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Evan Dogariu MAT 520: Midterm Problem 1

Problem 1

Let X,Y be two Banach spaces. Define on the Cartesian product X×Y coordinate-wise addition and scalar

multiplication. For p ∈ [1,∞], define

∥(x, y)∥p :=

{
max{∥x∥X , ∥y∥Y } if p = ∞
(∥x∥pX + ∥y∥pY )

1/p
if p ∈ [1,∞)

(a) Show that with these definitions, X × Y is a Banach space (i.e., show it is a complete normed vector

space).

(b) Show that all p-norms are equivalent on X × Y .

Solution

Proof.

Lemma 1. Let p ∈ [1,∞]. For all (x, y) ∈ X × Y ,

∥x∥X ≤ ∥(x, y)∥p ≤ ∥x∥X + ∥y∥Y

and similarly

∥y∥Y ≤ ∥(x, y)∥p ≤ ∥x∥X + ∥y∥Y

Proof of Lemma 1. The result clearly holds when p = ∞ since a maximum is ≥ both of its arguments

but will be equal to one of them, and so ≤ to the sum. So, suppose that p ∈ [1,∞). We have

∥(x, y)∥p = (∥x∥pX + ∥y∥pY )
1/p ≥ (∥x∥pX)1/p = ∥x∥X

and similarly ∥(x, y)∥p ≥ ∥y∥Y , where for the above we used that norms are nonnegative and (·)1/p is

monotonic. We now want to show the upper bound. Write a := ∥x∥X

∥x∥X+∥y∥Y
and b := ∥y∥Y

∥x∥X+∥y∥Y
. Then,

a+ b = 1. Furthermore, since a ≤ 1 and b ≤ 1, we know that ap ≤ a and bp ≤ b. So,

ap + bp ≤ a+ b = 1 =⇒ ∥x∥pX + ∥y∥pY ≤ (∥x∥X + ∥y∥Y )p =⇒ (∥x∥pX + ∥y∥pY )
1/p ≤ ∥x∥X + ∥y∥Y

So, the result of the lemma holds.

(a) Clearly, X × Y is a vector space. We verify that ∥ · ∥p defines a norm.

1. Note that by homgeneity of the norms on X and Y ,

∥α(x, y)∥p =

{
max{∥αx∥X , ∥αy∥Y } = max{|α|∥x∥X , |α|∥y∥Y } = |α|max{∥x∥X , ∥y∥Y } if p = ∞
(∥αx∥pX + ∥αy∥pY )

1/p
= (|α|p∥x∥pX + |α|p∥y∥pY )

1/p
= |α|p(1/p) (∥x∥pX + ∥y∥pY )

1/p
if p ∈ [1,∞)

Since |α|p(1/p) = |α|, in either case, we see that

∥α(x, y)∥p = |α|∥(x, y)∥p

2. Suppose now that ∥(x, y)∥p = 0. Lemma 1 tells us that ∥x∥X = ∥y∥Y = 0, and so both x and y are 0

by positivity of the X and Y norms. Therefore, (x, y) = 0 in X × Y , and so this norm is positive.
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3. Let (x, y), (a, b) ∈ X × Y . If p = ∞, then

∥(x, y) + (a, b)∥p = max{∥x+ a∥X , ∥y + b∥Y } ≤ max{∥x∥X + ∥a∥X , ∥y∥Y + ∥b∥Y }

We know that ∥x∥X+∥a∥X ≤ ∥(x, y)∥p+∥(a, b)∥p by Lemma 1, and similarly ∥y∥Y +∥b∥Y ≤ ∥(x, y)∥p+
∥(a, b)∥p. So, the maximum is certainly also ≤ ∥(x, y)∥p + ∥(a, b)∥p, revealing that

∥(x, y) + (a, b)∥p ≤ ∥(x, y)∥p + ∥(a, b)∥p

Suppose now that p ∈ [1,∞). We know that

∥(x, y) + (a, b)∥p = (∥x+ a∥pX + ∥y + b∥pY )
1/p

By Minkowski’s inequality and the triangle inequality, this is bounded by

∥(x, y) + (a, b)∥p ≤ (∥x∥pX + ∥y∥pY )
1/p + (∥a∥pX + ∥b∥pY )

1/p = ∥(x, y)∥p + ∥(a, b)∥p

So, we find that ∥ · ∥p satisfies the triangle inequality for all p ∈ [1,∞].

So, X × Y is indeed a normed vector space. To see that it is complete, let {(xn, yn)}n ⊆ X × Y be Cauchy.

Let ϵ > 0 be arbitrary. Then, there is some N ∈ N such that for all n,m > N ,

∥(xn, yn)− (xm, ym)∥p = ∥(xn − xm, yn − ym)∥p < ϵ

By the Lemma, we know that

ϵ > ∥(xn − xm, yn − ym)∥p ≥ ∥xn − xm∥X

and similarly for Y . Since such an N exists for all ϵ > 0, we find that {xn}n ⊆ X is Cauchy in X and

{yn}n ⊆ Y is Cauchy in Y . Since these are Banach spaces and therefore complete, they converge in their

norms to elements x ∈ X and y ∈ Y , respectively. We must show that (xn, yn) → (x, y) in the ∥ · ∥p norm.

To do this, let ϵ > 0 be fresh. Then, there is some NX , NY ∈ N such that for all n > NX and m > NY ,

∥x− xn∥X <
ϵ

2
and ∥y − ym∥Y <

ϵ

2

by definition of convergence. So, for all n > N := max{NX , NY }, we have by Lemma 1 that

∥(x, y)− (xn, yn)∥p = ∥(x− xn, y − yn)∥p ≤ ∥x− xn∥X + ∥y − yn∥Y <
ϵ

2
+

ϵ

2
= ϵ

Since such an N exists for all ϵ > 0, we see that ∥(x, y)− (xn, yn)∥p → 0 as desired.

(b) Now, let p, q ∈ [1,∞]. To see that they are equivalent, we may just apply Lemma 1 to see that for

all (x, y) ∈ X × Y ,

∥(x, y)∥p ≤ ∥x∥X + ∥y∥Y ≤ ∥(x, y)∥q + ∥(x, y)∥q = 2∥(x, y)∥q

Identical logic shows that

∥(x, y)∥q ≤ ∥x∥X + ∥y∥Y ≤ ∥(x, y)∥p + ∥(x, y)∥p = 2∥(x, y)∥p,

and so
1

2
∥(x, y)∥p ≤ ∥(x, y)∥q ≤ 2∥(x, y)∥p

Since this holds for all (x, y) ∈ X × Y , the p and q norms are equivalent.
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Problem 2

Let M : X → Y be a continuous map between normed spaces X, Y such that M(0) = 0 and

M

(
1

2
(x+ x̃)

)
=

1

2
M(x) +

1

2
M(x̃) (∀x, x̃ ∈ X).

Show that M is linear.

Solution

Proof. Firstly, note that with x̃ = 0 we see that for all x ∈ X,

M(x) = M

(
1

2
(2x+ 0)

)
=

1

2
M(2x) +

1

2
M(0) =

1

2
M(2x) =⇒ M(2x) = 2M(x)

Now, let x1, x2 ∈ X be arbitrary. Then, defining x := 2x1 and x̃ = 2x2, we may apply the hypothesis and

our above conclusion to see

M(x1 + x2) = M

(
1

2
(2x1 + 2x2)

)
=

1

2
M(2x1) +

1

2
M(2x2) = M(x1) +M(x2),

where for the last equality we used that M(2a) = 2M(a). So, M is additive.

We know by additivity of M that M(nx) = M(x) + . . . + M(x) = nM(x) for all n ∈ N, and so M(x) =
1
nM(nx). Replacing x with x

n , we also see that nM
(
1
nx

)
= M(x). Furthermore, we know that

M(x) +M(−x) = M(0) = 0 =⇒ M(x) = −M(−x)

Together, the above facts tell us that for all nonzero n ∈ Z,

M(x) = nM

(
1

n
x

)
=

1

n
M(nx)

To conclude the proof, let α ∈ R and x ∈ X be arbitrary and nonzero. Let ϵ > 0 be arbitrary. Since

M is continuous at αx, there is some δ > 0 such that for all x̃ ∈ X with ∥αx − x̃∥X ≤ δ, we have

∥M(αx)−M(x̃)∥Y < ϵ. Now, may find a rational number β ∈ Q such that |α− β| < max
{

δ
∥x∥X

, ϵ
∥Mx∥Y

}
by the density of the rationals. If we express β = n

m for n ∈ Z and m ∈ N, we see by additivity and our

previous conclusions about M that

M(βx) = M
( n

m
x
)
=

1

m
(nx) =

n

m
M(x) = βM(x)

So, since

∥αx− βx∥X = |α− β| · ∥x∥X ≤ δ

∥x∥X
· ∥x∥X = δ,

we see that

∥M(αx)−M(βx)∥Y < ϵ =⇒ ∥M(αx)− βM(x)∥Y < ϵ

So, by the triangle inequality,

∥M(αx)− αM(x)∥Y ≤ ∥M(αx)− βM(x)∥Y + ∥βM(x)− αM(x)∥Y

< ϵ+ |β − α| · ∥M(x)∥Y ≤ ϵ+
ϵ

∥Mx∥Y
· ∥Mx∥Y = 2ϵ

So, ∥M(αx)− αM(x)∥Y < ϵ for all ϵ > 0, which means that M(αx) = αM(x). Therefore, M is linear.
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Problem 3

Provide an example (no further explanation or proof is necessary) for each of the following:

(a) A normed vector space which is not a Banach space.

(b) A linear functional that is not continuous.

(c) A topological vector space which is not locally convex.

(d) A Banach space whose closed unit ball is compact.

(e) A Banach space which is not reflexive.

Solution

Proof. (a) Let X = C∞ be the space of infinite complex sequences such that only finitely many elements are

nonzero. Equip X with any norm (such as the norm ∥x∥∞ = maxn∈N{|x(n)|}, where we know the max exists

because only finitely many elements x(n) are nonzero). Let {ej}j∈N be the elements of X with a 1 in the

jth element and 0’s everywhere else. Then, we may note that {ej}j∈N forms a Hamel basis for X since any

element of X has a unique representation as a finite linear combination of ej ’s (namely, x =
∑

n∈N
x(n)̸=0

x(n)en).

We know that X is infinite-dimensional and has a Hamel basis, which by Problem 15 on Problem set 2 means

that X can’t be Banach.

(b) Let X = C∞ be the space of infinite complex sequences such that only finitely many elements are

nonzero, and endow it with the ℓ∞ norm as above. Define f : X → C via

f(x) :=
∑
n∈N

nx(n),

where we know this sum to converge since x(n) is nonzero for finitely many n. Since

f(αx+ y) =
∑
n∈N

n · (αx+ y)(n) =
∑
n∈N

αnx(n) + ny(n) = αf(x) + f(y),

this functional is linear. However, it is not bounded, since for any n we may always find an element of

unit norm en such that f(en) = n. Since linear maps between normed spaces are bounded iff continuous, f

cannot be continuous.

(c) Let p ∈ (0, 1). Consider ℓp(N → C), which is the space of all complex sequences such that∑
n∈N

|x(n)|p < ∞

With elementwise addition and scalar multiplication, this is a vector space. Endow ℓp(N → C) with the

metric

d(x, y) :=
∑
n∈N

|x(n)− y(n)|p

This is a TVS (in fact it is an F-space) but is not locally convex. See Rudin Problem 5 from Chapter 3.

(d) Consider the Banach space X = Cn with the Euclidean norm. Then, the closed unit ball is a closed and

bounded subset of Cn, which by Heine-Borel means that it is compact.
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(e) Consider the Banach space ℓ1(N → C), which is the space of all complex sequences such that∑
n∈N

|x(n)| < ∞

From Problem 2(c) on Problem Set 4, we know (ℓ1)∗ = ℓ∞. However, that problem produces an element of

(ℓ∞)∗ = (ℓ1)∗∗ that is not an element of J(ℓ1), and so

J(ℓ1) ⊊ (ℓ1)∗∗

In particular, ℓ1 is not reflexive.
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Problem 4

Show that if X,Y are Banach spaces and A ∈ B(X → Y ), then if xn → x weakly in X, then Axn → Ax

weakly in Y .

Solution

Proof.

Suppose that xn → x weakly. We wish to show that Axn → Ax weakly in Y . So, let λ ∈ Y ∗ be arbitrary.

By construction, both λ and A are linear and continuous. So, λ ◦ A is also linear and continuous since it is

a composition of linear and continuous maps. Thus, λ ◦A ∈ X∗. By Lemma 5.11 in the lecture notes, since

xn → x weakly we know that Λxn → Λx in Open(C) for all Λ ∈ X∗. Letting Λ = λ ◦A, we have that

λ(Axn) → λ(Ax) in Open(C)

Since this holds for all λ ∈ Y ∗, we may apply the converse of Lemma 5.11 to find that Axn → Ax weakly in

Y , as desired.
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Problem 5

In a Banach algebra A, let a, b ∈ A. Show that if ab = ba, then

σ(a+ b) ⊆ σ(a) + σ(b) and σ(ab) ⊆ σ(a)σ(b).

Find examples where these containments are strict, and find examples when these containments are false if

ab ̸= ba.

Solution

Proof. Suppose that z ∈ σ(ab). If z = 0, then ab /∈ GA, which means that either a /∈ GA or b /∈ GA;

in either case, we get that 0 ∈ σ(a)σ(b). So, suppose without loss of generality that z ̸= 0. Then,

z1 − ab /∈ GA =⇒ 1 − 1
zab /∈ GA. By the contrapositive to Lemma 6.5 in the lecture notes, we see

that
∥∥ 1
zab

∥∥ ≥ 1 =⇒ ∥ab∥ ≥ |z| i got no idea how to do this :)

To see examples where the containments are strict, consider A = C2×2 to be the Banach algebra of square

2× 2 matrices. Note that for diagonal matrices M :=

[
λ1 0

0 λ2

]
, we always have that σ(M) = {λ1, λ2}. To

see this, note that the matrix M − λ1 =

[
λ1 − λ 0

0 λ2 − λ

]
is noninvertible if and only if (λ1 − λ)(λ2 − λ) =

0 ⇐⇒ λ ∈ {λ1, λ2}. Let

A :=

[
1 0

0 0

]
and B :=

[
−1 0

0 0

]
Then, we see that σ(A) = {0, 1} and σ(B) = {0,−1}. However, A+B = 0, and so σ(A+B) = σ(0) = {0}
(the spectral radius is 0 by Gelfand’s formula, and so the nonempty spectrum therefore must contain only

0). So, 1 ∈ σ(A) + σ(B), yet 1 /∈ σ(A+B). To see a counterexample in the multiplicative case, let

A = B =

[
1 0

0 −1

]
Then, σ(A) = σ(B) = {−1, 1}. However, AB = 1, and so σ(AB) = {1}. This tells us that −1 ∈ σ(A)σ(B)

yet −1 /∈ σ(AB). Thus, the containments may be strict.

To see examples where the containments may not hold for noncommuting elements, we must use nondi-

agonal matrices. Let

A :=

[
0 1

0 0

]
and B :=

[
0 0

1 0

]
We may confirm that σ(A) = σ(B) = {0}; indeed, if λ ∈ σ(A) then det(A−λ1) = 0 =⇒ λ2−1(0) = 0 =⇒
λ2 = 0 =⇒ λ = 0 and similarly for B. However, we see that 1 is in both σ(A+B) and σ(AB). To see this,

note that

A+B − 1 =

[
−1 1

1 −1

]
=⇒ det(A+B − 1) = 12 − (−1)2 = 0,

and so A+B − 1 /∈ GA =⇒ 1 ∈ σ(A+B). Similarly,

AB − 1 =

[
1− 1 0

0 −1

]
=

[
0 0

0 −1

]
=⇒ det(AB − 1) = 0− 0 = 0

and so AB − 1 /∈ GA =⇒ 1 ∈ σ(AB). We see therefore that σ(A + B) ̸⊆ σ(A) + σ(B) and also that

σ(AB) ̸⊆ σ(A)σ(B) in this case.
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