
COS 521 - Homework 1

Nameless author :)

September 23, 2022

Problem 1
Proof. Consider the graph G = (V,E) depicted below. Let n = |V |−2

2
be the number of pairs of

intermediate nodes.
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Observe that there are many possible s − t cuts. For example, the cut (X, X̄) given by X =
{s, x1, x

′
1} has a value of 2n− 1. There is, however, only one s− t cut that has a value of n, which

is precisely the cut given by X = V \ {t} and X̄ = {t}. The below Lemma proves this.

Lemma 1. The minimum s− t cut is uniquely given by X = V \ {t} and X̄ = {t}.

Proof. We will show that any other s − t cut will always have more edges crossed. If we were to
add any intermediate nodes to X̄ , the number of edges crossed will necessarily increase. To see
this, note that adding xi but not x′

i for some i will add two edges ((s, xi) and (xi, x
′
i)) and subtract

only one ((xi, t)), making the cut worse. Similarly, adding x′
i but not xi for some i will add two

edges ((xi, x
′
i) and (s, xi)) to the cut and not subtract any, making the cut worse. Adding a pair of

xi and x′
i will add two edges ((s, xi) and (s, x′

i)) and subtract one (xi, t), making the cut worse. So,
we can see that the cut X = V \ {t} and X̄ = {t} must be the minimum s− t cut since inclusion
of any intermediate nodes only makes things worse.

We now know by Lemma 1 that in order for Karger’s algorithm to output a minimum s − t cut, it
must output precisely the cut (X, X̄) = (V \ {t}, {t}). Note that in order for this to happen, the
algorithm must contract at least 2n of the edges that aren’t of the form (xi, t), since that is the only
way to form a supernode X out of the 2n+1 vertices that aren’t t, which is the only way to achieve
the min s− t cut. (We say at least 2n because it is possible that contracting creates parallel edges,
which may require more contractions before converging on an s− t cut). We can see that each edge
has a 1

2n−i+1
probability of being contracted during the ith iteration of Karger’s algorithm. So, in

order for the algorithm to still be able to potentially output the min s − t cut, the probability that
the n edges we want to maintain are not selected in the first 2n selections is

2n∏
j=1

1

2n− i+ 1

We can note that for j < n, each element of the product is clearly less than 1
2
. So, we can perform

a terrible, but still valid, bound on the probability to see that the probability of outputting the min
s− t cut is at most (

1

2

)n

= 2−Ω(n)
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Problem 2
We begin with two lemmas, in the style of the course notes :)

Lemma 2. Let G′ be an undirected graph, and let (X, X̄) be any B-approximate min cut of G′.
The probability that (X, X̄) survives a random edge contraction is at least

(
1− 2B

n

)
.

Proof. Let (X, X̄) be a B-approximate min cut in G′ = (V,E). This cut is killed by contracting
an edge (u, v) if and only if |X ∩ {u, v}| = 1. In other words, the cut is killed if and only if we
contract an edge that goes across the cut. Using Lemma 1 from Lecture 1, there are at least cn

2

possible random edges to contract. Also, if x is the value of the B-approximate cut (X, X̄), we
know that there are precisely x ≤ Bc edges going across the cut. So, the probability of the cut
being killed by randomly selecting an edge is at most

x

|E|
≤ Bc

cn
2

=
2B

n

Therefore, the probability of the cut surviving is at least
(
1− 2B

n

)
.

Lemma 3. After n− 2B iterations of Karger’s algorithm, there will be 2B supernodes remaining.
Furthermore, the probability of any original B-approximate minimum cut, say (X, X̄), surviving
up to this point is

(
n
2B

)−1.

Proof. Clearly, since each iteration of the algorithm contracts two nodes that are connected by an
edge to a single node, the number of nodes decreases by one each iteration; then, after n − 2B
iterations we are left with 2B supernodes.
Let (X, X̄) be a B-approximate min cut in the original graph, which has n nodes. By Lemma
2, we know that the probability of this cut surviving the first iteration is

(
1− 2B

n

)
. Similarly, the

probability that it survives the second iteration, conditioned on the cut surviving the first iteration,
is
(
1− 2B

n−1

)
. We can continue this to see that the probability of the cut (X, X̄) surviving the first

n− 2B iterations is

n−2B∏
i=1

1− 2B

n− i+ 1
=

n−2B∏
i=1

n− i+ (1− 2B)

n− 1 + 1

=
n− 2B

n
· n− 1− 2B

n− 1
· ... · n− (n− 2B − 1) + (1− 2B)

n− (n− 2B − 1) + 1
· n− (n− 2B) + (1− 2B)

n− (n− 2B) + 1

=
n− 2B

n
· n− 1− 2B

n− 1
· ... · 2

2B + 2
· 1

2B + 1

=
(n− 2B)!

n · ... · (2B + 1)
=

(n− 2B)!(2B)!

n!
=

(
n

2B

)−1

Proof. We can now prove the result. If we run Karger’s algorithm until we have 2B supernodes,
there will be 22B − 2 possible remaining cuts that can be made (each supernode can be placed
in one of two nonempty subsets). For any original B-approximate min cut (X, X̄), by Lemma 3
there is a

(
n
2B

)−1 probability it has survived up to this point. If from this point we select a random
remaining cut, the probability that it materializes into our original (X, X̄) is exactly 1

22B−2
. So, the

probability that Karger’s algorithm outputs (X, X̄) is lower bounded by
((

n
2B

)
(22B − 2)

)−1. Since
this holds for each initial (X, X̄) cut and the survival of each (X, X̄) is a disjoint event, we find
that the number of B-approximate min cuts is upper bounded by

(
n
2B

)
(22B − 2) ≤ (2n)2B.
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Problem 3

Part A
Proof. The LP listed below is indeed a valid formulation for the value of the max flow.

maximize
∑
u

f((u, t))

subject to ∀e = (u, v) ∈ E, f((u, v)) ≤ ce

∀v /∈ {s, t},
∑

(u,v)∈E

f((u, v)) ≥
∑

(v,w)∈E

f((v, w))

∀e ∈ E, f(e) ≥ 0

The objective we are maximizing is exactly the value of the flow: conservation of flow yields that
the value of flow going out of the source must equal the value of flow going into the target node,
which is objective the value we are maximizing. The first constraint ensures that the value of flow
assigned across every edge is ≤ the capacity of that edge. The third constraint ensures that every
flow value assigned is nonnegative. These constraints and objectives together precisely formulate
the max flow problem. The second constraint asserts conservation of flow: that the sum of flow
values along edges entering a node equals the sum of flow values along edges exiting the node. A
more obvious translation of this would require equality in the constraint, but we show below that
we do not lose generality by making this a ≥.

Lemma 4. The constraint ∀v /∈ {s, t},
∑

(u,v)∈E f((u, v)) ≥
∑

(v,w)∈E f((v, w)) is sufficient to
require conservation of flow.

Proof. Let LPI be the above LP written with the inequality, and let LPE be the LP written with
equality in the second constraint. Suppose by way of contradiction that LPI is not a valid for-
mulation of the max flow problem. Then there must be some solution that is feasible to LPI that
achieves a strictly higher value. So, there must be some (u, t) ∈ E such that f((u, t)) > f ′((u, t)),
where f ′ is the optimal solution to LPE in the second constraint. However, the second constraint in
LPI confirms that the outflow of u is less than or equal to the inflow of u. So, we should be able to
increase the outflow of u in the optimal solution of LPE . This would be a feasible solution of LPE

that would have a higher value, contradicting the assumption of optimality of the solution to LPE .
So, we see that the solution to LPI cannot do better than the solution to LPE . Since every feasible
solution to LPE is also a solution to LPI , we can conclude that LPI is also a valid formulation of
the max flow problem.

Part B
Proof. We can compute the dual in the usual way: by writing an upper bound for the objective of
the primal LP, and tightening the bound as much as we can. We find that the dual is the following
problem, where each vertex v ∈ V \ {s, t} has a variable yv and each edge (u, v) = e ∈ E has a
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variable zu,v = ze:

minimize
∑
e∈E

ce · ze

subject to zs,v − yv ≥ 0 ∀(s, v) ∈ E

zu,t + yu ≥ 1 ∀(u, t) ∈ E

yu − yv + zu,v ≥ 0 ∀(u, v) ∈ E with u, v /∈ {s, t}
0 ≤ ze ≤ 1 ∀e ∈ E

0 ≤ yv ≤ 1 ∀v /∈ {s, t}

Since ys and yt are not variables of the dual, we can freely set them to 0 and 1, respectively. The
first constraint simplifies to zs,v ≥ yv − ys and the second constraint simplifies to zu,t ≥ yt − yu.
Also, the third constraint simplifies to zu,v ≥ yv − yu. All of these constraints are immediately
satisfied if we relate the variables zu,v = max{0, yv − yu} to simplify the dual LP. With this in
mind, we arrive at a simplified dual over the variables {yu | u ∈ V \ {s, t}}

minimize
∑

(u,v)∈E

cu,v ·max{0, yv − yu}

subject to 0 ≤ yu ≤ 1 ∀u ∈ V \ {s, t}

Observe that this is precisely the formulation of the min fractional s − t cut problem, since the
constraint (along with the definitions ys = 0, yt = 1) define a fractional cut, and the objective
function is exactly the value of a fractional cut. By Strong LP Duality, if the max flow achieves a
finite value of C (which means it is both bounded and feasible), then the dual min fractional s − t
cut is also bounded and feasible, and achieves an equal optimum of C. Therefore, the min fractional
s− t cut problem cannot achieve any value ¡ C, since its dual has an optimum of C.

Part C
Proof. We want a rounding scheme that produces a cut (X, X̄) deterministically from a minimum
fractional s− t cut with value C, and such that the expected value of the cut is

C = E

 ∑
(u,v)∈E

cu,v · 1[u ∈ X ∩ v ∈ X̄]

 =
∑

(u,v)∈E

cu,vP[u ∈ X ∩ v ∈ X̄]

In order for this to be true, we would want that the probability of an edge (u, v) = e ∈ E lying
across the cut is P[u ∈ X ∩ v ∈ X̄] = max{0, yv − yu}, since this would match the cost of the min
fractional s− t cut.

We can round in the following way: fix some threshold T ∼ U [0, 1] (sampled from uniform distri-
bution), and assign vertices v /∈ {s, t} to X if yv < T and to X̄ if yv ≥ T (and assign s to X , t to
X̄). Then, for any edge (u, v), we have that

P[u ∈ X ∩ v ∈ X̄] = P[yu < T, yv ≥ T ] = max{0, yv − yu}

using the joint CDF of the uniform distribution. So, we see that this random rounding scheme of
sampling a threshold uniformly from [0, 1] performs just as well in expectation as the fractional
solution. To derandomize it, compute a long list of pre-computed random threshold values, apply
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the rounding procedure separately with each one, and select the solution with the smallest cost.
This will once again, in expectation, have a cost that is as good as the min fractional s− t cut, but
will be deterministic (solving the relaxed LP and rounding it for the same graph will produce the
same cut). We can conclude the max flow - min cut theorem: because the rounding algorithm from
a min fractional s − t cut to a min cut is a 1-approximation, we can conclude that the min cut and
max flow have the same value.
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Problem 4

Part A
Proof. We generalize the MAXSAT problem as follows: given n literals and m clauses of length
≤ n, each with weight wl, we wish to set the literals to maximize the weighted sums of the satisfied
clauses. Indexing clauses by l and literals by j (so xj ∈ {0, 1} is the jth literal), we define the
following symbol:

y
(j)
l =


tj literal j in clause l is xj

1− tj literal j in clause l is ¬xj

0 literal j does not appear in clause l

So, if the first clause was x1 ∨ ¬x2, then y
(1)
1 = t1, y(2)1 = 1− t2, and y

(j)
1 = 0 for all j > 2. Then,

each y
(j)
l takes value of 1 if literal xj satisfies clause l, and 0 otherwise. Let us also define a variable

zl for each clause l that takes a value of 1 if the assignment satisfies the clause, and 0 if not. So, we
can write an integer program over the variables of {t1, ..., tn} ∪ {z1, ..., zm} as

maximize
m∑
l=1

wl · zl

subject to tj ∈ {0, 1} ∀j ∈ {1, ..., n}
0 ≤ zl ≤ 1 ∀l ∈ {1, ...,m}

zl ≤
n∑

j=1

y
(j)
l ∀l ∈ {1, ...,m}

Note that the last two constraints ensure that each zl indicates that clause l is satisfied exactly as we
want: if any of the literals satisfy the clause, the sum is nonzero and zl is allowed to take value of 1
(which it will want to to maximize the objective). If, however, none of the literals satisfy clause l,
the sum in the last constraint is 0 and zl is forced to take value of 0. This is exactly what we want,
and so we can relax the integrality condition to get an LP over variables of {t1, ..., tn}∪{z1, ..., zm}

maximize
m∑
l=1

wl · zl

subject to 0 ≤ tj ≤ 1 ∀j ∈ {1, ..., n}
0 ≤ zl ≤ 1 ∀l ∈ {1, ...,m}

zl ≤
n∑

j=1

y
(j)
l ∀l ∈ {1, ...,m}

Part B
We will use the same rounding scheme from class: namely, given fractional solutions for each tj ,
we set each literal xj to true independently with probability tj .

Lemma 5. The probability that any clause l is satisfied equals 1−
∏n

j=1(1−y
(j)
l ). This probability

is at least 1−
(
1− zl

n

)n.
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Proof. The probability that all of the literals don’t satisfy the clause is
∏n

j=1(1− y
(j)
l ). Therefore,

the probability that clause l is satisfied is 1−
∏n

j=1(1− y
(j)
l ). We can apply the AM/GM inequality

on the sequence of {1− y
(1)
l , ..., 1− y

(n)
l } to see that

n∏
j=1

(1− y
(j)
l ) ≤

(
1

n

n∑
j=1

(1− y
(j)
l )

)n

=

(
1−

∑
j y

(j)
l

n

)n

≤
(
1− zl

n

)n
where the last step comes from the last constraint of our LP. So, we find that the probability that
clause l is satisfied is

1−
n∏

j=1

(1− y
(j)
l ) ≥ 1−

(
1− zl

n

)n

Lemma 6. For all z ∈ [0, 1] and all n ∈ N, the following inequality holds:

1−
(
1− z

n

)n
≥
(
1− 1

e

)
z

Proof. This result holds trivially for n = 1; so, suppose that n ≥ 2. We begin by noting that the
LHS and RHS are equal when z = 0, and that the inequality holds when z = 1 by the fact that
1
e
= limk→∞

(
1− 1

k

)k
=⇒ 1

e
≥
(
1− 1

n

)n. It remains to show that over the interval z ∈ (0, 1),
the LHS is concave down; this would imply that if the inequality is not violated at the endpoints, it
cannot be violated over z ∈ [0, 1] since the RHS is linear. We can find that the second derivative of
the LHS is

d2

dz2

[
1−

(
1− z

n

)n]
=

d

dz

[
1

n
· n ·

(
1− z

n

)n−1
]
= −n− 1

n

(
1− z

n

)n−2

< 0

So, the LHS is concave down over z ∈ (0, 1) and lies above the RHS line at its endpoints: therefore,
it lies above this line over the entire interval.

Proof. Using Lemmas 5 and 6, we arrive at the fact that the probability that any arbitrary clause l
is satisfied is P{l satisfied} ≥

(
1− 1

e

)
zl. So, the expected cost of a rounded LP solution is

m∑
l=1

wl · P{l satisfied} ≥
(
1− 1

e

) m∑
l=1

wl · zl =
(
1− 1

e

)
OPTf

So, the rounded solution to the LP is a
(
1− 1

e

)
-approximation to the optimal solution for MAXSAT.

Part C
Proof. We will analyze the case where we randomly choose one of the two algorithms to run, each
with probability 1

2
. If we can show that this setup is a 3

4
-approximation of MAXSAT, then it clearly

follows that selecting the best result of these two algorithms is at least as good. Now, if we were to
randomly select an algorithm, we can find the expected value of the objective function by plugging
in the probabilities of satisfying each clause. The expected value, where kl is the number of literals
in clause l, is

1

2

m∑
l=1

wl·

(
1−

n∏
j=1

(1− y
(j)
l )

)
+
1

2

m∑
l=1

wl·

(
1−

kl∏
j=1

(
1

2

))
=

m∑
l=1

wl·

(
1−

2−kl +
∏n

j=1(1− y
(j)
l )

2

)
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Lemma 7. For every clause l, we have the inequality

1−
2−kl +

∏n
j=1(1− y

(j)
l )

2
≥ 3

4
zl

Proof. We can use the result of Lemma 5 to see: (for notation let k := kl)

1−
2−k +

∏n
j=1(1− y

(j)
l )

2
≥ 1−

2−k +
(
1− zl

n

)n
2

≥ 1−
2−k +

(
1− zl

k

)k
2

We want to show that the RHS lies above the line 3
4
zl. If k = 1, the RHS is equal to 1 − 3

4
+ zl

2
=

1
4
+ zl

2
≥ 3zl

4
. So, suppose that k ≥ 2. We can check that the RHS lies above the line 3

4
zl at

the endpoints of the interval zl ∈ [0, 1] and is concave down over the interior of this interval; this
is equivalent to proving that the RHS always lies above the line. We check that at the endpoints,
zl = 0 =⇒ 1 − 2−k+1

2
≥ 0 and that zl = 1 =⇒ 1 − 2−k

2
≥ 1 − 2−1

2
= 3

4
; in both cases, the

inequality holds. Now, over the interval zl ∈ (0, 1), we check for concave down:

d2

dzl
2

[
1−

2−k +
(
1− zl

k

)k
2

]
=

d

dzl

[
1

2k
· k ·

(
1− zl

k

)k−1
]
= −k − 1

2k

(
1− zl

k

)k−2

< 0

So, we can conclude that the RHS lies above the line, and from this we can conclude the Lemma.

Using Lemma 7, we find that the expected value of choosing one of the two algorithms randomly
is lower bounded by 3

4

∑m
l=1wl · zl, which is exactly 3

4
times the value of the optimal solution to

the unrounded LP OPTf . So, we conclude that randomly selecting one of the two algorithms is a
3
4
-approximation of MAXSAT, and therefore so is selecting the best algorithm.

Part D
Proof. Consider the function that maps outputs tj ∈ [0, 1] of the fractional LP to probabilities f(tj)
with which to assign true to literal xj via

f(tj) = 4(tj−1)

Firstly, we see that these outputs are indeed between 0 and 1, and so are valid probabilities with
which to assign true to xj . Next, we can compute the probability of each clause l being satisfied. Let
I+l ⊂ {1, ..., n} be the set of indices of literals in clause l that are of the form ...∨xj∨ .... Similarly,
let I−l ⊂ {1, ..., n} be the set of indices of literals in clause l that are of the form ... ∨ ¬xj ∨ ....

Then, we can write clause l as
(
∨j∈I+l

xj

)
∨
(
∨j∈I−l

¬xj

)
. We can say that by Lemma 5

P[clause l is satisfied] = 1−

∏
j∈I+l

(1− f(tj))
∏
j∈I−l

f(tj)

 = 1−

∏
j∈I+l

(
1− 4tj−1

) ∏
j∈I−l

4tj−1


Since −42x−1 ≤ 0 =⇒ 1− 42x−1 ≤ 1 =⇒ 1− 4x−1 ≤ 4−x, we get

P[clause l is satisfied] ≥ 1−

∏
j∈I+l

4−tj
∏
j∈I−l

4tj−1


= 1− 1

4

(∑
j∈I+

l
tj+

∑
j∈I−

l
(1−tj)

)
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Our LP guarantees that zj ≤
∑

j∈I+l
tj +

∑
j∈I−l

(1− tj), and so we see that since 0 ≤ zj ≤ 1

P[clause l is satisfied] ≥ 1−
(
1

4

)zj

≥ 1− 1

4
=

3

4

So, we can see that the expected objective function value given by this rounding technique is

m∑
l=1

wl · P[clause l is satisfied] ≥ 3

4

m∑
l=1

wl ≥
3

4

m∑
l=1

wl · zl =
3

4
OPTf

So, this rounded solution is a 3
4
-approximation for the optimal solution to MAXSAT.
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Problem 5
Proof. Let mj denote the jth point in our finite metric space. Let i index houses. We will construct
a program over a matrix X ∈ Rn×m such that each element Xi,j is 1 if there is a firehouse in
location j that is the closest firehouse to house i, and 0 elsewhere. Then, the distance from each
house i to their closest firehouse is simply

d(vi, ui) =
m∑
j=1

Xi,jd(vi,mj)

Also, in order for each house to have exactly one closest firehouse (we don’t care how tiebreaks are
assigned), we wish for

m∑
j=1

Xi,j = 1 ∀i ∈ {1, ..., n}

In order to constrain the number of firehouses, we add an additional row (row n+ 1) that indicates
whether there is a firehouse at that position. In other words, we now consider matrices X ∈
R(n+1)×m such that

Xi,j =


1 the firehouse closest to house i ≤ n is located at location j

0 the firehouse closest to house i ≤ n is not located at location j

1 there is a firehouse at location j and i = n+ 1

0 there is not a firehouse at location j and i = n+ 1

Then, we constrain the number of firehouses by ensuring that
∑m

j=1 Xn+1,j ≤ k. Lastly, to en-
sure that the indicators in the last row actually indicate presence of a firehouse, we can write the
following constraints:

Xn+1,j ≥ Xi,j ∀i ∈ {1, ..., n}, j ∈ {1, ...,m}
Xi,j ∈ {0, 1} ∀i ∈ {1, ..., n+ 1}, j ∈ {1, ...,m}

Note that if the indicator in Xn+1,j is 0, then the above constraints force all of the entries in column
j to also be 0; alternatively, if the indicator is 1 they allow the entries above it to take whichever
values they want. This corresponds to the fact that if we do not place a firehouse at position j, there
can be no house whose closest firehouse is at position j. Otherwise, anything goes. Putting all of
the above together, we get the integer program of

minimize
n∑

i=1

m∑
j=1

Xi,jd(vi,mj)

subject to
m∑
j=1

Xi,j = 1 ∀i ∈ {1, ..., n}

Xn+1,j ≥ Xi,j ∀i ∈ {1, ..., n}, j ∈ {1, ...,m}
m∑
j=1

Xn+1,j ≤ k

Xi,j ∈ {0, 1} ∀i ∈ {1, ..., n+ 1}, j ∈ {1, ...,m}
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The optimal solution to this program exactly solves the firehouse problem, and so has value OPT .
We can relax it into an LP by removing the integer constraint to get a fractional solution:

minimize
n∑

i=1

m∑
j=1

Xi,jd(vi,mj)

subject to
m∑
j=1

Xi,j = 1 ∀i ∈ {1, ..., n}

Xn+1,j ≥ Xi,j ∀i ∈ {1, ..., n}, j ∈ {1, ...,m}
m∑
j=1

Xn+1,j ≤ k

0 ≤ Xi,j ≤ 1 ∀i ∈ {1, ..., n+ 1}, j ∈ {1, ...,m}

Observe that this fractional LP (which can be solved in poly(m) time) has OPT as a feasible solu-
tion, and so the fractional optimal solution OPTf must be at least as good. We wish to devise a
way to place O(klog(n)) firehouses in expectation such that, in expectation, the resulting rounded
allocation has cost OPTr ≤ OPTf ≤ OPT . We start by noticing that, if we define E[di] as the
expected distance from each house vi to the nearest firehouse in the fractional LP solution, we get
that E[di] =

∑m
j=1Xi,jd(vi,mj). This is because the fractional optimal Xi,j’s form a probability

distribution for each house due to the first LP constraint. We can write the cost of the fractional
LP solution as OPTf =

∑n
i=1 E[di]. To ensure our rounded solution does better than this, and

therefore better than OPT , we now want to place our O(klog(n)) firehouses in such a way that
each house has in expectation a distance of less than E[di] to its nearest firehouse.

To formalize this, let δ > 0 be arbitrary and define a neighborhood around house vi as the location
indices that are within distance of (1 + δ)E[di] of vi:

Ni = {j ∈ {1, ...,m} | d(vi,mj) < (1 + δ)E[di]}

Then, we want our rounding algorithm to almost surely place a firehouse at a location in Ni for
each i. Rigorously, let ϵ > 0 be arbitrary. We wish for the probability that our allocation ends up
with at least 1 firehouse in each Ni to be at least 1− ϵ.

We can relate δ to our fractional LP solution by noting that

E[di] =
m∑
j=1

Xi,jd(vi,mj) ≥
∑
j /∈Ni

Xi,jd(vi,mj) ≥ (1 + δ)E[di]
∑
j /∈Ni

Xi,j

=⇒
∑
j /∈Ni

Xi,j ≤
1

1 + δ
=⇒

∑
j∈Ni

Xi,j = 1−
∑
j /∈Ni

Xi,j ≥ 1− 1

1 + δ

=⇒
∑
j∈Ni

Xn+1,j ≥ 1− 1

1 + δ

where the last line comes from the second constraint of our LP.

Let us determine the probabilities of sampling a location for a firehouse. For the first firehouse
we sample, we choose from locations j ∈ {1, ...,m} with probability Xn+1,j

k
(we must normalize
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by k because of the third constraint in the fractional LP). After each step of this sampling without
replacement, we have to increase the probabilities of the remaining firehouse locations in order to
keep the distribution normalized; so, in the later steps we choose from locations j with probability
≥ Xn+1,j

k
. In any case, since sampling different positions to place firehouses in are disjoint events,

we can sum the probabilities to see that for each neighborhood Ni around a house, the probability
a firehouse gets placed there in a particular step is

P[a firehouse in Ni] =
∑
j∈Ni

P[firehouse at j] ≥
∑
j∈Ni

Xn+1,j

k
≥

1− 1
1+δ

k

Let t := t(k, n, δ) be a function of k, n, and δ that determines how many firehouses we sample (we
would like to find a form of t to make things nice). Then, we can bound the probability that no
firehouse is placed in a neighborhood Ni during our sampling procedure with

P[no firehouse in Ni] = (1− P[a firehouse in Ni])
t ≤

(
1−

1− 1
1+δ

k

)t

=

(
1− 1 + δ − 1

k(1 + δ)

)t

=

(
1− δ

k(1 + δ)

)t

≤
(
1− δ

k · ln(1 + δ)

)t

Where the last step holds because ln(1 + δ) ≤ 1 + δ for all δ. Suppose now, by way of fancy
analysis magic, that we choose to sample a number of points given by t(k, n, δ) = L · ln(n

ϵ
) for

L = k·ln(1+δ)
δ

. Then, we find that

P[no firehouse in Ni] ≤
(
1− 1

L

)L·ln(n
ϵ
)

≤
(
1

e

)ln(n
ϵ
)

=
ϵ

n

So, since placing a firehouse in each Ni happens disjointly between neighborhoods, the probability
that our random sampling method will place a firehouse in every neighborhood is at least

1−
n∑

i=1

P[no firehouse in Ni] ≥ 1− n ·
( ϵ
n

)
= 1− ϵ

There are a lot of moving parts here. To recap, we devised a relaxed LP that returns non-integer
numbers, but whose optimal cost OPTf will certainly be better than the integral optimal cost OPT .
We showed that OPTf is the sum of the expected distances from each house to their nearest fire-
house, and reasoned that if we could almost surely place a firehouse closer than this expected dis-
tance for every house, we would almost surely get a better cost OPTr ≤ OPTf ≤ OPT . Lastly,
we showed that by placing t = O(klog(n)) firehouses randomly without replacement using proba-
bilities returned by the fractional LP solution, we get the result that with probability ≥ 1−ϵ we will
place a firehouse within a distance of (1 + δ)E[di] of every house, for arbitrary ϵ > 0, δ > 0. This
proves that, in expectation, we will use O(klog(n)) firehouses and will, in expectation, place a fire-
house within the neighborhood of radius E[di] of every house, therefore (in expectation) achieving
a cost ≤ OPT . This whole thing happens in poly(m) time.
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