ECE 434: Final

Due on December 21, 2023

Professor Chi Jin

Evan Dogariu

I pledge my honor that I have not violated the Honor Code during this examination.

Problem 1

We consider the classification problem with input domain $X := \{x \in \mathbb{R}^d : ||x||_{\infty} \leq D\}$ and label set $Y = \{-1, 1\}$.

(a) Consider the following linear function class on X with ℓ_1 constraints:

$$\mathcal{F}_1 := \{ x \mapsto w^\top x : \ w \in \mathbb{R}^d, \|w\|_1 \le B \}$$

Prove that the Rademacher complexity

$$R_n(\mathcal{F}_1) \le DB\sqrt{\frac{2\log(2d)}{n}}$$

(b) Consider the following function class of 2-layer neural networks with m ReLU units:

$$\mathcal{F}_{2} := \left\{ x \mapsto \sum_{i \in [m]} w_{i} ReLU(v_{i}^{\top} x) : \ w \in \mathbb{R}^{m}, \|w\|_{1} \le B_{2}, v_{i} \in \mathbb{R}^{d}, \|v_{i}\|_{1} \le B_{1} \right\}$$

Provide an upper bound of the Rademacher complexity $R_n(\mathcal{F}_2)$.

- (c) Let $\{(x_j, y_j)\}_{j=1}^n$ be the training data. Consider the setting with function class \mathcal{F}_1 and hinge loss $\ell(f(x), y) = \max\{0, 1 yf(x)\}$. Write out the ERM \hat{f} in this setting.
- (d) Bound the excess risk of \hat{f} in the setting of (c) using parameters (D, B, d, n).
- (e) Consider again the linear function class \mathcal{F}_1 defined in (a). Prove that the sequential Rademacher complexity also has the following upper bound

$$R_n^{\text{seq}}(\mathcal{F}_1) \le DB\sqrt{\frac{2\log(2d)}{n}}$$

(f) Prove that when choosing \mathcal{F}_1 as decision space, and using hinge loss to measure regret, there exists an online learning algorithm that can achieve a regret bound of $\tilde{O}(poly(D, B, \log d, \log n)\sqrt{n})$ where n is the rounds of interaction.

Solution

Proof. (a) We first prove the stronger result for (e) that

$$R_n^{\text{seq}}(\mathcal{F}_1) \le DB\sqrt{\frac{2\log(2d)}{n}}$$

The result of (a) will then follow obviously as $R_n(\cdot) \leq R_n^{\text{seq}}(\cdot)$ always (to see this, note that for any dataset $\{(x_j, y_j)\}_j$ we may always construct a Z-valued tree (\mathbf{x}, \mathbf{y}) where all paths along the tree are the same sequence $(\mathbf{x}_t(\epsilon), \mathbf{y}_t(\epsilon)) = (x_t, y_t)$; then, $R_n(\cdot)$ is equal to the sequential Rademacher complexity conditioned on this tree, which is obviously upper bounded by $R_n^{\text{seq}}(\cdot)$ since the latter is the supremum over all trees). So, we proceed.

Pick any X-valued tree \mathbf{x} of depth n. We will design a finite hypothesis class $\mathcal{I}_{\mathbf{x}}$ such that $\hat{R}_n^{\text{seq}}(\mathcal{F}_1; \mathbf{x}) = \hat{R}_n^{\text{seq}}(\mathcal{I}_{\mathbf{x}}; \mathbf{x})$. To this end, note that for any fixed ϵ we have that

$$\sup_{f \in \mathcal{F}_1} \sum_{t=1}^n \epsilon_t f(\mathbf{x}_t(\epsilon)) = \sup_{w \in \mathbb{R}^d: \|w\|_1 \le B} \sum_{t=1}^n \epsilon_t w^\top \mathbf{x}_t(\epsilon) = \sup_{w \in \mathbb{R}^d: \|w\|_1 \le B} w^\top \left(\sum_{t=1}^n \epsilon_t \mathbf{x}_t(\epsilon)\right)$$

Problem 1 continued on next page...

If we let $v_{\epsilon} := \sum_{t=1}^{n} \epsilon_t \mathbf{x}_t(\epsilon)$, the supremum is obviously attained for $w = B \frac{v_{\epsilon}}{\|v_{\epsilon}\|_1}$, where the value is $B \frac{\|v_{\epsilon}\|_2^2}{\|v_{\epsilon}\|_1}$. Now, note that we can match this value in expectation via the hypothesis class

$$\mathcal{I}_{\mathbf{x}} := \left\{ z \mapsto \pm \frac{B}{n2^n} \sum_{\epsilon} \left(\sum_{t=1}^n \epsilon_t \mathbf{x}_t(\epsilon) \right)_j : \ j = 1, \dots, d \right\},\$$

where the sum is over all the 2^n possibilities for ϵ and $(\cdot)_j$ denotes the j^{th} coordinate. In expectation, the best choice from this hypothesis class will match the best choice from \mathcal{F}_1 . However, we note that $|\mathcal{I}_{\mathbf{x}}| = 2d$ since for each j there is a choice between \pm . Furthermore, we note that for each $f \in \mathcal{I}_{\mathbf{x}}$ we have that $||f||_{\infty} \leq DB$. So, by Theorem 2 in Lecture 10, we see that

$$\hat{R}_n^{\text{seq}}(\mathcal{I}_{\mathbf{x}}; \mathbf{x}) \le DB\sqrt{\frac{2\log(2d)}{n}},$$

and so

$$\hat{R}_n^{\text{seq}}(\mathcal{F}_1; \mathbf{x}) \le DB\sqrt{\frac{2\log(2d)}{n}}$$

as well. Since this holds for all trees \mathbf{x} , taking the supremum yields

$$R_n^{\text{seq}}(\mathcal{F}_1) \le DB\sqrt{\frac{2\log(2d)}{n}}$$

as desired.

(b) We begin by noting that

$$\mathcal{F}_2 = \left\{ x \mapsto \sum_{i \in [m]} w_i ReLU(f(x)) : w \in \mathbb{R}^m, \|w\|_1 \le B_2, f \in \mathcal{F}_1 \right\},\$$

where \mathcal{F}_1 is with norm bound B_1 . Write $\mathcal{G}_{w_i} := \{x \mapsto w_i \operatorname{ReLU}(f(x)) : f \in \mathcal{F}_1\}$. Noting that $\operatorname{ReLU}(x) = \max\{0, x\}$ is 1-Lipschitz and sends 0 to 0, we see that by Theorem 1(3, 4) of Lecture 4,

$$R_n(\mathcal{G}_{w_i}) \le 2|w_i|R_n(\mathcal{F}_1)$$

From here, since $\mathcal{F}_2 = \{x \mapsto \sum_{i=1}^m f_i(x) : f_i \in \mathcal{G}_{w_i}, \|w\|_1 \leq B_2\}$, we may apply Theorem 1(6) from Lecture 4 to see that

$$R_n(\mathcal{F}_2) \le 2B_2 R_n(\mathcal{F}_1),$$

where we noted that $\sum_{i=1}^{m} |w_i| \leq B_2$ for all allowable w. Combining this with the result from (a), we have that

$$R_n(\mathcal{F}_2) \le 2DB_1B_2\sqrt{\frac{2\log(2d)}{n}}$$

(c) We see that the empirically risk-minimizing selection of w is given by

$$\hat{w} = \operatorname*{arg\,min}_{w \in \mathbb{R}^d: \, \|w\|_1 \le B} \left\{ \sum_{j=1}^n \max\{0, 1 - y_j w^\top x_j\} \right\}$$

For this selection of \hat{w} , we get the empirical risk minimizer

$$\hat{f}(x) = \hat{w}^{\top} x = \left(\underset{w \in \mathbb{R}^{d}: \|w\|_{1} \le B}{\arg\min} \left\{ \sum_{j=1}^{n} \max\{0, 1 - y_{j} w^{\top} x_{j}\} \right\} \right)^{\top} x$$

Problem 1 continued on next page...

(d) Write the function class

$$\mathcal{G} := \{ (x, y) \mapsto \ell(f(x), y) : f \in \mathcal{F}_1 \}$$

We know that for any (x, y) in our dataset and any $f \in \mathcal{F}_1$, we have that

$$|yf(x)| = |w^{\top}x| = \left|\sum_{i=1}^{d} w_i x_i\right| \le ||x||_{\infty} \sum_{i=1}^{d} |w_i| = ||x||_{\infty} ||w||_1 \le DB$$

So, we get that $\ell(f(x), y) = \max\{0, 1 - yf(x)\} \in [0, 1 + DB]$ always. We know from Lecture 3 that with probability $\geq 1 - \delta$,

excess risk
$$\leq 4R_n(\mathcal{G}) + 2(1+DB)\sqrt{\frac{\log(1/\delta)}{2n}}$$

To bound the Rademacher complexity of \mathcal{G} , we first define

$$\mathcal{H} := \{(x, y) \mapsto yf(x): f \in \mathcal{F}_1\}$$

Since $y_i \in \{-1,1\}$, for any fixed y_i we know that the distribution of ϵ_i and $y_i\epsilon_i$ are the same. Thus, $R_n(\mathcal{H}) = R_n(\mathcal{F}_1)$. Next, if we define $\mathcal{J} := \{(x,y) \mapsto 1 - h(x,y) : h \in \mathcal{H}\}$, Theorem 1(5) from Lecture 4 tells us that $R_n(\mathcal{J}) \leq \frac{1}{\sqrt{n}} + R_n(\mathcal{H}) = \frac{1}{\sqrt{n}} + R_n(\mathcal{F}_1)$. Lastly, since $\ell(f(x), y) = \max\{0, 1 - yf(x)\}$, we may use that $\max\{0, \cdot\}$ is 1-Lipschitz along with Theorem 1(4) from Lecture 4 to see that

$$R_n(\mathcal{G}) \le 2R_n(\mathcal{F}_1) + \frac{2}{\sqrt{n}} \le 2DB\sqrt{\frac{2\log(2d)}{n}} + \frac{2}{\sqrt{n}}$$

So, we get that with probability $\geq 1 - \delta$,

excess risk
$$\leq 8DB\sqrt{\frac{2\log(2d)}{n}} + \frac{8}{\sqrt{n}} + 2(1+DB)\sqrt{\frac{\log(1/\delta)}{2n}}$$

(e) We already proved this result in part (a).

(f) Let

$$\mathcal{G} := \{ (x, y) \mapsto \ell(f(x), y) : f \in \mathcal{F}_1 \}$$

and

$$\mathcal{H} := \{(x, y) \mapsto 1 - yf(x) : f \in \mathcal{F}_1\}$$

as we did in (d). We claim that $R_n^{\text{seq}}(\mathcal{H}) \leq R_n^{\text{seq}}(\mathcal{F}_1)$. To see this, note that for all Z-valued trees \mathbf{x}, \mathbf{y} , we have

$$\hat{R}_{n}^{\text{seq}}(\mathcal{H};(\mathbf{x},\mathbf{y})) = \frac{1}{n} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}_{1}} \sum_{t=1}^{n} \epsilon_{t} (1 - \mathbf{y}_{t}(\epsilon) f(\mathbf{x}_{t}(\epsilon))) \right]$$
$$= \frac{1}{n} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}_{1}} \sum_{t=1}^{n} -\epsilon_{t} \mathbf{y}_{t}(\epsilon) f(\mathbf{x}_{t}(\epsilon)) \right],$$

where to get to the second line we note that ϵ_t is 0 in expectation. Consider the mapping from $\{-1, 1\}^n \rightarrow \{-1, 1\}^n$ sending

$$\epsilon \mapsto \mathbf{s} := (-\epsilon_1 \mathbf{y}_1(\epsilon), \dots, -\epsilon_n \mathbf{y}_n(\epsilon))$$

for our fixed value of \mathbf{y} . We claim that this is a bijection, which follows since we may iteratively construct the inverse mapping via $\epsilon_t = -s_t \mathbf{y}_t(\epsilon_{1:t-1})$, just as we did in the proof of Lemma 1 in Lecture 10. As such, we may construct a tree \mathbf{x}' such that $\mathbf{x}'_t(\mathbf{s}) = \mathbf{x}_t(\epsilon)$ for all t. This, since the distribution over \mathbf{s} 's is the same as the distribution over ϵ 's via the bijection,

$$\hat{R}_n^{\text{seq}}(\mathcal{H}; (\mathbf{x}, \mathbf{y})) = \frac{1}{n} \mathbb{E}_{\mathbf{s}} \left[\sup_{f \in \mathcal{F}_1} \sum_{t=1}^n s_t f(\mathbf{x}'_t(s)) \right] = \hat{R}_n^{\text{seq}}(\mathcal{F}_1; \mathbf{x}')$$

Taking suprema over both sides, we get that

$$R_n^{\operatorname{seq}}(\mathcal{H}) \le R_n^{\operatorname{seq}}(\mathcal{F}_1)$$

We note that $R_n^{\text{seq}}(\mathcal{G}) \leq R_n^{\text{seq}}(\mathcal{H}) \cdot \mathcal{O}(\log^{3/2}(n))$ by a bound akin to that of Lemma 2 in Lecture 10, where we are using that $\max\{0, \cdot\}$ is 1-Lipschitz. From Lecture 10, we therefore find that

$$\mathcal{V}^{\text{seq}}(\mathcal{F}_1, n) \le 2R_n^{\text{seq}}(\mathcal{G}) \le 2R_n^{\text{seq}}(\mathcal{F}_1) \cdot \mathcal{O}(\log^{3/2}(n)) \le 2DB\sqrt{\frac{2\log(2d)}{n}} \cdot \mathcal{O}(\log^{3/2}(n))$$

So, we see that by definition of the value of a sequential game, letting $z_{1:n}$ denote the adversarial environment (chosen either obliviously or adversarially),

$$\inf_{\text{Alg } z_{1:n}} \mathbb{E}[\text{Reg}(\mathcal{F}_1, n)] \le n \mathcal{V}^{\text{seq}}(\mathcal{F}_1, n) \le \sqrt{n} \cdot \mathcal{O}\left(DB \log^{1/2}(2d) \log^{3/2}(n)\right)$$

There exists an algorithm that comes arbitrarily close to the infimum; in particular, for any $\delta > 0$ there must be an algorithm that achieves a regret bound of $\delta + \sqrt{n} \cdot \mathcal{O}\left(DB \log^{1/2}(2d) \log^{3/2}(n)\right)$.

Problem 2

In this question, we consider a convex differentiable function f which is *not necessarily* smooth. Consider the Proximal Point Algorithm (PPA) with parameter ℓ , which has the following update equation:

$$x_{t+1} = \arg\min_{x} \left\{ f(x) + \frac{\ell}{2} \|x - x_t\|^2 \right\}$$

- (a) Show that $x_{t+1} = x_t \frac{1}{\ell} \nabla f(x_{t+1})$ and $f(x_{t+1}) \le f(x_t)$.
- (b) Prove that for any $t \in \mathbb{N}$, we have $f(x_{t+1}) f(x^*) \le \frac{\ell}{2} \left(\|x_t x^*\|^2 \|x_{t+1} x^*\|^2 \right)$.
- (c) Use the above results to prove the following theorem:

Theorem 1. For any $\ell \geq 0$ and any convex function f, PPA with parameter ℓ satisfies:

$$f(x_t) - f(x^*) \le \mathcal{O}\left(\frac{\ell ||x_0 - x^*||^2}{t}\right) \quad (\forall t > 0)$$

- (d) Suppose now that f is α -strongly convex. Then, show that for any $t \in \mathbb{N}$, we have $||x_{t+1} x^*||^2 \le e^{-\alpha/(\ell+\alpha)} ||x_t x^*||^2$.
- (e) Use the above results to prove the following theorem:

Theorem 2. For any $\ell \ge 0$ and any α -strongly convex function f, PPA with parameter ℓ satisfies:

$$f(x_t) - f(x^*) \le \mathcal{O}\left(\ell \|x_0 - x^*\|^2 e^{-\alpha t/(\ell + \alpha)}\right) \quad (\forall t > 0)$$

Solution

Proof. We note that if $\ell = 0$ then $x_t = x^*$ for all t, and every desired result follows trivially. So, we suppose for everything below that $\ell > 0$. For this entire problem, we denote by f_t the function mapping $x \mapsto f(x) + \frac{\ell}{2} ||x - x_t||^2$.

(a) Note that the function f_t is convex and differentiable, and so it has a unique global minimum precisely at the point x where $\nabla f_t(x) = 0$. We compute

$$\nabla f_t(x) = \nabla f(x) + \ell(x - x_t)$$

By definition of PPA and the above discussion, x_{t+1} will be the unique value of x for which this expression equals 0. So,

$$0 = \nabla f(x_{t+1}) + \ell(x_{t+1} - x_t) \implies x_{t+1} = x_t - \frac{1}{\ell} \nabla f(x_{t+1})$$

By convexity of f,

$$f(x_t) \ge f(x_{t+1}) + \langle \nabla f(x_{t+1}), x_t - x_{t+1} \rangle$$

= $f(x_{t+1}) + \left\langle \nabla f(x_{t+1}), \frac{1}{\ell} \nabla f(x_{t+1}) \right\rangle$
= $f(x_{t+1}) + \frac{1}{\ell} \| \nabla f(x_{t+1}) \|^2$
 $\ge f(x_{t+1})$

(b) Since f is convex, we see that f_t is ℓ -strongly convex. So, we get

$$f_t(x^*) - f_t(x_{t+1}) \ge \langle \nabla f_t(x_{t+1}), x^* - x_{t+1} \rangle + \frac{\ell}{2} \|x^* - x_{t+1}\|^2$$

However, since x_{t+1} is the minimum of f_t by construction, we know that $\nabla f_t(x_{t+1}) = 0$. Thus,

$$f_t(x^*) - f_t(x_{t+1}) \ge \frac{\ell}{2} ||x^* - x_{t+1}||^2$$

From this, we can compute

$$\begin{aligned} f_t(x^*) - f_{t+1}(x^*) &= f_t(x^*) - f_t(x_{t+1}) + f_t(x_{t+1}) - f_{t+1}(x^*) \\ &\geq \frac{\ell}{2} \|x^* - x_{t+1}\|^2 + f(x_{t+1}) + \frac{\ell}{2} \|x_{t+1} - x_t\|^2 - f(x^*) - \frac{\ell}{2} \|x^* - x_{t+1}\|^2 \\ &= f(x_{t+1}) - f(x^*) + \frac{\ell}{2} \|x_{t+1} - x_t\|^2 \\ &\geq f(x_{t+1}) - f(x^*), \end{aligned}$$

where we applied our earlier observation and plugged in the definitions of f_t and f_{t+1} to get the second line. From here, we plug in the definitions of f_t and f_{t+1} to see

$$f_t(x^*) - f_{t+1}(x^*) = f(x^*) + \frac{\ell}{2} \|x^* - x_t\|^2 - \left(f(x^*) + \frac{\ell}{2} \|x^* - x_{t+1}\|^2\right) = \frac{\ell}{2} (\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2)$$

Combining the above, we have shown that

$$f(x_{t+1}) - f(x^*) \le \frac{\ell}{2} (\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2)$$

(c) Now, we may use the above results to prove the first theorem. Define $\delta_s := f(x_s) - f(x^*)$ for notation. From part (a), we saw that $\delta_t \leq \delta_s$ for all $s \leq t$. Summing over all $s \leq t$,

$$t\delta_t \le \sum_{s=1}^t \delta_s$$

From part (b), we saw that $\delta_s \leq \frac{\ell}{2}(\|x_{s-1} - x^*\|^2 - \|x_s - x^*\|^2)$. Plugging this in,

$$t\delta_t \le \frac{\ell}{2} \sum_{s=1}^t (\|x_{s-1} - x^*\|^2 - \|x_s - x^*\|^2) = \frac{\ell}{2} (\|x_0 - x^*\|^2 - \|x_t - x^*\|^2),$$

where we used the fact that this sum telescopes. Since $||x_t - x^*||^2 \ge 0$, we find that $t\delta_t \le \frac{\ell ||x_0 - x^*||^2}{2}$. Plugging in δ_t and dividing by t yields

$$f(x_t) - f(x^*) \le \frac{\ell \|x_0 - x^*\|^2}{2t}$$

So, the result of the theorem holds for all $t \ge 1$.

(d) Suppose now that f is α -strongly convex. Therefore, f_t is $(\alpha + \ell)$ -strongly convex. By strong convexity of f_t ,

$$f_t(x^*) - f_t(x_{t+1}) \ge \langle \nabla f_t(x_{t+1}), x^* - x_{t+1} \rangle + \frac{\ell + \alpha}{2} \|x^* - x_{t+1}\|^2$$

Since x_{t+1} is the minimum of f_t by design, $\nabla f_t(x_{t+1}) = 0$, and so

$$f_t(x_{t+1}) - f_t(x^*) \le -\frac{\ell + \alpha}{2} \|x^* - x_{t+1}\|^2$$

We know that $f(x_{t+1}) \leq f_t(x_{t+1})$, and so

$$f(x_{t+1}) - f(x^*) - \frac{\ell}{2} \|x^* - x_t\|^2 \le f_t(x_{t+1}) - f_t(x^*) \le -\frac{\ell + \alpha}{2} \|x^* - x_{t+1}\|^2$$

Problem 2 continued on next page...

Also, we know that by optimality of x^* , it holds that $f(x_{t+1}) - f(x^*) \ge 0$. Thus,

$$-\frac{\ell}{2}\|x^* - x_t\|^2 \le -\frac{\ell + \alpha}{2}\|x^* - x_{t+1}\|^2 \implies \|x^* - x_{t+1}\|^2 \le \frac{\ell}{\ell + \alpha}\|x^* - x_t\|^2$$

Applying the fact that $1 - z \le e^{-z}$ $\forall z \in \mathbb{R}$ with the value $z = \frac{\alpha}{\ell + \alpha}$ and noting that $1 - z = \frac{\ell}{\ell + \alpha}$, we find that

$$||x_{t+1} - x^*||^2 \le e^{-\alpha/(\ell+\alpha)} ||x_t - x^*||^2$$

as desired.

(e) From (b), we know that $f(x_{t+1}) - f(x^*) \leq \frac{\ell}{2} ||x_t - x^*||^2$ since $||x_{t+1} - x^*||^2 \geq 0$. However, from repeated application of (d) we know that

$$||x_t - x^*||^2 \le e^{-\alpha/(\ell+\alpha)} ||x_{t-1} - x^*||^2 \le \dots \le e^{-t\alpha/(\ell+\alpha)} ||x_0 - x^*||^2$$

Taken together, these results show that

$$f(x_{t+1}) - f(x^*) \le \frac{\ell ||x_0 - x^*||^2}{2} e^{-t\alpha/(\ell+\alpha)}$$

The result of the theorem follows. \blacksquare