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Problem 1

Recall that a random variable X is sub-Gaussian with parameter σ2 (denoted as X ∈ SG(σ2)) if:

∀λ ∈ R, Eeλ(X−EX) ≤ eλ
2σ2/2

Prove the following:

(a) Gaussian is a subclass of sub-Gaussian: if X ∼ N (µ, σ2), then X ∈ SG(σ2).

(b) Sub-Gaussian random variables have good tail bound: if X ∈ SG(σ2) then for any t ≥ 0,

P[X − EX ≥ t] ≤ e−
t2

2σ2 and P[X − EX ≤ −t] ≤ e−
t2

2σ2

(d) Sum of independent sub-Gaussian random variables is also sub-Gaussian: if X1, . . . , Xn are indepen-

dent, and for any i ∈ [n], Xi ∈ SG(σ2
i ), then

∑n
i=1 Xi ∈ SG

(∑n
i=1 σ

2
i

)
.

(e) Use above results to prove the concentration inequality for the sum of independent sub-Gaussians.

Theorem 1. Suppose {Xi}ni=1 are independent sub-Gaussian random variables with parameters {σ2
i }ni=1.

Then, for any t ≥ 0, we have

P

[
n∑

i=1

(Xi − EXi) ≥ t

]
≤ e

− t2

2
∑n

i=1
σ2
i .

Solution

Proof. (a) Let X ∼ N (µ, σ2); then, (X − EX) ∼ N (µ, σ2). For any λ ∈ R, we can explicitly compute

Eeλ(X−EX) =

∫
z∈R

eλz
e−

z2

2σ2

√
2πσ2

dz =
1√
2πσ2

∫
z∈R

e
−
(

z2

2σ2 −λz
)
dz

We may complete the square to see that

z2

2σ2
− λz =

z2

2σ2
− λz +

λ2σ2

2
− λ2σ2

2
=

(
z

σ
√
2
− λ

σ√
2

)2

− λ2σ2

2
=

(z − λσ2)2

2σ2
− λ2σ2

2
,

and so

Eeλ(X−EX) = e−λ2σ2/2

∫
z∈R

e−
(z−λσ2)2

2σ2

√
2πσ2

dz

We recognize this integrand to simply be the pdf of the distribution N (z − λσ2, σ2), and so the integral

evaluates to 1. Therefore,

Eeλ(X−EX) = e−λ2σ2/2,

which satisfies the criterion for being sub-Gaussian.

(b) Suppose that X ∈ SG(σ2) and t ≥ 0. Then, for all λ > 0 we know

P[X − EX ≥ t] = P[eλ(X−EX) ≥ eλt]

≤ Eeλ(X−EX)

eλt

≤ eλ
2σ2/2

eλt
= e

λ2σ2

2 −λt,
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where the first equality is by the monotonicity of eλ·, the first inequality is an application of Markov’s

inequality, and the second inequality applies the criterion for being sub-Gaussian. Since this holds for all

λ > 0, we may apply it with the minimal λ∗ given by

λ∗ = argminλ>0

{
λ2σ2

2
− λt

}
=

t

σ2
,

where we used the fact that for a parabola ax2 + bx+ c with a > 0, the minimum occurs at the vertex −b
2a .

Plugging this value of λ∗ in, we get a concentration bound of

P[X − EX ≥ t] ≤ e
t2

2σ2 − t2

σ2 = e−
t2

2σ2

To show the reverse bound, note that if X ∈ SG(σ2) then so too is Y := −X. Applying the result we just

had with Y in place of X,

P[X − EX ≥ t] ≤ e−
t2

2σ2

However, the event that Y −EY ≥ t is equivalent to the event (−X)−E[−X] ≥ t ⇐⇒ X −EX ≤ −t, and

so we get the other tail bound

P[X − EX ≤ −t] ≤ e−
t2

2σ2

(d) Let Xi ∈ SG(σ2
i ) be independent, and let X :=

∑n
i=1 Xi be the random variable denoting their sum.

Then, for all λ ∈ R,

Eeλ(X−EX) = E exp

{
n∑

i=1

λ (Xi − EXi)

}
= E

n∏
i=1

exp{λ(Xi − EXi)},

where we used the linearity of expectation for the first equality and the properties of exponents for the

second. Now, since the Xi’s are independent, the above expectation of a product simplifies to a product over

expectations, and so we see that

Eeλ(X−EX) =

n∏
i=1

Eeλ(Xi−EXi) ≤
n∏

i=1

eλ
2σ2

i /2 = e
λ2

2

∑n
i=1 σ2

i

From this, we see that X ∈ SG(
∑n

i=1 σ
2
i ) as desired.

(e) The above results give us the tools to prove Theorem 1. Let {Xi}ni=1 be independent sub-Gaussian

random variables with parameters {σi}ni=1. Then, for any t ≥ 0 we know that

P

[
n∑

i=1

(Xi − EXi) ≥ t

]
= P

[(
n∑

i=1

Xi − E
n∑

i=1

Xi

)
≥ t

]
≤ e

− t2

2
∑n

i=1
σ2
i ,

where we used the fact that
∑n

i=1 Xi is (
∑n

i=1 σ
2
i )-sub-Gaussian from (d) along with the concentration bound

from (b) for the above inequality.
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Problem 4

Let X1, . . . , Xn be independent real-valued random variables i.i.d. sampled from the same underlying distri-

bution with probability density function f . We can use the following kernel density estimator f̂ to estimate

the unknown density f from data X1, . . . , Xn:

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
Here h > 0 is a smoothing parameter, and K is a non-negative function that satisfies

∫
K(x)dx = 1. We

measure the error in density estimation using total variation distance:

Z :=

∫ ∣∣∣f̂(x)− f(x)
∣∣∣ dx

Use the bounded difference concentration inequality to prove that Z concentrates around its expectation

EZ.

Solution

Proof. We will prove the bounded difference criterion for Z, viewed as a function of the n random variables.

To do so, we look at the difference when replacing Xk with X ′
k; to this end, let f̂ ′ denote the resulting kernel

density estimator (not the derivative!), and let Z ′ denote the resulting total variation distance. Then,

|Z ′ − Z| =
∣∣∣∣∫ ∣∣∣f̂ ′(x)− f(x)

∣∣∣ dx−
∫ ∣∣∣f̂(x)− f(x)

∣∣∣ dx∣∣∣∣
≤
∫ ∣∣∣∣∣∣f̂ ′(x)− f(x)

∣∣∣− ∣∣∣f̂(x)− f(x)
∣∣∣∣∣∣ dx

≤
∫

|f̂ ′(x)− f̂(x)|dx,

where the first inequality applies the triangle inequality for integrals, and the second applies the reverse

triangle inequality. Now, we note that for all x ∈ R, by the triangle inequality and the fact that K is

nonnegative we have

|f̂ ′(x)− f̂(x)| = 1

nh

∣∣∣∣K (x−X ′
k

h

)
−K

(
x−Xk

h

)∣∣∣∣ ≤ 1

nh

(
K

(
x−X ′

k

h

)
+K

(
x−Xk

h

))
Thus, we have that

|Z ′ − Z| ≤ 1

nh

∫ (
K

(
x−X ′

k

h

)
+K

(
x−Xk

h

))
dx

=
1

nh

∫
K

(
x−X ′

k

h

)
dx+

1

nh

∫
K

(
x−Xk

h

)
dx

=
h

nh

∫
K(u′)du′ +

h

nh

∫
K(u)du

=
2

n
,

where for the third line we used the substitutions u′ =
x−X′

k

h and u = x−Xk

h . Since this holds for any

replacement of Xk with X ′
k, we find that Z satisfies the bounded differences criterion with ck = 2

n for all k.

Thus, by Theorem 3 from Lecture 1, for all t ≥ 0 we know that

P[Z − EZ ≥ t] ≤ e
− 2t2∑n

k=1
c2
k = e−

nt2

2
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Problem 5

Recall the definition of Rademacher average of a set A ⊆ Rn:

R̃n(A) = E sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ϵiai

∣∣∣∣∣
Denote Bp := {x ∈ Rn : ∥x∥p ≤ 1} as the p-norm unit ball in Rn. Prove the following:

(a) R̃n(B2) =
1√
n

(b) R̃n(B1) =
1
n and R̃n(B∞) = 1

Solution

Proof. (a) For any value ϵ that the Rademacher random variable can take, the value inside the supremum

will be maximized when a points in the same direction. When this happens, we will have that a = ϵ
∥ϵ∥2

, and

so

sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ϵiai

∣∣∣∣∣ = 1

n
· ∥ϵ∥

2
2

∥ϵ∥2
=

∥ϵ∥2
n

=

√
n

n
=

1√
n
,

where for the second to last equality we used that a Rademacher random variable always has 2-norm of
√
n

since its coordinates always have magnitude 1. Since this holds for all possible values of ϵ, we may simply

take the expectation over Rademacher random variables to get the result.

(b) We apply similar reasoning as above. For any ϵ value that the Rademacher RV can take, the value

inside the supremum will be attained when a points in the same direction. As such, for the 1-norm case we

will have a = ϵ
∥ϵ∥1

, and so

sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ϵiai

∣∣∣∣∣ = 1

n
· ∥ϵ∥

2
2

∥ϵ∥1
=

1

n
· n
n
=

1

n
,

where we used that a Rademacher random variable always has 2-norm of
√
n and 1-norm of n since its

coordinates always have magnitude 1. Taking an expectation over this constant value gives the result for

the 1-norm. In the ∞-norm case, we apply the same logic again. In particular, the dot product will be

maximized when a = ϵ
∥ϵ∥∞

, and so

sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

ϵiai

∣∣∣∣∣ = 1

n
· ∥ϵ∥22
∥ϵ∥∞

=
1

n
· n
1
= 1,

where this time we used that ∥ϵ∥∞ = 1 for every value that a Rademacher RV can take. Once again, taking

an expectation over this value yields the desired result for the ∞-norm.

5



Evan Dogariu ECE 434: Problem Set 1 Problem 6

Problem 6

In lecture, we upper bound the excess risk by Rademacher complexity. In fact, the use of Rademacher random

variable is not necessary, we can similarly define Gaussian complexity. Here we define the set version: let

{gi}ni=1 be i.i.d. standard Gaussian random variables N(0, 1), we define

G̃n(A) = E sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

giai

∣∣∣∣∣
Prove that

R̃n(A) ≤
√

π

2
· G̃n(A)

Therefore, up to a constant factor, the excess risk can also be upper-bounded by Gaussian complexity plus

a small concentration term.

Solution

Proof. To accomplish this, we notice that the Gaussian distribution is symmetric about 0, and so the

random variables denoting the random vector of signs of the coordinates and the random vector of mag-

nitudes of the coordinates are indeed independent. More precisely, let M : Rn → Rn be the mag-

nitude map sending (x1, . . . , xn) 7→ (|x1|, . . . , |xn|) and S : Rn → {−1, 1}n be the sign map sending

(x1, . . . , xn) 7→ (sign(x1), . . . , sign(xn)) with the convention that sign(0) = 1. Then, for a random n-

dimensional distribution D, let M(D) denote the induced distribution on Rn via the magnitudes of coordi-

nates of X ∼ D, and similarly let S(D) denote the induced distribution on Rn via the signs of coordinates

of X ∼ D.

Then, it is a property of any rotationally symmetric distribution D that

Ex∼D[f(x)] = Em∼M(D)

[
Es∼S(D)[f(m, s) |m]

]
= Em∼M(D)

[
Es∼S(D)[f(m, s)]

]
,

where we used rotational symmetry to say that s and m are independent, and so Es∼S(D)[f(m, s) |m] =

Es∼S(D)[f(m, s)] for all m. Note that we are allowed to write f(m, s) since one can always recreate x from m

and s via x = m⊙ s. The last cute observation that we will need is that, when D is rotationally symmetric

and each coordinate is i.i.d., then the induced distribution S(D) is precisely the Rademacher distribution

(for each coordinate, there is an equal chance of being positive or negative and a 0 chance of being 0, and

so the coordinate is 1 w.p. 1
2 and -1 w.p. 1

2 ).

The above observations allow us to see that if D = N (0, In) is the standard multivariate Gaussian, then

G̃n(A) = Eg∼D sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

giai

∣∣∣∣∣ = Em∼M(D)Es∼S(D) sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

misiai

∣∣∣∣∣
For any m, let us denote

Ψ(m) := Es∼S(D) sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

misiai

∣∣∣∣∣
Then, Ψ is a convex function of m since it is an integral over a supremum of convex functions of m. Also,

G̃n(A) = Em∼M(D)Ψ(m). This sets us up perfectly for Jensen’s inequality, which reveals that

Em∼M(D)Ψ(m) ≥ Ψ(Em∼M(D)[m])
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We recognize that for each coordinate gi ∼ N (0, 1), the expectation of |gi| is
√

2
π . So, Em∼M(D)[m] =(√

2
π , . . . ,

√
2
π

)
since each coordinate is drawn i.i.d.. Therefore, relabeling s ∼ S(D) to ϵ ∼ Rad(1/2) to

emphasize that S(D) is the Rademacher distribution, we find that

G̃n(A) ≥ Ψ

(√
2

π
, . . . ,

√
2

π

)
= Eϵ∼Rad(1/2) sup

a∈A

1

n

∣∣∣∣∣
n∑

i=1

√
2

π
ϵiai

∣∣∣∣∣
=

√
2

π
· Eϵ∼Rad(1/2) sup

a∈A

1

n

∣∣∣∣∣
n∑

i=1

ϵiai

∣∣∣∣∣
=

√
2

π
R̃n(A)

Rearranging,

R̃n(A) ≤
√

π

2
G̃n(A)

as desired. From here, we may conclude with a bound on the excess risk for g ∈ G with bounded images

(range(g) ⊆ [0, B]) using Proposition 1 and Theorem 2 from Lecture 2. This tells us that for for g ∈ G with

bounded images (range(g) ⊆ [0, B]) and any δ > 0, with probability at least 1− δ we have

excess risk ≤ 2
√
2π ·Gn(G) +B

√
2 log(1/δ)

n
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