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Problem 1

Let X,Y be two Banach spaces. Define on the Cartesian product X x Y coordinate-wise addition and scalar
multiplication. For p € [1, o], define

(el = {M{”x"x"'yy} i£p = oc
) p-— 1 .
(el + 191" i p e [1,00)

(a) Show that with these definitions, X x Y is a Banach space (i.e., show it is a complete normed vector
space).

(b) Show that all p-norms are equivalent on X x Y.

Solution

Proof.
Lemma 1. Let p € [1,00]. For all (z,y) € X XY,
lzllx < [z 9)llp < llzllx + llylly

and similarly
lylly < Nyl < llzlx + llylly

Proof of Lemma 1. The result clearly holds when p = co since a maximum is > both of its arguments
but will be equal to one of them, and so < to the sum. So, suppose that p € [1,00). We have

1,9y = (lzl% + 191517 = (l2l3)? = llzlx

and similarly ||(z,9)|, > |lylly, where for the above we used that norms are nonnegative and (-)'/? is

monotonic. We now want to show the upper bound. Write a := ”wl“ﬂ and b = — A Then,
x+llylly llzllx +lylly

a + b = 1. Furthermore, since a < 1 and b < 1, we know that a? < a and b” < b. So,
1
A+ <at+b=1 = [all% + Iy} < (zlx + lvlly)” = (el + 5" < lallx + lyly
So, the result of the lemma holds. =
(a) Clearly, X x Y is a vector space. We verify that || - ||, defines a norm.

1. Note that by homgeneity of the norms on X and Y,

o)l = {maxuaaznx, laylly } = max{|al|x, [l llylly} = |o max{[] x, [ylly } if p = oo
’ P 1 1 1 .
(laz |’ + llaglE)? = (alllz]% + laPly|2) " = PO/ (2] + lyI2) " if p € [1,00)

Since |a|P(/P) = |a/, in either case, we see that
ez, y)llp = lelll (@ y)llp

2. Suppose now that ||(x,y)|, = 0. Lemma 1 tells us that ||z|x = ||y|ly =0, and so both z and y are 0
by positivity of the X and Y norms. Therefore, (z,y) =0 in X x Y, and so this norm is positive.
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3. Let (z,y),(a,b) € X x Y. If p = oo, then
1z, y) + (a,b)lp = max{[lz + al x, [ly + blly } < max{||z[|x + llallx, [ylly + [Iblly }

We know that [|z]|x +[lalx < [|(z,y)ll,+l(a,b)||, by Lemma 1, and similarly [|y[y +[[blly < [[(z, )]+
l(a,b)|lp- So, the maximum is certainly also < ||(z,y)|, + [|(a,b)||p, revealing that

1(z,y) + (@, b)[lp < Iz, 9)llp + [I(a, 0)l
Suppose now that p € [1,00). We know that
(2, 9) + (a,0) 1, = (1= + all% + [ly + blI5) "/
By Minkowski’s inequality and the triangle inequality, this is bounded by
(2, y) + (a,b)llp < (% + yl5)"7 + (lal% + 1615) 7 = 1z, 9)llp + (2, 5)l,
So, we find that || - ||, satisfies the triangle inequality for all p € [1, o0].

So, X x Y is indeed a normed vector space. To see that it is complete, let {(Zn,yn)}n € X X Y be Cauchy.
Let € > 0 be arbitrary. Then, there is some N € N such that for all n,m > N,

(s Yn) — (xmaym)Hp = [(zn — Tm,Yn — ym)”p <e€

By the Lemma, we know that

€ > |[(zn — T, Yn — ym)llp > ||Tn — Tl x

and similarly for Y. Since such an N exists for all € > 0, we find that {z,}, C X is Cauchy in X and
{yn}n C Y is Cauchy in Y. Since these are Banach spaces and therefore complete, they converge in their
norms to elements z € X and y € Y, respectively. We must show that (z,,y,) — (z,y) in the || - ||, norm.
To do this, let € > 0 be fresh. Then, there is some Nx, Ny € N such that for all n > Nx and m > Ny,

€

€
|z —2n|lx < 5 and ly — ymlly < 5

by definition of convergence. So, for all n > N := max{Nx, Ny }, we have by Lemma 1 that

€ €
(=, y) — (mmyn)”p = [[(z — zn,y _yn)”p <z —anllx +lly —yally < D) + 3 =c

Since such an N exists for all € > 0, we see that ||(z,y) — (@, yn)|lp = 0 as desired.

(b) Now, let p,q € [1,00]. To see that they are equivalent, we may just apply Lemma 1 to see that for
all (z,y) €e X xY,
(@ 9)llp < lzllx + llylly < Iz 9)llq + 1@ )l = 20 (2, y)llq

Identical logic shows that

(@ 9)llq < llzllx + lylly < 1@yl + (@ 9)llp = 202, 9)llp,

and so

%Il(x,y)llp <@ 9)llq < 2[(y)lly

Since this holds for all (z,y) € X x Y, the p and ¢ norms are equivalent. m
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Problem 2

Let M : X — Y be a continuous map between normed spaces X, Y such that M(0) =0 and

Show that M is linear.

Solution

Proof. Firstly, note that with £ = 0 we see that for all z € X,
1 1 1 1
M(z)=M 5(2:0 +0)) = §M(2x) + §M(0) = 5M(2x) = M(2z) =2M (x)

Now, let z1,22 € X be arbitrary. Then, defining z := 2z; and £ = 2x5, we may apply the hypothesis and
our above conclusion to see

1 1 1
M(z14+22) =M (2(2371 + 2952)) = §M(2x1) + §M(2x2) = M(z1) + M(z2),
where for the last equality we used that M (2a) = 2M (a). So, M is additive.

We know by additivity of M that M (nz) = M(x)
LM (nx). Replacing = with £, we also see that nM

+...+ M(z) =nM(x) for all n € N, and so M(x) =
(+x) = M(x). Furthermore, we know that
M)+ M(—z)=M(0)=0 = M(z) =-M(—x)

Together, the above facts tell us that for all nonzero n € Z,

M(z) = nM (k) = %M(m:)

To conclude the proof, let @« € R and = € X be arbitrary and nonzero. Let € > 0 be arbitrary. Since
M is continuous at awx, there is some § > 0 such that for all & € X with ||az — Z||x < 6, we have
|M(ax) — M(Z)||y < e. Now, may find a rational number 3 € Q such that | — 3] < max{ﬁ, m}
by the density of the rationals. If we express f = > for n € Z and m € N, we see by additivity and our
previous conclusions about M that

1
M(Bz) =M (%x) = —(na) = %M(z) — BM(z)
So, since 5
laz = Bz|lx = o= B [[z]x < Tole [zl x =0,

we see that
M (az) — M(Bz)|ly <e = [[M(az)—BM(z)|ly <e

So, by the triangle inequality,

[M(az) —aM(z)|y < |[[M(az) = BM(z)|y + [[BM () — aM(z)|y

€
<et[B—al-[M@)|y < et - [ M|y = 2e
[ M|y

So, || M (az) — aM(z)|ly < € for all € > 0, which means that M (az) = aM (z). Therefore, M is linear. m
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Problem 3

Provide an example (no further explanation or proof is necessary) for each of the following:
(a) A normed vector space which is not a Banach space.
(

b

A linear functional that is not continuous.

)
)
(c¢) A topological vector space which is not locally convex.
(d) A Banach space whose closed unit ball is compact.

)

(e) A Banach space which is not reflexive.

Solution

Proof. (a) Let X = C* be the space of infinite complex sequences such that only finitely many elements are
nonzero. Equip X with any norm (such as the norm ||z||.c = max,en{|z(n)|}, where we know the max exists
because only finitely many elements x(n) are nonzero). Let {e;};en be the elements of X with a 1 in the
jth element and 0’s everywhere else. Then, we may note that {€j}jen forms a Hamel basis for X since any

element of X has a unique representation as a finite linear combination of e;’s (namely, = > nen z(n)ey,).
z(n)#0
We know that X is infinite-dimensional and has a Hamel basis, which by Problem 15 on Problem set 2 means

that X can’t be Banach.

(b) Let X = C* be the space of infinite complex sequences such that only finitely many elements are
nonzero, and endow it with the £°° norm as above. Define f : X — C via

neN

where we know this sum to converge since z(n) is nonzero for finitely many n. Since

flax+y) = Zn (ax + y)( Zam; ) +ny(n) = af(z)+ f(y),

neN neN

this functional is linear. However, it is not bounded, since for any n we may always find an element of
unit norm e, such that f(e,) = n. Since linear maps between normed spaces are bounded iff continuous, f
cannot be continuous.

(c) Let p € (0,1). Consider ¢?(N — C), which is the space of all complex sequences such that

Z|x )P < o0

neN
With elementwise addition and scalar multiplication, this is a vector space. Endow ?(N — C) with the

=3 Jaln) -

neN

metric

This is a TVS (in fact it is an F-space) but is not locally convex. See Rudin Problem 5 from Chapter 3.

(d) Consider the Banach space X = C™ with the Euclidean norm. Then, the closed unit ball is a closed and
bounded subset of C", which by Heine-Borel means that it is compact.
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(e) Consider the Banach space ¢!(N — C), which is the space of all complex sequences such that

Z |z(n)| < oo

neN

From Problem 2(c) on Problem Set 4, we know (¢!)* = ¢>°. However, that problem produces an element of
(£>°)* = (£1)** that is not an element of J(¢!), and so

J() < (@)

In particular, ¢! is not reflexive. m
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Problem 4

Show that if X,Y are Banach spaces and A € B(X — Y), then if x,, — x weakly in X, then Az, — Ax
weakly in Y.

Solution

Proof.

Suppose that z,, — = weakly. We wish to show that Az, — Az weakly in Y. So, let A\ € Y* be arbitrary.
By construction, both A and A are linear and continuous. So, A o A is also linear and continuous since it is
a composition of linear and continuous maps. Thus, Ao A € X*. By Lemma 5.11 in the lecture notes, since
xn — « weakly we know that Az, — Az in Open(C) for all A € X*. Letting A = Ao A, we have that

A(Azy,) — A(Az) in Open(C)

Since this holds for all A € Y*, we may apply the converse of Lemma 5.11 to find that Az, — Az weakly in
Y, as desired. m
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Problem 5

In a Banach algebra A, let a,b € A. Show that if ab = ba, then
o(a+0b) Co(a)+o(b) and o(ab) C o(a)o(b).

Find examples where these containments are strict, and find examples when these containments are false if
ab # ba.

Solution

Proof. Suppose that z € o(ab). If z = 0, then ab ¢ G4, which means that either a ¢ G4 or b ¢ Gu;
in either case, we get that 0 € o(a)o(b). So, suppose without loss of generality that z # 0. Then,
2l —ab ¢ G4 = 1-— %ab ¢ Ga. By the contrapositive to Lemma 6.5 in the lecture notes, we see
that ||Zab|| > 1 = |[lab|| > |z| i got no idea how to do this :)

To see examples where the containments are strict, consider A = C2*2 to be the Banach algebra of square

2 x 2 matrices. Note that for diagonal matrices M := ﬁ)l f} , we always have that o(M) = {1, A2}. To
2
A1 —A 0

see this, note that the matrix M — \1 = [ 0 Ao — A

} is noninvertible if and only if (A; —A)(A2 — A) =
0 <= A& {M,A2}. Let

0 0 0 0

Then, we see that o(A) = {0,1} and o(B) = {0,—1}. However, A+ B =0, and so o(A + B) = ¢(0) = {0}
(the spectral radius is 0 by Gelfand’s formula, and so the nonempty spectrum therefore must contain only
0). So, 1 € 6(A) + 0(B), yet 1 ¢ 0(A+ B). To see a counterexample in the multiplicative case, let

1 0
A== Y

] ey

Then, 0(A) = o(B) = {—1,1}. However, AB = 1, and so o(AB) = {1}. This tells us that —1 € o(A4)o(B)
yet —1 ¢ o(AB). Thus, the containments may be strict.

To see examples where the containments may not hold for noncommuting elements, we must use nondi-

STEEST

agonal matrices. Let

0 0 1 0
We may confirm that o(A) = o(B) = {0}; indeed, if A € 0(A) then det(A—A1) =0 = I\ -1(0) =0 =
A2 =0 = X =0 and similarly for B. However, we see that 1 is in both o(A + B) and o(AB). To see this,
note that

-1 1} s det(A+B—1) =12 — (—1)2 =0,

andso A+ B—1¢ G4 = 1€ o(A+ B). Similarly,

1-1 0 0 0
a1 0T 0T s -0-o-o

and so AB—1¢ G4 = 1 € o(AB). We see therefore that (A + B) € o(A) + o(B) and also that
0(AB) € o0(A)o(B) in this case. ®




