MAT 520: Final

Due on December 21, 2023

Professor Jacob Shapiro

Evan Dogariu
I pledge my honor that I have not violated the Honor Code during this examination.



Evan Dogariu MAT 520: Final Problem 1

Problem 1

Define the operator K on H := L*([0,1]) via

_ /ylm (/Oyi/)(z)dz> dy (ze[0,1],¢ €M)

Show that:
(a) K is self-adjoint.
(b) K is compact.

(¢) Find the spectrum of K.

Solution

Proof. Let V be the operator on H given by

(V) (a /w Jy (€ [0,1],¢ € H)

V is exactly the operator we studied in Problem 7 on Problem Set 8, where we proved the following properties:
1. V € B(H) is a well-defined operator.

2. V* is the operator given by
(V*4) /¢ Jy (z € (0,14 € H)

Now, we note that K = |V|> = V*V, since for all z € [0,1] and all ¢ € H, we have

(V*Vw)(m)=/:(Vw) dy—/ (/ e dz)dy

= (K¢)(x)

From here, we may prove everything we need to show about K.
(a) Since K = |V|?, we immediately find that K is self-adjoint.

(b) We will show that V is compact, from which compactness of K follows immediately. Note that for
each 1, we see that for all « € [0, 1], letting ys denote the indicator function of a set S,

(Vib)() = /0 Xi0.21 (@)% (v)dy

If we write K : [0,1]> — C to be given by K(z,y) = X[0.4](¥), it is apparent that K € L?([0,1]?) (it is
bounded on a compact domain) and that
1
0= [ K@i
0

In this form, we recognize V' to be a Hilbert-Schmidt operator, which is immediately compact. So, since the
compact operators form a %-closed two-sided idea, V*V is also compact. Therefore, K is compact.

Problem 1 continued on next page. .. 2
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(c) Since K is compact, the Riesz-Schauder theorem (Theorem 9.42 in the lecture notes) tells us that
o(K) = {0} Uo,(K), and so we must compute the nonzero eigenvalues of K. To this end, suppose that v
is an eigenvector of K with eigenvalue A # 0 (since K is positive, then A > 0). Then, for a.e. = € [0, 1] we

have that . .
woia) = (K0) = [ ([ tsyas)
Note that
Lot I I
— — ds|dt < — dsdt < — d

o) vl < o [ [ e s 5o [ [ ocoiasae< o [0 1u) a
Using our favorite Holder estimate ||¢| 1 = fol || < ||| (where || - || always denotes the H-norm), we see
that

9(0) ~ v < [y -l

In particular, ¢ is Lipschitz and so differentiable a.e.. Taking a derivative of our initial expression and
applying the fundamental theorem of calculus, we see that

My () = - / " p(s)ds

From this we see that ¢'(0) = 0. Applying very similar logic as above, we have that

! ! 1 Y
ORTCTEE / (s)|ds

1 is Lipschitz, and so continuous, which means it is bounded on [0, 1], i.e. |[¢(s)] < M < oo for s € [0, 1].

Therefore 1)’ is %—Lipschitz, which means that 1’ is a.e. differentiable. So, we may take another derivative

and see that for a.e. z € [0,1],
M (z) = —p(x) = P(z) = Cy cos(z/VA) + Cysin(z/VA)

for some constants Cq,Cs. We know that ¢'(0) = 0, and so Co = 0. Also, since (Kt)(1) = 0 we have
(1) = 0. Therefore,

cos(1/VA) =0 = \%: (k‘—l—;)ﬂ'for some k € NU {0}

The above holds for any £k € NU{0} (note that we cannot have k < —% since the LHS is positive, and so we
are restricted to nonnegative integers for k). So, we may enumerate the nonzero eigenvalues as

A e (M) (ke NU{0})

with corresponding eigenfunctions

eceos ((k+2) ) eruioy

Therefore, the spectrum of K equals

dK):{(M) : keNU{O}}U{O}
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Problem 2

Prove Kuiper’s theorem: Let H be a separable infinite dimensional Hilbert space, and let A € B(H) be
invertible. Show that there is an operator-norm-continuous map ~ : [0, 1] — B(#) such that:

1. v(0) = A,
2. (1) =1,
3. ~(t) is invertible for all ¢ € [0, 1].

Solution

Proof. Since A is invertible, the polar decomposition (Theorem 9.25 in the lecture notes) says that we may

express
A =UlA|

where |A| is invertible and U := A|A|~! is unitary. Lemma 8.5 in the lecture notes tells us that since U is
unitary, o(U) C S*. The function
log : S* — [0, 27]

is bounded and Borel-measurable on o(U); as U is normal we may apply the Borel functional calculus to
find V := log(U) such that U = e". By the spectral mapping theorem, o (V) C i[0,27] and so W := —iV is
self-adjoint. We simply define « : [0,1] — B(H) via

(t) =TIV (L 4 (1 - 1)]4])
To see norm-continuity, let € > 0. Then, for all s,¢ € [0, 1] with |s — | < §, we have
lv(s) =@l =

Let M := max{|||A]||,1}. Adding and subtracting e!*=*)W (¢1 4 (1 — t)|A|) and applying the triangle rule
and submultiplicativity of the operator norm,

I7(s) =r(@)]| <

<

=W (51 4 (1 — 5)|A]) — POV (11 + (1 — t)|A\)H

=W (s = )L+ (£ = s)lAlll + IE1 + (1= D]4]] -

Q=W _ ei(l—s)WH

ei(lfs)WH -Ml|s—t|+ M

G=OW _ ei(lfs)WH

i(1—s)W

We know that since W is self-adjoint, so is (1 — s)WW, which means that e is unitary. By Lemma 8.5

in the lecture notes, Hei(l_s)WH = 1. So,

Iy(s) = 1(0) < M (s = t] + =W — =)

Since the operator exponential e : B(H) — B(H) is operator-norm-continuous and ||i(1—¢t)W —i(1—s)W|| =
|s—t|||W]|, there is a 6 > 0 small enough that this expression is at most €. So,  is continuous in the operator
norm. We verify the 3 desired properties next.

1. We have v(0) = e |A| = eV |A| = U|A| = A.
2. We have v(1) = €1 = 11 = 1.

3. Note that since W is self-adjoint, so is (1 — ¢)W, which means that e!(*=9W is unitary and therefore
invertible. Also, since |A| is positive and invertible, o(]4|) € (0,00). Therefore, by the spectral
mapping theorem applied to the map z — ¢t + (1 — t)z, we have that o(t1 + (1 — t)|A|) = (¢, 00) for all

€ (0,1). So, t1 + (1 —t)|A| is invertible for all ¢ € (0, 1), which means that ~(¢) is invertible for all
t € (0,1). Since v(0) = A and (1) = 1 are also invertible, the result follows.
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Problem 3

This question is divided into three independent parts.
(a) Prove (with the spectral theorem) that if A € B(H) then the following are equivalent:

i. (1, A) >0 for all v € H
ii. A= A* and 0(4) C [0, 00)
iii. There exists some B € B(H) s.t. A= |B|?

(b) Prove Stone’s formula: if A € B(H) is self-adjoint and

1 Xée(a,b)
Xap)A) =420 ANéa,b] (AER)
1 Xe{a,b}
then
1 b
Xla,p)(4) = s-lim o— /A: (A= (A +ie)1)™" — (A= (A —ie)1) "] dA

(c) Show that if A € B(H) is normal and ¢ € H is a cyclic vector for A then it is also cyclic for A*.

Solution

Proof. (a) (i = ii) Suppose first that (1), Ay) > 0 for all » € H. Then, we have that (1), Ay)) € R, and so

(, A%) = (A", ) = (Y, AY) = (Y, AY) — (¥, (A—A")P) =0 (P €H)

By Theorem 7.11 in the lecture notes, A = A*, and so o(A) C R. We may apply the spectral theorem in its
multiplicative form (Corollary to Theorem VII.3 in R&S) to find a finite measure space (M, i), a bounded
function F on M, and a unitary map U : H — L?(M, u1) such that

(UAUH)(f)(m) = F(m)f(m) (f € L*(M,p),m € M)

We know that o(A) is the essential range of F' (this is because o(UAU ') is the essential range of F by
Theorem 11.35 in the lecture notes, and the spectrum is a unitary invariant). This immediately tells us that
F' is real-valued p-a.e. since o(A) C R. Suppose by way of contradiction that —A € o(A) for some A > 0.
Then, —A\ is in the essential range of F', and so

p({me M: F(m) € (=3)/2,~A\/2)}) > 0 = u(F~((—00,0))) > 0

where F~!(-) denotes the preimage. Let f := X p—1((—oo,0)) be the indicator function on the set F~!((—00,0));
we know that f € L2(M, p) since (M, ) is a finite measure space and so all indicator functions are integrable.
Thus,

F(m)du(m) = F(m)f(m)du(m) = [ f(m)F(m)f(m)d
0> [ Fmdnom) = [ Fomsmydutm) = [ Fmrom s

M

= " W(UAU_lf)(m)du(m) = <f7 (UAU—l)f>L2(]LL;L)

where the first inequality is strict precisely since pu(F~1((—00,0))) > 0 and F is strictly negative on this
set, and the other equalities follow since f = f = f? for indicator functions f. Since U is unitary and so
U~! = U*, we have

(U™ AU )y, = (U AU )y = (L (UAUT)F) g, <O

Problem 3 continued on next page. .. 5
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Letting ¢y = U~ f, this tells us that (U~ f, AU_1f>H = (1, Av),, > 0 by hypothesis. So,
0<(U'f, AU ), <0,
a contradiction. So, —A ¢ o(A) for all A > 0; equivalently, o(A) C [0, 00).
(ii = iii) Suppose now that A = A* and o(A) C [0, 00). Since the map sending z — +/z is continuous on

o(A), we may apply the continuous functional calculus (Theorem VIL1 in R&S) to find B := VA € B(H);
since z +» /z takes only real values over o(A), we also see that B* = v/A. So,

B> =B*B=VAVA=A

where the last equality is by the homomorphism property of the functional calculus.

(ili = 1) Suppose now that A = |B|? for some B € B(H). Then, for all ¢) € H we have
(, Ap) = (. |BP*¢) = (¥, B*BY) = (By, By) = | BY|* > 0

In particular, (i) holds.

(b) We start with the following lemma.

Lemma 1. For all E € R,

1 [t 1
lim — Im{———— Y d\ = Xjuy(E
a—l>r(I)1+7r/>\:a m{E)\z‘s}d)\ Xia.) (B)

Proof of Lemma. When E ¢ [a,b], then for small enough ¢ we know that A — ]Im{ } is holomor-

1
E—-)\—ie
phic over [a,b]. By Cauchy’s integral theorem, this means that the integral evaluates to 0. When F € (a,b),
we may apply the residue theorem for small enough . I have no idea how to prove this lemma, I saw it in

the Lecture notes. I should have taken complex analysis haha m

We also note that for E, \,e € R,

. 1 o 1 1
M E- i) T E-x—ie E-rtie
So, letting f. : R — R be the function defined by

fo(2) = ! [(z=A—ie)™" = (z— A+ie) "] d),

27 Jyly

the above lemma tells us that f. — X[4,5 pointwise. Since each {f}. is bounded and each f. is measurable,
we see by the Borel functional calculus (Theorem VIL.2(d) in R&S) that f.(A) — X|a,5(A) strongly. This is
exactly what Stone’s formula states.

(c) Let A € B(H) be normal and ¢ € H be cyclic for A. Then,
{p(A)y : pis a polynomial}

is dense in H. We wish to show that

{p(A)¢ : pis a polynomial} C {p(A*)¢ : pis a polynomial}

as this will show the required density. Since complex conjugation is continuous, there is a sequence of
polynomials {p,}, that approximates z — Z pointwise on o(A*). Therefore, by the functional calculus

Problem 3 continued on next page. .. 6
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(which we may apply by normality of A), we see that p,(A*) — (A*)* = A strongly. Therefore, since
multiplication is jointly continuous in the strong operator topology (Problem 25 on Problem Set 7), we see
that p,, (A*)* — A* strongly for all k € NU{0}. By the *-homomorphism property of the functional calculus,
(pn)*(A*) — AF strongly as well, and so (p,,)*(A*)yp — A¥4p. Since each (p,)¥ is itself a polynomial, we see
that

ARy € {p(A*) : pis a polynomial} (k€ NU{0})

So, since the set {p(A*)y : p is a polynomial} is a linear space, we find that

{p(A)¢ : pis a polynomial} C {p(A*)y : pis a polynomial}

from which the result follows by taking closures. =
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Problem 4
This problem is divided into multiple parts which are independent of each other.
(a) Let A € B(H) be self-adjoint and z € C with Im {z} # 0. Show that
U:=(A+71)(A+21)"*
is unitary.
(b) Show that for any A € B(H), ker (|A|?) = ker(A).
(c) Show that for any A € B(H), if dimim(A) = 1 then there are ¢,1 € H \ {0} such that
AL =(p, v (§€H).
Proceed to calculate: (i) |4, (i) A*, (iii) o(A).

(d) Show that if A € B(H) is self-adjoint and unitary, then there are two orthogonal projections P, Q) such
that
A=P-Q

and that this yields a Zy grading of the Hilbert space as H = H4 ® H_.

(e) Let H := ¢?>(N) and R € B(H) be the unilateral right shift operator

VTR e

(Bi)(n) := {0

Compute |R|? and |R*|. If {6, }nen is the standard basis of H, calculate the following expressions:

D (Ons RO s > (Gns R0}, D (s [RZ0n) . D (s [R20n) > (0, (IR = [R7[%) 6n)

n=1 n=1 n=1 n=1 n=1
Interpreting these expressions naively as traces, what can you conclude about cyclicity in this infinite
setting?
Solution

Proof. (a) Note that A+ z1 and A + Z1 are both invertible since z,Z ¢ o(A). So, U is invertible and
therefore im(U) = H. Now, we may compute that

U2 =U"U = ((A+Z1)(A+21)"1)" (A+Z1)(A+21) " = (A+21)"H)*(A+21)(A+Z1)(A+21) 7"

Clearly, A+ 21 and A + Z1 commute. Also, since (T*)~! = (T~1)* for all invertible T, we may say
U = (A+21)") YA+ ZD)(A+21)(A+21) ' = (A4+21) 1 (A+z1) =1

So, (Uy,Ug) = (4, |U|?p) = (1, ) for all 1, € H. By Claim 9.4 in the lecture notes, U is unitary.

(b) Suppose first that 1 € ker (|A[?), and so |A[*1) = 0. Then,

0= (v, [AP*)) = (1, A" Ap) = (Ap, Ap) = [|[AY|]* = Ay =0,

and so ¢ € ker(A). Conversely, suppose that ¢ € ker(A). Then, Ay = 0, and so A*(Ay) = 0. Since
A*A = |AJ]?, we see that [A]*¢ = 0 and ¢ € ker (|A]?).

Problem 4 continued on next page. .. 8
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(c) Since dimim(A) = 1, then there is some unit vector ¢ € H \ {0} such that im(A) = span{y}
(in particular, {#} is a normalized basis for im(A)). So, for each £ € H we know that AL = A(£)y for
some map A : H — C. We note that A must be linear since for all £, € ‘H and all « € C,

A(§+an) = Al +adAn = NE+an)yp = (AE) +arn)Y = A&+ an) = A(E) + al(n),

where the last implication follows since ¥ # 0. Furthermore, A must be bounded since A is, and
therefore A € H* since it is a continuous linear functional on H. By Riesz representation (Theorem
7.10 in the lecture notes), there is some ¢ € H such that

AE) = (&) (E€H)

Since A is not identically 0 (its range is nonzero), neither is A, which means ¢ # 0 as well. So, we see
that there are two o, 9 € H \ {0} for which A = (p, &) ¢ for all £ € H (i.e. A =1 R p*). To compute
the desired quantities, note that for each unit vector &,

IAE] = [ {e, &) DIl = [ (e, O | < llelllI€N = lleell

by Cauchy-Schwartz. However, for the unit vector £ := H%H’ we see that

1 1
AL = (e, o) | = —llell> = lle
| ALl ||€0|||< ) T2 llell* = llell

Therefore, || A|| = sup{||A¢] : ||€]| = 1} = ||¢||. Next, we claim that A* is the map sending & — (¥, &) ¢
(i.e. A* = o ®1*). To see this, note that for all £,n € H,

(&, Am) = (e} (&) = (€ W)m) = (6, ) w,m) = (A"€,1)

Lastly, to compute o(A), we note that A is finite-rank and therefore compact, and so 0(A4) = {0}Uc,(A)
by the Riesz-Schauder theorem (Theorem 9.42 in the lecture notes, though I will remark that A is
invertible and 0 is not in the spectrum if dim(#) = 1). To compute the point spectrum, we see that

Aeop(A) <= FeHst A=) <= FEeHst (p, Y =X
Clearly, £ must be a multiple of v for this to happen. So, letting £ = o) for o # 0,
A €0,(A) <= Ja e C\{0} s.t. {p,a0)y = Aap <= FJa € C\{0} s.t. a{p,¥) =al <= (p,9) = A

Therefore, we see that

o(A) = {0, (¢, ¥)}

(d) Let A € B(#H) be self-adjoint and unitary. Then, o(A) C {—1,1}. Letting x.(A) be the projection-
valued measure for A, we can apply the Borel functional calculus via the map z — z to see that

A:/RZdX{z}(A)

Since the only values of the spectrum may be —1 or 1, these are the only two values of z where x}(4)
may be nonzero (in other words, spt(x.(4)) = o(A) C {-1,1}). So, we see that

A= D)xy(A) + (=)xq-13(4) = xq13 (4) = x-y(4) == P - Q

Clearly, both P and @ are orthogonal projections since indicator functions are idempotent and real-
valued. Now, note that by the properties of a projection-valued measure (Definition 10.17 in the lecture
notes),

1 =xq3(A4) + x(-13(4) + xg\(z13(4) = P+ Q

Problem 4 continued on next page. .. 9
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since xr\{+1}(A) = 0. Since P4@Q = 1, we see that any ¢ € H can be expressed as 1) = 1¢ = Py +Q
with Py € im(P) and Qv € im(Q). By Problem 6 on Problem Set 7, we see that P+ Q =1 =
P 1 Q = im(P) L im(Q), and so this expression is unique. Thus,

H =im(P) ® im(Q)
Letting Hy := im(P) and H_ := im(Q), we get the desired Z, grading of H via P and Q.

(e) Tt is a bit simpler for me to express R in the position basis as
RS, = 6n+1 (n S N)

and extended linearly. We claim that R* = L, the unilateral left shift operator defined on the basis by

Op— 1
Lé,, := Lon=
0 n=1

and extended linearly. To see that they are adjoints, let ¢, € ¢2(N) be arbitrary. We may therefore
express

Y= Z ©n0y and P = Z Ynbn

neN neN
for ¢,, 1, € C. As such, we see that

(Lo, ) = <Z wnénl,w> = <Z wnﬂén,w> = Puritn

n>1 neN neN

and
<903R"/)> = <507 an5n+l> = <907 Z ¢n—15n> = men—l = Z Prnt1tn,
neN n>1 n>1 neN

where the last equality simply relabeled indices. So, (Ly,¥) = (¢, Ri); since this holds for all ¢, €
£2(N), they are indeed adjoints. We may now compute |R|?> = LR and |R*|> = RL. For any n > 1, we
have that

LR6, = Lopy1 =6, and RLS, = Ré,—1 =9,

However, we note that
LRey = Les =e; yet RLe; =R0=0

since Le; = 0. As such, we find that |R|? = LR = 1, whereas |R*|? is defined on the basis as

On >1
|R*|%6, = RLS, = "
0 n=1
and extended linearly.
We may now compute the desired traces. We see that
0 A=R,R*
1 A=|R]?

(O, ASy) =
0if n =1, 1 otherwise A = |R*|?

1if n =1, 0 otherwise A =|R|?>— |R*|?

Problem 4 continued on next page. .. 10
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So,
> (0n,Rén) = (00, R*0, > (0ns |RP6n) = (60, |R*[?6,) = 00
n=1 n=1 n=1 n=1

and
o0

Z s (IR]? = [R*[?) 0,) =1

I am not sure what is meant by cyclicity. We see that R, R*, and |R|?> — |R*|? are trace-class, and
we also know that Jy is a cyclic vector for R I suppose. No idea what else we can say that relates to
cyclicity. m

11
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Problem 5

The following question has two independent parts:

(a) Let X,Y be normed spaces and A : X — Y linear. Suppose that whenever {1, }, C X converges
weakly to zero, {Av,} CY converges weakly to zero. Show that A is bounded.

(b) Let X,Y, Z be Banach spaces. Let A: X — Y and J : Y — Z be linear. Suppose that J is bounded
and injective, and JA is bounded. Show that A is bounded.

Solution

Proof. (a) Suppose by way of contradiction that A were not bounded. Then, there is some sequence
{n}tn C X of unit vectors such that ||At,| — oco. Since every bounded sequence contains a weakly-
convergent subsequence, there is some {i,, }» that converges weakly. Therefore, by hypothesis we have
that {1 an, }x. By Proposition 5.12 in the lecture notes, this means that { A, }r is norm-bounded. This
contradicts that ||A,| — oo, and so it must be that A is bounded.

(b) We will show that T'(A) C X x Y is closed, since that will imply A is bounded by the closed graph
theorem (Theorem 3.37 in the lecture notes). So, let {(¢n, Atn)}n C T'(A) be a sequence that converges to
some (¥, ) € X xY, and so ¢, — ¢ and Ay,, — ¢; we must show that Ay = ¢ and the result will follow.
Since JA is bounded and therefore continuous we know that ¢, - ¢ = (JA)(Yn) = (JA)p. Also, since
J is bounded and therefore continuous we know that Ay, — ¢ = J(A,) = Jp. By the uniqueness of
limits, this means that (JA)y = Jy. However, since J is injective, the only way this is possible is if Ay = .
Thus, I'(A) € Closed(X x Y) and A is bounded. m
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