MAT 520: Midterm

Due on October 13, 2023

Professor Jacob Shapiro

Evan Dogariu

I pledge my honor that I have not violated the Honor Code during this examination.

Let X, Y be two Banach spaces. Define on the Cartesian product $X \times Y$ coordinate-wise addition and scalar multiplication. For $p \in [1, \infty]$, define

$$\|(x,y)\|_p := \begin{cases} \max\{\|x\|_X, \|y\|_Y\} & \text{if } p = \infty\\ \left(\|x\|_X^p + \|y\|_Y^p\right)^{1/p} & \text{if } p \in [1,\infty) \end{cases}$$

- (a) Show that with these definitions, $X \times Y$ is a Banach space (i.e., show it is a complete normed vector space).
- (b) Show that all *p*-norms are equivalent on $X \times Y$.

Solution

Proof.

Lemma 1. Let $p \in [1, \infty]$. For all $(x, y) \in X \times Y$,

$$||x||_X \le ||(x,y)||_p \le ||x||_X + ||y||_Y$$

and similarly

$$||y||_Y \le ||(x,y)||_p \le ||x||_X + ||y||_Y$$

Proof of Lemma 1. The result clearly holds when $p = \infty$ since a maximum is \geq both of its arguments but will be equal to one of them, and so \leq to the sum. So, suppose that $p \in [1, \infty)$. We have

$$||(x,y)||_p = (||x||_X^p + ||y||_Y^p)^{1/p} \ge (||x||_X^p)^{1/p} = ||x||_X$$

and similarly $||(x,y)||_p \geq ||y||_Y$, where for the above we used that norms are nonnegative and $(\cdot)^{1/p}$ is monotonic. We now want to show the upper bound. Write $a := \frac{||x||_X}{||x||_X + ||y||_Y}$ and $b := \frac{||y||_Y}{||x||_X + ||y||_Y}$. Then, a + b = 1. Furthermore, since $a \leq 1$ and $b \leq 1$, we know that $a^p \leq a$ and $b^p \leq b$. So,

$$a^{p} + b^{p} \le a + b = 1 \implies \|x\|_{X}^{p} + \|y\|_{Y}^{p} \le (\|x\|_{X} + \|y\|_{Y})^{p} \implies (\|x\|_{X}^{p} + \|y\|_{Y}^{p})^{1/p} \le \|x\|_{X} + \|y\|_{Y}^{p}$$

So, the result of the lemma holds. \blacksquare

(a) Clearly, $X \times Y$ is a vector space. We verify that $\|\cdot\|_p$ defines a norm.

1. Note that by homeeneity of the norms on X and Y,

$$\|\alpha(x,y)\|_{p} = \begin{cases} \max\{\|\alpha x\|_{X}, \|\alpha y\|_{Y}\} = \max\{|\alpha|\|x\|_{X}, |\alpha|\|y\|_{Y}\} = |\alpha|\max\{\|x\|_{X}, \|y\|_{Y}\} & \text{if } p = \infty\\ (\|\alpha x\|_{X}^{p} + \|\alpha y\|_{Y}^{p})^{1/p} = (|\alpha|^{p}\|x\|_{X}^{p} + |\alpha|^{p}\|y\|_{Y}^{p})^{1/p} = |\alpha|^{p(1/p)} (\|x\|_{X}^{p} + \|y\|_{Y}^{p})^{1/p} & \text{if } p \in [1,\infty) \end{cases}$$

Since $|\alpha|^{p(1/p)} = |\alpha|$, in either case, we see that

$$\|\alpha(x,y)\|_p = |\alpha|\|(x,y)\|_p$$

2. Suppose now that $||(x, y)||_p = 0$. Lemma 1 tells us that $||x||_X = ||y||_Y = 0$, and so both x and y are 0 by positivity of the X and Y norms. Therefore, (x, y) = 0 in $X \times Y$, and so this norm is positive.

3. Let $(x, y), (a, b) \in X \times Y$. If $p = \infty$, then

$$||(x,y) + (a,b)||_p = \max\{||x+a||_X, ||y+b||_Y\} \le \max\{||x||_X + ||a||_X, ||y||_Y + ||b||_Y\}$$

We know that $||x||_X + ||a||_X \le ||(x,y)||_p + ||(a,b)||_p$ by Lemma 1, and similarly $||y||_Y + ||b||_Y \le ||(x,y)||_p + ||(a,b)||_p$. So, the maximum is certainly also $\le ||(x,y)||_p + ||(a,b)||_p$, revealing that

$$||(x,y) + (a,b)||_p \le ||(x,y)||_p + ||(a,b)||_p$$

Suppose now that $p \in [1, \infty)$. We know that

$$||(x,y) + (a,b)||_p = (||x+a||_X^p + ||y+b||_Y^p)^{1/p}$$

By Minkowski's inequality and the triangle inequality, this is bounded by

$$\|(x,y) + (a,b)\|_p \le (\|x\|_X^p + \|y\|_Y^p)^{1/p} + (\|a\|_X^p + \|b\|_Y^p)^{1/p} = \|(x,y)\|_p + \|(a,b)\|_p$$

So, we find that $\|\cdot\|_p$ satisfies the triangle inequality for all $p \in [1, \infty]$.

So, $X \times Y$ is indeed a normed vector space. To see that it is complete, let $\{(x_n, y_n)\}_n \subseteq X \times Y$ be Cauchy. Let $\epsilon > 0$ be arbitrary. Then, there is some $N \in \mathbb{N}$ such that for all n, m > N,

$$||(x_n, y_n) - (x_m, y_m)||_p = ||(x_n - x_m, y_n - y_m)||_p < \epsilon$$

By the Lemma, we know that

$$\epsilon > ||(x_n - x_m, y_n - y_m)||_p \ge ||x_n - x_m||_X$$

and similarly for Y. Since such an N exists for all $\epsilon > 0$, we find that $\{x_n\}_n \subseteq X$ is Cauchy in X and $\{y_n\}_n \subseteq Y$ is Cauchy in Y. Since these are Banach spaces and therefore complete, they converge in their norms to elements $x \in X$ and $y \in Y$, respectively. We must show that $(x_n, y_n) \to (x, y)$ in the $\|\cdot\|_p$ norm. To do this, let $\epsilon > 0$ be fresh. Then, there is some $N_X, N_Y \in \mathbb{N}$ such that for all $n > N_X$ and $m > N_Y$,

$$||x - x_n||_X < \frac{\epsilon}{2}$$
 and $||y - y_m||_Y < \frac{\epsilon}{2}$

by definition of convergence. So, for all $n > N := \max\{N_X, N_Y\}$, we have by Lemma 1 that

$$\|(x,y) - (x_n, y_n)\|_p = \|(x - x_n, y - y_n)\|_p \le \|x - x_n\|_X + \|y - y_n\|_Y < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Since such an N exists for all $\epsilon > 0$, we see that $||(x, y) - (x_n, y_n)||_p \to 0$ as desired.

(b) Now, let $p, q \in [1, \infty]$. To see that they are equivalent, we may just apply Lemma 1 to see that for all $(x, y) \in X \times Y$,

$$||(x,y)||_p \le ||x||_X + ||y||_Y \le ||(x,y)||_q + ||(x,y)||_q = 2||(x,y)||_q$$

Identical logic shows that

$$||(x,y)||_q \le ||x||_X + ||y||_Y \le ||(x,y)||_p + ||(x,y)||_p = 2||(x,y)||_p$$

and so

$$\frac{1}{2} \| (x, y) \|_p \le \| (x, y) \|_q \le 2 \| (x, y) \|_p$$

Since this holds for all $(x, y) \in X \times Y$, the p and q norms are equivalent.

Let $M: X \to Y$ be a continuous map between normed spaces X, Y such that M(0) = 0 and

$$M\left(\frac{1}{2}(x+\tilde{x})\right) = \frac{1}{2}M(x) + \frac{1}{2}M(\tilde{x}) \quad (\forall x, \tilde{x} \in X).$$

Show that M is linear.

Solution

Proof. Firstly, note that with $\tilde{x} = 0$ we see that for all $x \in X$,

$$M(x) = M\left(\frac{1}{2}(2x+0)\right) = \frac{1}{2}M(2x) + \frac{1}{2}M(0) = \frac{1}{2}M(2x) \implies M(2x) = 2M(x)$$

Now, let $x_1, x_2 \in X$ be arbitrary. Then, defining $x := 2x_1$ and $\tilde{x} = 2x_2$, we may apply the hypothesis and our above conclusion to see

$$M(x_1 + x_2) = M\left(\frac{1}{2}(2x_1 + 2x_2)\right) = \frac{1}{2}M(2x_1) + \frac{1}{2}M(2x_2) = M(x_1) + M(x_2),$$

where for the last equality we used that M(2a) = 2M(a). So, M is additive.

We know by additivity of M that $M(nx) = M(x) + \ldots + M(x) = nM(x)$ for all $n \in \mathbb{N}$, and so $M(x) = \frac{1}{n}M(nx)$. Replacing x with $\frac{x}{n}$, we also see that $nM\left(\frac{1}{n}x\right) = M(x)$. Furthermore, we know that

$$M(x) + M(-x) = M(0) = 0 \implies M(x) = -M(-x)$$

Together, the above facts tell us that for all nonzero $n \in \mathbb{Z}$,

$$M(x) = nM\left(\frac{1}{n}x\right) = \frac{1}{n}M(nx)$$

To conclude the proof, let $\alpha \in \mathbb{R}$ and $x \in X$ be arbitrary and nonzero. Let $\epsilon > 0$ be arbitrary. Since M is continuous at αx , there is some $\delta > 0$ such that for all $\tilde{x} \in X$ with $\|\alpha x - \tilde{x}\|_X \leq \delta$, we have $\|M(\alpha x) - M(\tilde{x})\|_Y < \epsilon$. Now, may find a rational number $\beta \in \mathbb{Q}$ such that $|\alpha - \beta| < \max\left\{\frac{\delta}{\|x\|_X}, \frac{\epsilon}{\|Mx\|_Y}\right\}$ by the density of the rationals. If we express $\beta = \frac{n}{m}$ for $n \in \mathbb{Z}$ and $m \in \mathbb{N}$, we see by additivity and our previous conclusions about M that

$$M(\beta x) = M\left(\frac{n}{m}x\right) = \frac{1}{m}(nx) = \frac{n}{m}M(x) = \beta M(x)$$

So, since

$$\|\alpha x - \beta x\|_X = |\alpha - \beta| \cdot \|x\|_X \le \frac{\delta}{\|x\|_X} \cdot \|x\|_X = \delta,$$

we see that

$$\|M(\alpha x) - M(\beta x)\|_{Y} < \epsilon \implies \|M(\alpha x) - \beta M(x)\|_{Y} < \epsilon$$

So, by the triangle inequality,

$$\begin{split} \|M(\alpha x) - \alpha M(x)\|_{Y} &\leq \|M(\alpha x) - \beta M(x)\|_{Y} + \|\beta M(x) - \alpha M(x)\|_{Y} \\ &< \epsilon + |\beta - \alpha| \cdot \|M(x)\|_{Y} \leq \epsilon + \frac{\epsilon}{\|Mx\|_{Y}} \cdot \|Mx\|_{Y} = 2\epsilon \end{split}$$

So, $||M(\alpha x) - \alpha M(x)||_Y < \epsilon$ for all $\epsilon > 0$, which means that $M(\alpha x) = \alpha M(x)$. Therefore, M is linear.

Provide an example (no further explanation or proof is necessary) for each of the following:

- (a) A normed vector space which is not a Banach space.
- (b) A linear functional that is not continuous.
- (c) A topological vector space which is not locally convex.
- (d) A Banach space whose closed unit ball is compact.
- (e) A Banach space which is not reflexive.

Solution

Proof. (a) Let $X = \mathbb{C}^{\infty}$ be the space of infinite complex sequences such that only finitely many elements are nonzero. Equip X with any norm (such as the norm $||x||_{\infty} = \max_{n \in \mathbb{N}} \{|x(n)|\}$, where we know the max exists because only finitely many elements x(n) are nonzero). Let $\{e_j\}_{j \in \mathbb{N}}$ be the elements of X with a 1 in the j^{th} element and 0's everywhere else. Then, we may note that $\{e_j\}_{j \in \mathbb{N}}$ forms a Hamel basis for X since any element of X has a unique representation as a *finite* linear combination of e_j 's (namely, $x = \sum_{\substack{n \in \mathbb{N} \\ x(n) \neq 0}} x(n)e_n$).

We know that X is infinite-dimensional and has a Hamel basis, which by Problem 15 on Problem set 2 means that X can't be Banach.

(b) Let $X = \mathbb{C}^{\infty}$ be the space of infinite complex sequences such that only finitely many elements are nonzero, and endow it with the ℓ^{∞} norm as above. Define $f : X \to \mathbb{C}$ via

$$f(x):=\sum_{n\in\mathbb{N}}nx(n),$$

where we know this sum to converge since x(n) is nonzero for finitely many n. Since

$$f(\alpha x + y) = \sum_{n \in \mathbb{N}} n \cdot (\alpha x + y)(n) = \sum_{n \in \mathbb{N}} \alpha n x(n) + n y(n) = \alpha f(x) + f(y),$$

this functional is linear. However, it is not bounded, since for any n we may always find an element of unit norm e_n such that $f(e_n) = n$. Since linear maps between normed spaces are bounded iff continuous, f cannot be continuous.

(c) Let $p \in (0,1)$. Consider $\ell^p(\mathbb{N} \to \mathbb{C})$, which is the space of all complex sequences such that

$$\sum_{n\in\mathbb{N}}|x(n)|^p<\infty$$

With elementwise addition and scalar multiplication, this is a vector space. Endow $\ell^p(\mathbb{N} \to \mathbb{C})$ with the metric

$$d(x,y) := \sum_{n \in \mathbb{N}} |x(n) - y(n)|^p$$

This is a TVS (in fact it is an F-space) but is not locally convex. See Rudin Problem 5 from Chapter 3.

(d) Consider the Banach space $X = \mathbb{C}^n$ with the Euclidean norm. Then, the closed unit ball is a closed and bounded subset of \mathbb{C}^n , which by Heine-Borel means that it is compact.

(e) Consider the Banach space $\ell^1(\mathbb{N} \to \mathbb{C})$, which is the space of all complex sequences such that

$$\sum_{n\in\mathbb{N}}|x(n)|<\infty$$

From Problem 2(c) on Problem Set 4, we know $(\ell^1)^* = \ell^\infty$. However, that problem produces an element of $(\ell^\infty)^* = (\ell^1)^{**}$ that is **not** an element of $J(\ell^1)$, and so

$$J(\ell^1) \subsetneq (\ell^1)^{**}$$

In particular, ℓ^1 is not reflexive.

Show that if X, Y are Banach spaces and $A \in \mathcal{B}(X \to Y)$, then if $x_n \to x$ weakly in X, then $Ax_n \to Ax$ weakly in Y.

Solution

Proof.

Suppose that $x_n \to x$ weakly. We wish to show that $Ax_n \to Ax$ weakly in Y. So, let $\lambda \in Y^*$ be arbitrary. By construction, both λ and A are linear and continuous. So, $\lambda \circ A$ is also linear and continuous since it is a composition of linear and continuous maps. Thus, $\lambda \circ A \in X^*$. By Lemma 5.11 in the lecture notes, since $x_n \to x$ weakly we know that $\Lambda x_n \to \Lambda x$ in Open(\mathbb{C}) for all $\Lambda \in X^*$. Letting $\Lambda = \lambda \circ A$, we have that

$$\lambda(Ax_n) \to \lambda(Ax)$$
 in Open(\mathbb{C})

Since this holds for all $\lambda \in Y^*$, we may apply the converse of Lemma 5.11 to find that $Ax_n \to Ax$ weakly in Y, as desired.

In a Banach algebra \mathcal{A} , let $a, b \in \mathcal{A}$. Show that if ab = ba, then

$$\sigma(a+b) \subseteq \sigma(a) + \sigma(b)$$
 and $\sigma(ab) \subseteq \sigma(a)\sigma(b)$.

Find examples where these containments are strict, and find examples when these containments are false if $ab \neq ba$.

Solution

Proof. Suppose that $z \in \sigma(ab)$. If z = 0, then $ab \notin \mathcal{G}_{\mathcal{A}}$, which means that either $a \notin \mathcal{G}_{\mathcal{A}}$ or $b \notin \mathcal{G}_{\mathcal{A}}$; in either case, we get that $0 \in \sigma(a)\sigma(b)$. So, suppose without loss of generality that $z \neq 0$. Then, $z\mathbb{1} - ab \notin \mathcal{G}_{\mathcal{A}} \implies \mathbb{1} - \frac{1}{z}ab \notin \mathcal{G}_{\mathcal{A}}$. By the contrapositive to Lemma 6.5 in the lecture notes, we see that $\|\frac{1}{z}ab\| \ge 1 \implies \|ab\| \ge |z|$ i got no idea how to do this :)

To see examples where the containments are strict, consider $\mathcal{A} = \mathbb{C}^{2\times 2}$ to be the Banach algebra of square 2×2 matrices. Note that for diagonal matrices $M := \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, we always have that $\sigma(M) = \{\lambda_1, \lambda_2\}$. To see this, note that the matrix $M - \lambda \mathbb{1} = \begin{bmatrix} \lambda_1 - \lambda & 0 \\ 0 & \lambda_2 - \lambda \end{bmatrix}$ is noninvertible if and only if $(\lambda_1 - \lambda)(\lambda_2 - \lambda) = 0 \iff \lambda \in \{\lambda_1, \lambda_2\}$. Let

$$A := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$$

Then, we see that $\sigma(A) = \{0, 1\}$ and $\sigma(B) = \{0, -1\}$. However, A + B = 0, and so $\sigma(A + B) = \sigma(0) = \{0\}$ (the spectral radius is 0 by Gelfand's formula, and so the nonempty spectrum therefore must contain only 0). So, $1 \in \sigma(A) + \sigma(B)$, yet $1 \notin \sigma(A + B)$. To see a counterexample in the multiplicative case, let

$$A = B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Then, $\sigma(A) = \sigma(B) = \{-1, 1\}$. However, AB = 1, and so $\sigma(AB) = \{1\}$. This tells us that $-1 \in \sigma(A)\sigma(B)$ yet $-1 \notin \sigma(AB)$. Thus, the containments may be strict.

To see examples where the containments may not hold for noncommuting elements, we must use nondiagonal matrices. Let

$$A := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

We may confirm that $\sigma(A) = \sigma(B) = \{0\}$; indeed, if $\lambda \in \sigma(A)$ then $\det(A - \lambda \mathbb{1}) = 0 \implies \lambda^2 - \mathbb{1}(0) = 0 \implies \lambda^2 = 0 \implies \lambda = 0$ and similarly for B. However, we see that 1 is in both $\sigma(A + B)$ and $\sigma(AB)$. To see this, note that

$$A + B - \mathbb{1} = \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \implies \det(A + B - \mathbb{1}) = 1^2 - (-1)^2 = 0,$$

and so $A + B - \mathbb{1} \notin \mathcal{G}_{\mathcal{A}} \implies 1 \in \sigma(A + B)$. Similarly,

$$AB - \mathbb{1} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \implies \det(AB - \mathbb{1}) = 0 - 0 = 0$$

and so $AB - 1 \notin \mathcal{G}_{\mathcal{A}} \implies 1 \in \sigma(AB)$. We see therefore that $\sigma(A + B) \not\subseteq \sigma(A) + \sigma(B)$ and also that $\sigma(AB) \not\subseteq \sigma(A)\sigma(B)$ in this case.