \frac{1}{2}e
$$
\n
$$
S_{11} + \frac
$$

Flearn (Polen Deary) Let Ae B(14). Then, 3! partal reacts U st. \cdot ke (u) = ke (A) and \cdot A = U $|A|$ = U $\sqrt{a^{*}A}$ Morac, $m(u) = m(A)$. Wome! Sypan fort that A is mattile. Then, [A] is also murtille $|U|^2 = (A|A|^{-1})^*A|A|^{-1} = (|A|^T)^*|A|^T|A|^{-1} = 1 \Rightarrow |U|$ partial 30. $=$ ($|A|$ ^{*)}⁻¹ = $|A|$ ⁻¹ All motive partel ros are vatry. So, A motive => $U = A|A|^{-1}$ unthang

Remark. We night try to decree U: ker (w) to ker (w) as m(w) \oplus m(w) $\frac{1}{2}$ let $\tilde{u}: k_{1}(u) \stackrel{\text{d}}{\rightarrow} m(u)$ de votro, and velocity $u = \begin{bmatrix} \tilde{u} & 0 \\ 0 & v \end{bmatrix}$ for some V. Ke-(h) -> m (h) - (any release on the speak wort affect the polen deary of the line of the company of the following the magnet never be an
senarghen V: Ke-(h) -> m (h) - sme they may have distinct due. So, we can't clear out make 11 miles. $\frac{\rho_{\text{root}}f_2}{\rho_{\text{root}}f_1}$) $\frac{\rho_{\text{root}}f_2}{\rho_{\text{root}}f_1}$ (1Al) $\frac{\rho_{\text{root}}f_2}{\rho_{\text{root}}f_1}$) $\frac{\rho_{\text{root}}f_2}{\rho_{\text{root}}f_1}$) $\frac{\rho_{\text{root}}f_2}{\rho_{\text{root}}f_1}$) $\frac{\rho_{\text{root}}f_2}{\rho_{\text{root}}f_1}$) $\frac{\rho_{\text{root}}f_2}{\rho_{\text{root}}f_1}$) $10-1414.14$; we wis $A4.44$. We have $||A\Psi - A\Psi|| = ||A(\Psi - \Psi)|| = ||\Psi|| \Psi - \Psi|| = 0$ where (x) holds since $||Ay||^2 = \langle x, |A|^2x \rangle = \langle x, |A|^2||a||x \rangle = |||A||x|||$ S_{0} W x a will-defined roughs. Now, extend to $\tilde{u}: \overline{m(141)} \rightarrow \overline{m(10)}$ (also on res.). To do so, $10 + \frac{1}{2}$ = $\frac{1}{2}$ (141). The 33223 = 7 st. 1414. - 4. So, $\widetilde{U}\Psi := \lim_{n \to \infty} A\Psi_n$ om A extrits can $||A(v,-v))||=|||A|(v,-v)||=0$ as Allen coneges Now, H= $\frac{1}{100}$ or $\frac{1}{100}$ or $\frac{1}{100}$ in (141)¹. So, we may extend it to $\frac{1}{100}$ or $\frac{1}{100}$ or $\frac{1}{100}$ or $\frac{1}{100}$ or $\frac{1}{100}$ or $\frac{1}{100}$ u_{n+1} , $kv^{(u)} = (\overline{m(14D)}^{\perp} = m(14D^{\perp} = uv(14P)) = kv[14D) = kv[14P] = kv[14]$ To show vieweress, let Aswf for partiel iso w and P20. In order for
W.s inflat spee to be in(f), the $|A|^2 = A^+A = \frac{1}{2}W''W + P = P|W|^2P = P^2 \implies |A| = P$

So, UIA = WIA = U and V agree on their school space in (IA).
Since U= WEO elsewher, we have U= W. \overline{D}

9.8 Compret Operators

Interfreely, the compact operators are the norm-closure of the forth nutures embedded in H. We mike this systems.

Def: (frite nok) We say Ae B (4) is of finite rank iff dim (m(A)) LOO. Prop:
A is of finite much : If $A = \sum_{n=1}^{\infty} a_n y_n \otimes y_n +$
where N= du (in (4)), $a_n \in [0, \infty)$, and $\begin{pmatrix} a_{n+1} & a_{n+2} \\ a_{n+1} & a_{n+2} \\ a_{n+2} & a_{n+1} \end{pmatrix}$ $\frac{\rho_{\infty}f_{\infty}}{f_{\infty}}$ (=) Let $N=dim(m(A))$ $\omega \implies im(A)$ is closed $\implies H=m(A)$ $\oplus m(A)^{\perp}$ = $k\nu(a)$ as $k\nu(a)$ $\widetilde{A}: \text{ker}(A)^{\perp} \to \text{im}(A)$ is an isomorphism (finderdum liver map out from leavel). $\mathsf{S}_{\mathcal{O}}$ Thus, $dm(h\nu(A)^{\perp}) = N \le a0$. So \widetilde{A} is just sure square nature. Do SVD on that and complete the ONB's to fingh. $(c \Leftrightarrow)$ Din. $\mathbf \Pi$ $Exanbsi$ \bigoplus $\forall u, v \in H$, $u \otimes v^*$ is a rank-1 opening with $(u \otimes v^*) (\psi) = \langle v, \psi \rangle_u$ 2) 1 suit faile norte ;f don't coo. In flot, anything swedible scrit forte rask. So, $exp(-x^2)$ on $\mathcal{L}(\mathbb{A})$ is also not finite rank. Det: (Canpect operator) We say Ae B (74) is compact iff $||A-A_1||_{B(M)} \rightarrow 0$, where $\{A_1\}$ is a sequence of Ante mark operators. In particular we can always under $A = \lim_{\mu \to \infty} \sum_{n=1}^{\infty} \alpha_n \psi_n \otimes \psi_n^*$ We denote by X(7) the est of compet openture on 7. Lenni / Ex Barch Space For AE B(E), the following are equivalent:

 (a) A e $X(E)$

(b) For any build square,
$$
8\sqrt{3}, 8\sqrt{3}, 8\sqrt{3}, 200
$$
 m. a count about a
\n(c) For any bound $85\sqrt{5}$, $2(8)$ m. a count about a 2.
\nSo, $2\sqrt{9}$ cm. $2\sqrt{3}$, and $2\sqrt{3}$, and $2\sqrt{3}$, and $2\sqrt{3}$
\n $2\sqrt{3}$ cm. $2\sqrt{3}$ cm. $2\sqrt{3}$ cm. $2\sqrt{3}$ cm. $2\sqrt{3}$ cm. $2\sqrt{3}$
\n $2\sqrt{3}$ cm. 2

Theorem:

A computer A. A.B compact

$X(H)$ is a closed, two-sided-#-ideal of $E(H)$.

- Proof: Closure follows she (c) from above is presented under norm limits.
A \in K(H) = $A*_{\epsilon}$ K(H) follows from the fet that $*:\mathbb{R}(A) \rightarrow \mathbb{R}(H)$ is norm-continuous.
	- Now, by boundedness of BEP2(1), $A I A$ BA = $I B$
Since $A_n B$, BA are finder only note done. AB = $I A_0 B$ $\overline{\Pi}$
- $P_{\alpha\beta}$: A nultiplieder operator in on ONB {en}, is computed
it and only if (en, Aen) => 0 as n ->00. Proof: We know A : { (e, Aen) en @en* strongly.
	- (=) Suppose (en Aci) 70. Deter An := { (en, Aen) en @en".
An is bounded and finite-rank, mand $||A-A_{\nu}|| \leq \sup_{n>\nu} \left| \frac{e^{-\mu n x}}{(e_n, A_{n})} \right| \to 0 \qquad s_n \qquad \text{as in the interval}$

Some Brool (e., Ae.,) to be
$$
3
$$
 [2₁₃]; shows the $|2e_{13}$, Ae., $|3|$].

\nSince $\{e_{13}\}$; is bounded set, $\{Ae_{13}\}$; has a compact subsequence b_3 (5). Since $\{e_{13}\}$; \rightarrow 0 with 3 a subvalue of $\{Ae_{13}\}$; where $|3|$ is the 3 is the 3

Example: If
$$
\{e_{n}\}_n
$$
 is an ONB and Ae-B(M), then
 $A = \sum_{n=1}^{n} (e_{n}, Ae_{n}) e_{n} \otimes e_{n}^{*}$ converges through
and each path sum is funk-nak.

Theoren:

Let
$$
A \in \mathcal{C}(H)
$$
 and let $\{P_n\}_n \subseteq H$ be $s+1$. $P_n \rightarrow P$ weakly
Thus $AP_n \rightarrow AP$ \sim norm.

 $\frac{\rho_{\text{co}}f}{\cdot}$ Hw \cdot

 \overline{D}

* I earn: (Riesz-Schaude) Let AtK(AD. Then, ① OECIA) , and so A isn't invetible & O(A) is ^a discrete set whose only possible limit point is 0. ^③ Esso, (OCA)(Ba(O) - & OA) ⁼ OpCA)u303, and so Ken(a-ri) + ³⁰³³ ⁺ ^o dim Ker(A-11) 10 &f: Eventually , oncer we get Fredholm. There are proats in Rudn and Reedy Simon D Fredholm Operators Di ^① dinkerto almost injective AcB(1) is Fredholm iff ^② dim Ker ^A* 20 almost ⑤ in (A) ^E Closed(11)34 surjective The opposite of finitermark ops are investible (explores I fully) This is too restrictive, and so Fredhole ops are most invertible. Ei The cokernel of ^A is coke(A) := 1)im (A) #: dim coker(A) -x t dmke/A*)10 E Coke(A) ⁼ Ke-(A*) i(A) Closed (1) Theorem : (Atkinson) - The Tparametrix" [↓] ^A is Fredholm # JB ^s . t . AB-1, BA-1 are both compact. Proof: If we have time - , god willing ⁱ ^D

Remark: 1 is Fredholm, and so is -21 if $2\neq0$. So, \cdot 1 is Fredheby, and so is -21 if $2\neq0$. So, A compact $1\,$ is Fredholm, and so is $-21\,$ if $2\,$ $40.$ So, \Rightarrow $A - 21$ is Fredholm, group Rresp-Schander (h).

11/14

Spectral Theorem for B(H)

Recall our conditions on when we may apply the fructional calculus. B For A a Benedi algebra, flaieA VacA if f is holomorphic on a which of $\partial(a)$. I is holomorphic on a mbhd of or
(ine do) @ For B(A), if AEB(A) is normed,
for all f boarded and negative. a.
the f(A) EB (7) $B(M)$, if $AeB(M)$ is non
all A banded and negatible. We will stert with the them for self-adjoints. Note that any Ae B(14) may be written as the sun of two self-adjoints $A = Re\{A\} + i \Im\{A\} =$ $\frac{1}{2}$
- self-
-
- Re En?
- Re En? $\frac{1}{2}(A+A^*)$ + s_{ℓ} $|A - a$ ℓ $|S - a|$ $A = Re\{A\} + i\overline{A} = \frac{1}{2}(A+A^2) + i(\frac{1}{2}(A-A^2))$

When A is normal they compute, and the spectral theory is inherited. when A is nemal they commune,.
So, we proceed with A selfradjoint. Henglotz-Pick-Nevenlinn-R Functions Let $\mathbb{C}^+:= \{z \in \mathbb{C}: \ L \leq \{z\} > 0\}$ be the open upper half-plane. Deni Detr: A mp $f: \mathbb{C}^+ \to \mathbb{C}^+$ is Heylotz it it is holomophic.
Renati \cong restating to open unit direk un conformal mp m α metably to open unit disk via conformal maps x .

 $Ex/2H$ c+dz for dso, ceth z +2z', · 2 172 / Ocrel w/ appropriate branch · It log(z) ^W appropriate branch Mobius transform : for [ed] ^M $-Mi_{obs}$ traction $z \mapsto \frac{a+bz}{c+dz}$ for $\begin{bmatrix} c & d \\ 0 & b \end{bmatrix} =:M$ with M^* $J = \sum_{i=0}^{n} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ $(suba 2H^{-\frac{1}{2}})$

Prop: If m,n are Heglote, Her mon and mon are as well. Pauf: Dir. \Box

Prop: (Resolant Fn. 75 Hr₃(b+3)
\nIf A=A⁺ ∈ B(A) and P∈H, Hu. f: E⁺ → E⁺ 3² and h
\n
$$
B \mapsto \langle \varphi, (A-a)\psi \rangle = Be^{-1} + \langle \varphi, (A-a)\psi \rangle
$$
\n
$$
P_{rad} = R, Hx, E^{+} ⊆ A(a) and f. lab, ag\n
$$
\frac{f(9x)-Hy}{x} = \frac{\langle \varphi, (A-(9x+3))\psi \rangle - \langle \varphi, (A-a)\psi \rangle}{\langle \varphi, (A-a)\psi \rangle} = \frac{1}{\sqrt{2}} \langle \varphi, (A-(9x+3))\psi \rangle
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle (\langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle)
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle (\langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle)
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle (\langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle)
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle \langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle \rangle
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle \langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle \rangle
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle \varphi, (A-a)\psi \rangle - \langle \varphi, (A-a)\psi \rangle
$$
\n
$$
= \frac{1}{\sqrt{2}} \langle \varphi, (A-a)\psi \rangle - \langle
$$
$$

Theorem:	(Reputation, Theorem, for Special K.S. of Hright the
Let $f: C^+ \rightarrow C^+$ be. Hright each	
Let $f: C^+ \rightarrow C^+$ be. Hright each	
Thus, $3!$ Find more $f(x)$ on 1 ?	
0 $f(1)$ \leq 1	
0 $f(1)$ \leq 1	
0 $f(1)$ \leq 1	
0 $f(2)$ \leq $\frac{1}{3\cdot e}$ $d_{\text{PQ}}(e)$ $\forall e e e^+ \quad (\frac{1}{2} \times \text{Borel} + \text{Borel})$	
0 $f(e) = \int_{2}^{1} \frac{1}{4\cdot e} d_{\text{PQ}}(e)$ $\forall e e e^+ \quad (\frac{1}{2} \times \text{Borel} + \text{Borel})$	
0 $f(e) = \int_{2}^{1} \frac{1}{4\cdot e} d_{\text{PQ}}(e)$ $\forall e \in \text{P$ }	
0 $f(e) = \int_{2}^{1} \frac{1}{4\cdot e} d_{\text{PQ}}(e)$ $\forall e \in \text{P}$	
0 $f(e) = \int_{1}^{1} \frac{1}{4\cdot e} d_{\text{PQ}}(e)$ $\forall e \in \text{P}$	
0 $f(e) = \int_{1}^{1} \frac{1}{4\cdot e} d_{\text{PQ}}(e)$ $\forall e \in \text{P}$	
0 $f(e) = \int_{1}^{1} \frac{1}{4\cdot e} d_{\text{PQ}}(e)$ $\forall e \in \text{P}$	
0 $f(e) = \int_{1}$	

For any H=A E12(11) and VEH the is a Bore
measure MA, v called the spectral measure of (A, V) obeying $0 < 4. (A - 31)^{10} > 5$
 $\int_{A=R} \frac{1}{12} d\mu_{A,0}(2)$ Vzect 1 $M_{A,10}$ (R) = $||1||^2$ (so $||1||^2$ = $M_{A,10}$ is a prob. mes.)

Remark: $\forall \forall e \mathcal{H}$ and $A=A^*e^+B(H)$, $Sp^{\nmid}(m_{A,e}) \subseteq O(A)$

Through poleration, for any ZE-B(H) we may write $\langle \varphi, Z\psi \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} \langle \varphi_{t} i^{k} \psi, Z(\varphi_{t}, k\psi) \rangle$

 \mathcal{P}

For any A=A^{*}e-B(71) and 4 ye71 the is a complex-valued
Borel measure *MA,v*, y called the spectual measure of (A, 4, 4) given by $M_{4,8,9} = \frac{1}{4} (M_{4,8,9} - M_{4,9,9} - M_{4,9,19} + M_{4,9,19})$ $s_{a}+s f_{1}$ 3 < $(4)(4-s_{1})^{-1}+3 = \int_{1-s_{1}}^{1} \frac{1}{2-s_{1}} d\mu_{A} \varphi_{A}(1)$ $\forall s \in \mathbb{C}^{+}$ Bounded & Measurable Functional Calculus $\frac{1}{8}$ Def: Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be bounded and measurable. Let $A = A^* \in B(\mathcal{H})$. For all φ ψ_e μ , define $\langle \psi, f(A) \psi \rangle = \int_{A \in \mathbb{R}} f(A) d\mu_{A, \psi, \psi}(A)$ V in Thm. 7.13 in notes, this inequity determines $f(A)eB(H)$. Theorem: (Properties of functional calculus) The bounded, measurable functional calculus obeys: 1 + homomorphism: $f(A)^* = (\overline{p})(A)$ $(f_{+1})(A) = f(A) + g(A)$ $(f_q)(A) = f(A)q(A)$ $\textcircled{2} \quad ||f(A)|| = \text{exp} \quad |f(A)| = ||f|| \text{log}(f(A))$ $\circled{3}$ $(x \mapsto x)(A) = A$ $f_{n} \rightarrow f$ in $L^{\infty} \rightarrow f_{n}(A) \rightarrow f(A)$ in strong op. topology \circledR $9 5 A3 = 0 \Rightarrow [8, f(A)] = 0$ \bigcirc speaked mapping them $\oint (ke-(A-2A)) = ke-(f(A)-f(A)A)$

Den: (Projection-Valued Messue)

A est fiven the by opcenter values
$$
\chi
$$
 (A) obeying $0-3$ is a
projection-valued measure. We have $\langle \psi, \chi, (A) \psi \rangle = \mu_{A, \psi, \psi}$.

Theorem: (Shner's Theorem)
\n
$$
\frac{1}{2} (\chi_{(a_{1},a_{2})}(A) + \chi_{(a_{2},a_{3})}(A)) = s \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{a_{1},a_{1}}^{a_{1}} (R_{A}(a+i\epsilon) - R_{A}(a-i\epsilon)) dA
$$
\nwhere $R_{A}(a) = (A-a_{1})^{-1}$

116-

Our goal is for AEQ(4) to find a $U: H \rightarrow L^{2}(M, d_{\mu})$
sech that $(UAU^{*})(f)(x) = F(x) f(x)$
for some $F(x)$ find (usually $F(x) = x$) and U a unitary.

Then:

\n(BLT Theorem)

\nLet T: S \rightarrow Y, where
$$
S \subseteq X
$$
 is *done* and X/Y . Bench space.

\nThe, Here, $ensbs$ a *unique*! $\hat{T}: X \rightarrow Y$ s.t.

be inquir extended." "Devely defied linear maps

 $\hat{\tau}$ l, = τ

Tha. 2	Commutations	Alcubal	Alcubal	Alcubal	Alcubal	Alcubal	Alcubal
Let a ab bc a an . Tha , Arc a $arctan$ g : (2000) arR ab .							
(a) g a a a -thymorphism, g (f), g (g), g (f), g (g							

Spectral Theoren $Spec$
Theorem

Theorer:

Let AEBCH) be sufradjoint, and let Yest be cycle for A. Ther, the is a virtary $\mathcal{U}: H \rightarrow L^2(\mathcal{O}(A), \mu_{A,\Psi})$ s.t. $(u \wedge u^{\prime}) (\phi)(x) = \lambda \varphi(x)$

It tuns out that we my decompose It into a dreat sun of countibly many speces which have cyclic vectors. Then, we may generalize:

2 Theore: (Spectral Themer, general) forte only forthe country Let $A \in \hat{\mathcal{B}}(1)$ be self-adjoint. Then - there exist measures [Ma3 ^a O(A) and ^a the self-adjoint. They there exist an
a U: H - \oplus $L^2(\theta(A), \mu)$ s.t. $(\mathcal{U} \wedge \mathcal{U}^*) (\varphi)$ (x) = $\mathcal{1} \varphi_n(\mathfrak{1})$ where Ψ = $(\Psi_1, \Psi_2, ...)$ $\in \bigoplus_{\infty} L^2(\partial(A), A_{\infty})$

Defi De fr : :

Let &MuYm be ^a family of measures. Then, its support is $spt(\xi_{mn}\}) := \overline{\bigcup_{m} spt(m)}$, sets give fill measure

Prop:

Let AEB(14) be self-adjoint and let {Ma}n be the mensures
given by the Spectral Theorem. Then, -
The

$$
\theta(A) = sp\left(\{\mu_n\}_n\right)
$$

 $\frac{\partial u}{\partial x}$ ($\frac{\partial v}{\partial y}$) $\frac{\partial v}{\partial x}$ it.

Recall the mesue theory fats: discribe mes. est 1 x $\frac{1}{2}$ $\frac{1}{2}$ Let in de a mesure on R. Then, $\mu = \mu_{PP} + \mu_{ac} + \mu_{sc}$ Then, $L^{2}(\mathbb{R},\mu) = L^{2}(\mathbb{R},\mu_{\rho\rho}) \oplus L^{2}(\mathbb{R},\mu_{\alpha c}) \oplus L^{2}(\mathbb{R},\mu_{\alpha c})$ The spectral theorem then grea $H = H_{\rho \rho} \oplus H_{\alpha c} \oplus H_{\alpha c}$ where $A|_{\eta_{\alpha\alpha}}$ has only pure point spectrum, $Al_{H_{loc}}$ has only alos cant spectum $A\big|_{A|_{\mathcal{S}\subseteq\mathcal{C}}}$ has only singular cont. Spectrum and $\Theta(A) = \Theta_{\text{pp}}(A) \cup \Theta_{\text{ac}}(A) \cup \Theta_{\text{sc}}(A)$ In terms of spechal projections: tens af speelle projectiers:
Let SL SIR Bord, and define Pr := Xr(A) T_{un} (a) Pr is an orthogonal (s.a.) projection (a) P_{J2} is an orthogo
(b) $P_{\emptyset} = 0$, $P_{(-.a,0)}$ $= 1$ \forall as $\|$ All (c) $P_{x_1} P_{x_2} = P_{x_1} P_{x_2}$ (d) If $R = \sum_{n=1}^{\infty} R_{n}$, the $P_{n} = s_{n}R_{n} \sum_{n=1}^{N} P_{n}$ (d) If $\pi = 0$, then $P_{\pi} = 5\lambda n \sum_{n=1}^{N} P_{\pi n}$
We call such $P_{\pi} = \mu(P) \Rightarrow P_{\pi}$ projection-valued neerus. Theorem: (Band functional calculus again) l l be a projection-valued music. Then -
The
Car there H_f $C(\theta(A))$

The
$$
\pi
$$
 a ν are $BeB(H)$, $deabd$ $B = \overline{Sf(a)}dP_a$, s.t.
\n $\langle \psi, B \psi \rangle = \int_{\partial(a)} f(a) d \langle \psi, P_a \psi \rangle$ (b) $\psi \in H$)

Theorem: (Spectral Theorem]

There is a $1-to-l$ corresponding between self-adjoint $AeB(H)$ and a projection-valued messe $\{P_n\}_{n\in B(R)}$ s.t.

$Fill$ in $1/27$

1130-

II . Unbounded Operators $Real$ that for banded operators $A: H \rightarrow H$, $||A|| = 5$ up { $||A$ vul: $||v||$ =13 < 00 We now tom to unbounded operators, where the domain we now form to imbounded operators, where the domain
DISH is a vector sibspace (perhaps not closed), $A: D \rightarrow H$ by linear, and $||A|| = \sup \{||A||: ||\psi||_2\}$ and $\psi \in \mathcal{D}(A)\}$ can be infinite. We call an operator ^A closed iff $\Gamma(A) = \{(\varphi_A \varphi) : \varphi_B \varphi_B(A) \}$ e Cloud (12) $\eta_B(B) \geq \mathfrak{D}(A)$ and $B|_{D(A)} = A$ $\mathcal{D}(\beta) = \mathcal{D}(\beta)$ We call an operator A closable AF $\overline{3}$ closed extersion $B \geq A$. $if f = \overline{P(A)} is He graph of some operators.$ Theor: If $||A||$ \sim H_2 A is closed \iff $D(A)$ e C \mid \sim (H) We call A densely defined : $\mathfrak{L} = \overline{\mathfrak{D}(A)} = \mathcal{H}.$ Det: (Adjonts) Let A be denedy defined. We seek A^* s.t. $\langle P, A \Psi \rangle = \langle A^* P, \Psi \rangle$ $\psi \Psi \in \mathfrak{D}(\mathcal{A})$ E querleth, for each ℓ me seek a solution 3e1+ s.t. $\langle \ell, A4 \rangle$ = $\langle \ell, \psi \rangle$ V4e $D(A)$ This doesn't east everywhere, and so we define the domain $\mathcal{D}(A^*) := \{ \Psi_{\epsilon} \; \mu : \exists \epsilon \; \mu \text{ s.t. } \langle \Psi, A \Psi \rangle = \langle \xi, \Psi \rangle \; \forall \Psi \epsilon \; \mathcal{D}(A) \}$

Then, define $A^* \varphi = \xi$ on this domain.
To be
$$
A + B
$$
 and $(\frac{7}{7}, \frac{1}{7})$ or $(\frac{7}{7}, \frac{1}{7})$

Bof: ^① Define ^a untary ^V on ^H⁼ +H ⁼ Ho7 via (* taking W : = [to - i] taking I of gropts By unitarity, V(E)⁺ ⁼ v(Et) for any rector subspace E. We WiS A* is losed ↑(A* ^C) Closed (1+2) which we will do ^S by showing that NAP) ⁼ (VN/A))t To see this, note that (4, 4) EN (A*) # UEF(A*) and ^Y=APY E) (4,A3) ⁼ (4,3) FeO(A) => (74. 4), (3,-A3)/ ⁼ ⁰ FeSA) E (4. 4) /VINCA) ^② (E) Suppose At is densely defined . We wis NTA) is the good of soun operator. We know #A) ⁼ (M(A) ⁺) ⁺ EU (VINAi+@ (UNCAt))⁺ & r(A**) where we were able to appl ^D to A* size STAT ⁼ It· (E) Suppose At is not dusely defined. Let HEO(A*t, and so (4, 0) et(A)⁺ By the periors calculation, FTA) is not the groph of an openter. ^③ If ^A is alosable, the A * = (A*)** ⁼ (A**)* ⁼ (1)* D

Define:

\n
$$
\begin{aligned}\n\text{Left:} & \text{Spectrum of closely operators} \\
\text{let } A \text{ be chiral (if chisible, hodel } \overline{A}\text{)}, \text{ the define the number set} \\
\text{plot} & \text{else } \overline{A} \text{ is bijective}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Left:} & \text{Left: } (A - \overline{A}) : \mathcal{D}(A) \to \mathcal{H} \text{ is bijective}\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Note:} & \text{Left: } (A - \overline{A}) : \mathcal{D}(A) \to \mathcal{H} \text{ is bijective}\n\end{aligned}
$$

We detect the spectrum $\sigma(A) = 1 \times \rho(A)$
Record: Why do we need closed ops? Let X= $\sigma(A)$ be a nound v.s. with non $1141 + 11$ All, making a a Banach space. By the closed grow Heaven, $f: X \rightarrow W$ $\lim_{h\to 0}$ is $\lim_{h\to 0}$ in the integration of $\lim_{h\to 0}$ is $\lim_{h\to 0}$.

Then, $\forall z \in \Delta(A)$, if $A \mid \pi$ closed then $(A - zA)^{r!} \cdot H \rightarrow D(A)$ is imatible and $\|(A - z_1)^{-1}\|_{L^{\infty}} = (A - z_1)^{-1} e^{-1}B(M).$

Remark: We still have points cant, reasonal spectrum and the usual theories still hold.

Example: (spectrum depeds on domain)

- Recall f is absolutely continuous if $f^{\prime}eL^{\prime}$ and $f(x)=f(x)+\int_{0}^{x}f^{\prime}$. Detre $A := \{ \varphi_1, \varphi_2, \overline{\varphi_3} \to \mathbb{C} : \varphi_3, \varphi_4, \varphi_5, \varphi_6, \varphi_7, \varphi_8, \varphi_9, \varphi_9,$
- Dette tro ops. A, Az v: $D(A_i) = A$, $D(A_i) = \{ \{eA : \Psi(e) = 0 \}, \}$
and both act vn $\{e_{1} = -i \Psi\}$ (nonester operator)
- It turns out that both A, Az are closed and devely defined λ $\mathcal{O}(A) = \mathbb{C}$ \mathbb{R} $\mathcal{O}(A_1) = \mathbb{Q}$

Symmetrie d Self-Adjoint Operators (fill in profs for this section)

 $\overline{p\,r}$.

A (devely defined) is symmetric iff $\langle \varphi A \psi \rangle = \langle A \psi, \psi \rangle$ $(\varphi \psi \in D(A))$ A SA^{*}
det in Reed & Siner

 Ddx

A (derech defined) is self-adjoint iff $A = A^*$. That is, A is
syncerative ΔM $D(A) = D(A^*)$.

Prep.

let A be devely defined. They A sympatric => A clusable and $\overline{A} = A^{**} \subseteq A^*$ = A $\leq A^{**} \subseteq A^{**}$
A clused a symphic => A = A⁺⁺ \subseteq A^{*}
A sett-adjoint => A = A⁺⁺ = A*

Deh:

We say a symmetric A is essentially self-aljoint
$$
MR
$$
 (\overline{A})^{*} = \overline{A}
\n
\n**Proof:**
\nLet A is essentially 64 \overline{A} if has a unique SA extension.
\n
\nSo, $A \subseteq \overline{A} \subseteq B$. Since CSD = $D^k \subseteq C^*$, we know
\n $\overline{A}^m = A^{nm}$ is a SA expression. Let B be any ofla-SA extension.
\n
\nSince B=B^{*}, we find BE $\overline{A} = A^{nm}$

Theorn:

Let A be symmetries. Then, the following are equivalent:
\n
$$
\begin{array}{cccc}\n0 & A & s & s & A. \\
0 & A & s & c & b \n\end{array}
$$
\n
$$
\begin{array}{cccc}\n\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & A & s & c & b \n\end{array}
$$
\n
$$
\begin{array}{cccc}\n\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\n\end{array}
$$

Let A be spanother. Then, the following are equal to t:
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$

1215 -

T₁
$$
A=A^*
$$

\n
$$
\begin{bmatrix}\nC_{11} & A_{12} & A_{13} \\
C_{21} & C_{22} & C_{23} \\
D_{21} & D_{22} & D_{23} \\
E_{12} & E_{13} & E_{13} \\
E_{14} & E_{15} & E_{16} \\
E_{16} & E_{17} & E_{18} \\
E_{19} & E_{10} & E_{11} \\
E_{10} & E_{11} & E_{12} \\
E_{11} & E_{12} & E_{13} \\
E_{10} & E_{11} & E_{12} \\
E_{11} & E_{12} & E_{13} \\
E_{12} & E_{13} & E_{14} \\
E_{15} & E_{16} & E_{17} \\
E_{16} & E_{17} & E_{18} \\
E_{17} & E_{18} & E_{19} \\
E_{10} & E_{11} & E_{10} \\
E_{11} & E_{12} & E_{13} \\
E_{12} & E_{13} & E_{14} \\
E_{14} & E_{15} & E_{16} \\
E_{15} & E_{16} & E_{17} \\
E_{16} & E_{17} & E_{17} \\
E_{17} & E_{18} & E_{19} \\
E_{10} & E_{11} & E_{10} \\
E_{11} & E_{12} & E_{13} \\
E_{12} & E_{13} & E_{14} \\
E_{14} & E_{15} & E_{16} \\
E_{15} & E_{16} & E_{17} \\
E_{16} & E_{17} & E_{18} \\
E_{17} & E_{18} & E_{19} \\
E_{10} & E_{11} & E_{12} \\
E_{11} & E_{12} & E_{13} \\
E_{12} & E_{13} & E_{14} \\
E_{14} & E_{15} & E_{16} \\
E_{15} & E_{16} & E_{17} \\
E_{16} & E_{17} & E_{18} \\
E_{17} & E_{18} & E_{19} \\
E_{10} & E_{11} & E_{12} \\
E_{11} & E_{12} & E_{13} \\
E_{10} & E_{11} & E_{12} \\
E_{11} & E_{12} & E_{13} \\
E_{12} & E_{13} & E_{
$$

For $\forall e \mathcal{H}$, $3 \leq \varphi_1 \mathcal{F}$, $\subseteq \mathcal{D}(\mathcal{B})$ s.t. $\psi_n \rightarrow \psi_n$ $\psi_{s-} \in \mathcal{F}$ arguent to show that this unitarity cluse to CMS to finish. 4 Same proof as for bounded operators. \mathbb{D} Dreet Suns & Invert Subspaces Deh: (direct sun) Let $A_i: \mathcal{J}(A_i) \rightarrow H_i$, $i=1,2,$ be define the direct sum subspect of 7, 8 th $A(\Psi, \Psi) = (A, \Psi, A, \Psi)$ @ If A, is self-adjointy than so is A. \circledast $(A - z \mathbf{1})^1 = (A - z \mathbf{1})^{-1} \circledast (A - z \mathbf{1})^{-1}$ Defin: Conventiont subspect) Let A be S.A. on H. A closed nector subspace $I \subseteq H$
is said to be innariant under A iff $(A-z_1)^{-1}L \subseteq L$ $\left(\begin{matrix}e & c\end{matrix}\right)$ Drop: If $I \subseteq H$ is ment under a self-adject A , then so is I^{\perp} . Nov, for given invariant subspues, we may restrict A to its invariant $subspace.$ For ISH invented under S.A. A, define $A_{\mathcal{I}}: \mathfrak{D}(\mathbb{A})\cap \mathcal{I} \to \mathcal{I}$ $v = A_{\tau} \Psi = A \Psi$ $\forall \Psi \in \mathcal{P}(\mathcal{A}) \cap \mathcal{I}.$ $\frac{\rho_{\text{top}}}{\rho}$ A_{τ} is also S.A. Stady $\Gamma(A_2) = \Gamma(A) \wedge (\mathcal{I} \times \mathcal{H})$ and vec $V: \mathcal{H}^2 \rightarrow \mathcal{H}^2$ under from $P_{\infty}f$: the observation of disable aps. IJ

So, for So, for any invariant $I \subseteq H$, writing $H = I \oplus I^{\perp}$ we ring
decompose $A = A_{I} \oplus A_{I^{\perp}}$.

Propi ↓ countable - Let $\{A_n: D(A_n) \to H_n\}$ be a sequence of S.A. ops. Detre $A = \bigoplus_{n=1}^{\infty} A_n$ on $H = \bigoplus_{n=1}^{\infty} H_n$ with $D(A) = \frac{2}{3} \Psi_6 \Psi_1$. $\Psi_n \in D(A_n)$ and $\frac{2}{3} \|\Psi_n \Psi_n\|_{H_n}^2 \le \infty$ Then $J(A) = \{4e^{t}H: 7e^{t}M\}$
The . (i) A is also S.A. $\bigotimes (A - z 1)^{-1} = \bigotimes (A - z 1)^{-1}$ ③ OCA) ⁼ WO(An) $\frac{\rho_{\text{coof}:}}{\rho}$ ($\frac{\rho_{\text{coof}}}{\rho}$ ($\frac{\rho_{\text{coof}}}{\rho}$)^{*} = $\frac{\rho_{\text{coof}}}{\rho}$ A^{*}. Check R & S $\frac{\rho_{\text{tot}}}{\rho}$ for the rest. Cycle Subspaces and Decomposition of S. ^A. Operatur Det (cyclic subspece) from the of Let A be S.A. on H . Then $\{P_n\}_{n=1}^{\infty}$ is called cyclic for A $\gamma = \frac{1}{5} \left(A - 21 \right)^{-1} P_{n}$: zeli $R_{n} = \frac{1}{2} \left(A - 21 \right)^{-1} P_{n}$ When Nol we rease the cyclic vector. There always exists a
cyclic collection by taking an ONB. Theoren: (Decomposition) separable Let A be S.A. on A' . $A.$ on $A.$ Separable I sequence at closed vector s λ s μ_s λ_s \leq λ_t which are nother arthogonal and S.A. wil the countable $\alpha \rho s$ $A_n: D(A_n) \rightarrow H$ st. $\mathbb D$ \forall \land \exists \forall \land \in $\mathcal H$ \land \vdots \forall \forall \land \vdots \forall \forall \land \vdots \forall \land \vdots \forall \land \vdots

 \bigcircled{D} H = \bigcircled{B} H = \bigcircled{B} H \cap and $A = \bigcircled{B}$ An

 $\overline{}$

 \rightarrow

 $\overline{}$

 $\overline{}$

Theorn:

Let
$$
\Psi \in H
$$
 be cycle for S.A. A. Then, A is when
equivalent to M_{x+rx} on L²(R, M_{A,Y}). In particular, O(A)= $spt(M_{A,Y})$.

From here, decorpose H suto cycle subspecs and diagonalize the restriction

12/7.

11.6-Schrödnge Operators (Teschl)

Reall the basics $H: L^2(\mathbb{R}^d \to \mathbb{C})$ are wavefunctions st. $\frac{|\psi(x)|^2}{\hbar w|_H}$ is a probability density on \mathbb{R}^d .

Time Translation

Let $\psi(f): \mathbb{R} \to H$ be the map from the to wavefuctions. We know it follows the Schrödinger equation

$$
i \partial_z \Psi(F) = H \Psi(F)
$$
 for some unbounded H

This, $\Psi(f) = e^{-iH}\Psi(0)$ and $(\Psi, H\Psi)$ is expedied energy in Ψ .

We say espect H= $\frac{\rho^2}{2\rho} + V(x)$ as in the chosical case. But no, we guiding.

Quentization Write $x \mapsto X$ as the position op. on L^2 and
posible $\rho \mapsto P = -i\pi \, \nu$ as the moneton operator. Then, postulate $H = P^2 + V(X) = -Q + V(X)$ if we we the student units c=ti=1, m= { If Next a negative field, is when $M = (P - A(X))^2 + V(X)$ First, lets investigate the case A=V=0, the fine particle The Laplacian Consider -4 on $L^2(\mathbb{R}^d)$ via $-\Delta = \frac{2!}{4!} \partial_s^2$. We right expect to ret $D(-1) = \{ \varphi_{B1}^2 : \varphi_{bas}^2 \neq 2^{-d} \text{ denotes } m \leq 2^{d} \}$

This isn't big enough to ensure - A is ess. SA, so we add now.

Det: (weak devertre)

$$
fel^{2}(\mathbb{R}^{d} \ni c) \Rightarrow weak \rightarrow d:\text{Re\/chable with the double variable } \psi: \mathbb{R}^{d} \ni c
$$
\n
$$
\int_{\mathbb{R}^{d}} \overline{\lambda}_{j} \psi f = -\int_{\mathbb{R}^{d}} \overline{\psi} \psi \qquad (\psi e C_{c}^{\infty} (\mathbb{R}^{d} \ni c))
$$
\n
$$
\Leftrightarrow \langle \lambda_{j} \psi, f \rangle = \langle \psi, \psi \rangle \qquad (\psi e C_{c}^{\infty} (\mathbb{R}^{d} \ni c))
$$
\n
$$
\text{Re\/an. } \psi \text{ works at } \omega, \text{ the two bounds } \text{km } \psi \text{ which yields } \lambda
$$
\n
$$
\text{Re\/an. } \psi \text{ works at } \omega, \text{ the two bounds } \text{km } \psi \text{ which implies } \lambda
$$
\n
$$
\text{Re\/an. } \psi \text{ exists at } \omega, \text{ the same as } \mathbb{R}^{d} \text{ with } \mathbb{R}^{
$$

$$
\mathcal{D}(-\Delta) := \{ \Psi \in L^2 : \Psi \text{ has weak second dovades in } L^2 \}
$$

=: $H^2(\mathbb{R}^d \to \mathbb{C}) \subseteq L^2$

The Four-
\nWe'd the to John He Fauror Tcurform
$$
F: L^{2}(m^{d}) \rightarrow L^{2}(m^{d})
$$
 by
\n $(F(4))(\rho) := (2\pi)^{\frac{1}{2}} \int_{x \in \mathbb{R}^{d}} e^{-i(\rho x)} \Psi(x) dx$
\nHowever, A down the sure to blue A_{11} may on L^{2} , so we

 \circ defanc on tese subspace.

Self:	$(Schurt x \space Space)$	
$S(\mathbb{R}^{d} \rightarrow \mathbb{C}) := \{ \Psi e \text{C}^{\infty}(\mathbb{R}^{d} \rightarrow \mathbb{C}) : \sup_{x} x^{\perp}(3^{\beta} \Psi)(x) \sim \omega \quad \forall \alpha, \beta \in (\mathbb{N}_{20})^d \}$		
Then	$C_{\mathbb{C}}^{\infty} \leq S$, and so	S is due in L^2 .
$Chent$	$F: S(\mathbb{R}^d) \rightarrow S(\mathbb{R}^d)$ is a null-dotted byn ω with	
$(\mathbb{C}^{-1} \hat{\phi})(x) = (2\pi)^{d/2} \int_{\mathbb{R}^d \mathbb{R}^d} e^{i\langle \cos \theta \rangle} \hat{\psi}(\rho) d\rho$		
We From $F^{\alpha} = \mathbb{1}$, $F^{\alpha} = \kappa$ Problem, $ F\Psi _{L^{\alpha}} = \Psi _{L^{\alpha}}$ on S		

So, But them allows the subl.
$$
F
$$
 to a unique
\n $F \in B(C^c(\mathbb{R}^d))$. If the Re points
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in \mathcal{O}(E) = \{\pm 1, \pm 1\}$
\n $\Theta \in$

$$
\frac{C(\mathbf{a}x):}{\mathbf{k}x\mathbf{b}} = \frac{C\t\mathbf{b}x\mathbf{c} + (b-\mathbf{b})}{\mathbf{b}x\mathbf{b}} = \frac{C\t\mathbf{b}x\mathbf{b}x\mathbf{c} + (c-\mathbf{b})}{\mathbf{b}x\mathbf{b}} = \frac{C\t\mathbf{b}x\mathbf{b}x\mathbf{c} + (d-\mathbf{b})}{\mathbf{b}x\mathbf{b}} = \frac{C\t\mathbf{b}x\mathbf{b}x\mathbf{b} + (b-\mathbf{b})x\mathbf{b}x\mathbf{c} + (d-\mathbf{b})x\mathbf{b}x\mathbf{c} + (b-\mathbf{b})x\mathbf{c} + (b-\mathbf{b})x\
$$

Claim: Let JCCR^d be compact. Let VeL^2 be an mital state. They $\cancel{\cancel{\triangleright}}$

$$
\lim_{k \to \infty} || \chi_{n}(X) e^{-i\epsilon(-d)} \psi ||^{2} = 0
$$

Let, μ_{n} holds V_{op3} μ_{n} only a.e. spectrum (RAGE Theorem)!

 $Clum:$ Kest kind earsts with

$$
exp(-t(-1))
$$
 $(x,y) = (4\pi t)^{-3/2} exp(-\frac{1}{4t}||x-y||^{2})$ $(x,y eR^{d})$

 $\ddot{\cdot}$

 $(z \in \mathbb{C} \setminus [0, \infty))$

Claim: Note that

 \overline{L}

$$
\frac{1}{1-z} = \int_{\epsilon_{10}}^{\infty} e^{-t(1-z)} dt + \int_{\epsilon_{20}}^{\infty} 2e \, dx \text{ ...} \text{ Refsico}
$$

We may compute -1 's result through the fundamental calculus:

$$
(-1 - z) = \int_{\epsilon_{10}}^{\infty} e_{xy}(-t(-1 - z)) dt + \int_{\epsilon_{10}}^{\infty} (1 - z) dt
$$

We may write this as an integral operator α . Round

$$
(-1 - z) = \int_{\epsilon_{10}}^{\infty} (1 + z) dt = \int_{\epsilon_{10}}^{\infty} e_{xy} e(-t(-1 - z)) dt
$$

$$
= \frac{1}{2\pi} \left(\frac{\sqrt{-z}}{2\pi} \right)^{\frac{1}{2}-1} K_{\frac{1}{2}} \left(\sqrt{-z} ||x-y|| \right)
$$

Note the special creez:

$$
\underline{d=|} \qquad (-\Delta - z \mathbf{1})^{-1}(x_{1}) = \frac{1}{2\sqrt{-z}} e^{-\sqrt{-z}} \, ||x - y||
$$

$$
\frac{d-3}{d-3} \qquad (-d-21)^{-1}(x,y) = \frac{e^{-\sqrt{-2}t} \, dx - 3^{\frac{1}{4}}}{u \, x \, ||x-y||}
$$

From the spectrum of shown bound of resolvent w_{e} esponential decay and hae $\overline{\mathbf{z}}$ $H_{\rm{ex}}$ 忆 $\mathcal{C}_{\mathbf{c}}$