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Evan Dogariu ECE 434: Final Problem 1

Problem 1

We consider the classification problem with input domain X := {x ∈ Rd : ∥x∥∞ ≤ D} and label set

Y = {−1, 1}.

(a) Consider the following linear function class on X with ℓ1 constraints:

F1 := {x 7→ w⊤x : w ∈ Rd, ∥w∥1 ≤ B}

Prove that the Rademacher complexity

Rn(F1) ≤ DB

√
2 log(2d)

n

(b) Consider the following function class of 2-layer neural networks with m ReLU units:

F2 :=

x 7→
∑
i∈[m]

wiReLU(v⊤i x) : w ∈ Rm, ∥w∥1 ≤ B2, vi ∈ Rd, ∥vi∥1 ≤ B1


Provide an upper bound of the Rademacher complexity Rn(F2).

(c) Let {(xj , yj)}nj=1 be the training data. Consider the setting with function class F1 and hinge loss

ℓ(f(x), y) = max{0, 1− yf(x)}. Write out the ERM f̂ in this setting.

(d) Bound the excess risk of f̂ in the setting of (c) using parameters (D,B, d, n).

(e) Consider again the linear function class F1 defined in (a). Prove that the sequential Rademacher

complexity also has the following upper bound

Rseq
n (F1) ≤ DB

√
2 log(2d)

n

(f) Prove that when choosing F1 as decision space, and using hinge loss to measure regret, there exists an

online learning algorithm that can achieve a regret bound of Õ(poly(D,B, log d, log n)
√
n) where n is

the rounds of interaction.

Solution

Proof. (a) We first prove the stronger result for (e) that

Rseq
n (F1) ≤ DB

√
2 log(2d)

n

The result of (a) will then follow obviously as Rn(·) ≤ Rseq
n (·) always (to see this, note that for any dataset

{(xj , yj)}j we may always construct a Z-valued tree (x,y) where all paths along the tree are the same

sequence (xt(ϵ),yt(ϵ)) = (xt, yt); then, Rn(·) is equal to the sequential Rademacher complexity conditioned

on this tree, which is obviously upper bounded by Rseq
n (·) since the latter is the supremum over all trees).

So, we proceed.

Pick any X-valued tree x of depth n. We will design a finite hypothesis class Ix such that R̂seq
n (F1;x) =

R̂seq
n (Ix;x). To this end, note that for any fixed ϵ we have that

sup
f∈F1

n∑
t=1

ϵtf(xt(ϵ)) = sup
w∈Rd: ∥w∥1≤B

n∑
t=1

ϵtw
⊤xt(ϵ) = sup

w∈Rd: ∥w∥1≤B

w⊤

(
n∑

t=1

ϵtxt(ϵ)

)
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Evan Dogariu ECE 434: Final Problem 1 (continued)

If we let vϵ :=
∑n

t=1 ϵtxt(ϵ), the supremum is obviously attained for w = B vϵ
∥vϵ∥1

, where the value is B
∥vϵ∥2

2

∥vϵ∥1
.

Now, note that we can match this value in expectation via the hypothesis class

Ix :=

z 7→ ± B

n2n

∑
ϵ

(
n∑

t=1

ϵtxt(ϵ)

)
j

: j = 1, . . . , d

 ,

where the sum is over all the 2n possibilities for ϵ and (·)j denotes the jth coordinate. In expectation, the

best choice from this hypothesis class will match the best choice from F1. However, we note that |Ix| = 2d

since for each j there is a choice between ±. Furthermore, we note that for each f ∈ Ix we have that

∥f∥∞ ≤ DB. So, by Theorem 2 in Lecture 10, we see that

R̂seq
n (Ix;x) ≤ DB

√
2 log(2d)

n
,

and so

R̂seq
n (F1;x) ≤ DB

√
2 log(2d)

n

as well. Since this holds for all trees x, taking the supremum yields

Rseq
n (F1) ≤ DB

√
2 log(2d)

n

as desired.

(b) We begin by noting that

F2 =

x 7→
∑
i∈[m]

wiReLU(f(x)) : w ∈ Rm, ∥w∥1 ≤ B2, f ∈ F1

 ,

where F1 is with norm bound B1. Write Gwi
:= {x 7→ wiReLU(f(x)) : f ∈ F1}. Noting that ReLU(x) =

max{0, x} is 1-Lipschitz and sends 0 to 0, we see that by Theorem 1(3, 4) of Lecture 4,

Rn(Gwi
) ≤ 2|wi|Rn(F1)

From here, since F2 = {x 7→
∑m

i=1 fi(x) : fi ∈ Gwi
, ∥w∥1 ≤ B2}, we may apply Theorem 1(6) from Lecture

4 to see that

Rn(F2) ≤ 2B2Rn(F1),

where we noted that
∑m

i=1 |wi| ≤ B2 for all allowable w. Combining this with the result from (a), we have

that

Rn(F2) ≤ 2DB1B2

√
2 log(2d)

n

(c) We see that the empirically risk-minimizing selection of w is given by

ŵ = argmin
w∈Rd: ∥w∥1≤B


n∑

j=1

max{0, 1− yjw
⊤xj}


For this selection of ŵ, we get the empirical risk minimizer

f̂(x) = ŵ⊤x =

 argmin
w∈Rd: ∥w∥1≤B


n∑

j=1

max{0, 1− yjw
⊤xj}


⊤

x
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Evan Dogariu ECE 434: Final Problem 1 (continued)

(d) Write the function class

G := {(x, y) 7→ ℓ(f(x), y) : f ∈ F1}

We know that for any (x, y) in our dataset and any f ∈ F1, we have that

|yf(x)| = |w⊤x| =

∣∣∣∣∣
d∑

i=1

wixi

∣∣∣∣∣ ≤ ∥x∥∞
d∑

i=1

|wi| = ∥x∥∞∥w∥1 ≤ DB

So, we get that ℓ(f(x), y) = max{0, 1 − yf(x)} ∈ [0, 1 + DB] always. We know from Lecture 3 that with

probability ≥ 1− δ,

excess risk ≤ 4Rn(G) + 2(1 +DB)

√
log(1/δ)

2n

To bound the Rademacher complexity of G, we first define

H := {(x, y) 7→ yf(x) : f ∈ F1}

Since yi ∈ {−1, 1}, for any fixed yi we know that the distribution of ϵi and yiϵi are the same. Thus,

Rn(H) = Rn(F1). Next, if we define J := {(x, y) 7→ 1 − h(x, y) : h ∈ H}, Theorem 1(5) from Lecture 4

tells us that Rn(J ) ≤ 1√
n
+ Rn(H) = 1√

n
+ Rn(F1). Lastly, since ℓ(f(x), y) = max{0, 1 − yf(x)}, we may

use that max{0, ·} is 1-Lipschitz along with Theorem 1(4) from Lecture 4 to see that

Rn(G) ≤ 2Rn(F1) +
2√
n
≤ 2DB

√
2 log(2d)

n
+

2√
n

So, we get that with probability ≥ 1− δ,

excess risk ≤ 8DB

√
2 log(2d)

n
+

8√
n
+ 2(1 +DB)

√
log(1/δ)

2n

(e) We already proved this result in part (a).

(f) Let

G := {(x, y) 7→ ℓ(f(x), y) : f ∈ F1}

and

H := {(x, y) 7→ 1− yf(x) : f ∈ F1}

as we did in (d). We claim that Rseq
n (H) ≤ Rseq

n (F1). To see this, note that for all Z-valued trees x,y, we

have

R̂seq
n (H; (x,y)) =

1

n
Eϵ

[
sup
f∈F1

n∑
t=1

ϵt(1− yt(ϵ)f(xt(ϵ)))

]

=
1

n
Eϵ

[
sup
f∈F1

n∑
t=1

−ϵtyt(ϵ)f(xt(ϵ))

]
,

where to get to the second line we note that ϵt is 0 in expectation. Consider the mapping from {−1, 1}n →
{−1, 1}n sending

ϵ 7→ s := (−ϵ1y1(ϵ), . . . ,−ϵnyn(ϵ))

for our fixed value of y. We claim that this is a bijection, which follows since we may iteratively construct

the inverse mapping via ϵt = −styt(ϵ1:t−1), just as we did in the proof of Lemma 1 in Lecture 10. As such,
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Evan Dogariu ECE 434: Final Problem 1 (continued)

we may construct a tree x′ such that x′
t(s) = xt(ϵ) for all t. This, since the distribution over s’s is the same

as the distribution over ϵ’s via the bijection,

R̂seq
n (H; (x,y)) =

1

n
Es

[
sup
f∈F1

n∑
t=1

stf(x
′
t(s))

]
= R̂seq

n (F1;x
′)

Taking suprema over both sides, we get that

Rseq
n (H) ≤ Rseq

n (F1)

We note that Rseq
n (G) ≤ Rseq

n (H) · O(log3/2(n)) by a bound akin to that of Lemma 2 in Lecture 10, where

we are using that max{0, ·} is 1-Lipschitz. From Lecture 10, we therefore find that

Vseq(F1, n) ≤ 2Rseq
n (G) ≤ 2Rseq

n (F1) · O(log3/2(n)) ≤ 2DB

√
2 log(2d)

n
· O(log3/2(n))

So, we see that by definition of the value of a sequential game, letting z1:n denote the adversarial environment

(chosen either obliviously or adversarially),

inf
Alg

sup
z1:n

E[Reg(F1, n)] ≤ nVseq(F1, n) ≤
√
n · O

(
DB log1/2(2d) log3/2(n)

)
There exists an algorithm that comes arbitrarily close to the infimum; in particular, for any δ > 0 there

must be an algorithm that achieves a regret bound of δ +
√
n · O

(
DB log1/2(2d) log3/2(n)

)
.
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Evan Dogariu ECE 434: Final Problem 2

Problem 2

In this question, we consider a convex differentiable function f which is not necessarily smooth. Consider

the Proximal Point Algorithm (PPA) with parameter ℓ, which has the following update equation:

xt+1 = argmin
x

{
f(x) +

ℓ

2
∥x− xt∥2

}
(a) Show that xt+1 = xt − 1

ℓ∇f(xt+1) and f(xt+1) ≤ f(xt).

(b) Prove that for any t ∈ N, we have f(xt+1)− f(x∗) ≤ ℓ
2

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
.

(c) Use the above results to prove the following theorem:

Theorem 1. For any ℓ ≥ 0 and any convex function f , PPA with parameter ℓ satisfies:

f(xt)− f(x∗) ≤ O
(
ℓ∥x0 − x∗∥2

t

)
(∀t > 0)

(d) Suppose now that f is α-strongly convex. Then, show that for any t ∈ N, we have ∥xt+1 − x∗∥2 ≤
e−α/(ℓ+α)∥xt − x∗∥2.

(e) Use the above results to prove the following theorem:

Theorem 2. For any ℓ ≥ 0 and any α-strongly convex function f , PPA with parameter ℓ satisfies:

f(xt)− f(x∗) ≤ O
(
ℓ∥x0 − x∗∥2e−αt/(ℓ+α)

)
(∀t > 0)

Solution

Proof. We note that if ℓ = 0 then xt = x∗ for all t, and every desired result follows trivially. So, we

suppose for everything below that ℓ > 0. For this entire problem, we denote by ft the function mapping

x 7→ f(x) + ℓ
2∥x− xt∥2.

(a) Note that the function ft is convex and differentiable, and so it has a unique global minimum precisely

at the point x where ∇ft(x) = 0. We compute

∇ft(x) = ∇f(x) + ℓ(x− xt)

By definition of PPA and the above discussion, xt+1 will be the unique value of x for which this expression

equals 0. So,

0 = ∇f(xt+1) + ℓ(xt+1 − xt) =⇒ xt+1 = xt −
1

ℓ
∇f(xt+1)

By convexity of f ,

f(xt) ≥ f(xt+1) + ⟨∇f(xt+1), xt − xt+1⟩

= f(xt+1) +

〈
∇f(xt+1),

1

ℓ
∇f(xt+1)

〉
= f(xt+1) +

1

ℓ
∥∇f(xt+1)∥2

≥ f(xt+1)

(b) Since f is convex, we see that ft is ℓ-strongly convex. So, we get

ft(x
∗)− ft(xt+1) ≥ ⟨∇ft(xt+1), x

∗ − xt+1⟩+
ℓ

2
∥x∗ − xt+1∥2

Problem 2 continued on next page. . . 6



Evan Dogariu ECE 434: Final Problem 2 (continued)

However, since xt+1 is the minimum of ft by construction, we know that ∇ft(xt+1) = 0. Thus,

ft(x
∗)− ft(xt+1) ≥

ℓ

2
∥x∗ − xt+1∥2

From this, we can compute

ft(x
∗)− ft+1(x

∗) = ft(x
∗)− ft(xt+1) + ft(xt+1)− ft+1(x

∗)

≥ ℓ

2
∥x∗ − xt+1∥2 + f(xt+1) +

ℓ

2
∥xt+1 − xt∥2 − f(x∗)− ℓ

2
∥x∗ − xt+1∥2

= f(xt+1)− f(x∗) +
ℓ

2
∥xt+1 − xt∥2

≥ f(xt+1)− f(x∗),

where we applied our earlier observation and plugged in the definitions of ft and ft+1 to get the second line.

From here, we plug in the definitions of ft and ft+1 to see

ft(x
∗)− ft+1(x

∗) = f(x∗) +
ℓ

2
∥x∗ − xt∥2 −

(
f(x∗) +

ℓ

2
∥x∗ − xt+1∥2

)
=

ℓ

2
(∥xt − x∗∥2 − ∥xt+1 − x∗∥2)

Combining the above, we have shown that

f(xt+1)− f(x∗) ≤ ℓ

2
(∥xt − x∗∥2 − ∥xt+1 − x∗∥2)

(c) Now, we may use the above results to prove the first theorem. Define δs := f(xs)− f(x∗) for notation.

From part (a), we saw that δt ≤ δs for all s ≤ t. Summing over all s ≤ t,

tδt ≤
t∑

s=1

δs

From part (b), we saw that δs ≤ ℓ
2 (∥xs−1 − x∗∥2 − ∥xs − x∗∥2). Plugging this in,

tδt ≤
ℓ

2

t∑
s=1

(∥xs−1 − x∗∥2 − ∥xs − x∗∥2) = ℓ

2
(∥x0 − x∗∥2 − ∥xt − x∗∥2),

where we used the fact that this sum telescopes. Since ∥xt−x∗∥2 ≥ 0, we find that tδt ≤ ℓ∥x0−x∗∥2

2 . Plugging

in δt and dividing by t yields

f(xt)− f(x∗) ≤ ℓ∥x0 − x∗∥2

2t

So, the result of the theorem holds for all t ≥ 1.

(d) Suppose now that f is α-strongly convex. Therefore, ft is (α + ℓ)-strongly convex. By strong con-

vexity of ft,

ft(x
∗)− ft(xt+1) ≥ ⟨∇ft(xt+1), x

∗ − xt+1⟩+
ℓ+ α

2
∥x∗ − xt+1∥2

Since xt+1 is the minimum of ft by design, ∇ft(xt+1) = 0, and so

ft(xt+1)− ft(x
∗) ≤ −ℓ+ α

2
∥x∗ − xt+1∥2

We know that f(xt+1) ≤ ft(xt+1), and so

f(xt+1)− f(x∗)− ℓ

2
∥x∗ − xt∥2 ≤ ft(xt+1)− ft(x

∗) ≤ −ℓ+ α

2
∥x∗ − xt+1∥2
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Evan Dogariu ECE 434: Final Problem 2 (continued)

Also, we know that by optimality of x∗, it holds that f(xt+1)− f(x∗) ≥ 0. Thus,

− ℓ

2
∥x∗ − xt∥2 ≤ −ℓ+ α

2
∥x∗ − xt+1∥2 =⇒ ∥x∗ − xt+1∥2 ≤ ℓ

ℓ+ α
∥x∗ − xt∥2

Applying the fact that 1 − z ≤ e−z ∀z ∈ R with the value z = α
ℓ+α and noting that 1 − z = ℓ

ℓ+α , we find

that

∥xt+1 − x∗∥2 ≤ e−α/(ℓ+α)∥xt − x∗∥2

as desired.

(e) From (b), we know that f(xt+1) − f(x∗) ≤ ℓ
2∥xt − x∗∥2 since ∥xt+1 − x∗∥2 ≥ 0. However, from re-

peated application of (d) we know that

∥xt − x∗∥2 ≤ e−α/(ℓ+α)∥xt−1 − x∗∥2 ≤ . . . ≤ e−tα/(ℓ+α)∥x0 − x∗∥2

Taken together, these results show that

f(xt+1)− f(x∗) ≤ ℓ∥x0 − x∗∥2

2
e−tα/(ℓ+α)

The result of the theorem follows.
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