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Problem 1

Compute the exact VC dimension for the following boolean classes.

(a) Indicator functions on all half-spaces in R%:

Fi= {f(f) =Lyre<ty t WE rd te R}

(b) Let F be the collection of all polytopes in R?, where we define a polytope in the plane as a convex hull
of a collection of finitely many points.

Solution

Proof. (a) We first show that F can shatter a collection of d+1 points. In particular, let {e; };;:1 denote the
standard basis, and consider the collection {0, e, ...,eq} with O the origin. Let (yo,¥1,...,%q4) € {0, 1}
be any arbitrary labeling of these points. We construct the vector w by saying that for j = 1,...,d, let

wj =
—1 yj :O
0 yo=1
—01 yo=0

wl0 =0 <t <= yo = 1, correctly classifying these points with these labels. Since this holds for all
labelings, we have shattered these d + 1 points. So, the VC dimension is > d + 1.

T

Then, wle; = w;. Let t = { Then, we have w'e; = w; <t <= y; = 1 and also

Suppose now that we have an arbitrary collection of d + 2 points, say {1, ..., Z4+2}. Note that we may lift
to a higher dimension with homogenous coordinates, and so the function space

f = {f(x) = 1@T[$71]§0 . 12) € Rd+1}

is equal to F (here, we use the notation [z, 1]) to describe concatenating 1 to the end of the vector x. F=F
since for any w = [w,t] € R¥*! (here, t € R and w € R?) we know that @7 [z,1] <0 <= wlz+t<0 <
wTz < t, and so for each function in one of the hypothesis classes we may find a corresponding function in
the other. Define z; := [z;,1]. Now, we know that since there are d 4 2 points z; € R*1 one of the points
must be linearly dependent on the others. As such, there exist a;’s in R (at least one of which is nonzero)

o= oy
ik

We will construct a labeling of the points that cannot be classified as follows: set

for which

)0 j=kora; <0
! 1 j#kand a; >0

Now, suppose by way of contradiction that some 10 € R?*! correctly classifies these points with this labeling.
Therefore, for all j # k we have that w”z; <0 <= «a; > 0. So, looking at the k" point,

@TE];Z@T E Ozj.’fj = E aij@
J#k J#k

We know that each a;w?z; < 0 since they have opposite signs. Therefore, w7y < 0 as well. However, we
set yx = 0, which would require that w? 2y > 0 for correct classification. This is a contradiction, and so @
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cannot correctly classify these points with these labels. Since this holds for all labelings of all collections of
d + 2 distinct points, the VC dimension is < d + 2.

(b) We claim that the VC dimension of F is infinite. To see this, let n € N be arbitrary; we will show
we can shatter n points. Let {zi,...,z,} € R? be n distinct points distributed around the unit circle
(say, the n'" roots of unity). Consider any arbitrary labeling (y1,...,y,) € {0,1}" of these points (if less
than 3 vertices are labeled 1 we can classify it trivially by infinitesimally encircling the line connecting the
two 1-labeled points, infinitesimally encircling the only 1-labeled point, or drawing a far away polytope if
y; = 0Vj; so suppose WOLOG that at least 3 points have label 1). Define E to be the convex polygon
formed by the convex hull of the points {z; : y; = 1} (such that E contains its vertices). Then, 1g € F
by definition. Also, since E contains its vertices, we know y; =1 = z; € E. Now, suppose that j is
such that y; = 0. Then, x; cannot lie in F; to see this, consider the two points z; and z, closest to z;
clockwise and counterclockwise for which y, = vy, = 1. Then, the line connecting z, and x, forms an edge
of E by construction. However, the lines x; — x; and z; — x, are supporting hyperplanes of E, and so they
are tangent to the boundary of E exactly at x, and z, respectively, and otherwise lie entirely outside of F.
Thus, z; ¢ E. So, we see that z; € E <= y; = 1, and so 1g correctly classifies this labeling. Since this
holds for all labelings of the n points, the VC dimension is > n. Since this holds for all n € N, we are done.
]
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Problem 2

Consider classification problem using indicator functions of all half spaces in R¢ (same as 1(a)):

Fi={f(@) = Lpyracy : weRL tER}
Across this problem, we use 0-1 loss. Suppose that we indeed have the deterministic relation Y = f*(X)
holds under the true underlying data distribution D for certain f* € F. Prove that with probability at least

1 — 4, the population risk of ERM is < C'4/ M, where C' is some absolute constant and n > 2 is the
number of training samples.

Solution

Proof. Let r(-) denote the population risk and #(-) denote the empirical risk. We have from Lecture 4 that
with probability > 1 — 4, the following bound holds:
log(1/0)

excess risk = r(f) — r(f*) < 4R, (F) + 2B —on

In the realizable setting, r(f*) = 0, and so this is also a bound on the population risk of the ERM classifier
f- In the 0-1 classification setting, we know B = 1. Suppose first that n > d. Then, by Corollary 1 from
Lecture 3, we may use our knowledge that the VC dimension of F is d + 1 (see Problem 1(a)) to see

Ro(F) < \/2 log(2) + 2(d + 711) log(en/(d + 1))

Since n > d, we know that 2 < e < en/(d+ 1), and so log(2) < log(en/(d + 1)). Thus,

Ru(F) < 2\/(d +1) log(sn/(d +1))
We may certainly suppose that § < %, and so log(en/(d + 1)) < log(n/d). Since d + 1 < 2d, we get
Ru(F) < 2V2 7‘“0%(1”/ )
So,
() < 2v3 dlog(n/d) n 2 [log(1/9)

n V2 n

Since n > 1 = log(1/0) <log(n/d) and d > 1, we finally see

() < 2y DBOSE) g [ALoB0/D) _ g [llos(n/B)

as desired. Suppose now that 2 < n < d. By boundedness of the functions in F, we see that the Rademacher
complexity R, (F) < 1 always (we have L |37 €; f(z;)| < L 3, |e; f(2:)] < sup, | f(z)] < 1 since |¢;| = 1). So,

r(f) < 4+ vay 80y 5, [ Hlog(n/0)

In this setting, 1 < . We may certainly take § < 2 = e < % = 1 <log(n/5). Together, we see that

1< \/@ , from which we get that

r( )<4\/@+\/§ M:@H\/ﬁ) M

Thus, if we take C':= max{4 + V2, 3\@}, the desired bound holds for alln > 2. =

>
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Problem 3

Consider F as the set of linear functions with bounded weights

F={f)=w"z: weR" |uwl, <1}.

on domain X = {z € R?, ||lz||; < 1}. Prove that there exists an absolute constant ¢, C s.t. for any € € (0,1):

(g)d <N, F, |lloo) < (f)d

Solution

Proof. We note that for any f,g € F given by wy, w, € R? respectively, we have that

_ T T | _ T
If —glleo = sup |wpz—wgz|= sup |(wy—wy) z|
llz]l2<1 llz]l2<1
2
. . . . w f—w . . . w f—w . .
This is maximized for z* = —~—"% obviously; in this case, we have (w; — w,)?z* = llws —wgll, yielding
lws—wgll2 ’ ’ 9 lws—wgll2’

1 = glloo = llwy — wgll2

So, let B := {w € R?: |lw|]2 < 1} denote the unit ball in R%. There is clearly a bijection between F and
B, and the above logic reveals that this maps the || - ||oc norm on F to the || - |2 norm on B. As such,
N(e, Fsll - lloo) = N(&, B, || - [2)-

We now seek to bound this covering number. Note that for any cover using n balls of radius €, say with

centers {z1,...,x,}, we have B C J]_, Be(z;) == vol(B) < 37 vol(Bc(z;)) = ne?vol(B), where we

used that the volume of a union is upper bounded by the sum of the volumes (equality holds iff the union

is almost disjoint). So, n > Eid for all covers, and so this certainly holds for the minimal cover.

Now, we also know that the covering number is < M (e, B, || - ||2), the packing number, by Lemma 2 from

Lecture 5. Consider any e-packing of size n, which means we may fit n disjoint balls, say with centers
e

{z1,...,2,} C B, of radius § inside B. Then, since these balls are disjoint and are contained in the closed

ball of radius 1 + § about the origin (at worst case the center is on the boundary of B), we get

|_| Beja(xj) € Biges2(0) = vol |_| Beja(zj) | = ZVOI(BE/Q(Z‘]')) < vol(Bi4./2(0))

Jj=1 Jj=1 J=1

So, since vol(B,.(x)) = r?vol(B), this becomes

e\ ¢ €e\d 24+€ 2 d
N <1 7) < 2
"(2) *<+2 :n( 2 e)

S%,andso
ae(?2)Z(3)
—“\2 €/ \e

Since this holds for every packing of size n, it also holds for the maximal packing. So, M (e, B, || -]]2) < ( %)d.

Thus,
1\ 3\°
<6> SN(eB, [ - [l2) = N(&, F, || - lo) < ()

€

2+€
2

For ¢ < 1 we know

and the result is proven. m
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Problem 4

Consider regression using function class F, which is the set of all non-decreasing functions on domain R with
range Y = [—1,1].

Consider a fixed set of points {z; , and the corresponding distance:
z 1

onl.9) = | = S (f (@) - glao))?

n-
=1

Prove that for any € € (0,1), we have N (e, F, p,) < (n+ 1)(%"’1).

(b) Use (a) to prove the following bound on Rademacher complexity:

logn

Rn(F)<ec

n

for some absolute constant c.

(c¢) Use the above results to bound the excess risk of ERM with squared loss.

Solution

Proof. (a) Let € € (0,1). We note that p,, measures the square root of average squared variation only on
our test points. So, if we discretize the y-axis at scale § (anything < e suffices), functions taking the same
discrete values at all of the x; will have variation < € at each z; (less than § in either direction), and so
they will have p,, distance < e. Precisely, let Y := {—1,—1+ 2¢,—1 +4e,...} C [-1,1]; then, [Y| = |2].
We define a class of functions G, . C F where for any set of n non-decreasing values (y1,...,y,) from Y,
there is a function in G, . that realizes those values precisely at z1, ...z, in the non-decreasing order (i.e.
g(z;) =y, Vj). It is easy to see that for any f € F, there is some non-decreasing sequence {y1,...,y,} CY
such that |f(z;) —y;| < € for all j by construction of Y. Since there is some g € G, . realizing this sequence
of y;’s, we find that |f(z;) —g(z;)| < € for all j, and so p,(f,g) < €. Therefore, the set of e-balls with centers

in Gy, ¢ covers F. So, the minimal covering number must be less, yielding
N(evfa Pn) < |gn,e|

We now must bound the cardinality of G, . This cardinality is precisely equal to the number of non-
decreasing sequences of length n that can be taken from Y. By stars and bars, this equals

€

|gn,e

I am unsure how to continue from here :)

(b) Consider a fixed set of points {z;}_ ;. Using Theorem 2 from Lecture 5 and the bound from (a),
we find

Rn(F(z1:n)) < inf § o+ \/QIOg ((n +n1)(1+1/a)) = Inf {a * \/2(1 + 1/a)nlog CE) }

We know that n 4+ 1 < n? for all n € N, and so log(n + 1) < 2log(n). This gives

Ro(F (1)) < inf {a—&—Z\/r\/K}

Problem 4 continued on next page. .. 6
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Since 1 + é > 1, we know that /1 —|—é <1+ é = (’TH Thus, letting ¢, := 2\/%7

o? + Cp + Cp,
«

1
a>0 le% a>0

The infimum is certainly less than or equal to the value at « = 1. Plugging this in, we get

Rn(]:(xln)) < ch% = 2Cn =14 logén)

Since this holds for all fixed sets of points, we get the result that

log(n)

L(F) < 4
R (F) <45

(c) Let y,y/,y* € Y. Then, letting £(-,-) be the squared loss,
€,y ) =0y )N ==y = =y )P =~y =y +y )~y +y =) =ly =y ly+y -2y,
where we used the difference of squares. Since |y + 3y’ — 2y*| < 4 by boundedness of Y, we see that

€y y™) =Ly < Aly — |

So, the square loss over this domain is 4-Lipschitz in the first slot. So, using Theorem 1 from Lecture 5, as
well as part (b), we see that

1
Ru(loF) < 16 Ogé”)
Therefore, we get the bound
. log(n) :
excess risk < 164/ ———= + small concentration terms
n




