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Nameless Author :) COS 521: Homework 4 Problem 1

Problem 1

Part A

Proof. We wish to solve the following LP

maximize

m∑
j=1

wj(a
T
j x− bj)

subject to xi ≥ 0 ∀i ∈ [n]
n∑

i=1

xi = 1

We start by noting that we can reformulate the objective as

m∑
j=1

wj(a
T
j x− bj) =

m∑
j=1

(
−wjbj + wj

n∑
i=1

ajixi

)
= −

 m∑
j=1

wjbj

+

n∑
i=1

xi

m∑
j=1

ajiwj


Note that the left term is fixed, as it does not depend on our choice of x⃗. So, we wish to select xi’s that

maximize
∑n

i=1

(
xi

∑m
j=1 ajiwj

)
, are nonnegative, and sum to 1. The allocation that maximizes this is the

one that places xi∗ = 1 at the component i∗ = argmaxi

{∑m
j=1 ajiwj

}
and x ̸=i∗ = 0 elsewhere. We can show

this by contradiction: if there were another optimal allocation that had xk = z > 0 for some k ̸= i∗, we can

get a better value by setting xk ← 0 and setting xi∗ ← xi∗ + z. Removing z from xk will lose z
∑m

j=1 ajkwj

and adding z to xi∗ will gain z
∑m

j=1 aji∗wj ; since we selected i∗ as the maximizing component, the gain

will be larger than the loss, and the value of the objective will increase. This reallocation will still satisfy

that the xi’s are nonnegative and still sum to 1, and so it forms a feasible solution with a better value. This

contradicts the optimality of the xk = z > 0 allocation, and so we see that the optimal allocation must have

that xk = 0 for all k ̸= i∗ and therefore that xi∗ = 1. So, the solution to the LP is to set xi∗ = 1 and all

other components to 0, where i∗ = argmaxi

{∑m
j=1 ajiwj

}
.

Part B

Proof. Suppose that there exist non-negative weights w1, ..., wm such that the optimal value of the pro-

gram from part (a) is negative. Suppose, by way of contradiction, that LP 1 is feasible. Then, there exist

x1, ..., xn such that xi ≥ 0 for all i,
∑n

i=1 xi = 1, and aTj x ≥ bj ⇐⇒ aTj x − bj ≥ 0 for all j (these are the

feasibility conditions for LP 1). Then, since wj and aTj x − bj are nonnegative for all j ∈ [m], we see that

wj(a
T
j x− bj) ≥ 0 for all j, and so

∑m
j=1 wj(a

T
j x− bj) ≥ 0. Note that this is the exact form of the objective

from the program in part (a); this means that the x1, ..., xn that satisfy LP 1 would produce a feasible

solution with nonnegative value for the program from part (a). This is a contradiction, since we suppose

that the optimal value of part (a)’s program is negative. Therefore, there cannot be a feasible solution to

LP 1, and we arrive at the result.

Problem 1 continued on next page. . . 2
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Part C

Proof. Let us first note that for any x⃗ feasible for LP 2 (meaning it has unit L1 norm and nonnegative

components), since |aij |, |bj | ≤ 1 for all i, j, we know by the Triangle Inequality that

|aTj x− bj | ≤ |bj |+
n∑

i=1

|aji||xi| ≤ 1 + ||x⃗||1 ≤ 2 =⇒

∣∣∣∣∣aTj x− bj

2

∣∣∣∣∣ ≤ 1

We will follow the hint that is given, in which we consider m ”experts” to correspond to each of the m

inequality constraints in LP 1. We want to use a ”cost” for each expert related to how well it satisfies the

inequality (i.e. cost is related to aTj x− bj), but in order to ensure that each cost lies in the interval [−1, 1],
we must rescale by 2. The logic above guarantees that these rescaled costs are in the desired range. We can

then use the multiplicative weights algorithm as it is taught in lecture to update the weights wj in LP 2,

hopefully finding a set of nonnegative weights w⃗ such that either LP 2 has a negative optimal value or we

approximately satisfy LP 1.

Precisely put, we run multiplicative weights the following way:

• Fix η ∈
[
0, 1

2

]
.

• Initialize each weight w
(1)
j = 1 for j ∈ [m].

• In each round t of the algorithm, we solve LP 2 with each weight wj of the LP being set to a normalized

wj = p
(t)
j = 1∑

l w
(t)
l

· w(t)
j . Let x⃗(t) = x

(t)
1 , ..., x

(t)
n be the optimal solution of LP 2 with the weights

specified, and let the value it achieves be

OPT (t) =

m∑
j=1

wj(a
T
j x⃗

(t) − bj) =

m∑
j=1

p
(t)
j (aTj x⃗

(t) − bj)

• If OPT (t) < 0, we declare LP 1 to be infeasible and are done.

• Otherwise, observe costs for each expert j ∈ [m] of

m
(t)
j =

aTj x⃗
(t) − bj

2
.

Update each expert’s weight for the next round to be

w
(t+1)
j ← w

(t)
j

(
1− ηm

(t)
j

)

We can observe the following things: firstly, we have already seen that

∣∣∣∣aT
j x⃗(t)−bj

2

∣∣∣∣ ≤ 1 =⇒ m
(t)
j ∈ [−1, 1]

for all times t and all experts j. Also, for all t we can prove that w
(t)
j is nonnegative for all j ∈ [m] by

induction: since they initialize at w
(1)
j = 1 ≥ 0 we have a base case. To see the inductive step, η ∈ [0, 1/2]

and m
(t)
j ≤ 1 =⇒ (1 − ηm

(t)
j ) ≥ 1

2 > 0 together with w
(t)
j ≥ 0 imply that w

(t+1)
j = w

(t)
j (1 − ηm

(t)
j ) ≥ 0;

so by induction on t, w
(t)
j ≥ 0 for all experts j, for all timesteps t. Therefore, for every expert j and every

timestep t, we see p
(t)
j = 1∑

l w
(t)
l

·w(t)
j ≥ 0 as well. So, if we were to terminate early at any timestep t (because

OPT (t) < 0), we would therefore have a set of nonnegative weights {p(t)j } that produce a negative optimal

value of LP 2. Part (b) would therefore confirm that LP 1 is infeasible. So, our observations culminate

in two things: (1) m
(t)
j ∈ [−1, 1] for all j, t, and (2) if we ever terminate early, we can declare LP 1 to be

infeasible.
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Nameless Author :) COS 521: Homework 4 Problem 1 (continued)

Then, suppose that we continued the algorithm without early termination for T rounds. Since the costs are

normalized to [−1, 1], we can directly apply Theorem 3 from the Multiplicative Weights lecture to get the

result that for any expert j,

T∑
t=1

m⃗(t) · p⃗(t) ≤
T∑

t=1

m
(t)
j + η

T∑
t=1

|m(t)
j |+

lnm

η
≤

T∑
t=1

m
(t)
j + ηT +

lnm

η

Let us inspect the leftmost side of this inequality. We can simplify

m⃗(t) · p⃗(t) =
m∑
j=1

m
(t)
j p

(t)
j =

m∑
j=1

p
(t)
j ·

aTj x⃗
(t) − bj

2
=

OPT (t)

2

Note that we terminate the algorithm and declare LP 1 infeasible any time that OPT (t) < 0; so, if the

algorithm has not yet terminated for T rounds, then OPT (t) ≥ 0 for all t ∈ [T ], meaning that
∑T

t=1 m⃗
(t) ·

p⃗(t) =
∑T

t=1
OPT (t)

2 ≥ 0. So, for all experts j,

T∑
t=1

m
(t)
j + ηT +

lnm

η
≥ 0 =⇒ 1

2

T∑
t=1

(aTj x⃗
(t) − bj) + ηT +

lnm

η
=

aTj
2

(
T∑

t=1

x⃗(t)

)
− bjT

2
+ ηT +

lnm

η
≥ 0

If we denote x⃗∗ = 1
T

∑T
t=1 x⃗

(t) to be the average of our LP solutions over the T rounds, we can see that for

all j,

TaTj
2

x⃗∗ − bjT

2
+ ηT +

lnm

η
=

T

2
· (aTj x⃗∗ − bj) + ηT +

lnm

η
≥ 0 =⇒ aTj x⃗

∗ − bj ≥ −
(
2η +

2 lnm

ηT

)

Let ϵ > 0 be arbitrary. Let us set T = 16 lnm
ϵ2 and η =

√
lnm
T = ϵ

4 . Then, we see that this inequality reduces

to the fact that for all j,

aTj x⃗
∗ − bj ≥ −

(
ϵ

2
+

8

ϵ
· ϵ

2

16

)
= −ϵ

So, with this selection of η (which is certainly less than 1
2 and therefore valid for all interesting ϵ), after

T = 16 lnm
ϵ2 rounds of this algorithm, either (a) the algorithm will terminate early and we will declare LP 1

infeasible or (b) we will obtain a solution x⃗∗ that approximately satisfies each constraint of LP 1 within ϵ.

Since x⃗∗ is an average of x⃗(t)’s that were all feasible solutions to LP 2 and each had nonnegative components

that summed to 1, we know that x⃗∗ has also has nonnegative components that sum to 1, meaning it satisfies

the last two constraints of LP 1. So, the above algorithm will certainly terminate within O
(
lnm
ϵ2

)
rounds

and will either (a) declare LP 1 infeasible or (b) approximately solve it. Since each round solves precisely

one LP of the form in LP 2, we have proven the claim.
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Problem 2

Solution

Proof. Consider a universe U = {1, ..., n} of n elements. We will construct our family of sets S by

constructing a complete binary tree of the n elements in any arbitrary configuration where each element

corresponds to exactly one node. If the binary tree is not full (i.e. if n is not a sum of powers of 2), we duplicate

leaf nodes to make new leaf nodes until it is full. Note that this tree must have ⌊log2 n⌋ + 1 = Ω(log n)

levels. Also, since we assured that it is full, we will have Θ(n) leaf nodes. The idea is to let each leaf node,

which comes equipped with a unique simple path from the root to the leaf, define a subset of U consisting

of the elements on this path. In other words, each set in S will correspond to the elements connected in this

binary tree by a simple path from the root to a certain leaf. Since there are no duplicates anywhere except

potentially in the last level (we may have filled the last level), all of these sets are distinct and therefore

m = |S| = Θ(n) is the number of leaf nodes. A drawing of this construction is displayed below for n = 11.

I circle in red two potential sets in S; there are 8 total, one for each leaf node. The 4 rightmost leaf nodes

were made by duplication to ensure that the tree is full: this doesn’t break anything.

Equipped with this construction, we can fool any deterministic online set cover algorithm. Each of the

possible sets that the algorithm can choose from is a set of elements of U corresponding to a simple path

from the root to a leaf. We start by revealing the element r ∈ U corresponding to the root. The algorithm

must select a set in S containing r. This set will either contain the element l ∈ U corresponding to the

left child of the root or the element r ∈ U corresponding to the right child of the root; there is no set in S
containing both l and r (since this wouldn’t correspond to a simple path from root to leaf). If the selected

set contains l we choose to reveal r next; otherwise we reveal l. By construction, the element we reveal

hasn’t yet been covered by sets selected by the algorithm, and so it must select another. Put precisely,

suppose by induction that we have just revealed a certain element that the algorithm hasn’t yet covered,

corresponding to a certain node. The algorithm will select a set to cover this node, but the set it selects

will leave exactly one child uncovered. In the next step we reveal the uncovered child, ensuring that it is an

element the algorithm hasn’t yet covered and allowing this scheme to continue. Since the algorithm starts

by not having covered the root (base case), induction shows that each iteration of this method reveals an

element the algorithm hasn’t yet covered, forcing the online algorithm to select a new set.

In this way, we can reveal Ω(log n) elements of U (one for each level of the tree, since each iteration moves

us down one level in the tree) and every iteration the online algorithm must add a new set to their cover.

Therefore, the cost of an online algorithm in this construction must be Ω(log n). Since m = |S| = Θ(n),

the online cost can also be written as Ω(log(mn)). However, note that throughout this process we have

revealed elements corresponding to a simple path from root to a leaf of the tree, since we always followed

links from parent to child. By construction, there exists a single set in S corresponding to this path. So, all

the elements we revealed can actually be covered by a single set, and therefore the offline optimal solution

has cost of 1. This implies that no deterministic online algorithm can have o(log(mn)) competitive ratio.
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Problem 3

Solution

Proof. Let the number of items m up for auction be arbitrary. Suppose for simplicity that it is a perfect

square (if not, we could treat everything with the floor or ceiling of the square root of m and get the same

asymptotic behavior, but that would be very annoying :) ). Let there be n =
√
m bidders. We will design

the valuation functions such that each bidder has a set of items they desperately want: if they get every

item in this set (and potentially other items too) they have a value of 1, and otherwise a value of 0. Firstly,

split the items {1, ...,m} into
√
m many blocks Bj , each of size |Bj | =

√
m such that the Bj ’s are disjoint

and each item is in a block (basically, partition the items into
√
m blocks of size

√
m and label each block

Bj for j ∈ {1, ...,
√
m}). We will assign the sets in the following way:

• Initialize for each bidder i ∈ {1, ...,
√
m} a desired set Di = ∅.

• For each block j ∈ {1, ...,
√
m} do the following:

– (1) Update Dj ← Dj ∪Bj .

– If j <
√
m, for each bidder i ∈ {

√
m, ..., j + 1} do the following:

∗ Remove the last element of Bj from Bj , and call it x.

∗ (2) Update Di ← Di ∪ {x}.

– If j <
√
m, after this there will be j elements left in Bj since we started with

√
m elements and

popped
√
m− j of them. (3) Append all these remaining elements to Dj+1.

I am really sorry for the goofy and algorithmic presentation of this construction, I wanted to feel thorough

and this is the result. I attach below a picture of an example construction for the case where m = 9 for

clarity. In this picture, the columns correspond to items and the rows correspond to bidders. There is an X

in an entry of the table if that item is an element of that bidder’s desired set. I wrote in red the X’s that

came from updates of type (1), in blue the X’s that came from updates of type (2), and in black the X’s

that came from updates of type (3) to try and make this more transparent. In this example, bidder 1 has a

desired set D1 = {1, 2, 3}, bidder 2 has D2 = {1, 2, 4, 5, 6}, and bidder 3 has D3 = {3, 4, 5, 6, 7, 8, 9}.

Now that we have seen the construction, let’s look at some properties. The valuation functions are defined

for each bidder i ∈ {1, ...,
√
m} to be vi(S) =

{
1 Di ⊂ S

0 else
.

Lemma 1. The welfare of the optimal deterministic allocation is 1.

Proof of Lemma 1. We can see in this construction that each bidder i will want at least one item from

every block Bj such that j < i because of updates of type (2). Also, each bidder i will want all the items

from the block Bi because of updates of type (1). In other words, for each i the desired set Di contains at

least one element from each of the blocks B1, ..., Bi−1 and it contains all the elements from block Bi. In

particular, this means that for any two distinct bidders i < j, Di ∩Dj ̸= ∅: this is because Bi ⊂ Di and at

Problem 3 continued on next page. . . 6
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least one element of Bi is also in Dj . This important property means that for any deterministic allocation,

if one bidder receives all the elements in their desired set then no other bidder can also be satisfied (since

any pair of bidders must be in contention for at least one item). So, any deterministic allocation of items

can only create nonzero value from at most one bidder: therefore, the welfare of the optimal deterministic

allocation is 1.

Lemma 2. There exists a feasible fractional allocation for the configuration LP with value at least
√
m
2 .

Proof of Lemma 2. We can see from the construction of the desired sets that each item k ∈ [m] is placed

in the desired set of at most 2 bidders, since it can only be desired because of an update of type (1), which

happens once for the entire block, an update of type (2), which happens at most once, or an update of type

(3), which can only happen for item k if an update of type (2) didn’t. So, we can safely allocate 1
2 of each

item to every bidder that desires it, such that each bidder receives half of their desired set and outputs half

of their value.

In the more precise language of the configuration LP, we can say that for any bidder i and any subset

S ⊂ [m], we set

xi,S =

{
1
2 S = Di

0 else

We can see that for any item k ∈ [m], there are at most two desired sets that contain it. So, there are at

most two subsets S ⊂ [m] with nonzero x.,S that contain it: one for each of the bidders that desires it (all

other sets yield coefficients of 0). Therefore, we can say that for all items k,∑
i

∑
S∋k

xi,S ≤
1

2
+

1

2
= 1,

where for items not in the last block B√
m the inequality is tight. We can also reason that for every bidder

i, the only set that gives a nonzero xi,S is exactly S = Di, and so for all i∑
S

xi,S = xi,Di =
1

2
≤ 1

Lastly, each xi,S ≥ 0 by construction. These three inequalities show that this fractional allocation is feasible

for the configuration LP. We can find the value of this allocation to be∑
i,S

xi,Svi(S) ≥
∑
i

xi,Di
vi(Di) =

∑
i

1

2
· 1 =

√
m

2
,

since there are
√
m bidders.

Lemmas 1 and 2 yield that the optimal deterministic allocation has welfare 1, but there exist feasible

fractional allocations for the configuration LP with value Ω(
√
m). This shows that the integrality gap of the

configuration LP is at least Ω(
√
m).
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Problem 4

Solution

Proof. Suppose that there are m items and n bidders, each with a monotone submodular valuation function

fi(·). Let GREEDY (m) be the value of the welfare that the greedy algorithm achieves, and let OPT (m)

be the value of the welfare that the optimal allocation achieves. We want to show that 2 ·GREEDY (m) ≥
OPT (m). We will do so by considering the problem where we have yet to allocate the first item 1. Let

g ∈ [m] be the bidder that the greedy algorithm allocates 1 to. Define f−
g (S) = fg(S ∪ {1}) − fg({1}) to

be the marginal value that g gets for any set, assuming bidder g already had item 1. For the other bidders

i ̸= g, define f−
i (S) = fi(S). With this setup, we essentially get a subproblem where we wish to allocate

m − 1 items, and bidder g has the modified valuation function. Let GREEDY (m − 1) be the value of the

welfare for this subproblem, and let OPT (m− 1) be the optimal welfare value for this subproblem. Clearly,

GREEDY (m) = GREEDY (m− 1) + fg({1}),

since bidder g already gets 1 in the greedy solution to the problem with m items. Let bidder o be the bidder

that gets item 1 in the optimal solution that achieves value OPT (m). Suppose without loss of generality that

o ̸= g; if they are equal we can consider the subproblem where we ignore item 1 without anything changing,

and start applying the above logic from there. Now, we can say that if S1, ..., Sn is the optimal allocation

that achieves value OPT (m), the allocation S1, ..., So−1, So \ {1}, So+1, ..., Sn obtained by removing 1 from

So is a valid solution for the subproblem. Consider the value V gotten from this modified in the subproblem:

we can see that

fo(So)− f−
o (So \ {1}) ≤ fo({1})− fo(∅) = fo({1}),

by the submodularity of fo and the fact that f−
o = fo since o ̸= g. Also, we get that

fg(Sg)− f−
g (Sg) = fg(Sg)− fg(Sg ∪ {1}) + fg({1}) ≤ fg({1}),

by the monotonicity of fg and plugging in our modified f−
g . Lastly, we can note that since the greedy

algorithm selected bidder g to get the first item, we must have that fo({1}) ≤ fg({1}). These together yield

that

V ≥ OPT (m)− fg({1})− fo({1}) ≥ OPT (m)− 2fg({1})

Since V is a valid allocation for the subproblem, we also know that V ≤ OPT (m− 1) since OPT (m− 1) is

optimal. Putting all these togetther, we get that

OPT (m− 1) ≥ OPT (m)− 2fg({1})

We can handle the base case easily: when m = 1, the greedy algorithm certainly selects the maximal

welfare allocation, and so we trivially have 2 ·GREEDY (1) ≥ OPT (1). Suppose by way of induction that

2 ·GREEDY (m− 1) ≥ OPT (m− 1). Then,

2 ·GREEDY (m− 1) ≥ OPT (m)− 2fg({1})

So, the first inequality we derived gives

2 ·GREEDY (m) = 2 ·GREEDY (m− 1) + 2fg({1}) ≥ OPT (m)− 2fg({1}) + 2fg({1}) = OPT (m)

So, by induction, the claim holds for all m.
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Problem 5

Solution

Proof. Suppose that Alice and Bob are given two different bitstrings A and B, respectively. We make no

assumptions of their lengths. Suppose that Alice and Bob have access to an infinite, shared random stream

of bits. The communication protocol goes as follows:

• Alice appends a 1 to A and Bob appends a 1 to B, yielding A′ and B′ respectively. This is to avoid

degeneracy with leading 0’s.

• Let a be the decimal number that is represented by the bitstring A′ (i.e. if A′ = 10010 then a = 18)

and let b be the decimal number that is represented by the bitstring B′.

• Alice inspects the shared random bit stream at the indices given by a and a + 1 - call them xA, yA -

and communicates these two bits. Bob does the same, communicating the bits located at indices b and

b+ 1 in the shared random bit stream - call them xB , yB .

• If Alice’s two bits match Bob’s two bits (xA = xB and yA = yB), everyone outputs ”yes”. Otherwise,

everyone outputs ”no”.

Let’s analyze this. Clearly, both Alice and Bob output only O(1) bits, since they both output exactly 2 bits

each. Also, if Alice and Bob had the same input bitstrings A = B, then it will be the case that A′ = B′

and a = b, and the broadcasted pairs of bits (xA, yA) and (xB , yB) will be identical. So, if Alice and Bob

have equal inputs, they will certainly output ”yes”. Suppose now that Alice and Bob have different inputs.

Then, a ̸= b. So, the probability that xA = xB is equal to the probability that two different random bits

in the stream are equal: this happens with probability 1
2 since the bits in the shared random bitstream are

distributed i.i.d. Similarly, the probability that yA = yB is also 1
2 . Since these are two independent events

(the bits in the shared random bitstream are distributed i.i.d.), the probability that both xA = xB and

yA = yB is 1
2 ·

1
2 = 1

4 . So, the probability that Alice and Bob output ”yes” when given two different inputs

is 1
4 . This means that if Alice and Bob have different inputs, they will output ”no” with probability 3

4 > 2
3 .

The above protocol has all of the desired properties.
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