ECE 434: Final

Due on December 21, 2023

Professor Chi Jin

Evan Dogariu
I pledge my honor that I have not violated the Honor Code during this examination.



Evan Dogariu ECE 434: Final Problem 1

Problem 1

We consider the classification problem with input domain X := {z € R? : |z|» < D} and label set
Y = {-1,1}.

(a) Consider the following linear function class on X with ¢; constraints:
Fi={z—w'z: weR|w| <B}
Prove that the Rademacher complexity

2log(2d)

R, (F1) < DB
n

(b) Consider the following function class of 2-layer neural networks with m ReLU units:

Fari=(x— Z w;ReLU (v z) : w € R™, ||w||; < Ba,v; € R, |lv]l1 < By
1€[m]

Provide an upper bound of the Rademacher complexity R, (F2).

(c) Let {(z;,y;)}}—; be the training data. Consider the setting with function class F; and hinge loss
0(f(2),y) = max{0,1 — yf(x)}. Write out the ERM f in this setting.

(d) Bound the excess risk of f in the setting of (c) using parameters (D, B,d,n).

(e) Consider again the linear function class F; defined in (a). Prove that the sequential Rademacher
complexity also has the following upper bound

2log(2d)

Ry%(F) < DB\ =2

(f) Prove that when choosing F; as decision space, and using hinge loss to measure regret, there exists an
online learning algorithm that can achieve a regret bound of O(poly(D, B,logd,logn)\/n) where n is
the rounds of interaction.

Solution

Proof. (a) We first prove the stronger result for (e) that

2log(2d)

Ry%(F) < DB\ =2

The result of (a) will then follow obviously as R, () < R:°(.) always (to see this, note that for any dataset
{(z;,y;)}; we may always construct a Z-valued tree (x,y) where all paths along the tree are the same
sequence (x¢(€),y¢(€)) = (x¢,y¢); then, R, (+) is equal to the sequential Rademacher complexity conditioned
on this tree, which is obviously upper bounded by R¢4(.) since the latter is the supremum over all trees).
So, we proceed.

Pick any X-valued tree x of depth n. We will design a finite hypothesis class Z, such that RS°9(F;;x) =
R¢4(Z,;x). To this end, note that for any fixed e we have that

sup Zetf(xt(e)) = sup Z ew ! x4(€) = sup w' (Z etxt(e)>

reF weRd: |lwl1<B {3 weR: ull <B P
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Evan Dogariu ECE 434: Final Problem 1 (continued)

llvell3
lvellx

If we let ve := Y.} | ex(€), the supremum is obviously attained for w = B ﬁ, where the value is B

Now, note that we can match this value in expectation via the hypothesis class

B = ,
Iy = Zl—>:|:7mz<zﬁtxt(e)>‘3]17~'~7d )
J

€ t=1

where the sum is over all the 2" possibilities for € and (-); denotes the jt" coordinate. In expectation, the
best choice from this hypothesis class will match the best choice from F;. However, we note that |Zx| = 2d
since for each j there is a choice between +. Furthermore, we note that for each f € Z, we have that
[Ifllcc < DB. So, by Theorem 2 in Lecture 10, we see that

e 2log(2d
Reea(Tx) < DBy 28CD,
n
and so
. 2log(2d
R9(Fi;x) < DB ;’i( )

as well. Since this holds for all trees x, taking the supremum yields

2log(2d)

R%(F) < DB\ =2

as desired.

(b) We begin by noting that

Fo=<Sxw Y wiReLU(f(x)): weR™, |w|y < By, f € Fyp,

1€[m]

where F is with norm bound By. Write G,,, := {z — w; ReLU(f(z)) : f € F1}. Noting that ReLU(z) =
max{0,x} is 1-Lipschitz and sends 0 to 0, we see that by Theorem 1(3, 4) of Lecture 4,

From here, since Fo = {z — >.* fi(®) : fi € Gus,
4 to see that

|w|l1 < Ba}, we may apply Theorem 1(6) from Lecture

R, (F2) < 2B3R,(F1),

where we noted that Y .~ |w;| < By for all allowable w. Combining this with the result from (a), we have
that
2log(2d)

R, (F2) <2DB;Bs -

(c) We see that the empirically risk-minimizing selection of w is given by

n
W= argmin E max{0,1 — y;w ' x;}
weR: [[w|[1<B j=1

For this selection of w, we get the empirical risk minimizer

T

n
fl@)y=w"z= arg min Z max{0,1 —y;w x;} x

weR: |w||1<B J=1
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(d) Write the function class
G={(z,y) = Uf(x),y): €T}

We know that for any (x,y) in our dataset and any f € F7, we have that

d
E W;iTq

i=1

d
< Nlloo Y lwil = llzllosllwly < DB

=1

lyf(z)| = |w'z| =

So, we get that £(f(z),y) = max{0,1 — yf(z)} € [0,1 + DB] always. We know from Lecture 3 that with

probability > 1 — §,

log(1/0)
2n

excess risk < 4R, (G) +2(1+ DB)

To bound the Rademacher complexity of G, we first define

Hi={(z,y) »yf(z): feF}

Since y; € {—1,1}, for any fixed y; we know that the distribution of ¢; and y;e; are the same. Thus,
R,.(H) = R,(F1). Next, if we define J := {(x,y) —» 1 — h(z,y) : h € H}, Theorem 1(5) from Lecture 4
tells us that R, (J) < \% +R,(H) = ﬁ + R, (F1). Lastly, since £(f(x),y) = max{0,1 — yf(x)}, we may
use that max{0, -} is 1-Lipschitz along with Theorem 1(4) from Lecture 4 to see that

2 2 log(2d) 2
2(G) < 2R, = <opp /ety
Ry (9) < R(f1)+\/ﬁ f
So, we get that with probability > 1 — 4§,
21og(2 log(1
excess risk < 8DB 2log(2d) + 8 +2(1+4 DB) log(1/9)
n Vn 2n

(e) We already proved this result in part (a).

(f) Let
G:={(z,y) = Uf(2),y): feF}
and
Hi=A{(z,y) = 1-yf(x): feF}
as we did in (d). We claim that R3(H) < R3°4(Fp). To see this, note that for all Z-valued trees x,y, we
have

n

R (x,)) = 1 Ee [sup et~ m(e)f(xt(e)))]

feFri 14

= *E lSUP Z—ﬁt}’t ))] )

feriim

where to get to the second line we note that € is 0 in expectation. Consider the mapping from {—1,1}" —
{-1,1}" sending

e~ s:=(—e1y1(€),..., —€yn(€))
for our fixed value of y. We claim that this is a bijection, which follows since we may iteratively construct
the inverse mapping via €; = —s;y¢(€1.4-1), just as we did in the proof of Lemma 1 in Lecture 10. As such,
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we may construct a tree x’ such that x’;(s) = x(e) for all t. This, since the distribution over s’s is the same
as the distribution over €’s via the bijection,

L 1 n )
RYYH; (x,y)) = EES Lcsél;) Z sef(x'1(s))| = RS Fr;x')
1¢=1

Taking suprema over both sides, we get that
RY(H) < RY9(F)

We note that R59(G) < R°9(H) - O(log®/?(n)) by a bound akin to that of Lemma 2 in Lecture 10, where
we are using that max{0, -} is 1-Lipschitz. From Lecture 10, we therefore find that

VSU(Fy,n) < 2RY(G) < 2RFY(Fy) - O(log®?(n)) < 2DB

2log(2d) O(log"2(n))

So, we see that by definition of the value of a sequential game, letting 21., denote the adversarial environment
(chosen either obliviously or adversarially),

?f sup E[Reg(F1,n)] < nV*Y(Fi,n) <+v/n-O (DB log!/?(2d) log®/? (n))

lg Z1:n

There exists an algorithm that comes arbitrarily close to the infimum; in particular, for any § > 0 there
must be an algorithm that achieves a regret bound of § + v/n - O (DB log/?(2d) log®/? (n)) |
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Problem 2

In this question, we consider a convex differentiable function f which is not necessarily smooth. Consider
the Proximal Point Algorithm (PPA) with parameter ¢, which has the following update equation:

. ¢
Tyl = arg min {f(x) + in - Cﬂt||2}

(a) Show that 2441 = 2y — $Vf(2441) and f(2e41) < f(20).
(b) Prove that for any t € N, we have f(zy41) — f(z*) < § ([|zy — 27> — [|2es1 — 2¥[?).
(c¢) Use the above results to prove the following theorem:
Theorem 1. For any ¢ > 0 and any convex function f, PPA with parameter { satisfies:

l|zo — x

* (|2
f(smf(x*)so( t ”) (vt > 0)

(d) Suppose now that f is a-strongly convex. Then, show that for any ¢ € N, we have |zy11 — 2*||? <
e—a/(€+a)||xt _ x*HQ
(e) Use the above results to prove the following theorem:

Theorem 2. For any ¢ > 0 and any a-strongly convez function f, PPA with parameter ¢ satisfies:

flae) = f(*) < O (Uzg — *Pem ) (vt > 0)

Solution

Proof. We note that if / = 0 then z; = z* for all ¢, and every desired result follows trivially. So, we
suppose for everything below that ¢ > 0. For this entire problem, we denote by f; the function mapping
z e f(a) + gllz — 2.

(a) Note that the function f; is convex and differentiable, and so it has a unique global minimum precisely
at the point x where V f;(x) = 0. We compute

Vfi(z) =Vf(z)+(x—xy)

By definition of PPA and the above discussion, z;11 will be the unique value of x for which this expression
equals 0. So,

1
0=Vf(@t41) + 241 = 21) = Te1 =20 = 5V F(@241)

By convexity of ,
f(@e) = f(zep) +(Vf(@e41), 20 — 2e41)
— flaran) + (VH i), § V1))
= f(eer) + IV eI

> f(@eg1)

(b) Since f is convex, we see that f; is ¢-strongly convex. So, we get

Je(@™) = fe(wepr) = (Vfi(@eg1), 25 — 2e41) + ng* — 21 |?
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However, since ;41 is the minimum of f; by construction, we know that V f;(z¢4+1) = 0. Thus,

Fe") = i) 2 gle* — el
From this, we can compute
fi(@®) = fira(2™) = fi(x™) = fr(wigr) + fe(@eqr) — fipr(27)

¢ Y4 /
> §||9€* - ﬂft+1||2 + f(@eg1) + §||$t+1 - Jﬂt||2 - f@") = in* - »”Ut+1||2

Y4
= f(we1) — f(2") + §||$t+1 — zy|?
> f(wegr) — f(27),

where we applied our earlier observation and plugged in the definitions of f; and f;y1 to get the second line.
From here, we plug in the definitions of f; and f;1 to see

4 14 4
) = fona(e) = £+ gl =l = (1) + Glla” = wual?) = Gk =71 = favsr = o°]F)

Combining the above, we have shown that

N~

I = Nt — 2*|%)

f(zep1) — f(z¥) <

(s — 2

(c) Now, we may use the above results to prove the first theorem. Define §, := f(xs) — f(a*) for notation.
From part (a), we saw that §; < ds for all s <¢. Summing over all s < ¢,

t
tét S Z 53
s=1

From part (b), we saw that &, < £(||zs_1 — 2*|? — [|zs — 2*||?). Plugging this in,

(< ¢
toy < 5 D ey — 2| = ||lzs — 2*[|?) = 5 (llzo = )P = oy — 2*|?),
s=1

where we used the fact that this sum telescopes. Since |z, —z*||? > 0, we find that t§; < M. Plugging
in d; and dividing by ¢ yields
_tleo—a” P

flan) = f@) < T
So, the result of the theorem holds for all £ > 1.

(d) Suppose now that f is a-strongly convex. Therefore, f; is (o 4 £)-strongly convex. By strong con-
vexity of f,

{+ «
2

fe(@) = fe(ve1) > (Vfe(zi41), 27 — 210) + [|lz™ — 9L‘t+1||2

Since 441 is the minimum of f; by design, V fi(z:+1) = 0, and so

l+a, |
o |z —$t+1||2

fr(zeg1) — firl2") <

We know that f(xi41) < fi(x4+1), and so

L 14
Flae) = £@7) = 5lla* = ml < fulon) = filw?) < =52 " — e
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Also, we know that by optimality of *, it holds that f(zy1) — f(2*) > 0. Thus,

!+«
2

lz* — ]

lz* = 2| = llo* — zea|* <

¢ 2
—lpe* — <
Sl = al? < <

Applying the fact that 1 — 2z < e™* Vz € R with the value z = 7% and noting that 1 — z = we find

/4
{4+ {4+
that

s —2"||? < e/ |2y — 27| ?

as desired.

(e) From (b), we know that f(z411) — f(z*) < £|lwe — 2*||? since ||lzs41 — 2*||> > 0. However, from re-
peated application of (d) we know that

e — 2|2 < em Dz g — 2P <L < etz — o2

Taken together, these results show that

_ x||2
f(xeg1) — f(z") < Me—m/(@m)

The result of the theorem follows. m




