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LP Duality
Primal LP :

Variables E = x,
,

. .

.,Xu)

maxinite & cixi subject to constraints
i= 1

M

& Ajitizbj , je
l
, ...,
m3

X ; 10 Fiz El, . . .,n3

To fund the dual
,

construct a variable Wi for each ; s.
t

.

2) wj20 = Cy feasible I satisfies

Aw
(2) Fi

, AWjC ; feasible t satisfors
upper

bound on

M

E Y objective
of primal!

·, xi i
The dual LP problem is to find the best

upper bound.
In other words

,

variables <W
,,

. ..

, We] = I

minimize bjw; subject to constraints
M

E
=
Ajiwjsc : VieEl, ...,

n3

wi = o Vje El
, . . ., m3

So,optivehaveePure(Pandthed
LP

,
whitta



Theorem Weak LP Duality
(1) If the pinl LP is unbounded (++), the deal LP is infeasible

.

(2) If the primal IP is finite, dual LP is fritI : prime,
or infeasible.

Proof:
-

2) Suppose BWOC that the duel IP is feasible .
The

,
there is

son upper band on the privel LP.
*

(2) Any fesible solution ofthedeal most upper bond the primal
B

Thorn: Compleratory Slackness
Consider feasible I for the princ and feasible if for dual.
Thee

,
the following are equivalent:

Ajixi = by (j) AND (xi =0 or GAjiVj = 2: Fi)(1) (w
, =0 or E

Lie
.

dral variable is 0 or privel bondj is fight, and vic versal
(I*) (1: =0 or CAjiti=bj FjeS) And T is optimal for LPS

(2) &Cixi = vjbj (i . e . [ and in are both optimal
(2*) I is optical for LP give best upper

bound

&ot : We can say the following :

& cixi-qvjb = C&Ajiwj)x, - & wibj =&& w
, (Asixi -bi) + 0

ij-holds because2 feasible
Holds because i is feasible

Condition (2) Ef this whole incavality being fight.
Condition (1) E notens in the two middle suns.

So
,

(DE) 127
.

B

Defi Begin with
any price LP.

The
,
the Lagrangian relaxation-

W.
rit. (1j20 FitS where S[El

, ...,m3) is

Lp
&

=
Mainte &Citi + & (b; - Axi) subjectoS

more some js for)
&Ajixiebj FjES I constraint to objective

X;? 0 Fi



[heorem : Weak Lagrangian Duality
FSCE1, ...,my and VI

,

LP5 = LP

Proof: Let I be feasible for LP
.

Then, ↑ must be feasible for LP.-

Also
,

since 1520 Fj, (bj - GAjiti)1:20
So

,
we relax by allowing a "larger space

of fresible solutions

and also by increasing the optimum.

objective for LPSY
Observe that we can search for

Best upper- & (b: x)3min mex

bound & with & feesish

1j20 FjeS fur ES
=

One S is fixed
, every

I
gis you a program ,

and
every

such program bounds the primal.

Note :When S = El, ...,
my this best uppen bound search

is equivalent to the duel LP
.

Iba: Separating Hyperplane Theorem
-

Let P be a closed
, conver region in IR" with P.

-The
,
FeP

,
EWEIRV sit

. xim > my g3
B

t Hi is hyperplane ZEIR"
with E . E = constant.

12 The
,

there is some making., and for is largea

Lemma : Let I solve the pricel LP
,

and let S : Ej : [Aji +; =b;
-

i

The there exist 513es St. 1,20 Fits and Ci=&Asi Fi.

(i
.
e

,
for each condition ; that I tightly fits

,
there is a nice multipliet.

Proof: Let X= Eig : 737
,203jes St . =GesjAji3-

X is closed and connex.
So

,
with the spacting hyeple the

,

if IEX we can improve our solution E .

So
,

ex
-

B



Iheaven: Strong LP Duality
1) If princ is unbonded

,

the deal is infeasible .

127 If the princ is fite
,
the deal and prima are equal.

13) If the primal is infeasible the deal is infeasible or unbounded
Proof:

-

Set wj= 1; FjES
, wi

=S VjES
Because of the Lena

,
this is a feasible dual solution.

Now,

&bjwj = bjbw=
= C ;

from Karma

Lecture 9/15
#Rounding

My Turn UP-Had problem to integer progras

solve normal LP
, apply finesse to get integer solution.

ext Max-weight bipartite metching :

given bipartite 6 (V= AUB
,
EEAXB) and w : E-RR weight,

find matching set M of edges S.
t

.
no mode appears > once

↓let maxivites mex & We
(e is

indicator for eem
eem

Define Xe as follows : Xe is an intege Co
, 13

Xe =/ eM xe = 0 Ele M

The problem is to
maxine We're

the
condition

remove
integer

program
.

subject to OXeEl Ye X
makes

the
an

we
get

If
we

MissFatA
,&Yan :

AND Xe ISA
·

up
that

can

be

st
INTEGER politie

,

but
withAbeB

, heat (a,
b)

Fractional
solutions.



We use the Birkhoff-Van Newman Theorem
,
which states

that any fractional matching to a set of connex integr
matchings . Choosing any of these randomly will, in expectation,

achieve the fractional expectation .

evetex cover (NP-Had) :

Given 6: (V
, E)

, weight w : V-R
,
output the

set SEV sit . Feet, at least one endpoint
of e is ins and S mininizes & Wi

iES

To convert this to an integer program,
define indicator variables

↑ = 31 vies The, we get the problem
0 vies

~
get rid of this

,

variables : - : Fier A integer) solve resulting
P

minimize &Wit ;

subjectto OX : 11 Viel
Flu

,
vIeE

, Xu+Xus) atletana ove

For a solution * to the LP
,

we can try to get on

integer solution by randing : place its iff Xi E

(note:His is the best poly-time algo ,

for weter coul

Thu: Rounding outputs a valid water cover.

Bef: Flu ,
o Xntxr ? 1

.
So
,
at best one of ur mustbe

in s
.

*
is

#m: Rounding outputs a 2-app for the best verter come

Lie
. &W : 22

it
wx)i ;

V -roundingrounding sentthese
at mostdoubled

tothese

: GitE Wixi + &wix; ~ & W + 0=
i sit . Xi2 i st. Xi< itS B



ex Distributed computing
The problem : n jobs ,

m meanes
,
must assign each job

processing job ; an machine ; takes time Pij
The goal : Finish all jobs as quickly as possible.

job ; put on machinejDef indicator Xij = Go else

minize max &GrisPij ?j

(slowesti
A mathematio facek for this problem is to

minize

nex 3. ijpij3 subjectta Vi , Sij2/
Viij , Xijt[0,

17

xij
is integer

If we due T as a variable st
. Th. &Xi Pij Fj,

minimizing ↑ solves the program.

There is an integrality gap,
i .

e, there are instances wherethe
best fractional solution ? (best integral solution)

·

E consider case with 1 job,
m machines

: Pij : ).

factional best is to
,

best actual solutio is 1
.

This ones that
an rounding to the relaxed LPs solution will suck.

Dof: Any rounding algorithm takes as input feasible I* and outputsa

Hegal quality(E) = < quality(**) for constant C
.

in # Sit,

Integrality gap disallows this
D

If we add a constrant that considers the lowe bond that

obs must go somewhere we can buildall-
LPCA) : minimize T

parameter- subjectto Xije[0,
1] TPiji ,Fjthink

of

↓
lifethe & xij] Fiintegral

optimum
j Xij =0 if Pijst



#observation: If to integral optio,
the inteyal optimum is

a feasible solution for LPCA)
. ↓

soln .
to

LP(t)

=> intopt .
It dint. opt . 2TBLM)

Ceil of # of

Bondingalgorithm : & machines;
,
make /&x sobs copies

of it as nodes EA.
F jobs is make each one a single node B.

So
,

we get a bipartite graph .
In A

,

there we

multiple nodes for each machine. In B
,

there is

- ob
.one mode for each

machines X
,j

jobs

weight : j
~O I sorted in decessing Pijtotel 6 I

Xj-O Oj
j

1
x

x
2 Each job sedsort exactlyXijO

+
3 - y

+ -

+
,

;↳j
j j)& to seve copy of jad higher

i i Copies of each machine

totel weighing get warsen jobs
Note : has I or 2
-even job2edges to machines because it

will either fit inside one capy an

In other words
, we start at costliest jobs .

not.

The number of copies of machinej is give
by the LP solution. Each copy

has capacity 1
.

We
go in decreasing order of jobs, putting/splitting

it the earliest copy we can to fill capacities .
M

The last copy of machine ; might not be filled .

Ham1 : Let to"be the slowest job assigned to
copy a of

machinej . The , T*(A - & T Vj
c =2

This is a consequence of the ordering at jobs in

decreasing time . As we go to lower copies, they were

filled by better jobs.



* Thealgorita is to and
a caphe matching in te a

2: T*As -F Fj

↓

Lecture 9/20 · Ellipsoid Algorithm
Recall we refe to on LP mainze [CX,

i

subjectto
&Ajitibi

Vi

X ; 18 Fi

Sometimes we have disproportionately more constrants
them variables.

EXSemidernite programming
nxn

↓ER is positive seniderie if FERY
S

xatio E &Xia : a
,
10 Fe

If we wat X being pos. Semidef. to be a constrant
, this is

essentially infinitely many linear constrants.
This world still be an LP /linear objective, linear constraints)

,

but you can't do anything in poly time over of constraints.

EfTraveling Salesmen /visit even node in graph along min weight path)
Xij = 1 3Let dij = dist. For i to j, I /i.j in path

We can write an IP
minimize Edij Xij

ij

subjectto Xijt30, 13 Fij; (integer constraint

& Vij = 2 F: Center Inothngebe)

&X 0 FSEV
,
St,

(every cut is crossed)



To relax this into an Lo me could
S

constrant. However
,
Here an 2" cot cosmoretheiteas

we don't wat this approach .

These examples show that sorctives we wish to de

something else .

We generalize

Def Connex Programming Recall come meas fitfitsfli
-

A conver program is of the furn

minimize fle
-

subjectto xtk

F is conver

I is convert closed

A had problem would be to only do this with a membership
orack for K and a function evaluation crac for f.

We can ask for a stronger assumption : a separation mac.

# A separation crace for a closed corner region
takes as input & and ortpots "yes" *eK

A separationcracke
can be thoughtot as

separating
a constrant venifer, wher we either nation

Eyes" or a violated constraint.

Conside now a canner pogue when all ET

s
hear objective f(z) and a separation orache

.

Practice: (constant verifier)
- We can make a spare

the crack for the Traveling Salesia-

by solving Mincut (polytical for the graph with Xij weights,
and verifying thatthe weight of the minet is 27.



oracle for the Seridnite Program-

Wecamake aspee
e

with a negative eigenvalue. (Poly time

*EllipsoidAlgorithm bounded
↓ by

but

Given as input a separation mach for KFB,
BTY

,
output

3 "Yes" Vol(k) > S
M

-

"no" K is empty
bitsme

astheroom
gl ↳ volume

some
M T

Ex not k = E * /A*53 and xeto
,
1

finite
solutions ,

gi

I ~ ↓ for &and Aij , bi are national numbers of a bits
.

The plan is to check K15 * 1fc23 less with theamp
ellipsoid aIgarithm/

and ru binary search on C
. This

is
easy

if f is linear, but iff is just conver

we use the feet that concer functions lie above the gradient
hypeple; So

,
we need a gredent mach for corner f.

-

Det An ellipsoid is defied by a centera and a pos .
seridfinite

trix B Sit
.ma

Err = Ex((*-a)+B(x-a)= 13

....The algorithm follows theserides : I O
① Query the origin; either it is in K and we are

done
,

or we get a separating hypeplane and
have shrunk the potential volume for K by
a multiplicative factor.

② Repeat a poly # of fires until volks"



Moe pecisely, the algorithm works by :

Eo = smallest ellipsoid containing [B, BJ2
nikalboudy

was S Define Pi = Center(Eil

while (vol(E;)<Ev7 :

if (separation orache (pi)) :

space,

but

leop else:

retur
smallest

allipson
fun This

nich
- get separating hyphae in bi

↓ cuteris

i
- update Eit = smallest allipsoid catery E15* /W- ** b; )S

return False

Pi

gives you
Pict for fue

my

B

space

* makes feasible region larger,

but is easy
to compute and

↓ma1 : We can find Ein give E
;, W

,
bi

↳m 2: Vol(Ein) (1-2) Vol(Ei)
* shrinking

factor

If we defin the two problems for closed
,

connex K

separation ↓ EKorachet separate, () = 53 t wo **Sj . 23

T1 over optimiz, (2) = argued a
conver

space

We just saw a reduction from
We wish to proce a reduction Prize- separata



#even : Separate -> optimize
this LP searches for

most violated
C constrant

Pof: Define an 1P with was in sit. we

maximize EX : Wi = X . I
i constraint

space
subject to &Wili = y .wel Vick & checkD

We see that it keK
,
Zh sit. Finme

the

Let W: This will dealy satis the costatin

We seek a separatin mach for the region W . jc) Fijzk,
which we can do by optimizing meti .} and comparingthe

to 1
.
With thiscade

,
we can then optimize the initial

up via the ellipsoid algorithm to devise a separation
orach for K.

D



Lecture9/22-Semidernite Programs
Some linear algobe background :

Det: A symmetric matrix AEIR
*

is positive semiderite
if 24Fell

, ITARIO
.

The following one equivalent:
(1) A symmetric matrix is PSD
(2) A has all nonnegative eigenvalues
13) A can be written as HTH for some Hern

-
#) Aij = (i

, ii) for n vectors U
, ..

Un EIRY

xfx,yes,

#The set at all PSD matrices in RV is conver .

Proaf :

H A0
D

A semi-definite
program is a program

of the form
actually be

objective can

convex fr .
or

maximize & ijXij L minimizing any
concave

for
maximizing any

subjectto

&Aijkijdbr Uk

* is PSD # Ju
, . . .,
net st Xij =(,) Fij

Equivalently,
we can write a program to search over the rectus Sir, ...,2)

=> maxinite f (V,j)

subjectto Aij(,j) b UK

VeIR" Vi



Ex Max-Cut
Consider the NP-Hand problem Max-Cut :

Give undirected
, unweighted groph, find SEV (S,

Sel

mainting # of edges between 35 (d [I(lu,vzE)
utS vES

The current best approach is to do an SDP relaxation (eplaceF
solve SPP

,
the round

We write the integer program

mairite & Hu, -u; /
(i

,j)tE
-> lastforin an

subject to u: 31
,

13 Vi

To make this an intege SDP
,

we wate the U: labels as standard basis rectors :

F↑linearfundemodets) maximize ll-t(:)+(ij,j) -2(
, nj))

(liver cast subject to (s, I
&

We can relax the basis element constraint to get an SDP,
which is poly-the solvable . Now

,
we must round.

&
Random Hyperplane Rounding :

(1) Choose i ~N(0
,
1)" (Ci vN(0

,
1) i

. i .
d)

(2) Set u: = sign (2 ,

i:))
The hyperplove target to c at the origin splits the space
and cuts the graph. If iii

, they cetenly are on the

same side of the hyprple . If in
, they are certainly=-i

an opposite sides
.

So
,
this has the properties we want



Conside the speck spared by iii.
We can show ? lands nadonly in this space.

↑
So

,
IPGround(ii)+round (;) = 5

: E:
= & Fij
(->

j
The

,
the number of edges in the cut is

expecte
a

The LP yields a max [In+ luj-2()) = (i)
(i, j)EE

We can find numerically that VF,

inth ultr i a
poo out to

Ex MAX ISAT (NP Hand

Given n literals andm clauses / 2 lifeels each,
i

. e . clause
, ExiVXj , Xi Vaj ,

< xiVaxi
,

xiVx; 3 S

wewat to set the literals to maximize the #

of satisfied clauses
.

clausesWe write ↓

Ye = x if jth liteal in 1 is

maxinze 1- ( :

Xi
,

- xi if S
I is

it like in

1 Xi

subjectfo = 1 Vi

xie E-1 ,
13 Fi



To vertize this and relex it into an SBP
, we want

-
filling the role of True

maximize &1-1) (j=
subject to IIxi/= / Fi (i an

Lenoralea
We get a soluti to this SDP in poly-time.

&Pick a radem direction InNo
,
1)

(2) Set xi = Sign ((2:) · (2,
Fo)
-the sign of this is the

True" side ot 2



&ecture 9/27- Submodular Function
Minimization

submodularFunctions

power
set

Lef: of e

Let N be a a set N of n elements. A function F: 2 - IR

is submodular if

(1) FAEBEN and FjeB
,

A(AU3j3) - f(A) = f(BU3c3) - f(B)
or equivalently (Diminishing marginal returns)

(2) S
,
TEN f(SUT) +f(snt) = f(s) + f(T)

Ex Cut functio
If 6 : /VE) is some graph and N= W f/g) is the weight of&

edges from 3 to 5
,

then f is submodular if all edges have nonnegative
weight.

Ex Bipartite Coverage functions

If G= /V
,
E bipartite, N is the set of left-hand nodes

,
f(s) is the # of

right hand nodes with an edge to something in 8.
.
Then

,
f is submodular.

#M: Given submodular f
,

find a gun f)
Note : Because submodular fuctions can be silly slow

,
we work in terms

-

at value oracle access to f). )
.

So
, we count polynomial runtime and

counting the # of queries to this oracle.

Define a function F : 10
,
13-IR st

.
FSEN

,

↑ (5) = E(vector with x= 1 VieS
, +i = 0 Fies) and F(s)= #(s) FS

.

-

↑ is extension of f from discrete

inclusion of elements to 10
,

13
"



We want to show thatE is corner Ef is submodular
Then

,
since fand - agree over 25

,
we can minimize

,
and

we want to use this to minimize f.

Gai: Given an evaluation crac and a gredient once
for conver ↑ we can minimizef over [0

,
1)" in poly

time via the ellipsoid algorithm.

&of: Reall that the ellipsoid algorithm works as follows :

Ellipsoid (K) : giveK connex and boarded (5H s.
t

. KEC-H
,
H]")

and a poly time separationarade fork ,
determine

in poly time whether K is empty .

To use ellipsoid as a subrortive let kc = (0
, 13 15 * /F(z)= 23

- /

Ka is convex because f is conver
,
and it is bounded by 10

,
1".

We can check if FEK
, by checking X,to, 1] Fi and

querying the
evaluation orac.
To ful a separating hypeplane if E & Ka

,
we can return

the hypeplace Egg/y: Xi3 if x:
[0

,
D for some i

hyperplane: S *
ord

& j(jf(z)(j - i) = C - f(x)) E

powerset
1

& For a function f : 50
,
13-1

,
the Lorasz extension F : Co

,
1"-IR

is

Velo
,i"f(x) = E 3f([ : (x: 2A3)3

1-n(50
, 13)

Sample random threshold
,

include all coordinates above the threshold.

We observe that there are onlyuit sets to query an,

To see this
, suppose WOLOG that I is st

. X
, 2 ... X .

The,
the possible sets are 303

,
Ex

,
3
,
Ex

,
73, ..., Ex, ...,

And with thresholds
1 : XX

,,
x

,
21*2,, x22xs, ..., x2 >310 that occur with Is-

IP= 1- x 1, M = xix2
,

1P= xzVz, ...,
IP= Xn - O



So
,
for such monotonically decreasing I,

(k) = (i- f(31
, ...,
i3) (xo: )

, And

The fil needed to

C sort
time + n evaluations off

#heren: E is convex Eff is submodular

&: For simplicity , suppose WOLOG that

1 x
,
1 ... An (we can relabel)

2) f(0)=0 (shifting & doesn't change submodularity)
& submodular - convex)

x
power

Define set S
Pf = Si IVSEE 1

. . .

,
2)

,

itsWi[f(s) and 3M

= f(3),..., n3)

maxDefine g(z) = ip3z . i3 This fors a primal IP
meximized by g.

*11)gcovtbecausethesupporting le live seea &-
(2) - submodular ->

g
= F

.

To see this
,

we write the dual

minimite 31
, ...,n

33s f(3), ..., (3)

subject to & Ys = z: Fi

4970 FS(31, ..,
n3

We propose optimal we = f(31
. . .,
:3) - F(31, . . . , i

- 13) = VF

y
*

=
zi -Zin S = El, ..

.,
i 3

S = El, . . .,n3S z else



We wat to show
(l)2 .

*
= f(z)w

(2) &y* f(s) = F(z) 3 the VfSeEl, ...,n3

(3) j* is feasible in the dual
(n) ** is feasible in the prine

since this will imply that these are optimal solutes
,

and therefore that

* =
g .

We prove (4) by induction on 151
.

For a give S let i be the largest index in S.
SinceIf is submoduler,

f (s)+ f(3)
,

. -

,
i -13) = f(SVS)

,
. .

.,
i 3) + f(513)

, ...,
i-13)

= f(5 1, . . ., i3)+ f(S)3 :3)

=> f (s) = f(5 1, . . ., i 3) - f(3)
,

. -

,
i -13) + f(S)3 :3)

= wY + f(S)3 :3) Er*
So

, wet is feasible in the primal.

The
,

we can optimize t in poly time.



Lecture9/29- Concentration
Bounds

Vibes: what can we say
about a random variable and

-

how close it usually/always is to its expectation?

Notation: For the below notes
,

S is a subset of the power set 30
,
131

-

Reall Markov's nequality :

Let X be a nornegative random variable. Then
,

PSXccEEX3] E FcO

and Chebysher's Inequality:
Let X be a RV with meanu and varice o? Then

,

IP3/X-M) = co3=t Vaso

ChernoffBounds
We ask what if we drawa random variables that areA independent and bonded

.
CLT means they approach Gaussian !

Formally
,

what if we have random variables X
, ,

. ...
An that are

independent and sit. XitSO,
1 Fi .

What can we say about X= Xi ?

#heaven: Let X
, , . ...

An be independent with Xi30 ,
13 Vi . Then,

exponentially

in
expectationIPSX= (1 + 3) EX33egof the sum

Dof: Let X= Xi
.

Let P := EEX: 3 Fi

Pick t"'to set later
,

and look at the random variable et?
Observe that Xi's independent

Edet3 = ESTet=Ee= ((l- P:) + Piet)
(et- 1) E3x3

= (1 + pi(e)), Ple



We can see that, since etz is monutore,

PSX >(1+ 3)E5x33 = PSettet(I+a) E3X33

By Markov's Inequality ,
this is bounded by

let-1) Ex3

PSX >(1+ 2)E3x3322-
t(1 + 3)1E5x3

2

Letting t = bell+ 3) and noting (1+3)h(l+2) > E +E for ECO
,

1),
- Ex3

-e5+ 3E

PSXs(1 + 3)E5x3] =
eE3x3(3 - (1 +3)h((+a)) -

3323

~ so that it holds

for
22

READ NOTES HERE

for Chernoff applications
Examples that look like sum of random variably we can

use Chernoff on
,

but eit !

unweighted
-

Ext~ Fixed graph 6. Put v in a sets independently with

bility Pr to get a random out. What is the valueproba
of cut

.
(S) .

Ex 2~ Let f be a subset of the power set 50, 13? Put
~ in S independently with probability Pv .

We can use Chernoff bounds
on the size ISI

,
but not on functions like

Is 01s

a MISATB or
b) f(s One Isl i

Mn + 1s) n - m
, (s)an+ M

-S
25n

z

Isl ?"I
2

&: A function f is c-Lipschitz if FSEN and jeN
,

If(S V3j3) - f(s)) = a

use
bounded differences



Theoen: McDiarmid's Inequality
Let X

. ,
. .

.
An be independent random variables

,

and let
f ) ...) satisfy bouded differences for a

, ..., In

(i . e . Fi, :
,

:
, xi (f(x

,

xi) - f( ,xi)) = ci)
-

holding everything except X:
constant

f =Lipschitzmal es

Then
,

IPEIf(x) - E3f(x)3/332Ze
Note, when fis 1-Lipschitz

,
P3 ... 3 : zeSo

,
when as no this is cool)

#Theorem : Schoetman f(SuT) = f(s) +f(T)

Y

Let of be subadditive and 1-Lipschitz
,

and let X, . . .,
An be

-

independent .
Let a be the median of f(x) .

Then,

P3f()bark3z22k Fk > 0

Note that Example1 above is submodular
,
but non-monotone

and Example 2(a) above is XOS/ fractionally subadditive

L A function of is XOS if there exist additive functions f
, ...,

fur
sit . f(s) = max fi (s)]

& A function f is la
,b)-self-bounding if there exist f

,.
-,
fr

Sit
Off(s) -fi(S (3 : 3) 21 Viel, ...,

n

& f(s)-fi(S (3 :3)zaf(s)+b YS

There lab-self-bonded functionsareChernoffborda monotone submodule

frections are 17
,
07-self-bounded

,
XOS nonmod SM are Chernoff bonded

.



Lecture1014 Streaming I

Streaming algorithms process large data in a small space

low memory usaga).

Theput steam a sequence of iprts a.., ant is

EX1=pproximate Counting

Maintain a counter n initialized to O
, supporty

-incl : neni (no more then Nina()
-

query() : return an approximation = Claim with high probability.

We can solve this trivially with lagh) bite by maintaining exact

counter . This can be quite big

Question:

-

Can
we represent numbers neEl, ..., 13 using logt bits sit.

we can recover nECE
, in] from the encoding?

We can approximate n by only storing interes, such

as the nearest power of 2 (togeta I-approx.
For ne[zY,

2)
,

we can store + in Olloglogh) bits .

We can hadle increments by inevenating x with probability 2
*

/

such that we
,

in expectation, increat + when we should
.
The algorithm looks like

in it () : ↓ O after first inall query(l : return t

incll :

- XH w . p.

2
-x

3 T w. p. 1-2
*



Analysis: LetIn be the R
.
V . X afterm calls to inc)

We wis thatIEEz* 3 in and VarE2*3: 0(nz)

#
ES2*] = GPEX = GPS (l-2X= B . 2

-(-1)y
= [PEX =(2*

- 1) + EPEX 1
= x - 13 . 2 =ES2-B + 2

= SzYn-iH => 32*3 = n
.

Similar logic works for the variance.

B

We can apply Chabyshevs Frequality PPS1Y-EEX3KT343to get

IPS(2x- -n(s +3 = 0((F))
Means
-

We can reduce the variance by averaging s independent copies.

Let XIll denote + in the its copy.
Then

, letting *** - &X Je

the average, E32**3 = n and VarEz**3 = 50. sOlnt) = 0(v)

Chebyster nor give
pl**-n/T3 = 0F

If we set T= En
,

s = Jan ,
we get /z* nk En328

.

Total
space used is Ologlogn)

Miof mans

Maintain S
.

Su independent copies. On avery, dude into 5, groups
of sizeS2 .

Let Xis) be the jtX of group i
.

For each group is
compute =t ) .

Let be the medien of
, ... s

If we set Se to O(z)
,

IPEnials and in



We can fid that
> (1 + 2)n E 12 groups

have his (1+2)-

n<(1 - 2)m # -"
groups have: (l-2)n

Let Y :
: 31 iMalta a

We know that
& All the Y:

are independent
② s Iltain # &Y: =Sz
③ E3Y:3Ch

With Chernoff
, IPEs (1+in3= 3 Y:? E324: 3 . 27 zi

Similarly
,

IPEc(1-s]n3 eFe
If we set S

,
to Ollog(t)), univ bond yields
#S/n-n1cEn3 > 1- S

Total space used is 0(log (t) loglog1)

#Couted set the ba to sto lay(t)



Lecture1816 - Streaming I
Ex DistinatElements

Input : a stream a
, . . .

an (a :
=3), . . ,

U3),
F
-

Opt: estimate F of # of district elements

sit
. F = ClesF w

. p.
= 1-8.

↑solutia distinct elevts ! OInlog U) space

SubsetSampling
Not accurate

uniform

Recall that if X, ...,/f are independent RV's with XirUCO
,

12

I and XI*) is the KE smallest one
,

then ESX3 : E S
We can use this in reverse : find XI for some k to estinate F.

#MV(k-minimum value)

Algwithm
Ideally,

assure access to arandom hash function

h : S , . .

.,
43 - [0

,
13

.

Have a paramete Kal to set later.

· initialize a set 9 to $ to store the K smallest hash values ·
· for i in E1, ...,n3 :

S SUEhlai]
if IS/sk : remove mais' from S

·
if ISl = K : return F=

K - I

else : return n
max(s) =

-Iturnsattent
F = /S)



#yesout two thingsWe G
① upper bound on PSFs (1 + 2) F3
② upper bord on IPEF(l-3) 3 Theseacusina

We can find
Ec (1 +3)F3 = 13 (IF =ma

where maxiss is the KE smallest hosh value.

Let v
, , . . ., Vf be thehash values of the elements .

-

independent Fr
:, &v: if

Let X be a RV denoting the # of visit. V: f

= F=> Eas=f

=> Var243 = Var= Fitz-k
By Chebysher,

↑EX =k3 = O
C

If we set K = < IPEEs (1+37F3cO(t)
We can apply similar logic to find that IPSEc(1-F) (0(t)
By Union Bord

, PSFe(lik)F3c 1-0(2)

using space Ole) "real numbers".

We can do better with the median trick : maintain T independent copies
and output the median of the predictions. We saw last time that this yields

↑Smedian e(IIE)F3-1-e-ECT)
.

Setting T= OCloy(t)
,
P3 ...321-8

.

↑
Note that this algorithm assures space = 0 (1) red #

① storing real numbers in [0
, 13

② random hash function



&
Removing the Assumptions

① Discretize [0
, 17 to St

,
E, ...,

,
13

.

We get a "rounding arror"=0(tu).
If we set M= U

, things work out the same.

② Def Let (2) be a family of hash factors
2)

...,
43 - 31

,
.. ..

,
M3

·
(-) is c-wise independent if

Ex
, ,

. ..,XatEl, . . .,
43 distinct

,
Fa

, ...,
a

,
EE1, ...,M3

,

IPSViz 31
, ..., 23

,
h(xi)= c :3 = tra

ht()

Recall that there exists pairwise independent 7) of size poly (U,
M)

.

=> it takes OllegU + legh) to encode one hel).

Recall also that varies is liner for pairwise independent RVs.
For KMV

,
the only place that we use indepadace ofthe hesh

values v: is when calculating VarEX3.

S the proofof the analysis is completed0

Total space amounts to

Ollog(t) (logU + logu) = 0 ) log(j) log(u) bits

There is a better result : O(tzlog (t) + leg(h) (Blaisok 2018
EFFrequency Moment

Input : a stream a
, . . .

an (a :
=3), . . ,

U3),

TDenote by fx the of x in the stream and -p : ...us()
Output: We want Es .

t
. PEFECIIETF3s 1-S

-



Note that p= O

&#distinet, pet is countera

For p =2
, we use

AMS
-

Algorithm :

Essureaccess to a random hish 0 : E1, ..., 43 + 31
,

13

· initialize X O

· for i in E1,...,n3 :

x x + O(ai)
· return x

Correctress/Analysis
-

We have X= & fyoly) Ex= & fasty,OlyOlya
yeEl

, ..,43 Y.,Yz

-
=> IE3X3 : S = E ~

Similarly
, we can find (if o 4-wise independent) y

fill thetimate
VarEx= ESx3 - E3x3" = O(F?)

We can mentin S: Su copies of AMS
,

divided into s
.

=OClay's) groups
of size S2: 0lin). The median of the group means satisfies

#Emedian t (12)F23-1-S
with space Olazlog(+log4)

(Note : for ps2, space lower band (nt4p)



↓
Lecture10/11- Johnson-Lindestrauss
We focus on dimensionality reduction.

Given vectors &
, , . . .,
FERM

,
and EO

,
fed a mapping f:RM->1& (dcm)

sit. VijeEl, .... nY 11f(xi)-f(xIe(l + a) (lxi - x,/12

D* Fina
Teoen: (Johnson-Lindstrauss)
For any X... t ERM and

any 350
,
there exists F:R-1

&

for d= j- (logn) st. 1lf(xi) - f(x)Ie((ta)(lxi-xj)k - i
,je[n] .

Moreover
, f is linear. f(x) = #X

* &xm motix

Proof:
The plan is as follows:

↑ Find a distribution 8 over matrices in Redem s .

t.
-

SFFEM,
IP [IIITERECIIbllEIR] < 1-S[l5LProperty
Tufh
#

for d = 0(Elagn)
, Sin

② Union bound !

⑧2 Starting from E
,

assure we have done$
.

Then
, sampling Tr8,

we get firtIRd st
. f(xi - *j) = flii-fEj) . By 19

,
315-

,

Vije[n] ,
IP(1If(i)-f(EDITe(Ita)ll F:

- FjIM] : [ll(:-EIRt(l+ 2) /If:
-E12] > 1-S

Trge Hug

ForSits
,

we can vio band our all pairs
to see that what we want

happens with probability 1-t.
D



& There are two construations of this distribution 8:

(a) Hij 3-1
,

13 (3) Hij a NO a prove
with

this

U scheFe Sams abou
and let a

=> (3 (Tixi)] = His, His xi)
-] + E ]

O in

expetation= because independent

=> I(Ili] = d . I = /FIR.

So
,
I beloves well in expectation .

We want to show Gy, concentrate.
-

We can say 1[fyi > (1 +allI] = ↑CetEyice+(1 + c)() =1]
Set :R -> E= ·Imarkov

Set d : Elog(j)
- e-Bad

The
IP [fyi (1 +2)11] = 6 .

We can perform similer bands on the lower tail . This yields
IP [IIITERE (IIbllEIR] < 1- S as desired .

Tage
B

This reduces to dimension d= En lag (polyn)
,

but takes Olma) time
to transform each Vector FER"

.

We can do batter i



Two strategies to speed up IX :

① use a spensa matrix IT Isparse JL transfiel
-batter for sparse *

Consider random matrix It
. Fix parameters.

· sample exactlys entries randomly in every colum of It

to be nonzero

· fill all selected nonzero entries withNardom If
Theorem (kN

,

2014)

7.
,
230 St

.,
if we set d= 2tlog(t) ,

s = ed= log)
the

FEEIRY
, CITTRElledlIFIR]s I-f

② use a structured matrixIt that allows for (fast 52 transform
fast matrix-rector multiplication .

-better for average I

Let it be a product of 3 matrices
,

each with fest
multiplication. In particular, m

= S . H · D lassume m is a power ofd).↑

dam

· S is a random variable
,
where S picks & random coordinates

of X to form a vector in19.

Lenna: If Hello is small
,
the IPCIISNR Ell12)/IXIR] is large.

So
,

we want H.D to preprocess I to maintain the norm
,

but have

small 11HDX/lo.

·

HRadeterministic Hadaward He =[t,
Host



· D is arandomly diagonal metrix

D = [ ....ithat randomly negates coordinates.

D ↓ can be computed in Ohm) fire
.

We know that both it and D are unitary , preserving the norm.

There is a nontrival lemma
Sort of a

↓ rotation
he: FEETY

,
IPIIIHDilla is "small"] is "large" .

This yields that I: SHD has the same properties ,

but can be
multiplied in Omlogm) time .



Insert spacer notes here



↳10175- Learning from Experts
no

distributional
X

assumptions,

can
be

adversarial
Consider a seauace of events E

, ...,
E+ e 30,

13
where each event Et's outcome is revealed at time to

There are alson experts
,

each one preducting Et before time +.

The goal is to predict events betwe they happen
, minimizing # of mistakes

E
, En, . . . . Er

↑
suppose

there is

expert that

=>- some
good

........- --- -
- experts makes

m#[
mistakes

.

↓

=> fire ->

We will show that
,
without knowing which one is the best expect,

we can also make about m* mistakes as well.

Warmup~If m
*

= 0 we follow the majority advice among
all experts that haven't

S

made a mistake yet at step t. There are I cases

O the majority is correct

② the majority is incorrect
,

and so we reduce the # of experts we

follow by a fector :I

② can only hopen logn times
,

and so we naka Llogn mistakes.

~Weighted Majority
Init: Fix paramete Te(0,E]

, give weight wil to expert i.

For to [T] :

- follow the weighted majority of all expets
- for all incorrect experts, wi will -3)



Theorem : the # of mistakes M is at most 2 . (1+z)m*
+

n

3

Proof : Denote by wit the weight of expert ; at time to
-

Let WH = YWit be the total weight

Every time we make a mistake, =witbecauseeurts
-

wit = w wi + (l-b)Wi :W&Wi

= WH_ = (l - E)w()
The best expert is has Wit = (1-3)m

*

The final total weight is

whe (1 - y y(0)= n(l - E) (1 -y>m
*

=> (l - 3)
*

-n(1 - 2) = m+h(+) = m + rh(z)
Since 13/E ,

3 = /Fs) : 3 +32

= (+33)m* 12+ Em = M = 2() +3)u+
+ 25

Randomized Weighted Majority
The same idea

,
but in each rand

,
we return

be 30
,

13 w. p. .
#eoen: The randomized version makes at most

ESM3 = (1+3)m+ b
3

mistakes in expectation .



Bot: Denote by -

↑ stept. So, 9 thePebb thatme make a itea

W(tH = &Wit : & wil + (1)& W =WCat:

Will
currect ;

= W(t- 39(w() = (l - 3q(+))w(
So

,

the final total weight is T

= neblEEM3w= (1) en
Also

,

as before,

4) - z(P-w() = (l-3)* nEYESM3
=> m

*(3 + 32)- - 1nn + 3E(M3 = E3r3 = (1+3)mP + -
B

#MultiplicativeWeights

In the general setting ,
there are T rovds

.

- each round hasn choices E1, ...,
n3

,
and we choose one.

- there is a cost mitEC,
B fer choosing : in round to

- We wish to minimize total cost.

: For parameter ze(0, E] and give weight will to each choice.

For te[T] :

- return : w. p. proportional to wi

- obser costs Emi#Jizis
-update wi < wi (1 - 3mi)

Theorem: For every ie[n], the expected total cost is at most

ESM3- &m3
it

3

m
He[-1,

D Vist



we make O(Fhn) more mistakesIfme set 3 , the the expert in question.



Lecture10/77 - Online Algorithms
:Rental-

Every day that you ski
, you can either:

(1) use skis you already bought
(2) rent skis for R

(3) buy skis for

* An important partof the model is that you don't know
,

until it

↓ opens, whether you plan to ski
.a

On day I, you go skiing and must decide.

After day i
, you may never ski again,

or you go skiing on day it .

We measure the result using the competative mater
:met ScottTA

↑

input = DeN
,

the number of days

The offline problem has an OPT(input D) = minEDR
,

B3
I will ski

We wish to design an online algorithm that does well under the

competetive ratio metric.

Any deterministic anlive algorithm is Allydefied by T the number of
S

days we are willing toret (vent FtzT
,
bry on =Tr

, te(DT)

Lan: For
any algorithm t, the competitive natio is achieved at D=TH

.

Peti For Exed T
,
D
,
get - Dot

< Price we

RminED
,
+3 + Bπ pay
-

minEDR
,
B3 upt

2) mex cannot be acieved at DaTr
,

since numerator doesn't change and

denominator may grow.

(2) mox cannot be achieved at DCT
,

since it is always 11.

(3) D=T is <D=TH
, using marginal logic .

(worst case is stopping string right after buying
D



So
,
for any T,

the competetive natio

is RTT B3
Lam : This is minted at T= BR - 1 (assuming BIREN)

, yielding a

competitive natio of 2-1
B

↳

roof:

(1) the min is not achieved at T> Bp-l ; the denominator is constant while

the numwater increases
.

(2) the min is not achieved at TCP-1; the decorater and numeate both grow
by R

,
and the numerator is larger then the denominate

,
so the competitive natio

decrees for each additional T

.

Listupdateeace
a linked list. Online

, you get requests to access X.

You scan the list until you
hit X .

You are allowed to more x

up in the list howeve much for free after returning.

Frequencycountr

() Initialize ((x)= 0 Ex

(2) If x is queried, increment ((x)

1) more + up above all y with (As (ly)

&: fC he competitive ratio e(n)

Pat Start by averying elevat : times
. Then

,

for some large K,

For -
in [K] :

book of
for je[n] :

quey jn times
.

Ahintn
the

The offline optimum is
,

for each new quey,

more to front.

This has total order Olkn2]



F C will
pay n + G-D+ .. .

= Ola) for each time we avey in time.

So
, FC has cost 1(kn3)

=> C .
R

.
= M()

D

#tofatte you avey something ,
more it to the front.

#am : MTF has C
.
B.
R whauzieaseek

offline opt

↓

Pf: Imagine running MTF and OPT side-by-side.
Firest

,
darte by

#
of -> #C) the # of pains (x,g) S.

t
. Xu+Fy but yopiX

inversions We can see that

(1) #(0) = 0 (2) Elt10 ·

Let MTF(t)
,
OPTI) be the

costs for avery t.

Claim: Ft
, MFFCH+ (E(H) - Elt-1) = 2 OPT(t)

Perf: Consider accessing - time to Let MTF(x) = p.

Suppose that K elemats in front of x in M+F are also a lead at

in OPT. => M+F(t) =P
,
OPT() = KH < hideinifKuddgo

,a nd lep

The MiFoperation creates kinversions
,

but fixes pok invesios
,

if we

were to not change OPT. MovingI forward in OPT can only improve

things ,
since it

can only for inversions by agreeing that↓ is ahead

of things. So, # (H - E(t-1 = 2k -

p+) = 20PT(H) - M+F())

Repeated application of the clam shone

M+F + EITOPT = C
.
R

.
17

.

D



Lecture11/8- Communication Complexity
Def: A two-party communication problem consistsaf a function
-

f 20
,
13+ 30

,
13+ 50

,
13.

.

Alice receive input At 30
,

139 and

Bob receives BEEO
,
B The goal is to compute f(A

,
B)

.

# A deterministic communication protocol specifies for Alice as a function of

her inputt and all previous messages a
,
b

, ambs ... anby what is the next

message An+ Alice should send? Similarly for Bob.

& The communication cost is the maximum # at bits in all messages.

Ex Equality f(x,y) = 1 iff x= Y

#tocol : In each message i, Alice sends X: and Bob sends Y:

=> On) cost

Insert restof leathe

her



Lecture11/10 - Computation of Nash
Consider rock-paper-scissors

R PS

O

I

- - This is a zeo-sum gaverX ,

- I

I -Conside the matix of payoffsrich for the now player as theO

SX o

O matrix for the colum place
- I &

The rank of the son ofthese
metrices determines tractibility
of computation of Nash-

&call : · Nash Equilibr is when both players are best

responding to each othe.

o Can be
pure or mixed NE

We generalize: A 2 player gave is give by two no matives

↑ B whe Aij denotes the payoff to A it new plys
i and col plys j

,
and Bij..

-

eg
mixed

stral y

distribution
our

-

(f 1) is a Nash Ea . ifactions -Y

*A = Airy Fi IBjB.j Fj

& (g) are -Nash Equilibrium if (Almost Nash)

E +FA = A:. j Fi +Bij = B
.j Vj

~

Computation of Nash
define this late
-

Given A
,
B

,
find a NE .

This problem is PPAB-Complete.
We can find -Nash or use LP rounding

,

etc.



-Listen/Morkakis/Mehte set that can

have repeatelements
-

The am: There exist two multi-sets ST
,
each of size OLlogn/2)

Sit. it is an -Nash for A
,
B to randomly sample strategies

uniformly from S,T
, respectively . quasi-polynomial

1 fine OnRagn)

(logn7O IThis implies a bath force algorithm to exhaust all r pains
Of multisets and check if any is -Nash.

Sidenote : If fa
,

- a onlog) tim algorith for finding -Na,he
thee exists a your algorithm for PPAD.

(If you can do better then the LMM alg . above
, you can do sub-esparatial PRAD !)

#oofof Therebe a NE love must exist .

Consider randomly sampla
K strategies from /call it 9) andK strategies from i Call itT.

Define
X= times

its yeivempeldistributina
We want to show:

(1) Vi
,

1A:.· -Ai.. j
*/

3 Chernoff
(2) F: 1 B...* - B:. .

*)E
S City: Weinberg

(3) / *A]- iPAj/E Population
(4) / = Bj - - Bijs

From this
, we want to show that *

Ai* > A
..j

*
-32 Fi

(1) gives ******A - & /each row is e-accurate, and so is a distribution our rows)
Y

(3) then gives - XAj - 2
N. E. the gives

- Aij-2s Vi

(1) again gives - A
: ja -3 E Vi

D



Exportal Time Alg .

For Exact Mash

() Assume WOLOG that A= BT /we can reduce sytling to this by swapping playes for half the actions)

This will look like playing against ourselves?

Consider the following :
(Ai

.,
1) 1) Fi (i doesn't give payet more the it against )

(LH polytope) X: 10 Fi If has pos, entries and is normalizable)

Being in this polytope means no strategy does better the
,

(2) We call an action : covered if <1..,5) = 0 or xi = 0 or both

#claim : if I satisfies LHP and has all: covered lat least one inea.
is light),

the is Nash

Pot: Consider
using : against # If x:=

0
,

not used and we don't

care.
Others

, i could = (i, ) = #
,

i is a BR

B

#TheAlgorithm : /Pivoting) /also a proof that N
.
E. exists)

Start from a verter of the polytope, "walk" along the bourday
(keeping all but one constrainttights until the next vetex (pivoting).

Start at 8.
"relax X :

= 0
, see which constrants tighten to get next = (ca be done weex

If I covers all i, done !

If not
,

7 : that is "double-covered"
,

relax one and continue.

B

see Lecture notes

for details



Note that any decision publem (is the a Nash st.... ) is NP-Hard,
buosuch problem imples that no Nash exists. So

,

Nash : MP-Had

#PAD-CompleteExamples

Given a graph on I" modes st. every mode has indegre 11 and

outdegree 11 with a source mode (indegeo
,

find a sink (wecan nocstrutsa

Give IS=2"
,
ITV

,
the exists a trath fiStt that mps S

, 5

to the same +.



Lecture11/15-Low-Rank Approx .

Leta
, ...,

a EIR
& be deta points

. We seek b
, . . ., be EIRd (ked)

K

and [Cijek)
,
idn]

St .

GiSi5, approximately in low dinncial
subspace

Equivalently
,

let
A= ( .... d) 1** we seek

B = (p ... b)R
and CeRk* sit.

AwBC.

zaxn and Kod :We wish to minimize the following for a given metrix At 11

Frobeviusnorm Mi
Ilf

argu
in

ken
error

, error a ABC
BeR

,
CER

SuD

#eoren:CS exists)
↑
di

be a matrix .
Let remind

,
n)

.
Then

,
the exist matrices U

,
&

,

UT
· Herder

;
the columns of U (left singular reators) are outhonormal

· CER; [ is ding (0
, ...,
01 Sit .

the singular values have

0, 1 ... 1 Or18
· VER*; the colume of V (right singular rectors) are arthonormal

* UEVT=AD

This leads to some interesting properties :

· ATA =VEVT · Singular values ar square roots of eigenvalues
· AATIBUT · If : colmcV,

Ar = U(VT) = U2() =:



Theorem: (SUD is best)

fora kletUnbetedcitsi
defined similarly .

Then
,

1IA-UEVTIR mira 11A-BCII

F Bette

Cepk=

Proof :
-

Consider the case It. We seek Bel
,
CER" sit.(k = 1)

11A-bT =Ella:
-c: 511 is minimized

i= 1

For any give
t (suppose WOLOG that 11611 = 1

,
sure we an scale down 5 and sal up (i)

S

this is minimized for the it term 112-c:
5/2 when ci = (a

,
5).

The minim is the Ila : -c:/ = 11 IP-1lc:
SIR = Mill- c :

<

So, we wish to maxine ↳2

mer Sc= [( ,
b) = 11 ATBIP

For given A, we find unit rector 5 maximizing /IATBIE
,

and set C = AT5.
~

Let A: 42UT =llATIR 11 VCUTIE FICUTIR: Cui
,
5)

columns

Y
,

llVell = /Ell

Since 115/m= 1
, < ,

5) = / since E3 outhonormal

So
,

we maximize when 5 = U
. ((u, b) = 1 and is

,
has largest singular value 2)

-
-Therefore

,
the error is minimized for 5= 2

,
c : An

,

= V2 Min
,

= O
,

V
,

The claim holds for Kil
.

(ks1) We do the some thing .
For m give Beledtk with othogonal

colvums
,

the best C is C= BTA . We seek the B maximizing
~

lIBTAlE : 11BTUCUTIE : llBTUEIE:: EOPlIBT : Co
i=

Se Dhas thec tabuar=

B



#gorithm (SVD Solver)

· Initialize A= A

· For i:, . . .,
~ :

- compute the optimal rank I approximation of Alil (And bette! E sit.

11AlP- j()T/ minzed)
-update AA?)

_ jt
, =, ,

2

· Set U : (i,
, ,

. .

., ur)
,

V= (F
, . .

., v)
,

E = diag lo, ...,
0

.

We need to show that Alt= 0 and that Sui3
;

and S3:
are both arthonormal .

-
-(i)

=

~ (i)Lain: For any
round : with bib

,
C C

&

A= A!
O be column space of A

② b1 colvum spacer of (A-bT)

This claim (if we were to prove it) shows

5 itspanEA : 3 and BitspuEA = Bilb for it's

and Span &Ai+ 3 -SpaEAi3 => dim reduces by 1 each roud.

These two results show U is outhonovel and Alt1= 0
.

D

We need to fill inane piece : finding the best rank I approximation for
A . We will use the Power Method. The idea is we wish to find the top

eigemalre of ATA
.

We keep multiplying a restor by ATA
,

which will push it more in

the direction of the top egarector of ATA (or AAT
,

same spectrum) .

Power Method
-

· initialize E to random vector with ii.d NCO
,

1) entrie
.

Set =FI

·For tel, ...,
T:

large roud

- set Et+,
· Retur Er s . No-



This works because

E Eate-doin:
... = [(0:

2) T . u,

:

Flangest eigenvale
will dominate

If we set T= Oled) ,

we have
-1sup

1) A - 5(a+5)
+ /= - (1+2)()A- q,,,T11]

The total time to find b. Cis Olend)

Therefore, the total time to findthe K-rank SVD approximation
is

0(kdlo



Lecture11/29-Static Data Structure

Lower Bound
PolynomialEvaluation

Given a polynomial PEFa[x] of degree n
,

where a is prime,

we would like to
preprocess it into a data stuvature of size S s.

t.

given a query XEFa
,

P(x) can be computed in time
T

.

We focus on minimizing S and T

There are two trivial structures :

& Store coefficients of P Old) space + Old)
avery time

② Precompute P(X) FxEFg O(a) space + 011) avey time

Amotrivial result from [Kellaya Unine 08] is that FS, O
,

we can achieve S: 0In'tSpolyloga)
,

T= O(polylog(n,
all

Today we will prove
lower bonds on (S

,
T) !

& [Yoo'81) The Cell-Probe Model for data structure analysis is

each cell
~

has

Memory of size S :

↓ bits
we

word size

1111 of machine

-mem

S cells

① Cells are indexed by (5]
& Can read/write a cell in unit time

read/writes

③ Computation is free => T:= # of cell probes the algorithm makes

Since this model is stranger than actual computes
,

lower bounds her apply everywhere !



We make the usual assumption wa -(logh + logg) (Instone pointeaa
An interesting setting we will focus on is when w= Allogn) and :polyn

-ductionfrom Communication Complexity Problem [Miltusa
,

Nison,
, ... 9n]

&11 : Alice gets input X and Bob gets input y
,

and the goal is to compute
a function f(x

,/) using
minimal communication .

We can view polynomial evaluation as a communication game

as follows :

Alice knows the polynomial Bob knows the avery

addr
,

-- [
-

Sladder 17
7 X

-

-

J
addr2 avey xetta

-

-
Sladdr2]'

-

I
S cells constructed
from polynomial P

Memory accesses are a 2-mey communication ! Formally,

Lenna: Suppose that I a data structure for polynomial evaluation

u spaces and
avey time T

.

The
,

there is a protocol for the

following communication protocol :

· Alice gets P
.

Bob gets x .

The goal is to send P(x) s.
t.

Bob sends TlagS and Alice sending Thr bits
.

&of: Alice preprocesses P into a dete structure of sizen 3 locally.

Then
,
Bob Alice

simulate the
avey alg :



Far te[T] :

· Bob sends an addres in logs bits
· Alice responds with the cell contents inw bits

D

So
,

a love bord in this communication problem is a lowe band for

PE. Note that the reasoning works for any
date structure in the cell-probe model !

Hain: To compute P(x)
,
for any CeCO

, minBlogn, loga3] ,
- Bob sends - 2 loga bits
- Alice sends - loga-c bits

↑ Communication lover boud

Prof: Omitted i

This yields that
FC sit . Twaloga,

TlogS = loga -2

=> Siz Fo sit. 2 In

loga

=> Ste Yoga Sea
When T:l

,
this was So Sloga < # bits to stare a

elevents of Fa

which is the second W # bits/cell( trivial solution ! S

Well-Sampling Wepolye

Suppose now that T is a large constant st . (g)2

We focus on whe w= log a
and = polyn for convenience .

each cell stores are

element of Fa

The idea is to find a small set of cells & sit.
too

many queries

can be answered by accessing C.



HIIII
S

We want to produce contradictions by being able to reconstruct the polynomial
too easily.

For T= 1
,
J are cell that is accessed by as diffect quares.

In general,

Hanna : Let30
. Suppose that I a data structure for polynomial evaluation we

space S and fire T(xn) . Then
,

there exists a set C of En

allsst different ques can be answered by only accessing

&oof: We will do this by a probabilistic augment.

1. Sample arandom set 2 of an cells.
2. for a query tetta

Then
, IPcbeasmd
TTOC IT

3. By linearity
.
EE#X that ca be ansued within C] = 9 (2)0c

So
,

the exist this
may quees for some set C

D

So
,

this setup world allow us to answe enough queries to reconstruct an n-degree

polynomial withIn cells if a (OST) n
.

Therefor,

= en(layn)Theorem: We must have g In #The(a)is Ia
&of: Suppose BWOC that alots not



1. Construct the defa structure and find the set 2 with the claimed
encode property (from the Lenna).

2. Write down the laddress
,

contact pains for all cells in 9.

This is the encoding.
3. To decode

,

decode (a) Recover C from reading the encoding
(b) Query the algorithm FxetFa .

Collect the answers for all queries
that can be answered within 2

. The Kuma condition implies
that we will have = a (OCT)2n+ 1 different (x

,
P(x) pains ·

This uniquely determines the polynomial by interpolation.

So, we get a procedure that can encode the whole polynomial in

=> (C) (lagS + w) = an Lloy S +loga) < (n+ 1) Lega

Therefore
,
JP

, Pe with the same encoding. Contradiction !
B



↓
Lecture12/1 - Fine-Grained Complexity
We focus on KSAT: givenn variables X

, ....
xn and a

K-CNF

formula C
, 1C1 ... 12m

,

where each C
, is of the form y, VyzV ... ryk

and
y is either X+ or -X for some tean]

, compute if I an assignment
* E30

,
13" that satisfies all Si

.

Brute force : try all In assignments.

Best known : 0(24(1-E) .md) for constants >O

There is a hypothesis that this is the best we can do.

Strong Exponential Time Hypothesis - Simplies PENP)
* 3sO

, 7k23 st.

K-SAT cannot be solved in 0/211-2polym)

#en [Impogliazzo ,

Patri
,

Zone 'Ol)
SETH ES SETH with m = O(n)

Consider the following problem:

Orthogonal Vesters (OU)
-

Front : a set of N vectors in 20, 139 (d =0(logN))
Output : if Ju

,
v st . (n

,
r = 0 = u1u =

free: Old) time
, compute Cuv] Fa,

Theore (William ju]

SETHEFSIO OU cannot Be solved in O(n2Spolyd) fire

Proof : We want to
prove the contrapositive : with an 01m

2 >polyd) time
-

S&Or algo,
we can construct a OG"i"polyn) K-SAT alg.



Consider a K-SAT instance C
, , ...,

Im m = 0(c)
S

- divide the variables Ex
, , ...,

Xn3 inte V
,

V2 of size
- for j=

1
,

2 consider all possible 2 partial assignments & to Uj
construct a vector of dimension met for each (j)

The vectors are constructed below

j, = i
-

o I if j= 1

i ~
I O if j=

Oif Ci is already satisfied by $
I

O . W.

- thee are zEH vectors in total.

#m: two vectors are arthogonal iff they combine to satisfy
S

i . e. (j
,
0
, Vina) = O iff j. jz and 10,02) satisfies

So
,
J0

,
Qu St. (0

,,
U, ) = 0 E C

, 121 ... 1Cm is satisfable

=> alg for OV in ON2 -Spolyd) =

K-SATin
tie

O/(2) polyn) = 0(72D-E)polyu)
D

GraphDiamete

Given an undirected
,

hted graph G: (V
,
E) wr IV lin

,

Elim
unweig

compute D = max dolu,
u

y,
veU

&force: beadth-first search in Olma) time

[RV 13] E-approx in time Olm! polylogm)
(2 D'=D)



There= Faso
,

(E-3)-approx must take 101D timem . n

&roof: Reduce from Or on N vectors
.

Check lecture notes.

This shows that if 5 alg . for diameter in muts time,
=> Or is solved in O(N13Nd) = O(N2-3d)

13

Now let
us look at this through 3-SUM :

given a set S of n numbers
,
output whether

= ab,
ceS Sit . atb = c

There is also 3. SUM convolution :

give AS1
, ...,
n]

,
output whether Jx

,ye[n] sit A[x]+ Aty]= A[x+y]

Naive: Olnt for both

-Sun Conjective- FSO
, no alg .

solves 3-Sum in 02-3) time .

-Sno aly ,

solves 3-Sumicour in 0Cm23) time

Exacttright undrested graph G
, output if Gab,ev st

w(a
,

b) + w(b
,
c) + w(ca) = 0

#eoen: If J0(n3-3) alg .

for ET
,

then 73-sur-cour alg .

with 0(ni-3) time

#of: Consider an input A to 3-sunicor
.

We will construct Oli]

graphs G
, , ..., Gun of size Ohin)

.

A
~
↓ 1 I T=G((n)

TT



6
: is tripartite U:, Vi

,
Wi
L- U :

has vertices j - [Y+]
- V : has vertices se[T]
- Wi has vertices te[IT]

· for jeVi , SeVi add edge (j,s) with weight A[jT+ s]
· for jeVi , teWi add edge (jst) with weight -A[liT+ t]
· for SeVi, teW: add edge (st) with weight A[iT+ (t-s)]

&2 : 6
:

has a zero-d iff Jx in block ; sit . ASx]+Aty] = A[x+y]

Since(6) = 0(++ =)
,
it[Yt]

,
if FET alg in time Olm5s)

,
total

time is 0(O . (l-5) = 0(n
2 - 52).

D



Lecture12/6- Differential

Privacy
* A database D is a tuple (F

, . . ., ) .

very a is a pedicate that takes input tBeA couya
9 E 30

,
13. Over a whole DB

, a (D) = )

In the wast case
,

if the whole world were out to get you or an attecher had

all the possible outside information
,

even a large-scale survey where you answer honestly
is not private (even when n large,

Occa(D1)
examples
-

Iall other respondents know what they put and can find
your answer

② Netflix de-anonymization via pattern-matching with external IMDB DB .

We would like machinery to robustly powe that no matter whaton attecker
-

knows
, they can't break

your privacy.

D A randomized algorithm M is a accurate for a if
, whip.,

(M(D) - a(D)) = 2 VD

* A randomized algorithm M
is 2-differentially private if Vi, all

#st . D
.i

= Di
,
F sets S of possible outputs

,

& pairs of databases differing

by at most 1 respondent

IPEM(D) ES3 = eSIPEM(D) ES3
E

- outputs - /) -



We want to ensure that E-DP ensures that your participation
not affect anyone else's (insurance Mon

,
etc

.) Bayesian prior about
you.

Pally
, suppose that someone has

a Bayesian prior P about the

database state that they will update to ↑ after seeing M on the database
.

E-DP guarantees

PEDImID=YeeFPSDIM

↳PIMDPM= -3 = D PYIP(M(D)=-3

IPYM(D) =-3 & IPEM(5) = r3 IPS c P3
j

E

IPSD = P3 · eFPYM(D) = 13
= eFIPSDImID) =-Y

IPSM(:3eIID DEP pifthey ser

MID) = - instead
of M(B) =-

B

1 : Randomized response

With probability p give correct answer q(i), w
. p . I-p flip it

Vi. Your response will be more private without worrying about the
total dataset on the algorithme .

The outputrectoris f = Cr
, .... rn) .

7
IPEM(D) = 2 3 = IPEM. (D) /FSIPEM : (D)= r3 = E
- -

IPSM(D) = 23 IPEM-i (D)= =
: 3 PEM : (D) =-3 1 - p

N p = = +=

The estimate should the be o 1/4 - (1-0)
which is correct in expectation with variance



Edea7 : Add noise

Add noise to each response r: drawn from Lap() .

So
,

the PDF

of the noise is f(x)=
We are concerned with the desity nations between D and D

- EnIr-g(D)) differ by at most - E
M

7 I because count changes ? 2F 11 when changing

e-En/r-a(D) by
one response

It is correct in expectation with variance 2
-

(En)2

* A randomized algorithm M
is (2, 6)-differentially private if Vi, all

DD' sit . D
.i

= Di
,
F sats S of possible outputs

,

-

& pairs of databases differing

by at most 1 respondent

& octate- Me SEMA
& check

His

Theorem: It M
, . . .,

Mr all S-BP
,

then the algorithm that answers

all avenes (M,, .-,
Ma) is KS-DP

.

If M
,, . . .,Mr all (5

,
5)-DP

,
then (m

,,
. .,
ma)

is (KE+Fres,
S) - DP.

Dof: Lot no i B

& -DP is also robustto groups of individuals !

E-DP is also robust to postprocessing :

V algorithms A
,

M is E-DP = AoM is -DP



Lure12/8- Smoothed Analysis
& given a worst-case input & ladversarial)

② randomly smootha Hoy using some distribution of magnitude o

Imaintain adversarial big picture ,
but randomize lower-order bits)

③I is the true input

& VF leven adversarial)
S

· runtme( = poly(

Super cool result we won't prove :

#Leorem : (Spielman ,Teng '01
objective
~
↓

Let , A, 5 define a LP
.

-x
constraint

matrix

Let smooth (2
,

A
, 5) add ii . d

.

N10
, 02) to Aij , bj Fi

, j -

Then
,
the simple algorithm is smoothed poly-time in this model.

↑
exponential
worst-case

check This notes for discussion about what this means

about simplex in practice

MetricTSP
Consider a metric space [0

,
1 x 10

, 1CIR with L
,

metric
.

nodes with L

- distence edges
I-

1 .. TSP is to find the lowest cost Hamiltonian
%

O cycle.
O

·. 2



There is an algorithm called I-OPT that performs local searches .

Basically
,
for any current tour

goo ,

consideo replacing each pair of

U

o
·

x

I -> Inon adject edges one-by-one as follows : % + -% I·
Y

keep the improvements and terminate when no pain replacement helps.

2. OPT has worst case exponential time to terminate but smoothed

polynomial runtime
, as we will see below.

Theorem: It mode Xi is smoothed to
: independently according

to
any distribution w PDF fi sit. f: (g) =t Vy (bounded density)

,

then I-OPT is smoothed poly-time.

* A swap (n
,
v)

,
(x

, g) iss-bad if

IIn-ull
,
+ 11 +y11 ,

- (n-x11
, + 11v-y/l) e (0

, 2)
-

swapping makes2 progress,
so alg.

continues with very little progress

Lemma : Ve IP
-

-

X
S jesmort() y swap in i is srbod' -
#of at lense : First

,
observe that there are "possible choices of ((n,c)

.
(x

,g)
and so if all of these are good,

there can be no graph with

an e-bad swap. For each (ur), (x,3)
,

let

In
,
-v

.
1 + (u -ve) + (x

+ y , 1 + 1x= 32)
* =

- In
.
- +

, 1 - luc-+) -1v. -g . )-Iva-yal

If we fix the relative ordering of Su
, U,, 3,3 and

Suz
,

Veste
,ye3

,

then A is linear in all wars and all coeffs

are in 3 -7
,

0
.
23

.

So
. AtElinear Ens with coefed-2

,

0
, 233.

There are 141)"n possible linear functions. Now
,

for any
linear function in this set

,
in our smoothed model

, we want to

show that it is ECO
,

3)
.

If all the coefficients are O
,

it holds trivially.



Now
, suppose WOLOG that u

,
has a 2 crefficient. Sample

the smoothed versions of all other variables except u
..

The function is
2n,+ daka + dav,

+ ...

-
= C for some 2

So
,

the function is in 10
,
a) iff u

. e(,)
of width. The nex probability that u

,
can lie in this

range is? because of the bounded densities
.

For each possible swap, a union bound over the (4!) possible
functions yields that IPSG-bad swaps = We
Now

,
a wim bound over

the n possible swaps proves the Lemma.

Proofof Therem :

Note first that since each edge weights) ,

the initial four

is 1In .
So

,
if no -bad swaps,

there will be iterations.

The Lenna gives that
IPSmore than M iterations] =0
-

w .
h. p . polynomial

The expected # of iterations
,

since there must be In ! possible tows
,

is
n !

Eites?= more than Miter

closectation
Both together give smoothed poly nuctime.

B


