ECE 434: Final

Due on December 21, 2023

Professor Chi Jin

Evan Dogariu

I pledge my honor that I have not violated the Honor Code during this examination.

Problem 1

We consider the classification problem with input domain $X := \{x \in \mathbb{R}^d : ||x||_{\infty} \leq D\}$ and label set $Y = \{-1, 1\}.$

(a) Consider the following linear function class on X with ℓ_1 constraints:

$$
\mathcal{F}_1 := \{ x \mapsto w^\top x : \ w \in \mathbb{R}^d, ||w||_1 \leq B \}
$$

Prove that the Rademacher complexity

$$
R_n(\mathcal{F}_1) \leq DB \sqrt{\frac{2\log(2d)}{n}}
$$

(b) Consider the following function class of 2-layer neural networks with m ReLU units:

$$
\mathcal{F}_2 := \left\{ x \mapsto \sum_{i \in [m]} w_i ReLU(v_i^\top x) : w \in \mathbb{R}^m, ||w||_1 \leq B_2, v_i \in \mathbb{R}^d, ||v_i||_1 \leq B_1 \right\}
$$

Provide an upper bound of the Rademacher complexity $R_n(\mathcal{F}_2)$.

- (c) Let $\{(x_j, y_j)\}_{j=1}^n$ be the training data. Consider the setting with function class \mathcal{F}_1 and hinge loss $\ell(f(x), y) = \max\{0, 1 - yf(x)\}\.$ Write out the ERM \hat{f} in this setting.
- (d) Bound the excess risk of \hat{f} in the setting of (c) using parameters (D, B, d, n) .
- (e) Consider again the linear function class \mathcal{F}_1 defined in (a). Prove that the sequential Rademacher complexity also has the following upper bound

$$
R_n^{\text{seq}}(\mathcal{F}_1) \le DB \sqrt{\frac{2\log(2d)}{n}}
$$

(f) Prove that when choosing \mathcal{F}_1 as decision space, and using hinge loss to measure regret, there exists an online learning algorithm that can achieve a regret bound of $\tilde{O}(poly(D, B, \log d, \log n)\sqrt{n})$ where *n* is the rounds of interaction.

Solution

Proof. (a) We first prove the stronger result for (e) that

$$
R_n^{\text{seq}}(\mathcal{F}_1) \le DB \sqrt{\frac{2\log(2d)}{n}}
$$

The result of (a) will then follow obviously as $R_n(\cdot) \leq R_n^{\text{seq}}(\cdot)$ always (to see this, note that for any dataset $\{(x_j, y_j)\}_j$ we may always construct a Z-valued tree (\mathbf{x}, \mathbf{y}) where all paths along the tree are the same sequence $(\mathbf{x}_t(\epsilon), \mathbf{y}_t(\epsilon)) = (x_t, y_t)$; then, $R_n(\cdot)$ is equal to the sequential Rademacher complexity conditioned on this tree, which is obviously upper bounded by $R_n^{\text{seq}}(\cdot)$ since the latter is the supremum over all trees). So, we proceed.

Pick any X-valued tree **x** of depth n. We will design a finite hypothesis class $\mathcal{I}_{\mathbf{x}}$ such that $\hat{R}_n^{\text{seq}}(\mathcal{F}_1; \mathbf{x}) =$ $\hat{R}^{\text{seq}}_n(\mathcal{I}_\mathbf{x}; \mathbf{x})$. To this end, note that for any fixed ϵ we have that

$$
\sup_{f \in \mathcal{F}_1} \sum_{t=1}^n \epsilon_t f(\mathbf{x}_t(\epsilon)) = \sup_{w \in \mathbb{R}^d: \|w\|_1 \leq B} \sum_{t=1}^n \epsilon_t w^\top \mathbf{x}_t(\epsilon) = \sup_{w \in \mathbb{R}^d: \|w\|_1 \leq B} w^\top \left(\sum_{t=1}^n \epsilon_t \mathbf{x}_t(\epsilon)\right)
$$

Problem 1 continued on next page... 2

If we let $v_{\epsilon} := \sum_{t=1}^{n} \epsilon_t \mathbf{x}_t(\epsilon)$, the supremum is obviously attained for $w = B \frac{v_{\epsilon}}{\|v_{\epsilon}\|_1}$, where the value is $B \frac{\|v_{\epsilon}\|_2^2}{\|v_{\epsilon}\|_1}$. Now, note that we can match this value in expectation via the hypothesis class

$$
\mathcal{I}_{\mathbf{x}} := \left\{ z \mapsto \pm \frac{B}{n2^n} \sum_{\epsilon} \left(\sum_{t=1}^n \epsilon_t \mathbf{x}_t(\epsilon) \right)_j : j = 1, \ldots, d \right\},\
$$

where the sum is over all the 2^n possibilities for ϵ and $(\cdot)_j$ denotes the j^{th} coordinate. In expectation, the best choice from this hypothesis class will match the best choice from \mathcal{F}_1 . However, we note that $|\mathcal{I}_x| = 2d$ since for each j there is a choice between \pm . Furthermore, we note that for each $f \in \mathcal{I}_{\mathbf{x}}$ we have that $||f||_{\infty}$ ≤ DB. So, by Theorem 2 in Lecture 10, we see that

$$
\hat{R}_n^{\text{seq}}(\mathcal{I}_\mathbf{x}; \mathbf{x}) \le DB \sqrt{\frac{2 \log(2d)}{n}},
$$

and so

$$
\hat{R}_n^{\text{seq}}(\mathcal{F}_1; \mathbf{x}) \leq DB \sqrt{\frac{2 \log(2d)}{n}}
$$

as well. Since this holds for all trees x, taking the supremum yields

$$
R_n^{\text{seq}}(\mathcal{F}_1) \leq DB \sqrt{\frac{2\log(2d)}{n}}
$$

as desired.

(b) We begin by noting that

$$
\mathcal{F}_2 = \left\{ x \mapsto \sum_{i \in [m]} w_i ReLU(f(x)) : w \in \mathbb{R}^m, ||w||_1 \leq B_2, f \in \mathcal{F}_1 \right\},\
$$

where \mathcal{F}_1 is with norm bound B_1 . Write $\mathcal{G}_{w_i} := \{x \mapsto w_i ReLU(f(x)) : f \in \mathcal{F}_1\}$. Noting that $ReLU(x)$ $\max\{0, x\}$ is 1-Lipschitz and sends 0 to 0, we see that by Theorem 1(3, 4) of Lecture 4,

$$
R_n(\mathcal{G}_{w_i}) \leq 2|w_i|R_n(\mathcal{F}_1)
$$

From here, since $\mathcal{F}_2 = \{x \mapsto \sum_{i=1}^m f_i(x) : f_i \in \mathcal{G}_{w_i}, ||w||_1 \leq B_2\}$, we may apply Theorem 1(6) from Lecture 4 to see that

$$
R_n(\mathcal{F}_2) \leq 2B_2 R_n(\mathcal{F}_1),
$$

where we noted that $\sum_{i=1}^{m} |w_i| \leq B_2$ for all allowable w. Combining this with the result from (a), we have that

$$
R_n(\mathcal{F}_2) \le 2DB_1B_2\sqrt{\frac{2\log(2d)}{n}}
$$

(c) We see that the empirically risk-minimizing selection of w is given by

$$
\hat{w} = \underset{w \in \mathbb{R}^d : ||w||_1 \le B}{\arg \min} \left\{ \sum_{j=1}^n \max\{0, 1 - y_j w^\top x_j\} \right\}
$$

For this selection of \hat{w} , we get the empirical risk minimizer

$$
\hat{f}(x) = \hat{w}^{\top} x = \left(\operatorname*{arg\,min}_{w \in \mathbb{R}^d : ||w||_1 \leq B} \left\{ \sum_{j=1}^n \max\{0, 1 - y_j w^{\top} x_j\} \right\} \right)^{\top} x
$$

Problem 1 continued on next page... 3

(d) Write the function class

$$
\mathcal{G} := \{(x, y) \mapsto \ell(f(x), y) : f \in \mathcal{F}_1\}
$$

We know that for any (x, y) in our dataset and any $f \in \mathcal{F}_1$, we have that

$$
|yf(x)| = |w^{\top}x| = \left|\sum_{i=1}^{d} w_i x_i\right| \leq ||x||_{\infty} \sum_{i=1}^{d} |w_i| = ||x||_{\infty} ||w||_1 \leq DB
$$

So, we get that $\ell(f(x), y) = \max\{0, 1 - yf(x)\}\in [0, 1 + DB]$ always. We know from Lecture 3 that with probability $\geq 1 - \delta$,

excess risk
$$
\leq 4R_n(\mathcal{G}) + 2(1 + DB)\sqrt{\frac{\log(1/\delta)}{2n}}
$$

To bound the Rademacher complexity of G , we first define

$$
\mathcal{H} := \{(x, y) \mapsto yf(x) : f \in \mathcal{F}_1\}
$$

Since $y_i \in \{-1, 1\}$, for any fixed y_i we know that the distribution of ϵ_i and $y_i\epsilon_j$ are the same. Thus, $R_n(\mathcal{H}) = R_n(\mathcal{F}_1)$. Next, if we define $\mathcal{J} := \{(x, y) \mapsto 1 - h(x, y) : h \in \mathcal{H}\}\)$, Theorem 1(5) from Lecture 4 tells us that $R_n(\mathcal{J}) \leq \frac{1}{\sqrt{n}} + R_n(\mathcal{H}) = \frac{1}{\sqrt{n}} + R_n(\mathcal{F}_1)$. Lastly, since $\ell(f(x), y) = \max\{0, 1 - yf(x)\}$, we may use that $\max\{0, \cdot\}$ is 1-Lipschitz along with Theorem 1(4) from Lecture 4 to see that

$$
R_n(\mathcal{G}) \le 2R_n(\mathcal{F}_1) + \frac{2}{\sqrt{n}} \le 2DB\sqrt{\frac{2\log(2d)}{n}} + \frac{2}{\sqrt{n}}
$$

So, we get that with probability $\geq 1 - \delta$,

$$
\text{excess risk} \leq 8DB\sqrt{\frac{2\log(2d)}{n}} + \frac{8}{\sqrt{n}} + 2(1+DB)\sqrt{\frac{\log(1/\delta)}{2n}}
$$

(e) We already proved this result in part (a).

(f) Let

$$
\mathcal{G}:=\{(x,y)\mapsto \ell(f(x),y):\ f\in\mathcal{F}_1\}
$$

and

$$
\mathcal{H}:=\{(x,y)\mapsto 1-yf(x):\ f\in\mathcal{F}_1\}
$$

as we did in (d). We claim that $R_n^{\text{seq}}(\mathcal{H}) \leq R_n^{\text{seq}}(\mathcal{F}_1)$. To see this, note that for all Z-valued trees **x**, **y**, we have

$$
\hat{R}_{n}^{\text{seq}}(\mathcal{H}; (\mathbf{x}, \mathbf{y})) = \frac{1}{n} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}_{1}} \sum_{t=1}^{n} \epsilon_{t} (1 - \mathbf{y}_{t}(\epsilon) f(\mathbf{x}_{t}(\epsilon))) \right]
$$

$$
= \frac{1}{n} \mathbb{E}_{\epsilon} \left[\sup_{f \in \mathcal{F}_{1}} \sum_{t=1}^{n} -\epsilon_{t} \mathbf{y}_{t}(\epsilon) f(\mathbf{x}_{t}(\epsilon)) \right],
$$

where to get to the second line we note that ϵ_t is 0 in expectation. Consider the mapping from $\{-1,1\}^n \to$ $\{-1,1\}^n$ sending

$$
\epsilon \mapsto \mathbf{s} := (-\epsilon_1 \mathbf{y}_1(\epsilon), \ldots, -\epsilon_n \mathbf{y}_n(\epsilon))
$$

for our fixed value of y. We claim that this is a bijection, which follows since we may iteratively construct the inverse mapping via $\epsilon_t = -s_t \mathbf{y}_t(\epsilon_{1:t-1})$, just as we did in the proof of Lemma 1 in Lecture 10. As such,

we may construct a tree \mathbf{x}' such that $\mathbf{x}'_t(\mathbf{s}) = \mathbf{x}_t(\epsilon)$ for all t. This, since the distribution over s's is the same as the distribution over ϵ 's via the bijection,

$$
\hat{R}_n^{\text{seq}}(\mathcal{H}; (\mathbf{x}, \mathbf{y})) = \frac{1}{n} \mathbb{E}_{\mathbf{s}} \left[\sup_{f \in \mathcal{F}_1} \sum_{t=1}^n s_t f(\mathbf{x}'_t(s)) \right] = \hat{R}_n^{\text{seq}}(\mathcal{F}_1; \mathbf{x}')
$$

Taking suprema over both sides, we get that

$$
R_n^{\rm seq}(\mathcal H) \leq R_n^{\rm seq}(\mathcal F_1)
$$

We note that $R_n^{\text{seq}}(\mathcal{G}) \leq R_n^{\text{seq}}(\mathcal{H}) \cdot \mathcal{O}(\log^{3/2}(n))$ by a bound akin to that of Lemma 2 in Lecture 10, where we are using that $\max\{0, \cdot\}$ is 1-Lipschitz. From Lecture 10, we therefore find that

$$
\mathcal{V}^{\text{seq}}(\mathcal{F}_1, n) \leq 2R_n^{\text{seq}}(\mathcal{G}) \leq 2R_n^{\text{seq}}(\mathcal{F}_1) \cdot \mathcal{O}(\log^{3/2}(n)) \leq 2DB\sqrt{\frac{2\log(2d)}{n}} \cdot \mathcal{O}(\log^{3/2}(n))
$$

So, we see that by definition of the value of a sequential game, letting $z_{1:n}$ denote the adversarial environment (chosen either obliviously or adversarially),

$$
\inf_{\mathrm{Alg} z_{1:n}} \mathbb{E}[\mathrm{Reg}(\mathcal{F}_1, n)] \le n\mathcal{V}^{\mathrm{seq}}(\mathcal{F}_1, n) \le \sqrt{n} \cdot \mathcal{O}\left(DB \log^{1/2}(2d) \log^{3/2}(n)\right)
$$

There exists an algorithm that comes arbitrarily close to the infimum; in particular, for any $\delta > 0$ there must be an algorithm that achieves a regret bound of $\delta + \sqrt{n} \cdot \mathcal{O}(DB \log^{1/2}(2d) \log^{3/2}(n))$.

Problem 2

In this question, we consider a convex differentiable function f which is not necessarily smooth. Consider the Proximal Point Algorithm (PPA) with parameter ℓ , which has the following update equation:

$$
x_{t+1} = \arg\min_{x} \left\{ f(x) + \frac{\ell}{2} ||x - x_t||^2 \right\}
$$

- (a) Show that $x_{t+1} = x_t \frac{1}{\ell} \nabla f(x_{t+1})$ and $f(x_{t+1}) \le f(x_t)$.
- (b) Prove that for any $t \in \mathbb{N}$, we have $f(x_{t+1}) f(x^*) \leq \frac{\ell}{2} (||x_t x^*||^2 ||x_{t+1} x^*||^2)$.
- (c) Use the above results to prove the following theorem:

Theorem 1. For any $\ell \geq 0$ and any convex function f, PPA with parameter ℓ satisfies:

$$
f(x_t) - f(x^*) \le \mathcal{O}\left(\frac{\ell \|x_0 - x^*\|^2}{t}\right) \quad (\forall t > 0)
$$

- (d) Suppose now that f is α -strongly convex. Then, show that for any $t \in \mathbb{N}$, we have $||x_{t+1} x^*||^2 \le$ $e^{-\alpha/(\ell+\alpha)} \|x_t - x^*\|^2.$
- (e) Use the above results to prove the following theorem:

Theorem 2. For any $\ell \geq 0$ and any α -strongly convex function f, PPA with parameter ℓ satisfies:

$$
f(x_t) - f(x^*) \le \mathcal{O}\left(\ell \|x_0 - x^*\|^2 e^{-\alpha t/(\ell + \alpha)}\right) \quad (\forall t > 0)
$$

Solution

Proof. We note that if $\ell = 0$ then $x_t = x^*$ for all t, and every desired result follows trivially. So, we suppose for everything below that $\ell > 0$. For this entire problem, we denote by f_t the function mapping $x \mapsto f(x) + \frac{\ell}{2} \|x - x_t\|^2.$

(a) Note that the function f_t is convex and differentiable, and so it has a unique global minimum precisely at the point x where $\nabla f_t(x) = 0$. We compute

$$
\nabla f_t(x) = \nabla f(x) + \ell(x - x_t)
$$

By definition of PPA and the above discussion, x_{t+1} will be the unique value of x for which this expression equals 0. So,

$$
0 = \nabla f(x_{t+1}) + \ell(x_{t+1} - x_t) \implies x_{t+1} = x_t - \frac{1}{\ell} \nabla f(x_{t+1})
$$

By convexity of f ,

$$
f(x_t) \ge f(x_{t+1}) + \langle \nabla f(x_{t+1}), x_t - x_{t+1} \rangle
$$

= $f(x_{t+1}) + \langle \nabla f(x_{t+1}), \frac{1}{\ell} \nabla f(x_{t+1}) \rangle$
= $f(x_{t+1}) + \frac{1}{\ell} || \nabla f(x_{t+1}) ||^2$
 $\ge f(x_{t+1})$

(b) Since f is convex, we see that f_t is ℓ -strongly convex. So, we get

$$
f_t(x^*) - f_t(x_{t+1}) \ge \langle \nabla f_t(x_{t+1}), x^* - x_{t+1} \rangle + \frac{\ell}{2} ||x^* - x_{t+1}||^2
$$

However, since x_{t+1} is the minimum of f_t by construction, we know that $\nabla f_t(x_{t+1}) = 0$. Thus,

$$
f_t(x^*) - f_t(x_{t+1}) \ge \frac{\ell}{2} ||x^* - x_{t+1}||^2
$$

From this, we can compute

$$
f_t(x^*) - f_{t+1}(x^*) = f_t(x^*) - f_t(x_{t+1}) + f_t(x_{t+1}) - f_{t+1}(x^*)
$$

\n
$$
\geq \frac{\ell}{2} \|x^* - x_{t+1}\|^2 + f(x_{t+1}) + \frac{\ell}{2} \|x_{t+1} - x_t\|^2 - f(x^*) - \frac{\ell}{2} \|x^* - x_{t+1}\|^2
$$

\n
$$
= f(x_{t+1}) - f(x^*) + \frac{\ell}{2} \|x_{t+1} - x_t\|^2
$$

\n
$$
\geq f(x_{t+1}) - f(x^*),
$$

where we applied our earlier observation and plugged in the definitions of f_t and f_{t+1} to get the second line. From here, we plug in the definitions of f_t and f_{t+1} to see

$$
f_t(x^*) - f_{t+1}(x^*) = f(x^*) + \frac{\ell}{2} \|x^* - x_t\|^2 - \left(f(x^*) + \frac{\ell}{2} \|x^* - x_{t+1}\|^2\right) = \frac{\ell}{2} (\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2)
$$

Combining the above, we have shown that

$$
f(x_{t+1}) - f(x^*) \le \frac{\ell}{2}(\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2)
$$

(c) Now, we may use the above results to prove the first theorem. Define $\delta_s := f(x_s) - f(x^*)$ for notation. From part (a), we saw that $\delta_t \leq \delta_s$ for all $s \leq t$. Summing over all $s \leq t$,

$$
t \delta_t \leq \sum_{s=1}^t \delta_s
$$

From part (b), we saw that $\delta_s \leq \frac{\ell}{2} (\|x_{s-1} - x^*\|^2 - \|x_s - x^*\|^2)$. Plugging this in,

$$
t\delta_t \le \frac{\ell}{2} \sum_{s=1}^t (||x_{s-1} - x^*||^2 - ||x_s - x^*||^2) = \frac{\ell}{2} (||x_0 - x^*||^2 - ||x_t - x^*||^2),
$$

where we used the fact that this sum telescopes. Since $||x_t - x^*||^2 \ge 0$, we find that $t\delta_t \le \frac{\ell ||x_0 - x^*||^2}{2}$ $\frac{-x}{2}$. Plugging in δ_t and dividing by t yields

$$
f(x_t) - f(x^*) \le \frac{\ell ||x_0 - x^*||^2}{2t}
$$

So, the result of the theorem holds for all $t \geq 1$.

(d) Suppose now that f is α -strongly convex. Therefore, f_t is $(\alpha + \ell)$ -strongly convex. By strong convexity of f_t ,

$$
f_t(x^*) - f_t(x_{t+1}) \ge \langle \nabla f_t(x_{t+1}), x^* - x_{t+1} \rangle + \frac{\ell + \alpha}{2} ||x^* - x_{t+1}||^2
$$

Since x_{t+1} is the minimum of f_t by design, $\nabla f_t(x_{t+1}) = 0$, and so

$$
f_t(x_{t+1}) - f_t(x^*) \le -\frac{\ell + \alpha}{2} \|x^* - x_{t+1}\|^2
$$

We know that $f(x_{t+1}) \leq f_t(x_{t+1})$, and so

$$
f(x_{t+1}) - f(x^*) - \frac{\ell}{2} \|x^* - x_t\|^2 \le f_t(x_{t+1}) - f_t(x^*) \le -\frac{\ell + \alpha}{2} \|x^* - x_{t+1}\|^2
$$

Problem 2 continued on next page... $\hspace{1cm} 7$

Also, we know that by optimality of x^* , it holds that $f(x_{t+1}) - f(x^*) \geq 0$. Thus,

$$
-\frac{\ell}{2}||x^* - x_t||^2 \le -\frac{\ell + \alpha}{2}||x^* - x_{t+1}||^2 \implies ||x^* - x_{t+1}||^2 \le \frac{\ell}{\ell + \alpha}||x^* - x_t||^2
$$

Applying the fact that $1-z \leq e^{-z}$ $\forall z \in \mathbb{R}$ with the value $z = \frac{\alpha}{\ell+\alpha}$ and noting that $1-z = \frac{\ell}{\ell+\alpha}$, we find that

$$
||x_{t+1} - x^*||^2 \le e^{-\alpha/(\ell + \alpha)} ||x_t - x^*||^2
$$

as desired.

(e) From (b), we know that $f(x_{t+1}) - f(x^*) \leq \frac{\ell}{2} ||x_t - x^*||^2$ since $||x_{t+1} - x^*||^2 \geq 0$. However, from repeated application of (d) we know that

$$
||x_t - x^*||^2 \le e^{-\alpha/(\ell + \alpha)} ||x_{t-1} - x^*||^2 \le \dots \le e^{-t\alpha/(\ell + \alpha)} ||x_0 - x^*||^2
$$

Taken together, these results show that

$$
f(x_{t+1}) - f(x^*) \le \frac{\ell ||x_0 - x^*||^2}{2} e^{-t\alpha/(\ell + \alpha)}
$$

The result of the theorem follows. \blacksquare