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Evan Dogariu ECE 434: Problem Set 2 Problem 1

Problem 1

Compute the exact VC dimension for the following boolean classes.

(a) Indicator functions on all half-spaces in Rd:

F :=
{
f(x) = 1{wT x≤t} : w ∈ rd, t ∈ R

}
(b) Let F be the collection of all polytopes in R2, where we define a polytope in the plane as a convex hull

of a collection of finitely many points.

Solution

Proof. (a) We first show that F can shatter a collection of d+1 points. In particular, let {ej}dj=1 denote the

standard basis, and consider the collection {0, e1, . . . , ed} with 0 the origin. Let (y0, y1, . . . , yd) ∈ {0, 1}d+1

be any arbitrary labeling of these points. We construct the vector w by saying that for j = 1, . . . , d, let

wj :=

{
1 yj = 1

−1 yj = 0

Then, wT ej = wj . Let t :=

{
0 y0 = 1

−0.1 y0 = 0
. Then, we have wT ej = wj ≤ t ⇐⇒ yj = 1 and also

wT 0 = 0 ≤ t ⇐⇒ y0 = 1, correctly classifying these points with these labels. Since this holds for all

labelings, we have shattered these d+ 1 points. So, the VC dimension is ≥ d+ 1.

Suppose now that we have an arbitrary collection of d+ 2 points, say {x1, . . . , xd+2}. Note that we may lift

to a higher dimension with homogenous coordinates, and so the function space

F̃ :=
{
f(x) = 1w̃T [x,1]≤0 : w̃ ∈ Rd+1

}
is equal to F (here, we use the notation [x, 1]) to describe concatenating 1 to the end of the vector x. F̃ = F
since for any w̃ = [w, t] ∈ Rd+1 (here, t ∈ R and w ∈ Rd) we know that w̃T [x, 1] ≤ 0 ⇐⇒ wTx+ t ≤ 0 ⇐⇒
wTx ≤ t, and so for each function in one of the hypothesis classes we may find a corresponding function in

the other. Define x̃j := [xj , 1]. Now, we know that since there are d+ 2 points x̃j ∈ Rd+1, one of the points

must be linearly dependent on the others. As such, there exist αj ’s in R (at least one of which is nonzero)

for which

x̃k =
∑
j ̸=k

αj x̃j

We will construct a labeling of the points that cannot be classified as follows: set

yj =

{
0 j = k or αj ≤ 0

1 j ̸= k and αj > 0

Now, suppose by way of contradiction that some w̃ ∈ Rd+1 correctly classifies these points with this labeling.

Therefore, for all j ̸= k we have that w̃T x̃j ≤ 0 ⇐⇒ αj > 0. So, looking at the kth point,

w̃T x̃k = w̃T

∑
j ̸=k

αj x̃j

 =
∑
j ̸=k

αjw̃
T x̃j

We know that each αjw̃
T x̃j ≤ 0 since they have opposite signs. Therefore, w̃T x̃k ≤ 0 as well. However, we

set yk = 0, which would require that w̃T x̃k > 0 for correct classification. This is a contradiction, and so w̃
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cannot correctly classify these points with these labels. Since this holds for all labelings of all collections of

d+ 2 distinct points, the VC dimension is < d+ 2.

(b) We claim that the VC dimension of F is infinite. To see this, let n ∈ N be arbitrary; we will show

we can shatter n points. Let {x1, . . . , xn} ⊆ Rd be n distinct points distributed around the unit circle

(say, the nth roots of unity). Consider any arbitrary labeling (y1, . . . , yn) ∈ {0, 1}n of these points (if less

than 3 vertices are labeled 1 we can classify it trivially by infinitesimally encircling the line connecting the

two 1-labeled points, infinitesimally encircling the only 1-labeled point, or drawing a far away polytope if

yj = 0∀j; so suppose WOLOG that at least 3 points have label 1). Define E to be the convex polygon

formed by the convex hull of the points {xj : yj = 1} (such that E contains its vertices). Then, 1E ∈ F
by definition. Also, since E contains its vertices, we know yj = 1 =⇒ xj ∈ E. Now, suppose that j is

such that yj = 0. Then, xj cannot lie in E; to see this, consider the two points xℓ and xr closest to xj

clockwise and counterclockwise for which yℓ = yr = 1. Then, the line connecting xℓ and xr forms an edge

of E by construction. However, the lines xj − xℓ and xj − xr are supporting hyperplanes of E, and so they

are tangent to the boundary of E exactly at xℓ and xr respectively, and otherwise lie entirely outside of E.

Thus, xj /∈ E. So, we see that xj ∈ E ⇐⇒ yj = 1, and so 1E correctly classifies this labeling. Since this

holds for all labelings of the n points, the VC dimension is ≥ n. Since this holds for all n ∈ N, we are done.
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Problem 2

Consider classification problem using indicator functions of all half spaces in Rd (same as 1(a)):

F := {f(x) = 1{w⊤x≤t} : w ∈ Rd, t ∈ R}.

Across this problem, we use 0-1 loss. Suppose that we indeed have the deterministic relation Y = f⋆(X)

holds under the true underlying data distribution D for certain f⋆ ∈ F . Prove that with probability at least

1 − δ, the population risk of ERM is ≤ C
√

d log(n/δ)
n , where C is some absolute constant and n ≥ 2 is the

number of training samples.

Solution

Proof. Let r(·) denote the population risk and r̂(·) denote the empirical risk. We have from Lecture 4 that

with probability ≥ 1− δ, the following bound holds:

excess risk ≡ r(f̂)− r(f∗) ≤ 4Rn(F) + 2B

√
log(1/δ)

2n

In the realizable setting, r(f∗) = 0, and so this is also a bound on the population risk of the ERM classifier

f̂ . In the 0-1 classification setting, we know B = 1. Suppose first that n > d. Then, by Corollary 1 from

Lecture 3, we may use our knowledge that the VC dimension of F is d+ 1 (see Problem 1(a)) to see

Rn(F) ≤
√

2 log(2) + 2(d+ 1) log(en/(d+ 1))

n

Since n > d, we know that 2 < e ≤ en/(d+ 1), and so log(2) ≤ log(en/(d+ 1)). Thus,

Rn(F) ≤ 2

√
(d+ 1) log(en/(d+ 1))

n

We may certainly suppose that δ < d+1
e , and so log(en/(d+ 1)) < log(n/δ). Since d+ 1 ≤ 2d, we get

Rn(F) ≤ 2
√
2

√
d log(n/δ)

n

So,

r(f̂) ≤ 2
√
2

√
d log(n/δ)

n
+

2√
2

√
log(1/δ)

n

Since n ≥ 1 =⇒ log(1/δ) ≤ log(n/δ) and d ≥ 1, we finally see

r(f̂) ≤ 2
√
2

√
d log(n/δ)

n
+
√
2

√
d log(n/δ)

n
= 3

√
2

√
d log(n/δ)

n

as desired. Suppose now that 2 ≤ n ≤ d. By boundedness of the functions in F , we see that the Rademacher

complexity Rn(F) ≤ 1 always (we have 1
n |

∑
i ϵif(xi)| ≤ 1

n

∑
i |ϵif(xi)| ≤ supx |f(x)| ≤ 1 since |ϵi| = 1). So,

r(f̂) ≤ 4 +
√
2

√
log(1/δ)

n
≤ 4 +

√
2

√
d log(n/δ)

n

In this setting, 1 ≤ d
n . We may certainly take δ < n

e =⇒ e < n
δ =⇒ 1 < log(n/δ). Together, we see that

1 ≤
√

d log(n/δ)
n , from which we get that

r(f̂) ≤ 4

√
d log(n/δ)

n
+

√
2

√
d log(n/δ)

n
= (4 +

√
2)

√
d log(n/δ)

n

Thus, if we take C := max{4 +
√
2, 3

√
2}, the desired bound holds for all n ≥ 2.
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Problem 3

Consider F as the set of linear functions with bounded weights

F =
{
f(x) = w⊤x : w ∈ Rd, ∥w∥2 ≤ 1

}
.

on domain X =
{
x ∈ Rd, ∥x∥2 ≤ 1

}
. Prove that there exists an absolute constant c, C s.t. for any ϵ ∈ (0, 1):

(c
ϵ

)d

≤ N(ϵ,F , ∥·∥∞) ≤
(
C

ϵ

)d

Solution

Proof. We note that for any f, g ∈ F given by wf , wg ∈ Rd respectively, we have that

∥f − g∥∞ = sup
∥x∥2≤1

|wT
f x− wT

g x| = sup
∥x∥2≤1

|(wf − wg)
Tx|

This is maximized for x∗ =
wf−wg

∥wf−wg∥2
obviously; in this case, we have (wf − wg)

Tx∗ =
∥wf−wg∥2

2

∥wf−wg∥2
, yielding

∥f − g∥∞ = ∥wf − wg∥2

So, let B := {w ∈ Rd : ∥w∥2 ≤ 1} denote the unit ball in Rd. There is clearly a bijection between F and

B, and the above logic reveals that this maps the ∥ · ∥∞ norm on F to the ∥ · ∥2 norm on B. As such,

N(ϵ,F , ∥ · ∥∞) = N(ϵ, B, ∥ · ∥2).

We now seek to bound this covering number. Note that for any cover using n balls of radius ϵ, say with

centers {x1, . . . , xn}, we have B ⊆
⋃n

j=1 Bϵ(xj) =⇒ vol(B) ≤
∑n

j=1 vol(Bϵ(xj)) = nϵd vol(B), where we

used that the volume of a union is upper bounded by the sum of the volumes (equality holds iff the union

is almost disjoint). So, n ≥ 1
ϵd

for all covers, and so this certainly holds for the minimal cover.

Now, we also know that the covering number is ≤ M(ϵ, B, ∥ · ∥2), the packing number, by Lemma 2 from

Lecture 5. Consider any ϵ-packing of size n, which means we may fit n disjoint balls, say with centers

{x1, . . . , xn} ⊆ B, of radius ϵ
2 inside B. Then, since these balls are disjoint and are contained in the closed

ball of radius 1 + ϵ
2 about the origin (at worst case the center is on the boundary of B), we get

⊔
j=1

Bϵ/2(xj) ⊆ B1+ϵ/2(0) =⇒ vol

⊔
j=1

Bϵ/2(xj)

 =

n∑
j=1

vol(Bϵ/2(xj)) ≤ vol(B1+ϵ/2(0))

So, since vol(Br(x)) = rd vol(B), this becomes

n
( ϵ

2

)d

≤
(
1 +

ϵ

2

)d

=⇒ n ≤
(
2 + ϵ

2
· 2
ϵ

)d

For ϵ < 1 we know 2+ϵ
2 ≤ 3

2 , and so

n ≤
(
3

2
· 2
ϵ

)
=

(
3

ϵ

)d

Since this holds for every packing of size n, it also holds for the maximal packing. So, M(ϵ, B, ∥ · ∥2) ≤
(
3
ϵ

)d
.

Thus, (
1

ϵ

)d

≤ N(ϵ, B, ∥ · ∥2) = N(ϵ,F , ∥ · ∥∞) ≤
(
3

ϵ

)d

and the result is proven.
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Problem 4

Consider regression using function class F , which is the set of all non-decreasing functions on domain R with

range Y = [−1, 1].

(a) Consider a fixed set of points {xi}ni=1, and the corresponding distance:

ρn(f, g) =

√√√√ 1

n

n∑
i=1

(f(xi)− g(xi))2

Prove that for any ϵ ∈ (0, 1), we have N(ϵ,F , ρn) ≤ (n+ 1)(
1
ϵ+1).

(b) Use (a) to prove the following bound on Rademacher complexity:

Rn(F) ≤ c ·
√

log n

n

for some absolute constant c.

(c) Use the above results to bound the excess risk of ERM with squared loss.

Solution

Proof. (a) Let ϵ ∈ (0, 1). We note that ρn measures the square root of average squared variation only on

our test points. So, if we discretize the y-axis at scale ϵ
2 (anything < ϵ suffices), functions taking the same

discrete values at all of the xj will have variation < ϵ at each xj (less than ϵ
2 in either direction), and so

they will have ρn distance < ϵ. Precisely, let Y := {−1,−1 + 2ϵ,−1 + 4ϵ, . . .} ⊆ [−1, 1]; then, |Y | = ⌊ 2
ϵ ⌋.

We define a class of functions Gn,ϵ ⊆ F where for any set of n non-decreasing values (y1, . . . , yn) from Y ,

there is a function in Gn,ϵ that realizes those values precisely at x1, . . . xn in the non-decreasing order (i.e.

g(xj) = yj ∀j). It is easy to see that for any f ∈ F , there is some non-decreasing sequence {y1, . . . , yn} ⊆ Y

such that |f(xj)− yj | < ϵ for all j by construction of Y . Since there is some g ∈ Gn,ϵ realizing this sequence

of yj ’s, we find that |f(xj)−g(xj)| < ϵ for all j, and so ρn(f, g) < ϵ. Therefore, the set of ϵ-balls with centers

in Gn,ϵ covers F . So, the minimal covering number must be less, yielding

N(ϵ,F , ρn) ≤ |Gn,ϵ|

We now must bound the cardinality of Gn,ϵ. This cardinality is precisely equal to the number of non-

decreasing sequences of length n that can be taken from Y . By stars and bars, this equals

|Gn,ϵ| =
(
|Y |+ n

n

)
=

(⌊ 2
ϵ ⌋+ n)!

n!⌊ 2
ϵ ⌋!

≤
(
e(n+ ⌊ 2

ϵ ⌋)
⌊ 2
ϵ ⌋

)⌊ 2
ϵ ⌋

≤
(
ϵen+ 2e

2

)⌊ 2
ϵ ⌋

=
(e
2

)⌊ 2
ϵ ⌋ · (ϵn+ 1)⌊

2
ϵ ⌋

I am unsure how to continue from here :)

(b) Consider a fixed set of points {xi}ni=1. Using Theorem 2 from Lecture 5 and the bound from (a),

we find

Rn(F(x1:n)) ≤ inf
α>0

α+

√
2 log

(
(n+ 1)(1+1/α)

)
n

 = inf
α>0

{
α+

√
2(1 + 1/α) log (n+ 1)

n

}

We know that n+ 1 ≤ n2 for all n ∈ N, and so log(n+ 1) ≤ 2 log(n). This gives

Rn(F(x1:n)) ≤ inf
α>0

{
α+ 2

√
1 +

1

α

√
log(n)

n

}
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Since 1 + 1
α ≥ 1, we know that

√
1 + 1

α ≤ 1 + 1
α = α+1

α . Thus, letting cn := 2
√

log(n)
n ,

Rn(F(x1:n)) ≤ inf
α>0

{
α+ cn

α+ 1

α

}
= inf

α>0

{
α2 + cnα+ cn

α

}
The infimum is certainly less than or equal to the value at α = 1. Plugging this in, we get

Rn(F(x1:n)) ≤
1 + cn + cn

1
= 2cn = 4

√
log(n)

n

Since this holds for all fixed sets of points, we get the result that

Rn(F) ≤ 4

√
log(n)

n

(c) Let y, y′, y∗ ∈ Y . Then, letting ℓ(·, ·) be the squared loss,

|ℓ(y, y∗)− ℓ(y′, y∗)| = |(y− y∗)2 − (y′ − y∗)2| = |(y− y∗ − y′ + y∗)(y− y∗ + y′ − y∗)| = |y− y′| · |y+ y′ − 2y∗|,

where we used the difference of squares. Since |y + y′ − 2y∗| ≤ 4 by boundedness of Y , we see that

|ℓ(y, y∗)− ℓ(y′, y∗)| ≤ 4|y − y′|

So, the square loss over this domain is 4-Lipschitz in the first slot. So, using Theorem 1 from Lecture 5, as

well as part (b), we see that

Rn(ℓ ◦ F) ≤ 16

√
log(n)

n

Therefore, we get the bound

excess risk ≤ 16

√
log(n)

n
+ small concentration terms
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