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Evan Dogariu ECE 434: Problem Set 3 Problem 1

Problem 1

Determine whether the following functions are kernels (i.e. prove that function k is a kernel or provide a

counter-example showing that k is not a kernel):

(a) k(x, y) = cos(x− y) for all x, y ∈ R

(b) k(x, y) = cos∠(x, y) for all x, y ∈ Rd

Solution

Proof. (a) We expand

k(x, y) = cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

So, letting f : R → R2 be the map sending z 7→ [cos(z), sin(z)]T , then we have that

k(x, y) = f(x) · f(y),

where · denotes the usual Euclidean dot product on R2, which we know to be a valid kernel. So, by Theorem

1(3) from Lecture 6, we see that k is a kernel.

(b) We expand

k(x, y) = cos∠(x, y) =
x · y

∥x∥∥y∥

Letting f : Rd → Rd be the map sending z 7→ z
∥z∥ , we therefore have that

k(x, y) = f(x) · f(y),

where · denotes the usual Euclidean dot product on Rd, which we know to be a valid kernel. Again by

Theorem 1(3) from Lecture 6, we get that k is a kernel.
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Problem 2

Linear Support Vector Machine (SVM) finds the maximum margin linear classifier for binary classification

problems. In this question, we will kernelize this algorithm. We first formally introduce linear SVM:

Consider a binary classification problem with label set Y = {−1, 1}, linear function class F := {f(x) =

w⊤x |w ∈ Rd}, and the classification rule y = sgn(f(x)) which assigns value 1 if f(x) ≥ 0, and assigns value

−1 otherwise. Linear SVM can be formulated as optimizing the hinge loss with ℓ2 regularization:

min
w∈Rd

n∑
i=1

[1− yiw
⊤xi]+ + λ∥w∥22

where [z]+ := max{0, z} for any z.

(a) For a given kernel k : X × X → R, write the kernelized version of linear SVM as an optimization

problem over functions in the Reproducing Kernel Hilbert Space (RKHS).

(b) Argue why the RKHS optimization problem obtained in (a) can be reduced to an optimization problem

over vectors in Rn, and write down the latter optimization problem.

Solution

Proof. (a) Let k be the given kernel. By Theorem 2 from Lecture 4, there is a Hilbert space H and a

feature map ϕ : X → H such that k(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩H for all x1, x2 ∈ X. Kernelizing the linear

SVM objective, we seek

min
w∈Rd

n∑
i=1

[1− yik(w, x)]+ + λk(w,w)

where we have replaced standard Euclidean dot products with the kernel. By the RKHS property, we

therefore seek

min
w∈Rd

n∑
i=1

[1− yi ⟨ϕ(w), ϕ(xi)⟩H]+ + λ∥ϕ(w)∥2H

As was done in Section 1.2 of Lecture 6, we may relate this to an optimization over H. In particular, we

seek

min
f∈H

n∑
i=1

[1− yi ⟨f, ϕ(xi)⟩H]+ + λ∥f∥2H

Lastly, we observe that since ϕ(xi) = k(·, xi) by construction, the reproducing property of H gives that

⟨f, ϕ(xi)⟩H = ⟨f, k(·, xi)⟩H = f(xi). In total, we seek

min
f∈H

n∑
i=1

[1− yif(xi)]+ + λ∥f∥2H

(b) We will reduce the above optimization problem to one over vectors in Rn using the Representer Theorem.

To do so, define h : R → R via h(z) := λz. Then, since λ > 0, h is strictly increasing. If we define L : Rn → R
as

L(z1, . . . , zn) :=

n∑
i=1

[1− yizi]+,

then the above objective becomes trying to minimize

min
f∈H

L(f(x1), . . . , f(xn)) + h(∥f∥2H)

Problem 2 continued on next page. . . 3



Evan Dogariu ECE 434: Problem Set 3 Problem 2 (continued)

By the Representer Theorem (Theorem 2 in Lecture 6), we see that all solutions of this optimization problem

are of the form f∗(·) =
∑n

i=1 αik(·, xi) for some coefficients αi. Thus, to minimize this expression we simply

must find the α ≡ (α1, . . . , αn) ∈ Rn that minimizes it. To be precise, letting fα :=
∑n

i=1 αik(·, xi) =∑n
i=1 αiϕ(xi) for each α, we seek

min
α∈Rn

n∑
i=1

[1− yifα(xi)]+ + λ∥fα∥2H,

which is an optimization problem over Rn as desired.
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Problem 3

Consider again the binary classification setting with label set Y = {−1, 1}, and arbitrary function class

F ⊆ {f : X → R}. Let the margin loss ℓρ(f(x), y) = Φρ(yf(x)) where ρ > 0, and

Φρ(z) =


0 if ρ ≤ z

1− z
ρ if 0 ≤ z ≤ ρ

1 if z ≤ 0

We note this margin loss can be viewed as an upper bound (and a smoothed version) of 0-1 loss. Let r(f)

denote the population risk of classifier sgn(f(·)) under 0-1 loss. Let rρ(f) and r̂ρ(f) denote the population

risk and the empirical risk of f under margin loss ℓρ.

(a) Prove that for any function f ∈ F , r(f) ≤ rρ(f).

(b) Prove that with probability at least 1− δ, for any f ∈ F we have

rρ(f) ≤ r̂ρ(f) +
4

ρ
Rn(F) + c

√
1 + log(1/δ)

n

(c) Suppose f̂ is the solution of linear SVM problem from Problem 2 with an additional hard constraint

∥w∥2 ≤ R. Suppose domain X satisfies the condition that supx∈X ∥x∥2 ≤ D. Provide a margin-based

generalization bound for f̂ (i.e. a bound of the form r(f̂) ≤ r̂ρ(f̂) + error terms).

Solution

Proof. (a) Let f ∈ F . Then, we have that for all (x, y) ∈ X × Y ,

ℓ(f(x), y) ≤ ℓρ(f(x), y)

since the 0-1 loss ℓ is upper bounded by ℓρ (they agree for z ≤ 0 and for z ≥ ρ but 0 ≡ ℓ ≤ ℓρ over [0, ρ]).

Thus, in expectation over (x, y) ∼ D,

r(f) ≡ E(x,y)∼Dℓ(f(x), y) ≤ E(x,y)∼Dℓρ(f(x), y) ≡ rρ(f)

as desired.

(b) Define the function classes G := {(x, y) 7→ ℓρ(f(x), y) : f ∈ F} and H := {(x, y) 7→ yf(x) : f ∈ F} for

convenience. Then, by definition of ℓρ we may represent G via

G = {(x, y) 7→ (Φρ ◦ h)(x, y) : h ∈ H} =⇒ G = Φρ ◦ H

Note that, letting Π[a,b] : R → R be the projection of a point onto the interval [a, b] (i.e. clipping), then

Φρ(z) ≡ 1− 1

ρ
Π[0,ρ](z)

So, by Theorem 1(5) and 1(3) from Lecture 4,

Rn(G) ≡ Rn

(
1− 1

ρ
Π0,ρ ◦ H

)
≤ 1√

n
+

1

ρ
Rn(Π[0,ρ] ◦ H)

Since projection operators are 1-Lipschitz and this projection operator maps 0 to 0, we may apply Theorem

1(4) to see that

Rn(G) ≤
1√
n
+

2

ρ
Rn(H)

Problem 3 continued on next page. . . 5



Evan Dogariu ECE 434: Problem Set 3 Problem 3 (continued)

By Equation 3 in Lecture 4, we know that Rn(H) = Rn(F) (since multiplying by labels y ∈ {−1, 1} doesn’t

change the distribution of Rademacher variables). As such,

Rn(G) ≤
1√
n
+

2

ρ
Rn(F)

Now, by combining Proposition 1 and Theorem 1 from Lecture 2, we see that with probability ≥ 1− δ,

rρ(f)− r̂ρ(f) ≤ 2Rn(G) +
√

log(1/δ)

2n

Thus,

rρ(f)− r̂ρ(f) ≤
4

ρ
Rn(F) +

2√
n
+

√
log(1/δ)

2n

Letting a := log(1/δ) > 1 for notation, we observe that

2√
n
+

√
a

2n
=

√(
2√
n
+

√
a

2n

)2

=

√
4

n
+

a

2n
+ 2

√
4a

2n2
=

√
4 + 0.5a

n
+

2
√
2

n

√
a

Now, we know that a ≥ 1 =⇒
√
a ≤ a =⇒ 4+0.5a+2

√
2
√
a ≤ 4+0.5a+2

√
2a. Since 0.5+2

√
2 ≈ 3.33 ≤ 4,

we find that
2√
n
+

√
a

2n
≤
√

4 + 4a

n
= 2

√
1 + a

n

Plugging this algebraic detour back into our original expression,

rρ(f)− r̂ρ(f) ≤
4

ρ
Rn(F) + 2

√
1 + log(1/δ)

n
,

which is the desired inequality.

(c) Let Flin be the function class given by linear SVMs with bounded w’s over bounded inputs. This is

precisely the function class handled in Section 1.2.1 of Lecture 5, and so we may use the Rademacher com-

plexity bound derived there (note that even though the problem isn’t regression as it was in the notes, the

function class Flin is identical and therefore so is the complexity). Thus, by part (b) above,

Rn(Flin) ≤
RD√
n

=⇒ rρ(f̂)− r̂ρ(f̂) ≤
4RD

ρ
√
n

+ 2

√
1 + log(1/δ)

n

As 1√
n
≤
√

1+log(1/δ)
n clearly (since δ < 1 =⇒ 1/δ > 1 =⇒ log(1/δ) > 0), we see that

rρ(f̂)− r̂ρ(f̂) ≤
(
4RD

ρ
+ 2

)√
1 + log(1/δ)

n

Lastly, since r(f̂) ≤ rρ(f̂) by part (a), we combine everything to get that

r(f̂) ≤ r̂ρ(f̂) +

(
4RD

ρ
+ 2

)√
1 + log(1/δ)

n
,

which is a generalization bound of the desired form.
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Problem 4

Prove that the following operations preserve the convexity of the functions. For simplicity, you can always

assume the domain of the function is Rd.

(a) If f1, . . . , fn are convex functions, α1, . . . , αn are nonnegative scalars, show that f :=
∑n

i=1 αifi is also

a convex function.

(b) If fθ is a convex function for all θ ∈ Θ, show that f := supθ∈Θ fθ is also a convex function.

(c) If g is a convex function, show that for an arbitrary matrix A ∈ Rd×d, and vector b ∈ Rd, the function

f(x) := g(Ax+ b) is also convex.

Solution

Proof. (a) Let t ∈ (0, 1) and x, y ∈ Rd be arbitrary. We wish to show that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

To this end, we compute

f(tx+ (1− t)y) =

n∑
i=1

αifi(tx+ (1− t)y)

Since each fi is convex, we know that fi(tx+ (1− t)y) ≤ tfi(x) + (1− t)fi(y), and so

f(tx+(1− t)y) ≤
n∑

i=1

αi(tfi(x)+(1− t)fi(y)) = t

(
n∑

i=1

αifi(x)

)
+(1− t)

(
n∑

i=1

αifi(y)

)
= tf(x)+(1− t)f(y)

So, f is convex since this holds for all choices of t, x, y.

(b) Let t ∈ (0, 1) and x, y ∈ Rd be arbitrary. Note that for all θ ∈ Θ, fθ ≤ f by definition. So, for

every θ ∈ Θ we have

fθ(tx+ (1− t)y) ≤ tfθ(x) + (1− t)fθ(y) ≤ tf(x) + (1− t)f(y),

where the first inequality follows by convexity of fθ. Since the above bound holds for all θ, it will hold in

supremum. So,

f(tx+ (1− t)y) ≡ sup
θ∈Θ

{fθ(tx+ (1− t)y)} ≤ tf(x) + (1− t)f(y)

Therefore, f is convex since this holds for all choices of t, x, y.

(c) Let A ∈ Rd×d and b ∈ Rd be arbitrary, and define f(x) := g(Ax + b). Let t ∈ (0, 1) and x, y ∈ Rd

be arbitrary. Then,

f(tx+ (1− t)y) = g(A(tx+ (1− t)y) + b) = g(tAx+ (1− t)Ay + b)

Since we may write b = tb+ (1− t)b for free, this equals

= g(tAx+ tb+ (1− t)Ay + (1− t)b) = g(t(Ax+ b) + (1− t)(Ay + b))

By convexity of g and the definition of f ,

g(t(Ax+ b) + (1− t)(Ay + b)) ≤ tg(Ax+ b) + (1− t)g(Ay + b) = tf(x) + (1− t)f(y)

Combining everything,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

So, f is convex since this holds for all choices of t, x, y.
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