
COS 521: Homework 2
Due on October 11, 2022

Professor Matt Weinberg

Nameless Author :)

Collaborators: I can’t tell you :)
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Nameless Author :) COS 521: Homework 2 Problem 1

Problem 1

Solution

Proof. Recall from lecture that a linear optimization oracle over a convex region K is poly-time reducible to

a separation oracle for K (we showed this by writing an LP over K to find the ”most violated” hyperplane,

if one exists). So, we can claim that given AP and AQ, we are given poly-time separation oracles for P and

Q. From this, we simply need to devise a poly-time separation oracle for P ∩Q, since we can then apply the

ellipsoid algorithm to optimize linear functions over P ∩Q in poly-time. Recall that a separation oracle for

P ∩Q takes as input a vector x⃗ and outputs true if x⃗ ∈ P ∩Q and, if not, outputs a separating hyperplane

w⃗ ∈ Rn s.t. x⃗ · w⃗ > maxy⃗∈P∩Q {y⃗ · w⃗}. We can construct one using the oracles for P and Q that we make

from AP and AQ. For an input x⃗, query the separation oracles for P and Q. We split the algorithm for our

oracle forP ∩Q into three cases:

• Both return contained. If both return that x⃗ is contained in the regions P and Q, then we can

immediately return that x⃗ ∈ P ∩Q.

• One returns contained and one returns a separating hyperplane. If we see that x⃗ is contained

in one of the regions, say P , but we get a separating hyperplane for Q, then we know that x⃗ /∈ P ∩Q and

that we should return that separating hyperplane for Q. To see this, note that a separating hyperplane

for Q takes the form of a

w⃗Q ∈ Rn s.t. x⃗ · w⃗q > maxy⃗∈Q {y⃗ · w⃗}

Since P ∩Q ⊂ Q, we see that

x⃗ · w⃗q > maxy⃗∈Q {y⃗ · w⃗} ≥ maxy⃗∈P∩Q {y⃗ · w⃗}

So, w⃗Q is a separating hyperplane for P ∩ Q as well, which means that returning w⃗Q suffices for the

operation of a separation oracle for P ∩ Q. Symmetric reasoning holds if the query to the P and Q

oracles yields a separating hyperplane w⃗P for P and that x⃗ ∈ Q; in this case we would return w⃗P

• Both return separating hyperplanes. If we see that x⃗ is not contained in either P or Q and instead

receive two separating hyperplanes w⃗P , w⃗Q, we can return either one. This is because, as before, a

separating hyperplane for Q yields a seperating hyperplane for P ∩Q via

w⃗Q ∈ Rn s.t. x⃗ · w⃗q > maxy⃗∈Q {y⃗ · w⃗} =⇒ x⃗ · w⃗q > maxy⃗∈Q {y⃗ · w⃗} ≥ maxy⃗∈P∩Q {y⃗ · w⃗} ,

and the same logic applies for w⃗P . So, we can return either w⃗P or w⃗Q as a separating hyperplane for

P ∩Q.

So, we have crafted a working poly-time separation oracle for P ∩Q using the given optimization algorithms

AP and AQ. The only thing we need to do in order to apply the ellipsoid algorithm to optimize over P ∩Q

in poly-time is to construct a bounding box of P ∩Q; we can make a poor, but good enough bounding box

by simply finding the maximum and minimum coordinates of P in each of the n dimensions. Each of these n

different max and min functions can be framed as optimizing a linear function (namely, for each coordinate

i ∈ [n], we optimize the LP that extracts the max or min of the linear objective
∑n

j=1 1j=ixj) over P . So,

we can find a bounding box, and therefore a bounding ellipsoid, over P using AP . Since P ∩Q ⊂ P , this also

yields a bounding ellipsoid for P ∩ Q. Armed with a poly-time separation oracle and a bounding ellipsoid

for P ∩Q, we can apply the ellipsoid algorithm to optimize linear functions over P ∩Q in poly-time.
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Problem 2

Solution

Proof. We will first formulate an integer program that exactly reproduces the MAX-3CUT problem. We

will then devise an LP rounding scheme and then prove that, in expectation, the algorithm achieves a ????

approximation.

Integer Program. Consider the following integer program over n vectors u⃗1, ..., u⃗n ∈ Rn, where n is

the number of vertices in the graph. (Note that ei is the standard basis vector of Rn with a 1 in the ith

coordinate and 0’s elsewhere).

maximize
∑

(i,j)∈E

2

3
(1− ⟨u⃗i, u⃗j⟩)

subject to ||u⃗i|| = 1 ∀i ∈ [n]

u⃗i ∈

{
e1,

√
3

2
e2 −

1

2
e1,

−
√
3

2
e2 −

1

2
e1

}
∀i ∈ [n]

This is clearly an exact formulation of MAX-3CUT, since each vertex is assigned to exactly one set, corre-

sponding to one of the three elements in the second constraint. Also, for each element of the sum in the

objective (for each edge in the graph), the objective increases by 1 if ⟨u⃗i, u⃗j⟩ = − 1
2 (pairs of the three ele-

ments in the second constraint dot to − 1
2 ), and doesn’t increase if ⟨u⃗i, u⃗j⟩ = 1. If we think of this objective

as a counter, we see that the counter increases by 1 exactly when an edge is between two vertices assigned to

different sets, and 0 otherwise. So, the objective function faithfully counts the number of edges crossing the

3-cut, and is therefore the value of the 3-cut, which we are maximizing. We find that this integer program

is a formulation of the MAX-3CUT problem.

Rounding. To begin, we remove the integer constraint to get a program with constraints and objec-

tives that are linear functions of inner products between our vectors; in other words, the poly-time solvable

semi definite program:

maximize
∑

(i,j)∈E

2

3
(1− ⟨u⃗i, u⃗j⟩)

subject to ||u⃗i|| = 1 ∀i ∈ [n]

The solution to this SDP will yield unit vectors û1, ..., ûn that maximize the objective, say to some value

OPT . Consider the following rounding scheme, inspired by the random hyperplane MAX-CUT rounding

scheme from lecture:

• Choose two random vectors c⃗1, c⃗2 ∼ N (0, 1)n (component-wise drawn from N (0, 1)) and fix them for

the rest of the algorithm. Observe that these two vectors have the property that they, when projected

in any 2D plane of Rn, will have angles above the horizontal that are uniformly distributed from 0 to

2π.

• For each vertex i, compute sign (⟨c⃗1, ûi⟩). If this sign is positive, assign vertex i to set X. Otherwise,

continue to the next step.

• For each unassigned vertex i, compute sign (⟨c⃗2, ûi⟩). If this sign is positive, assign vertex i to set Y .

Otherwise, assign vertex i to set Z.

This concludes the rounding scheme.

Problem 2 continued on next page. . . 3



Nameless Author :) COS 521: Homework 2 Problem 2 (continued)

Analysis. In order to perform the analysis, we want to compute the probability that vertices i and j

get assigned to different sets, as this will help us find the expected value of our rounded solution. Consider

any arbitrary edge (i, j) ∈ E. We can compute the probability that i and j get assigned to different sets in

the following way:

• We know that i and j get assigned to X if and only if the projection of c⃗1 onto the plane spanned

by ûi and ûj lies between ûi and ûj . Since the angle of this projected decision boundary above the

horizontal is distributed from U [0, 2π], we see that the probability it lies between ûi and ûj is precisely

θij
π

,

where θij is the angle between these two vectors in the plane. This is the probability that one gets

assigned to X and the other doesn’t.

• The probability that both i and j do not get assigned to X is also
π−θij
2π . In this case, whether i

and j end up in different sets depends only on whether c⃗2 lands between the two, which once again

happens with probability
θij
π . Since the drawing of c⃗1 and c⃗2 are independent, we can multiply these

probabilities. So, the probability that one gets assigned to Y and the other to Z is

π − θij
2π

· θij
π

=
πθij − θ2ij

2π2

• The above two cases totally account for all the ways that i and j could be assigned to different sets.

So, we sum the probabilities to see that the total probability of i and j being assigned to different sets

is
θij
π

+
πθij − θ2ij

2π2
=

3πθij − θ2ij
2π2

Since this holds for every edge in the graph, we can compute the expected value of the rounded 3-cut to see

that it equals

E [rounded value] =
∑

(i,j)∈E

3πθij − θ2ij
2π2

We can compare this to each element of the sum that OPT (note that ⟨ûi, ûj⟩ = cos(θij) since they are unit

vectors) takes to see that we have a ratio of

3πθij−θ2
ij

2π2

2
3 (1− cos(θij))

where the θij ’s are the same since the rounded solution uses the same vectors as the optimal solution to the

SDP. We can see that this ratio is always greater than 0.725 analytically (Desmos). So, our rounded solution

obtains in expectation at least 0.725 of the value of the fractional solution OPT . Since OPT is clearly better

than the optimal solution to the integer program for MAX-3CUT (since it is relaxed), this means that our

rounded algorithm achieves a 0.725-approximation for MAX-3CUT.
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Problem 3

Part A

Firstly, note that by ED post #59, if we know that a feasible solution exists, then we know that a basic

feasible solution exists. We will show that a feasible solution exists in every step by induction on step n.

Note that at step n = 0, we clearly have a feasible LP (since none of the xt’s are fixed to anything yet, we

can set them all to be 0 trivially).

Now, suppose by way of induction that we have a feasible LP at step n for some arbitrary n ∈ N. Let

x⃗ be a basic feasible solution of the LP at step n. We know that for all t, one of the following cases holds:

1. If xt was already fixed prior to step n, it is still fixed to the same ϵt.

2. If xt was not already fixed prior to step n and xt ∈ {−1, 1} in the basic feasible solution, we will fix xt

to some ϵt that is its value.

3. Otherwise, we do not fix xt at all.

So, we find that when we create the LP in step n + 1, xt’s that were in case 1 will stay fixed to the same

value as they had in x⃗. Also, xt’s that were in case 2 will become fixed to the same value as they had in x⃗.

Lastly, xt’s that were in case 3 will be free to take any values; in particular, they can take the same values as

they had in x⃗. This yields that we could use the same vector x⃗ as a feasible solution in step n+1; therefore,

the LP is feasible in step n+ 1. By induction, we can say that the claim is therefore true for all n. So, the

LP is feasible at every step.

Part B

Suppose that at a particular step in the process, there are k colored columns left in the LP (i.e. there

are k constraints of the form xt = ϵt). (Note that by part (a), there exists a basic feasible solution for

this step). Then, there are n − k unfixed variables with constraints xt ∈ [−1, 1]. So, there can only be

s(n− k) uncolored ones in the worst case (s per uncolored column), which means that there can be at most
s(n−k)

2s = n−k
2 rows with at least 2s uncolored ones. This means that there can be at most n−k

2 constraints of

the form
∑

t Aitxt = 0 (i.e. the number of row constraints is at most half the number of uncolored columns).

There are also exactly k constraints of the form xt = ϵt since there are k colored columns. So, since a basic

feasible solution satisfies n constraints with equality we find that there are at least

n−
(
n− k

2
+ k

)
=

n+ k

2
− k =

n− k

2

constraints of the form xt ∈ [−1, 1] that a basic feasible solution will satisfy with equality. Satisfying this

constraint with equality corresponds to xt ∈ {−1, 1}, which will result in coloring column t. So, we arrive

at the result that at least n−k
2 columns will be colored in this step. Therefore, at least half of the uncolored

columns will be colored every step.

Part C

We see from the results in parts (a-b) that the iteration will terminate when we have at most 2s uncolored

columns. Also, when it terminates, it will have ended on a basic feasible solution. Suppose that upon

termination of the iteration, there were no rows containing more than 2s colored ones. Then, we can simply

color the remaining 2s columns however we would like and achieve a worst case difference between the number

of 1’s and the number of -1’s in each row of O(s). Now, suppose that upon termination there were some

rows containing more than 2s colored ones. Clearly, none of these rows contain more than 2s uncolored ones,

Problem 3 continued on next page. . . 5



Nameless Author :) COS 521: Homework 2 Problem 3 (continued)

since the termination ended with at most 2s uncolored columns. So, we can imagine the step in the iteration

at which there were more than 2s uncolored ones in each of these rows (this will be O(s) steps before the

termination). For each of these rows, at this step the row constraint guaranteed that the sum amounted to

0. The number of ones that were added to that row since then must be O(s), and so the difference between

the number of 1’s and number of -1’s is still bounded by O(s).
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Problem 4

Part A

Proof. We wish to show that no algorithm with m = o(n) samples can always predict the median within a

factor of 1.1. To show this, we will construct two sequences of length n from which sets of m samples will

look the same with high probability. Then, if n is odd, consider the two sequences of odd length

X(−) = {0, ..., 0, 0, 1, ..., 1} X(+) = {0, ..., 0, 1, 1, ..., 1}

where X(−) has n+1
2 0’s and n−1

2 1’s, and X(+) has n−1
2 0’s and n+1

2 1’s. If n is even, consider the two

sequences of even length

X(−) = {0, ..., 0, 0, 1, ..., 1} X(+) = {0, ..., 0, 1, 1, ..., 1}

where X(−) has n+2
2 0’s and n−2

2 1’s, and X(+) has n−2
2 0’s and n+2

2 1’s. Clearly, median(X(−)) = 0

and median(X(+)) = 1. Let us draw m = o(n) samples, where for each draw in the sample we select an

index from {1, ..., n} and grab the ith elements from X(−) and X(+). Note that each individual draw has a

probability of

{
1
n n odd
2
n n even

of yielding two different elements; otherwise, the draw looks identical between

X(−) and X(+). We can apply the union bound to see that the probability that any of the m samples look

different is at most

{
m
n n odd
2m
n n even

. Since m = o(n), we can take m < 1
3n for large enough n to see that

the probability that two samples of size m look different is, in the worst case, at most 2m
n < 2

3 . So, the

probability that two samples from these sequences with different medians look identical is at least 1
3 . Any

algorithm for finding the median, when met with these two identical samples, will incorrectly (worse than

factor of 1.1) predict the median of one of them (this is because the ”correctness” intervals that the factor

of 1.1 yields don’t overlap, so any prediction will be outside of one of the intervals). So, we see that for the

two sequences defined above, any algorithm will be off by a factor of more than 1.1 with probability of at

least 1
3 .

Part B

Proof. Firstly, let

X(+) =
{
xi | rank(xi) ≥

n

2
+ t
}

and

X(−) =
{
xi | rank(xi) ≤

n

2
− t
}

be the upper and lower tails of the sequence X, defined by parameter t. We want to show that if we take

enough samples then, with high probability, less than half of our samples land in X(+) and less than half of

our samples land in X(−). This will ensure that the median of our samples lands within the desired range.

Suppose that we take m samples from a sequence X. For each element si of the sample, we see that

because it is drawn uniformly from X, the probability it lands in X(+) is

P
[
si ∈ X(+)

]
=

n
2 − t

n
=

n− 2t

2n

Similarly,

P
[
si ∈ X(−)

]
=

n
2 − t

n
=

n− 2t

2n

Problem 4 continued on next page. . . 7



Nameless Author :) COS 521: Homework 2 Problem 4 (continued)

Let N (+) and N (−) be random variables for the number of elements of our sample that are in X(+) and

X(−), respectively; we want both of these to be less than m
2 with high probability. Since all si’s in our

sample are drawn independently, we can compute

E
[
N (+)

]
= E

[
N (−)

]
=

m(n− 2t)

2n

We can apply the Wikipedia Chernoff bound to bound the probabilities that these variables are larger than
m
2 with:

P
[
N (+) ≥ m

2

]
= P

[
N (+) ≥

(
n

n− 2t

)
E
[
N (+)

]]
= P

[
N (+) ≥

(
1 +

2t

n− 2t

)
E
[
N (+)

]]

≤ e
− ( 2t

n−2t )
2 m(n−2t)

2n

2+ 2t
n−2t = e−

4t2m
2n

2(n−2t)+2t = e
− t2m

n2−nt ≤ e−
t2m
n2

Let δ > 0 be arbitrary. If we take m =
(
n
t

)2
log( 2δ ) samples, we see that the bound becomes precisely

P
[
N (+) ≥ m

2

]
≤ δ

2 . The exact same bound happens to show that P
[
N (−) ≥ m

2

]
≤ δ

2 , as they have the same

expectation. So, we can use a union bound to show that the probability that either of these two events

happens is less than the sum of their probabilities. In other words, the probability that less than half of

our samples land in X(+) and less than half of our samples land in X(−) is at least 1 − δ. Therefore, the

probability that the median of our sample is in the desired range is at least 1− δ.
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Problem 5

Part A

Proof. Consider the event that grabbing all n coupons takes longer than 2n · log (n) steps; call this event

X. We wish to show that the event happens with probability at most 1
n , i.e. that P[X] ≤ 1

n .

For each coupon i, define Xi to be the event that drawing coupon i takes longer than 2n · log (n) steps.

Since each coupon has a 1 − 1
n chance of not being drawn during each step, and the steps happen inde-

pendently, we see that the probability of a coupon not being drawn after precisely 2n · log (n) steps is

P[Xi] =
(
1− 1

n

)2n·log (n)
for all coupons i. Lastly, note that the event X is the union of all the events Xi,

since event X happens if and only if at least one coupon takes longer than 2n · log (n) steps to be drawn.

We can now apply union bound to get

P[X] = P

[
n⋃

i=1

Xi

]
≤

n∑
i=1

P[Xi] = n ·
(
1− 1

n

)n·2log (n)

≤ n ·
(
1

e

)2log (n)

= n · 1

n2
=

1

n

Therefore, the probability that grabbing all coupons happens within 2n · log(n) = O(n · log(n)) steps is at

least

1− P[X] ≥ 1− 1

n

Part B

Lemma 1. If there are ϵn jobs currently unmatched jobs (0 < ϵ < 1), then there are in expectation at most

ϵ2n jobs remaining after one round. Furthermore, for any δ > 0 the probability that there are more than

ϵ2n+ δ jobs remaining after one round is upper bounded by e−
δ2

2ϵn .

Proof of Lemma 1. Suppose that there are ϵn unmatched jobs trying to assign themselves randomly to

n processors. Let Xi be an indicator that takes value 1 if processor i gets precisely 1 job and 0 otherwise.

For every processor there are ϵn choices of jobs, meaning that ∀i,

E{Xi} = P{processor i gets exactly 1 job} = ϵn ·
(
1

n

)(
n− 1

n

)ϵn−1

= ϵ

(
n− 1

n

)ϵn−1

So, by linearity of expectation, the expected number of jobs that got assigned to any processor that received

precisely one job is
n∑

i=1

E{Xi} =

n∑
i=1

ϵ

(
n− 1

n

)ϵn−1

= ϵn

(
n− 1

n

)ϵn−1

All of the above jobs will be executed since they had no contention. Therefore, the expected number of jobs

remaining after one round is

ϵn−
n∑

i=1

E{Xi} = ϵn− ϵn

(
n− 1

n

)ϵn−1

= ϵn

(
1−

(
n− 1

n

)ϵn−1
)

= ϵn

(
1−

((
1− 1

n

)n) ϵn−1
n

)

We know that
(
1− 1

n

)n ≤ 1
e < 1. Since ϵ < 1 =⇒ ϵn−1

n < 1, we find

((
1− 1

n

)n) ϵn−1
n

≥
(
1

e

) ϵn−1
n

≥
(
1

e

) ϵn
n

=

(
1

e

)ϵ

Problem 5 continued on next page. . . 9



Nameless Author :) COS 521: Homework 2 Problem 5 (continued)

So, the expected number of jobs remaining after one round is at most

ϵn−
n∑

i=1

E{Xi} = ϵn

(
1−

((
1− 1

n

)n) ϵn−1
n

)
≤ ϵn

(
1−

(
1

e

)ϵ)
We know that 1 + z ≤ ez for all real z, which implies 1− ϵ ≤ e−ϵ =

(
1
e

)ϵ
=⇒ 1−

(
1
e

)ϵ ≤ ϵ. Using this, we

arrive at the result that the expected number of remaining jobs after one round is

ϵn−
n∑

i=1

E{Xi} ≤ ϵn

(
1−

(
1

e

)ϵ)
≤ ϵn · ϵ = ϵ2n

To provide a concentration bound on this, first let X =
∑n

i=1 Xi be the random variable of the number of

jobs that get processed in this round. Note that we would like to bound the probability that at least ϵ2n+ δ

jobs remain unmatched for some δ > 0; this is equivalent to P[X < ϵn− ϵ2n− δ]. We can write

ϵn− ϵ2n− δ =

(
1− δ

ϵn− ϵ2n

)
(ϵn− ϵ2n)

As we have seen earlier,

E[X] = ϵn

(
1− 1

n

)ϵn−1

≥ ϵn− ϵ2n

So, we apply a Chernoff bound with

P[X < ϵn− ϵ2n− δ] = P
[
X <

(
1− δ

ϵn− ϵ2n

)
(ϵn− ϵ2n)

]
≤ P

[
X <

(
1− δ

ϵn− ϵ2n

)
E[X]

]
≤ e

− δ2E[X]

2(ϵn−ϵ2n)2 ≤ e
− δ2(ϵn−ϵ2n)

2(ϵn−ϵ2n)2 = e−
δ2

2ϵn(1−ϵ)

≤ e−
δ2

2ϵn ,

where the last step comes from the fact that 1 − ϵ < 1. So, the number of remaining unmatched jobs

concentrates well.

Main Proof. To prove the main result, we can repeatedly apply the result of Lemma 1 with δ =√
2ϵn · log (n) to see that we will have more than ϵ2n+

√
2ϵn · log (n) jobs remaining with probability less

than 1
n . We can say that this deviation of δ is negligible. To see this, imagine repeatedly applying Lemma

1 until the case where ϵn is exceeded by
√
2ϵn · log (n) (i.e. the deviation is too big), which implies that

√
ϵn <

√
2log (n) =⇒ ϵ < 2log(n)

n . So, in the next step, there will be with high probability ϵ2n < 4log(n)2

n

jobs left to process, which is less than 1 for all n > 1. Such a case is obviously trivial, and so we see that

the concentration bound that Lemma 1 provides with δ =
√

2ϵn · log (n) is a useful concentration for all the

rounds that we care about. In other words, by the time that ϵn gets small enough that the deviation δ is

meaningful, the process has already terminated.

Now, we can finally get to proving the main result. Firstly, we would like to determine how many un-

matched jobs to expect after the first round, and how well this amount concentrates. We can follow the logic

of the first part of the proof of Lemma 1 to see that the expected number of jobs that get executed is

n ·
(
1− 1

n

)n−1

≥ n ·
(
1

e

)n−1
n

≥ n

e

Note that this also concentrates reasonably well, as we can apply a similar Chernoff-style bound as before.

So, we start in the second step with n ·(1− 1
e ) jobs to be executed =⇒ ϵ0 = 1− 1

e , with high probability. Let

Problem 5 continued on next page. . . 10



Nameless Author :) COS 521: Homework 2 Problem 5 (continued)

r be the number of rounds that will execute until completion after this starting point. ”Completion” occurs

when ϵ = 1
n , since this corresponds to exactly 1 job remaining that will always successfully be executed in

the subsequent round. Furthermore, by Lemma 1 we know that with high probability, ϵ is roughly squared

each round. So. we seek r such that

(ϵ0)
2r

=
1

n
⇐⇒

(
1− 1

e

)2r

=
1

n
⇐⇒

(
e

e− 1

)2r

= n ⇐⇒ r = log

 log(n)

log
(

e
e−1

)


This gives us the result that the process to terminate after r = O(log(log(n))) rounds with high probability.

To definitively say that this happens with high probability, we can apply a union bound the rounds. From

applying the Lemma with δ =
√

2ϵn · log (n), we know that the probability of any individual round behav-

ing worse than expected is less than 1
n . So, the probability that any of the r rounds behaved worse than

expected is at most
∑r

i=1
1
n = O(log(log(n)))

n . Therefore, the probability that things behave as expected (i.e.

each application of the Lemma concentrates the way we desire) is at least 1− O(log(log(n)))
n = 1− o(1). This

means that we can conclude that the process terminates after O(log(log(n))) rounds with probability at least

1− o(1), and we are done.
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