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Problem 2

In this problem, we will show that we can transform any algorithms with convergence guarantees for strongly

convex functions to new algorithms with provable convergence guarantees for convex functions.

Suppose we have an algorithm A (which is not necessarily gradient descent). The algorithm takes an

initial point x1 ∈ X, and an integer T ∈ N as input, and has the following guarantee: for any ℓ-smooth,

α-strongly convex function f , after querying the gradient oracle T times, the output xT satisfies:

f(xT )− f(x⋆) ≤ ℓD2 exp(−T/κ)

where κ := ℓ/α is the condition number, and D is the diameter of domain X, i.e., D := maxx,y∈X ∥x− y∥.

Prove that, for any ℓ-smooth, convex function f , to find a point x̂ such that f(x̂) − f(x⋆) ≤ ε, it suf-

fices to query the gradient oracle Õ(ℓD2/ε) times, by smart uses of the algorithm A. Here Õ(·) hides both
constant and logarithmic factors.

Solution

Proof. Let ϵ > 0. We will define

f̃(x) := f(x) +
ϵ

4D2
∥x− x1∥2

Note that this is ϵ
2D2 -strongly convex since f(x) = f̃(x)− ϵ

4D2 ∥x−x1∥2 is convex. Furthermore, we see that

for all x, y, we have

∥∇f̃(x)−∇f̃(y)∥ =
∥∥∥∇f(x)−∇f(y) +

ϵ

D2
(∥x− x1∥ − ∥y − x1∥)

∥∥∥
≤ ∥∇f(x)−∇f(y)∥+ ϵ

2D2
∥x− y∥

≤
(
ℓ+

ϵ

2D2

)
∥x− y∥

So, f̃ is
(
ℓ+ ϵ

2D2

)
-smooth. Then we get that κ =

ℓ+ ϵ
2D2
ϵ

2D2
= 1 + 2D2ℓ

ϵ . If we let x∗ be the optimizer of f and

w be the optimizer of f̃ , then running algorithm A for T steps gives

f̃(xT )− f̃(w) ≤
(
ℓ+

ϵ

2D2

)
D2 exp

(
− ϵT

ϵ+ 2D2ℓ

)
We know that f̃(w) ≤ f̃(x∗) by selection of w, and also that f(xT ) ≤ f̃(xT ) since f ≤ f̃ always. So,

f(xT )− f̃(x∗) ≤ f̃(xT )− f̃(w) ≤
(
ℓ+

ϵ

2D2

)
D2 exp

(
− ϵT

ϵ+ 2D2ℓ

)
Plugging in our expression of f̃ ,

f(xT )− f(x∗) ≤
(
ℓ+

ϵ

2D2

)
D2 exp

(
− ϵT

ϵ+ 2D2ℓ

)
+

ϵ

4D2
∥x∗ − x1∥2

≤
(
ℓ+

ϵ

2D2

)
D2 exp

(
− ϵT

ϵ+ 2D2ℓ

)
+

ϵ

4

≤ ℓD2 exp

(
− ϵT

ϵ+ 2D2ℓ

)
+

ϵ

2
+

ϵ

4
,

where we used that ∥x∗ − x1∥ ≤ D and exp
(
− ϵT

ϵ+2D2ℓ

)
≤ 1. So, if we set

T ≥ ln

(
4ℓD2

ϵ

)(
2ℓD2

ϵ
+ 1

)
,
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then we get that
ϵT

ϵ+ 2D2ℓ
≥ ln

(
4ℓD2

ϵ

)
=⇒ exp

(
− ϵT

ϵ+ 2D2ℓ

)
≤ ϵ

4ℓD2

So, for such a selection of T , we have that

f(xT )− f(x∗) ≤ ℓD2 ϵ

4ℓD2
+

3ϵ

4
= ϵ

Since such a selection of T can be made to be Õ
(

ℓD2

ϵ

)
using O-tilde notation, we are done.
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Problem 3

Consider SGD of update form

xt+1 = xt − ηg(xt)

We assume that the stochastic gradient satisfies the following conditions:

(a) ∀x, Eg(x) = ∇f(x);

(b) ∀x, E∥g(x)−∇f(x)∥2 ≤ σ2.

In this question, we consider the unconstrained problem, and aim to prove the following theorem. Consider

a fixed time horizon T .

Theorem 1. For any α-strongly convex and ℓ-smooth function f , SGD with learning rate η = min
{

1
ℓ ,

ι
αT

}
and ι = max{1, 2 ln αT∥x1−x∗∥

σ } satisfies the following:

Ef

(
T+1∑
t=2

λtxt

)
− f(x∗) ≤ ℓe−T/κ

2
∥x1 − x∗∥2 + 2σ2ι

αT

where λt := (1− ηα)T+1−t/
∑T+1

s=2 (1− ηα)T+1−s and x∗ is the minimizer of f .

(a) Prove that for any t ∈ [T ], we have

E∥xt+1 − x∗∥2 ≤ (1− ηα)E∥xt − x∗∥2 − 2ηE[f(xt+1)− f(x∗)] + 2η2σ2

(b) Prove the following inequality

E

[
T+1∑
t=2

λt(f(xt)− f(x∗))

]
≤ e−ηαT

2η
∥x1 − x∗∥2 + ησ2

(c) Use above results to prove Theorem 1.

Solution

Proof. We will use that E∥g(x)∥2 = ∥∇f(x)∥2 + σ2 for all x, which can be found in the notes for Lecture

7. Throughout the problem below, we will at times condition on xt, and so we must be careful about the

difference between ∥E∇f(xt)∥ and E∥∇f(xt)∥; luckily, by Jensen’s inequality and convexity of the norm we

see that ∥E∇f(xt)∥ ≤ E∥∇f(xt)∥. So, when we apply the tower rule and remove the conditioning on xt, we

may bound both by E∥∇f(xt)∥ and avoid any confusion.

(a) By strong convexity, we know for all t that, conditioned on the value of xt, it holds that

f(xt)− f(x∗) ≤ ⟨∇f(xt), xt − x∗⟩ − α

2
∥xt − x∗∥2

= −1

η
⟨−η∇f(xt), xt − x∗⟩ − α

2
∥xt − x∗∥2

By linearity of the inner product and the fact that −η∇f(xt) = E[−ηg(xt)] = E[xt+1 − xt], we see that

f(xt)− f(x∗) ≤ −1

η
E[⟨xt+1 − xt, xt − x∗⟩]− α

2
∥xt − x∗∥2

=
1

2η

(
E∥xt+1 − xt∥2 + ∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
− α

2
∥xt − x∗∥2
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Note that ∥xt+1 − xt∥2 = η2∥g(xt)∥2 =⇒ E∥xt+1 − xt∥2 = η2(∥∇f(xt)∥2 + σ2). So, applying an outer

expectation over xt as well,

E[f(xt)− f(x∗)] ≤ η

2
E∥∇f(xt)∥2 +

ησ2

2
+

1

2η

(
(1− ηα)E∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
(1)

Next, we may take directly from the first part of the proof of Theorem 3 in Lecture 7 that by convexity,

smoothness, and the SGD update rule,

E[f(xt+1)− f(xt)] ≤ −η

2
E∥∇f(xt)∥2 +

ησ2

2
(2)

For notation, let r := 1− ηα and δt := E∥xt − x∗∥2. Then, adding inequalities (1) and (2) yields

E[f(xt+1)− f(x∗)] ≤ ησ2 +
1

2η
(rδt − δt+1)

Rearranging,

δt+1 ≤ rδt − 2ηE[f(xt+1 − f(x∗)] + 2η2σ2,

which is precisely the result of part (a).

(b) From part (a), we know that for all t > 1,

E[f(xt)− f(x∗)] ≤ ησ2 +
1

2η
(rδt−1 − δt)

Note that r ≥ 0 for large enough T by selection of η; if ι = 1 then η ≤ 1
αT ≤ 1

α =⇒ 1 − ηα ≥ 0 and if

ι takes the other value then ηα ≤ 2 ln(αT
√
δ1)

σT , which becomes ≤ 1 for large enough T . Define γt := rT+1−t

and Z :=
∑T+1

s=2 γs such that λt =
γt

Z . Then, multiplying the above equation by γt,

E[γt(f(xt)− f(x∗))] ≤ ησ2γt +
1

2η
(γt−1δt−1 − γtδt),

where we used that rγt = γt−1. Summing this inequality, we see that it telescopes into

T+1∑
t=2

E[γt(f(xt)− f(x∗))] ≤ ησ2Z +
1

2η
(γ1δ1 − γT+1δT+1)

Since γT+1δT+1 ≥ 0 and γ1 = rT = (1− ηα)T ≤ eηαT since 1− b ≤ e−b ∀b, we see that

T+1∑
t=2

E[γt(f(xt)− f(x∗))] ≤ ησ2Z +
e−ηαT

2η
∥x1 − x∗∥2

Dividing by Z,
T+1∑
t=2

E[λt(f(xt)− f(x∗))] ≤ e−ηαT

2ηZ
∥x1 − x∗∥2 + ησ2

If we can show that Z ≥ 1 then the result follows. To see this, we note that Z increases as a function of r

and that as r → 0, we have Z → 1 since
∑T+1

s=2 0T+1−t = 00 = 1. Therefore, (b) is proven.

(c) We first note that since
∑T+1

t=2 λt = 1 this is a convex combination, and so convexity of f guarantees that

f

(
T+1∑
t=2

λt

)
≤

T+1∑
t=2

λtf(xt)
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Applying this to the result of part (b),

Ef

(
T+1∑
t=2

λt

)
− f(x∗) ≤ e−ηαT

2η
∥x1 − x∗∥2 + ησ2

By our choice of η we know that ησ2 ≤ σ2ι
αT . Also, we know that η ≤ 1

ℓ , and so

e−ηαT

2η
≤ ℓe−ηαT

2
=⇒ Ef

(
T+1∑
t=2

λt

)
− f(x∗) ≤ ℓe−ηαT

2
∥x1 − x∗∥2 + σ2ι

αT

We will split the last analysis into cases; in each case we want to show that

ℓe−ηαT

2
∥x1 − x∗∥2 ≤ ℓe−T/κ

2
∥x1 − x∗∥2 + σ2ι

αT

as the result of part (c) will then follow. We proceed.

• Suppose that η = 1
ℓ . Then, ηαT = T

κ , and so

ℓe−ηαT

2
∥x1 − x∗∥2 =

ℓe−T/κ

2
∥x1 − x∗∥2 ≤ ℓe−T/κ

2
∥x1 − x∗∥2 + σ2ι

αT

• Suppose now that η = ι
αT and ι = 1, and so ηαT = 1. Note that since ι

αT ≤ 1
ℓ , we have

−T

κ
= −αT

ℓ
≥ −αTι

αT
= −1 = −ηαT

Thus,
ℓe−ηαT

2
∥x1 − x∗∥2 ≤ ℓe−T/κ

2
∥x1 − x∗∥2 ≤ ℓe−T/κ

2
∥x1 − x∗∥2 + σ2ι

αT

as desired.

• Suppose now that η = ι
αT and ι = 2 ln αT∥x1−x∗∥

σ . Then, ηαT = ι, and so

ℓe−ηαT

2
∥x1 − x∗∥2 =

ℓ∥x1 − x∗∥2

2

σ2

α2T 2∥x1 − x∗∥2
=

ℓσ2

2α2T 2

Since η = ι
αT we know that ℓ ≤ αT

ι , and so

ℓe−ηαT

2
∥x1 − x∗∥2 ≤ σ2

2aT ι

Lastly, we know that ι ≥ 1 and so 1
ι ≤ ι, yielding that

ℓe−ηαT

2
∥x1 − x∗∥2 ≤ σ2ι

2aT
≤ ℓe−T/κ

2
∥x1 − x∗∥2 + σ2ι

αT

as desired.

So, in any case we see that

Ef

(
T+1∑
t=2

λt

)
− f(x∗) ≤ ℓe−T/κ

2
∥x1 − x∗∥2 + 2σ2ι

αT

and (c) is proven.
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Problem 4

Consider binary classification problems with 0 − 1 loss. In the lecture, we proved that for a finite class of

classifiers F , under the realizable assumption

inf
f∈F

n∑
t=1

1{f(xt) ̸= yt} = 0,

the Halving algorithm (an improper learner) achieves a regret of O(ln |F|), where O hides absolute constant

factors.

Prove that, under the same setting, Hedge (a proper learner) with learning rate η = 1/2 achieves an expected

regret that is upper bounded by 4 ln |F|.

Solution

Proof. Let K := ln |F|. For each timestep t, let pt ∈ ∆(K) be our probabilities for each classifier in F
and ℓt ∈ {0, 1}K be the loss vector that assigns a loss value to each classifier. Then, we see that for the pt’s

provided by the Hedge algorithm, the lemma from the USC notes grants that

expected regret =

n∑
t=1

⟨pt, ℓt⟩ −
n∑

t=1

ℓt(i
∗) ≤ lnK

η
+ η

n∑
t=1

K∑
i=1

pt(i)ℓt(i)
2,

where we used the reasoning in the proof of Theorem 4 from the USC notes to observe that the LHS is

indeed the expected regret. Since we are in the realizable setting, ℓt(i
∗) = 0 for all t. Since we are using the

0− 1 loss, ℓt(i)
2 = ℓt(i), and so

∑K
i=1 pt(i)ℓt(i)

2 = ⟨pt, ℓt⟩. Combining these facts, we see that

expected regret =

n∑
t=1

⟨pt, ℓt⟩ ≤
lnK

η
+ η

n∑
t=1

⟨pt, ℓt⟩

Rearranging,

expected regret ≤ lnK

η(1− η)

Plugging in η = 1
2 , we see that

expected regret ≤ 4 lnK = 4 ln |F|

as desired.
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