
COS 521: Homework 3
Due on October 31, 2022

Professor Matt Weinberg

Nameless Author :)

Collaborators: I can’t tell you :)
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Nameless Author :) COS 521: Homework 3 Problem 1

Problem 1

We say a random variable Z is subgamma with parameters (σ2, B) if

E
[
eλ(Z−E[Z])

]
≤ eλ

2σ2/2,

for all |λ| ≤ B.

Part A

Proof. Let Z =
∑m

i=1 Zi be the sum of the independent random variables. Then,

E [Z] =

m∑
i=1

E [Zi] =⇒ Z − E [Z] =

m∑
i=1

Z − E [Zi]

Since the random variables are independent, we have that

E
[
eλ(Z−E[Z])

]
= E

[
m∏
i=1

eλ(Z−E[Zi])

]
=

m∏
i=1

E
[
eλ(Z−E[Zi])

]
Now, for any λ such that |λ| ≤ B = mini∈[m]Bi, all of the subgamma conditions for all the Zi are satisfied,

and we can say that

m∏
i=1

E
[
eλ(Z−E[Zi])

]
≤

m∏
i=1

eλ
2σ2

i /2 = eλ
2σ2/2 =⇒ E

[
eλ(Z−E[Z])

]
≤ eλ

2σ2/2,

where σ2 =
∑m

i=1 σ
2
i . So, we see that Z is subgamma with parameters

(∑m
i=1 σ

2
i ,mini∈[m]Bi

)
Part B

Proof. Suppose that Z is subgamma with parameters (σ2, B). Define ∆ := Z − E [Z] for notation, and

observe that, since ex is monotone increasing for positive x, we have that for all λ ∈ (0, B]

P [∆ > t] = P
[
eλ∆ > eλt

]
≤

E
[
eλ∆

]
eλt

≤ eλ
2σ2/2

eλt
= e

λ2σ2

2 −λt,

where the first inequality is just Markov’s Inequality and the second inequality comes from the fact that Z

is subgamma. Similarly, we can bound the other tail by exponentiating with eλ(·) for λ ∈ [−B, 0), which

flips the inequality:

P [∆ < −t] = P
[
eλ∆ > e−λt

]
≤

E
[
eλ∆

]
e−λt

≤ eλ
2σ2/2

e−λt
= e

λ2σ2

2 +λt,

where we also apply Markov’s Inequality and the subgamma condition. We can combine these results and

show that the tails are both bounded by eλ
2σ2/2−|λ|t, where we select λ ∈ (0, B] for the upper tail and

λ ∈ [−B, 0) for the lower tail. Now, there are two cases:

• ( t
σ2 ≤ B) If this is the case, we can set λ = t

σ2 for the upper tail and λ = − t
2 for the lower tail, and

the subgamma condition will be satisfied. Plugging this into the bound yields that both tails are at

most

e
λ2σ2

2 −|λ|t = e
t2σ2

2σ4 − t2

σ2 = e−t2/2σ2

• ( t
σ2 > B) In this case, we can use the fact that |λ| ≤ B to see that both tails are at most

e
B2σ2

2 −Bt ≤ e
Btσ2

2σ2 −Bt = e−Bt/2,

where the inequality comes from one application of the fact that B < t
σ2 .

Problem 1 continued on next page. . . 2



Nameless Author :) COS 521: Homework 3 Problem 1 (continued)

Note that e−Bt/2 > e−t2/2σ2

if and only if B < t
σ2 , and so we see that the shared bound on both tails takes

the value of

max
{
e−t2/2σ2

, e−Bt/2
}

as desired.

Part C

Proof. Let Z be a geometric random variable such that P [Z = k] = p · (1 − p)k−1 for all integers k ≥ 1.

Then, we have that the expectation of Z is E [Z] = 1
p . We can use the sum definition of expectation to say

that

E
[
eλ(Z−E[Z])

]
= E

[
eλ(Z−1/p)

]
=

∞∑
k=1

eλk−λ/p · P [Z = k] =
p

1− p
e−λ/p ·

∞∑
k=1

eλk(1− p)k

Suppose that |λ| ≤ p
2 =⇒ eλ(1 − p) ≤ e

p
2 (1 − p) ≤ e

p
2−p = e−

p
2 < 1, which is always less than 1 for

p ∈ (0, 1]. So, we can say that this geometric sum converges (since the ratio eλ(1− p) < 1), yielding

E
[
eλ(Z−1/p)

]
=

p

1− p
e−λ/p · eλ(1− p)

1− eλ(1− p)
=

peλ−λ/p

1− eλ(1− p)

=
pe−λ/p

e−λ − (1− p)
≤ pe−λ/p

1− λ− (1− p)
=

pe−λ/p

p− λ

=
e−λ/p

1− λ
p

,

where the inequality comes from an application of e−λ ≥ 1− λ. Now, for λ with |λ| ≤ p
2 =⇒

∣∣∣λp ∣∣∣ ≤ 1
2 , we

can use the other inequality in the hint to say that

e−λ/p · 1

1− λ
p

≤ e−λ/p · eλ/p+λ2/p2

= e
λ2

p2 =⇒ E
[
eλ(Z−E[Z])

]
≤ e

λ2

p2 ,

where all of the above reasoning holds for all λ with |λ| ≤ p
2 . This is precisely the statement that Z is

subgamma with parameters
(

2
p2 ,

p
2

)
.
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Nameless Author :) COS 521: Homework 3 Problem 2

Problem 2

Let b := 1 + α for immense notational convenience.

Part A

Proof. Consider calling inc() to try and increment X from k−1 to k. Each of these trials are independent,

each with a probability of pk = b−(k−1) of success (incrementing). Each of these trials are then independent

Bernoulli variables with parameter pk, and so the number of trials necessary before the first success is

distributed as a geometric variable with parameter pk (this is the definition of the geometric distribution).

So, Yk ∼ Geom(pk). From Problem 1(c), we get that Yk is subgamma with parameters(
2

p2k
,
pk
2

)
=

(
2b2k−2,

b−(k−1)

2

)

Part B

Proof. Let ϵ > 0 be arbitrary. Let k be such that

ñ(k) = (1− ϵ)n =⇒ bk − 1

α
= (1− ϵ)n =⇒ k = logb((1− ϵ) · αn+ 1)

We assume for simplification that this value of k, which is the value the counter must take such that

ñ(k) = (1− ϵ)n, is an integer (ED post 93 says we can do this, thank you Huacheng!). So, k ∈ N. Therefore,
we are interested in bounding the probability that after n inc() calls,

ñ(X) < (1− ϵ)n = ñ(k) ⇐⇒ X < k

Note that we can say this since b = (1 + α) > 1 =⇒ b(·) is monotone increasing, allowing us to take the

log base b of both sides of the inequality. The above event occurring is exactly equivalent to the event that

after n calls to inc(), the counter has not yet incremented to a value of k. In other words, this event is

equivalent to the event that
∑k

i=1 Yi > n, in which case it would have taken more than n calls to inc() to

reach a counter value of k (since each Yi is the number of calls needed to increment from i − 1 to i). Let

Y (k) :=
∑k

i=1 Yi be the random variable for the number of calls to inc() that would have been needed to

reach a counter value of k. We arrive at the fact that

P [ñ(X) < (1− ϵ)n] = P
[
Y (k) > n

]
Lemma 1. Y (k) is subgamma with parameters

(
2 · b2k−1

b2−1 ,
1

2bk−1

)
and expectation E

[
Y (k)

]
= (1− ϵ)n.

Proof of Lemma 1. Firstly, note that since each of the Yi’s are independent from each other (each

increment trial is independent), we can apply Problem 1(a) to see that Y (k) is subgamma with parameters

σ2 =

k∑
i=1

σ2
i =

k∑
i=1

2b2i−2 = 2 ·
k∑

i=1

(b2)i−1 = 2 ·
(
(b2)k − 1

b2 − 1

)
= 2 · b

2k − 1

b2 − 1
,

B = min
i∈[k]

{Bi} = min
i∈[k]

{
b−(i−1)

2

}
=

b−(k−1)

2
=

1

2bk−1
,

where for σ2 we used the finite geometric series with ratio b2 and for B we used the fact that b = 1+α > 1,

which means that the minimum of b−(i−1) happens for the largest i, which is i = k. We can also determine

Problem 2 continued on next page. . . 4



Nameless Author :) COS 521: Homework 3 Problem 2 (continued)

that since a geometric random variable with parameter p has expectation 1
p ,

E
[
Y (k)

]
= E

[
k∑

i=1

Yi

]
=

k∑
i=1

E [Yi] =

k∑
i=1

1

pk
=

k∑
i=1

bi−1 =
bk − 1

b− 1
=

(1 + α)k − 1

α
= ñ(k) = (1− ϵ)n,

where we again used the finite geometric series and plugged in our earlier definition of k.

We immediately apply Lemma 1 to say that

P [ñ(X) < (1− ϵ)n] = P
[
Y (k) > n

]
= P

[
Y (k) − (1− ϵ)n > n− (1− ϵ)n

]
= P

[
Y (k) − E

[
Y (k)

]
> ϵn

]
We can apply Problem 1(b) with t = ϵn > 0 to see that, since Y (k) is subgamma,

P
[
Y (k) − E

[
Y (k)

]
> ϵn

]
≤ max

{
e−

ϵ2n2

2σ2 , e−
ϵnB
2

}
= max

{
e
− ϵ2n2(b2−1)

4(b2k−1) , e−
ϵn

4bk−1

}

Lemma 2. There exists some constant C such that for all n with αn > C, we have that max

{
e
− ϵ2n2(b2−1)

4(b2k−1) , e−
ϵn

4bk−1

}
is of the order e

−Ω
(

ϵ2

α

)
.

Proof of Lemma 2. We want to show that the exponents in both branches are of the order −Ω
(

ϵ2

α

)
. We

first tackle the left one. We can plug in our expression for k to see that bk = (1 − ϵ) · αn + 1, and so since

b2 − 1 = α2 + 2α,

ϵ2n2(b2 − 1)

4(b2k − 1)
=

ϵ2n2(α2 + 2α)

4(((1− ϵ) · αn+ 1)2 − 1)
=

ϵ2n2(α2 + 2α)

4((1− ϵ)2 · α2n2 + 2(1− ϵ) · αn)

Note that, as n → ∞, this expression approaches the limit of ϵ2(α2+2α)
4(1−ϵ)2α2 from below. So, for all δ1 > 0, there

exists some large constant C1 such that, for all n with αn > αC1 (this is a way to rigorously define a limit

as getting arbitrarily close to the result for large enough n),

ϵ2n2(α2 + 2α)

4((1− ϵ)2 · α2n2 + 2(1− ϵ) · αn)
+ δ1 >

ϵ2(α2 + 2α)

4(1− ϵ)2α2
=

ϵ2(α+ 2)

4(1− ϵ)2α
>

ϵ2

4
+

ϵ2

2α
>

ϵ2

2α
,

where the first inequality uses a nice and formal way to define the limit, the second inequality uses that

1 − ϵ < 1, and the third inequality is because ϵ2

4 > 0. (Note that this method with the δ1 is equivalent to

saying that, for large enough n, we are within a constant of the limit; meaning, for large enough n we behave

asymptotically the same as the limit in terms of ϵ and α).

=⇒ ϵ2n2(α2 + 2α)

4((1− ϵ)2 · α2n2 + 2(1− ϵ) · αn)
= Ω

(
ϵ2

α

)
For the right branch, we can also plug in bk = (1− ϵ) · αn+ 1 to see that

ϵn

4bk−1
=

ϵn · b
4((1− ϵ) · αn+ 1)

=
ϵn(1 + α)

4(1− ϵ)αn+ 4

Once again, note that the limit as n → ∞ of this expression approaches ϵ(1+α)
4(1−ϵ)α from below. So, for all

δ2 > 0, there exists some large constant C2 such that, for all n with n > C2 =⇒ αn > αC2,

ϵn(1 + α)

4(1− ϵ)αn+ 4
+ δ2 >

ϵ(1 + α)

4(1− ϵ)α
>

ϵ(1 + α)

4α
=

ϵ

4α
+

ϵ

4
>

ϵ2

4α
= Ω

(
ϵ2

α

)
,

Problem 2 continued on next page. . . 5



Nameless Author :) COS 521: Homework 3 Problem 2 (continued)

where for the first inequality we used a formal limit definition, for the second inequality we used that 1−ϵ < 1,

and for the third inequality we used that ϵ < 1 =⇒ ϵ > ϵ2 and ϵ
4 > 0. So, if we take C = max{αC1, αC2},

we get that for all n with αn > C,

min

{
ϵ2n2(b2 − 1)

4(b2k − 1)
,

ϵn

4bk−1

}
= Ω

(
ϵ2

α

)
=⇒ max

{
e
− ϵ2n2(b2−1)

4(b2k−1) , e−
ϵn

4bk−1

}
= e

−Ω
(

ϵ2

α

)

We can now apply Lemma 2 to our earlier result to arrive at the fact that, for some C, for all n s.t.

αn > C, after n calls to inc() it holds that

P [ñ(X) < (1− ϵ)n] = P
[
Y (k) − E

[
Y (k)

]
> ϵn

]
≤ e

−Ω
(

ϵ2

α

)

Part C

Proof. Given N, ϵ, δ, we wish to set α and T to achieve the desired result. From the result of Problem

2(b), we have that both of the events ñ(X) < (1 − ϵ)n and ñ(X) > (1 + ϵ)n occur with probability at

most e
−Ω

(
ϵ2

α

)
. We may apply the union bound to say that the probability that either of these two events

happening is at most 2e
−Ω

(
ϵ2

α

)
. Therefore, the probability that neither of these events happen is greater

than 1− 2e
−Ω

(
ϵ2

α

)
. Therefore, if we set α = O

(
ϵ2

log 2/δ

)
=⇒ 1

α = Ω
(

log 2/δ
ϵ2

)
,

P [ñ(X) ∈ (1± ϵ)n] > 1− 2e
−Ω

(
ϵ2

α

)
= 1−O(δ)

as desired. So, we can say that the Morris Counter approximates n to arbitrary precision with high probability

(for large enough n). This means that, with high probability, the worst case (largest counter possible) takes

the form

ñ(Xmax) ∈ (1± ϵ)N =⇒ (1 + α)Xmax − 1

α
= O(N) =⇒ (1 + α)Xmax = O(N) =⇒ Xmax = O(logN)

Since Xmax is an integer, it takes log(Xmax) = O(log logN) bits to store the counter; this occurs with high

probability 1 − O(δ). We also need to store α, which takes log
(
1
α

)
bits. With the value of α determined

above, we find the result that for large enough n, it occurs with high probability 1−O(δ) that it takes

O(log logN) + log

(
1

α

)
= O(log logN) +O

(
log

log 2/δ

ϵ2

)
= O

(
log logN + log

1

ϵ
+ log log

1

δ

)
bits for the whole Morris Counter, as desired. To handle the cases for tiny enough n that the reasoning

from Problem 1(b) breaks down, we can keep an exact counter for all n ≤ T , where T = log(N); this exact

counter also takes O(log T ) = O(log logN) bits, but maintains perfect accuracy for the small n that may

mess up the Morris Counter. We arrive at the final result: given N, ϵ, δ, we can create a Morris Counter

such that after n calls to inc(),

P [ñ(X) ∈ (1± ϵ)n] > 1−O(δ)

using

O

(
log logN + log

1

ϵ
+ log log

1

δ

)
bits.
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Nameless Author :) COS 521: Homework 3 Problem 3

Problem 3

Solution

Proof. Consider the Johnson-Lindenstrauss dimensionality reduction method described in lecture: x → Πx

where each entry in Π ∈ Rm×d equals Πij = c · gij for some fixed scaling factor c and gij ∼ N (0, 1).

Lemma 3. For any vector x⃗ = (x1, ..., xd) ∈ Rd, we have that the expectation over values of Π of the L1

norm of Πx⃗ is

E [||Πx⃗||1] = ||x⃗||2 · cm ·
√

2

π

Proof of Lemma 3. Let wi =
∑d

j=1 xjgij . Then, we can write

Πx⃗ = (cw1, ..., cwm) =⇒ ||Πx⃗||1 = c ·
m∑
i=1

|wi| =⇒ E [||Πx⃗||1] = c ·
m∑
i=1

E [|wi|]

We can evaluate each expectation above as follows: note that each wi is a linear combination of independent

unit normal random variables gij , weighted by components xj . So, by the properties of linear combinations

of Gaussians, wi = x1gi1+x2gi2+ ...+xdgid ∼ N (0, x2
1+x2

2+ ...+x2
d) = N (0, ||x⃗||22). Then, we can say that

E [|wi|] =
∫ ∞

−∞
|wi| ·

e
− w2

i
2||x⃗||22√

2π||x⃗||22
dwi

Let u = wi√
2||x⃗||22

. Then, we get that

E [|wi|] = 2 ·
∫ ∞

0

wi ·
e
− w2

i
2||x⃗||22√

2π||x⃗||22
dwi = 2 ·

√
2||x⃗||2

∫ ∞

0

u · e
−u2

√
π

du = 2 ·
√
2||x⃗||2 ·

1

2
√
π

= ||x⃗||2

√
2

π
,

where the integral evaluation is a simple Gaussian integral. Then, we get that

E [||Πx⃗||1] = c ·
m∑
i=1

E [|wi|] = c ·
m∑
i=1

||x⃗||2

√
2

π
= ||x⃗||2 · cm ·

√
2

π

So, consider the set of vectors in Rd for some d (we will find d later) given by

x⃗0 = (0, ..., 0), x⃗1 = (1, 0, ..., 0), x⃗2 = (1, ..., 1),

i.e. x⃗0 is the zero vector, x⃗1 is the first basis vector, and x⃗2 is the sum of all the basis vectors (1 for every

component). Then, we have the L1 norms

||x⃗1 − x⃗0||1 = 1, ||x⃗2 − x⃗0||1 = d,

and the L2 norms

||x⃗1 − x⃗0||2 = 1, ||x⃗2 − x⃗0||2 =
√
d

Then, we can apply Lemma 3 to see that

E [||Π(x⃗1 − x⃗0)||1] = ||x⃗1 − x⃗0||2 · cm ·
√

2

π
= cm ·

√
2

π
= cm ·

√
2

π
||x⃗1 − x⃗0||1

Problem 3 continued on next page. . . 7



Nameless Author :) COS 521: Homework 3 Problem 3 (continued)

and

E [||Π(x⃗2 − x⃗0)||1] = ||x⃗2 − x⃗0||2 · cm ·
√

2

π
= cm ·

√
2d

π
= cm ·

√
2

πd
||x⃗1 − x⃗0||1

In order for both of these estimations to be correct within a factor of 2, we require that

cm ·
√

2

π
, cm ·

√
2

πd
∈ [0.5, 2.0]

Since d > 1, the most extreme value of d for which this can be possible happens exactly when

cm ·
√

2

π
= 2, cm ·

√
2

πd
= 0.5 =⇒

√
d = 4 =⇒ d = 16

(To see this, note that the largest value of d occurs when the ratio between cm ·
√

2
π and cm ·

√
2
πd , which is

√
d, is as large as possible; the largest such ratio within this range is 2/0.5 = 4). Therefore, for any value of

d > 16, we cannot have that both

cm ·
√

2

π
∈ [0.5, 2.0]

and

cm ·
√

2

πd
∈ [0.5, 2.0]

So, this example shows that for d > 16, the JL dimensionality reduction method cannot preserve L1 distances

within a factor of 2 within the example set {x⃗0, x⃗1, x⃗2} ⊂ Rd.
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Nameless Author :) COS 521: Homework 3 Problem 4

Problem 4

Solution

Proof. We start by reformulating the k-means objective in terms of pairwise L2 distances. Note that all

norms in this problem are L2 norms.

Lemma 4. For vectors x⃗1, ..., x⃗n and clusters C1, ..., Ck with centroids c⃗1, ..., c⃗k, we have that

fX(C1, ..., CK) =

k∑
j=1

∑
i∈Cj

||c⃗j − x⃗i||2 =

k∑
j=1

1

2|Cj |
·
∑

r,s∈Cj

||x⃗r − x⃗s||2

Proof of Lemma 4. We perform some cute algebra with the following property:

||x− y||2 = ||x||2 + ||y||2 − 2⟨x, y⟩

Getting started,

k∑
j=1

∑
i∈Cj

||c⃗j − x⃗i||2 =

k∑
j=1

∑
i∈Cj

||c⃗j ||2 + ||x⃗i||2 − 2⟨cj , xi⟩

=

k∑
j=1

|Cj | · ||c⃗j ||2 +
∑
i∈Cj

||x⃗i||2 − 2⟨c⃗j , x⃗i⟩

Plugging in that c⃗j =
1

|Cj | ·
∑

i∈Cj
x⃗i, we find that

=

k∑
j=1

|Cj | ·
1

|Cj |
·
∑
i∈Cj

⟨c⃗j , x⃗i⟩+
∑
i∈Cj

||x⃗i||2 − 2⟨c⃗j , x⃗i⟩

=

k∑
j=1

∑
i∈Cj

||x⃗i||2 − ⟨c⃗j , x⃗i⟩

=

k∑
j=1

1

2|Cj |

 ∑
r,s∈Cj

||x⃗r||2 + ||x⃗s||2
− 1

|Cj |

 ∑
r,s∈Cj

⟨x⃗r, x⃗s⟩

 ,

where the first double sum over Cj is just a clever rewriting of the sum of squared norms ||x⃗i||2 (dividing by

2|Cj | to avoid double counting), and the second double sum comes from plugging in c⃗j . This gives

=

k∑
j=1

1

2|Cj |

 ∑
r,s∈Cj

||x⃗r||2 + ||x⃗s||2 − 2⟨x⃗r, x⃗s⟩


=

k∑
j=1

1

2|Cj |
·
∑

r,s∈Cj

||x⃗r − x⃗s||2

as desired.

From here on out, we use Lemma 4 to rewrite the k-means objective. We apply the result of the Johnson-

Lindenstrauss Theorem: namely, that if Π is a JL map into s = O
(

logn
(ϵ/3)2

)
dimensions, then we can say that

for all x⃗, y⃗ ∈ X,

P
[
||Πx⃗−Πy⃗||2 ∈

(
1± ϵ

3

)
||x⃗− y⃗||2

]
> 1− 1

n

Problem 4 continued on next page. . . 9



Nameless Author :) COS 521: Homework 3 Problem 4 (continued)

Suppose that C1, ..., Ck are the optimal clusters that obtain minimal objective OPTX = fX(C1, ..., Ck) in

the metric space X (i.e. over the vectors x⃗1, ..., x⃗n) and that C̃1, ..., C̃k are the optimal clusters that minimize

OPTΠX = fΠX(C̃1, ..., C̃k) in the dimensionality-reduced metric space (i.e. over the vectors Πx⃗1, ...,Πx⃗n).

Note that the JL Theorem grants that, with probability greater than 1− 1
n , the following two relations (the

next half of the page) hold:

fΠX(C1, ..., Ck) =

k∑
j=1

1

2|Cj |
·
∑

r,s∈Cj

||Πx⃗r −Πx⃗s||2 <

k∑
j=1

1

2|Cj |
·
∑

r,s∈Cj

(
1 +

ϵ

3

)
||x⃗r − x⃗s||2

=
(
1 +

ϵ

3

) k∑
j=1

1

2|Cj |
·
∑

r,s∈Cj

||x⃗r − x⃗s||2 =
(
1 +

ϵ

3

)
OPTX ,

where we used the fact that C1, ..., Ck are the optimal clustering in the X metric space. We can also perform

a similar thing to see that, for the optimal clusters C̃1, ..., C̃k in the ΠX metric space,

OPTΠX = fΠX(C̃1, ..., C̃k) =

k∑
j=1

1

2|C̃j |
·
∑

r,s∈C̃j

||Πx⃗r −Πx⃗s||2

>

k∑
j=1

1

2|C̃j |
·
∑

r,s∈C̃j

(
1− ϵ

3

)
||x⃗r − x⃗s||2

=
(
1− ϵ

3

) k∑
j=1

1

2|C̃j |
·
∑

r,s∈C̃j

||x⃗r − x⃗s||2 =
(
1− ϵ

3

)
fX(C̃1, ..., C̃k)

Lastly, note that because of the fact that C̃1, ..., C̃k is optimal (minimizes the objective) in the ΠX metric

space, we have that

OPTΠX ≤ fΠX(C1, ..., Ck)

To recap, we showed that with probability 1− 1
n , the following three inequalities hold:

fΠX(C1, ..., Ck) <
(
1 +

ϵ

3

)
OPTX ,

OPTΠX >
(
1− ϵ

3

)
fX(C̃1, ..., C̃k),

OPTΠX ≤ fΠX(C1, ..., Ck)

Chaining these three together yields(
1− ϵ

3

)
fX(C̃1, ..., C̃k) < OPTΠX ≤ fΠX(C1, ..., Ck) <

(
1 +

ϵ

3

)
OPTX

=⇒
(
1− ϵ

3

)
fX(C̃1, ..., C̃k) <

(
1 +

ϵ

3

)
OPTX

=⇒ fX(C̃1, ..., C̃k) <
1 + ϵ

3

1− ϵ
3

OPTX

The final step is to note that for ϵ ∈ (0, 1) (this range is ok because we are interested in behavior for small

ϵ, see ED post 99), it is the case that

ϵ > ϵ2 =⇒ 1 ≤ 1 +
ϵ

3
− ϵ2

3
=⇒ 1 +

ϵ

3
≤ 1 +

2ϵ

3
− ϵ2

3
=
(
1− ϵ

3

)
(1 + ϵ) =⇒

1 + ϵ
3

1− ϵ
3

≤ 1 + ϵ

This yields the final result that with probability greater than 1− 1
n (i.e. with high probability),

fX(C̃1, ..., C̃k) < (1 + ϵ)OPTX

10



Nameless Author :) COS 521: Homework 3 Problem 5

Problem 5

Note: the below proof is done for unweighted, undirected graphs. Also, by ED post 100, we suppose that k is

constant, although the final step of the proof does indeed hold for k = o(log n).

Solution

Proof. We start with a Lemma relating the number of cycles of length ≤ k to the number of edges in a

k − 1-spanner.

Lemma 5. If a graph G = (V,E) has no cycle of length ≤ k, then any k − 1 spanner of G must contain

exactly |E| edges.

Proof of Lemma 5. We prove this by showing that for such a graph G, removing any edge from consid-

eration in the formation of a spanner disallows a k− 1 spanner to be formed (i.e. for all edges (u, v) ∈ E, we

want to show that any subgraph of G that doesn’t contain (u, v) cannot be a k − 1 spanner). Note that if

G is disconnected or has no cycles, removing an edge from consideration disallows any spanners (since there

would be unreachable vertices). So, suppose G is connected and has a cycle. Consider any arbitrary edge

(u, v) ∈ E. If (u, v) is not a part of some cycle of G, then removing this edge disconnects u and v, once

again disallowing any spanner from being formed. So, suppose that (u, v) is a part of some cycle of G; by

assumption, this cycle must be of length > k. This necessarily means that any simple path between u and v

along G is either just the edge (u, v) or has a length > k − 1 (either we traverse (u, v) or go the whole way

around the cycle, which has total length k). So, if we were to remove (u, v) from consideration in a spanner

formation, any path from u to v in the spanner must have length at > k − 1 =⇒ it cannot be a k − 1

spanner. Since this line of reasoning holds for all edges in E, we obtain the result that any subgraph of G

with less than |E| edges cannot be a k − 1 spanner. Therefore, any k − 1 spanner must have |E| edges.

The rest of the proof goes as follows: we want to show that there exists some graph G = (V,E) with

|V | = n vertices and |E| > O
(
n1+ 1

k

)
edges that has no cycle of length ≤ k. From here, we could apply

Lemma 5 to see that any k− 1 spanner has > O
(
n1+ 1

k

)
edges, and there is therefore no k− 1 spanner with

O
(
n1+ 1

k

)
edges. By ED post 100, this is what we are trying to show (the first bullet point in the post).

Now, consider a graph G = (VG, EG) with |VG| = n vertices and each possible edge (u, v) ∈ VG × VG

existing with probability p = n−(1− 1
k− 1

k2 ) independently. We can show that, in expectation, such a graph

G has an expected number of edges

E [|EG|] =
(
n

2

)
· 1

n1− 1
k− 1

k2

=
n− 1

2
· 1

n− 1
k− 1

k2

=
1

2
· (n− 1) · n

1
k+ 1

k2

Lemma 6. The expected number of cycles of length ≤ k is at most n1+ 1
k .

Proof of Lemma 6. Define Nl to be the random variable of the number of cycles of length l in G. Note

that from any subset of l vertices, in order for there to be a cycle of length l within this subset there must

be precisely l edges made. So, within each set of vertices of size l (say, Vl ⊂ VG), the probability that it

contains a cycle of length l is

l!

2l
·
(

1

n1−1/k−1/k2

)l

,

Problem 5 continued on next page. . . 11



Nameless Author :) COS 521: Homework 3 Problem 5 (continued)

where we need the factor of l!
2l to account for the different possible permutations of the cycle (l!), as well as

the symmetry of a cycle to starting position (1l ) and direction ( 12 ). So, since there are
(
n
l

)
possible subsets

of size l, each forming an l-cycle with the above probability, we find that the expected number of cycles of

length l is

E [Nl] =

(
n

l

)
· l!
2l

·
(

1

n1−1/k−1/k2

)l

=
n!

2l!
·
(

1

n1−1/k−1/k2

)l

Therefore, the expected number of cycles with length ≤ k is given by

k∑
l=3

E [Nl] ≤
k∑

l=0

n!

2l!
·
(

1

n1−1/k−1/k2

)l

≤ 1

2

k∑
l=0

( n

n1−1/k−1/k2

)l
,

where the last inequality comes from the fact that n!
l! ≤ nl. So, we can use a geometric sum to see that this

is equal to

=
1

2
·

(
n1+2/k+1/k2 − 1

n1/k+1/k2 − 1

)
≤ n1+1/k,

where this last inequality holds because the left term inside the parenthesis converges to the right hand side,

and is always much closer than a factor of 1
2 (you can use Desmos to see this). So, the expected number of

cycles of length ≤ k is as desired.

So, we have seen that the graph G, constructed as above, in expectation has the properties that it has

1

2
· (n− 1) · n

1
k+ 1

k2

edges and no more than n1+1/k cycles. So, we can say that such a graph G′ certainly exists, since the random

graph G in expectation is G′. From here, we can proceed deterministically on G′, confident that it exists.

If we take G′ and remove one edge from each of its cycles of length ≤ k (thus breaking each such cycle), we

result in a new graph, say G̃′, with no cycles of length ≤ k and with at least

1

2
· (n− 1) · n

1
k+ 1

k2 − n1+1/k

edges. Note that the term n · n1/k+1/k2

= n1+1/k+1/k2

dominates the entire expression, and so we find that

the number of edges in G̃′ is of the order

O
(
n1+1/k+1/k2

)
> O

(
n1+1/k

)
So, we have shown the existence of a graph G̃′ with more than O

(
n1+1/k

)
edges that has no cycles of length

≤ k. By Lemma 5, we see that every k − 1 spanner of G̃′ must have O
(
n1+1/k+1/k2

)
edges, and so there is

no k − 1 spanner with O
(
n1+1/k

)
edges.
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